

- Ex.3) Suppose $w(x) = u(v(x))$ and $u(0) = 1$, $v(0) = 2$, $u'(0) = 3$, $u'(2) = 4$, $v'(0) = 5$, and $v'(2) = 6$. Find $w'(0)$.

$$\begin{aligned}
 w'(x) &= u'(v(x)) \cdot v'(x) \\
 \Rightarrow w'(0) &= u'(\underbrace{v(0)}_{=2}) \cdot \underbrace{v'(0)}_{=5} \\
 &= \underbrace{u'(2)}_{=4} \cdot 5 \\
 &= 4 \cdot 5 = 20
 \end{aligned}$$

- Ex.4) Let $y = \ln u$ and $u = 5x^4 + x^6$. Find $\frac{dy}{dx}$.

$$\begin{aligned}
 y(u) &\quad u(x) \\
 \frac{dy}{dx} &= \frac{dy}{du} \cdot \frac{du}{dx} \\
 &= \frac{1}{u} \cdot (20x^3 + 6x^5) \\
 &= \frac{1}{(5x^4 + x^6)} (20x^3 + 6x^5)
 \end{aligned}$$

or

$$\begin{cases} y(u) = \ln u \\ \Rightarrow y(x) = \ln(5x^4 + x^6) \\ \frac{dy}{dx} = y'(x) = \frac{1}{(5x^4 + x^6)} \cdot (20x^3 + 6x^5) \end{cases}$$

- Ex.5) Keith invests \$5,000 into a savings account offering interest at an annual rate of 2.4% compounded continuously. How fast is the balance growing after 8 years?

$$A = P \cdot e^{rt}$$

$$A'(t)$$

$$\Rightarrow A(t) = 5000 \cdot e^{0.024t}$$

$$\frac{dA}{dt} = A'(t) = 5000 \cdot e^{(0.024t)} \cdot (0.024)$$

$$\Rightarrow A'(8) = 5000 \cdot e^{(0.024(8))} \cdot (0.024)$$

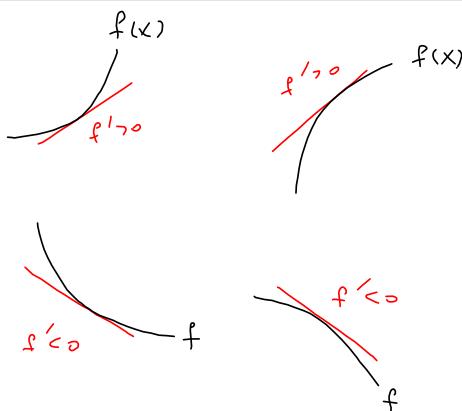
$$= \$145.40 \text{ /year}$$

Chapter 5 Curve Sketching and Optimization

Section 5.1 The First Derivative

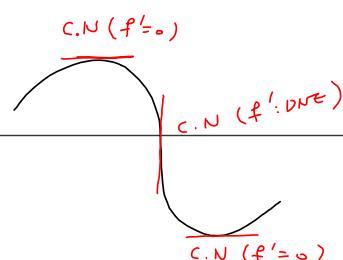
Test for Increasing or Decreasing Functions

- If for all $x \in (a, b)$, $f'(x) > 0$, then $f(x)$ is increasing (\nearrow) on (a, b)
- If for all $x \in (a, b)$, $f'(x) < 0$, then $f(x)$ is decreasing (\searrow) on (a, b)



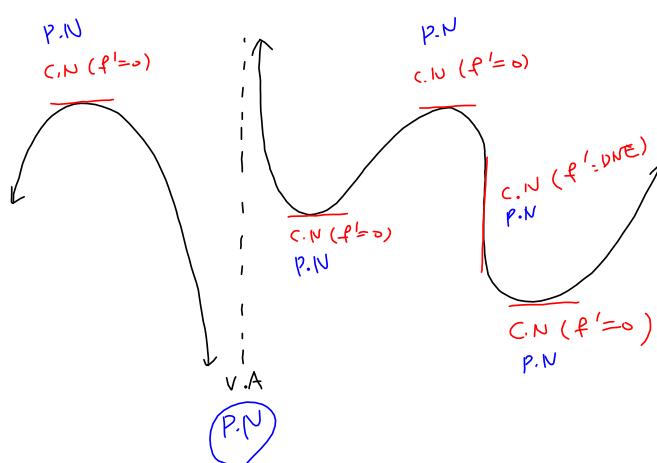
Definition. Critical Value: A value $x = c$ is a **critical value** for a function $f(x)$ if

- (a) c is in the domain of the function $f(x)$ and
- (b) $f'(c) = 0$ or $f'(x)$ does not exist.



Definition. Partition number: A **partition number** of $f'(x)$ is a value of x such that $f'(x) = 0$ or $f'(x)$ is undefined.

ex)



Ex.6) Find the critical values and partition numbers for the following functions and then determine where the function is increasing/decreasing.

a) $f(x) = -x^3 + 12x - 5$

Step 1) Find C.N

$$\begin{aligned}f'(x) &= -3x^2 + 12 \\&= -3(x^2 - 4) \\&= -3(x-2)(x+2) = 0\end{aligned}$$

$\therefore x = 2, -2 : C.N_s, P.N_s$



\therefore dec. $(-\infty, -2), (2, \infty)$
inc. $(-2, 2)$
local min at $x = -2$
local Max at $x = 2$

b) $g(x) = \frac{x+3}{5-x}$ Domain: \mathbb{R} except $x=5$
 $\therefore x=5: P.N$

Step 1) C.N

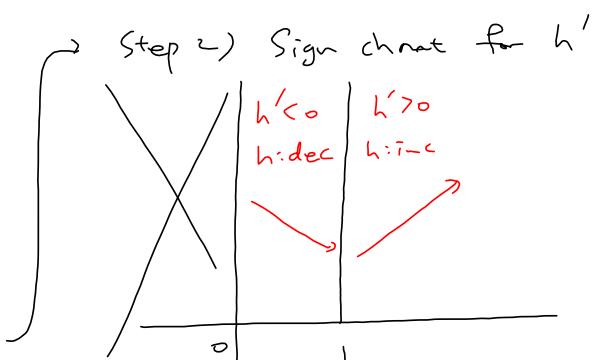
$$\begin{aligned} g'(x) &= \frac{(1) \cdot (5-x) - (x+3) \cdot (-1)}{(5-x)^2} \\ &= \frac{5-x+x+3}{(5-x)^2} \\ &= \frac{8}{(5-x)^2} = 0 \\ &\therefore \text{No C.N} \quad \therefore P.N: x=5 \end{aligned}$$

 $\therefore \text{inc. } (-\infty, 5), (5, \infty)$

c) $h(x) = x \ln x - x$ Domain: $x > 0$

Step 1) C.N

$$\begin{aligned} h'(x) &= 1 \cdot \ln x + x \cdot \frac{1}{x} - 1 \\ &= \ln x + 1 - 1 \\ &= \ln x = 0 \\ &\therefore x=1 : C.N, P.N \end{aligned}$$

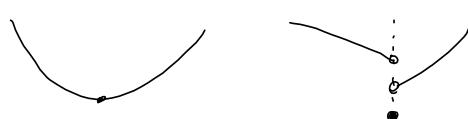
 $\therefore \text{dec. : } (0, 1)$ $\text{inc. : } (1, \infty)$ local min at $x=1$

Definition. Relative Maximum and Relative Minimum:

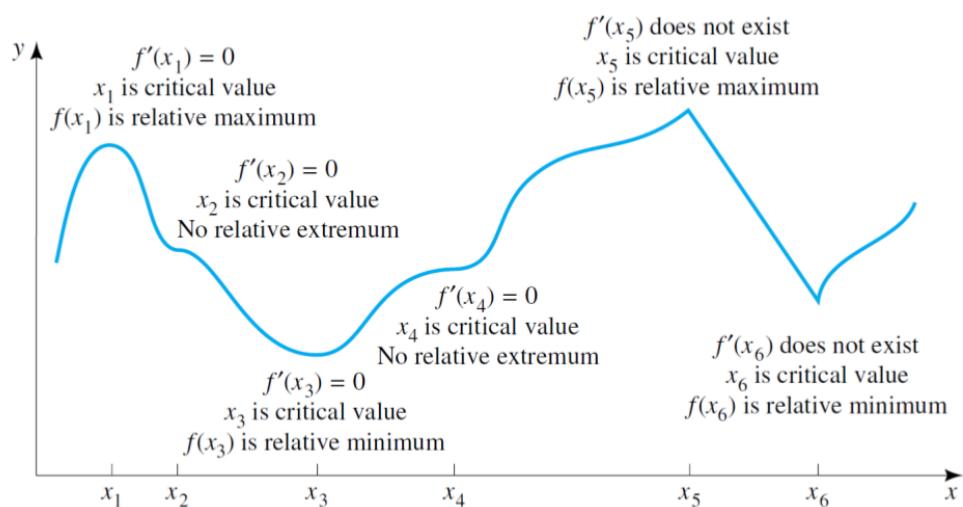
- We say that the quantity $f(c)$ is a **relative (local) maximum** if $f(x) \leq f(c)$ for all x in some open interval (a, b) that contains c .
- We say that the quantity $f(c)$ is a **relative (local) minimum** if $f(x) \geq f(c)$ for all x in some open interval (a, b) that contains c .

Local Max :

Local min :

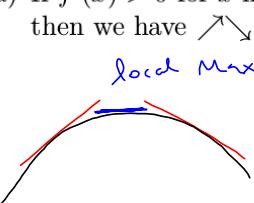


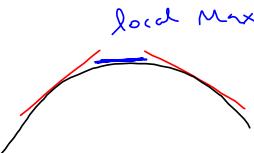
Definition. Relative Extremum We say that $f(c)$ is a **relative (local) extremum** if $f(c)$ is a relative maximum or a relative minimum.

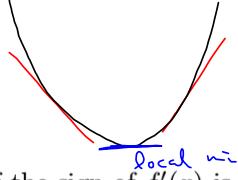


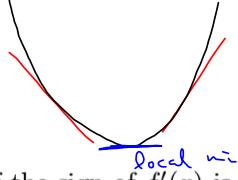
First Derivative Test

Suppose f is defined on (a, b) and c is a critical value in the interval (a, b) .

- (a) If $f'(x) > 0$ for x near and to the left of c and $f'(x) < 0$ for x near and to the right of c , then we have  and $f(c)$ is a relative maximum.



- (b) If $f'(x) < 0$ for x near and to the left of c and $f'(x) > 0$ for x near and to the right of c , then we have  and $f(c)$ is a relative minimum.



- (c) If the sign of $f'(x)$ is the same on both sides of c , then $f(c)$ is not a relative extremum.

Ex.7) Determine the intervals where the following functions are increasing and decreasing and find the local extrema.

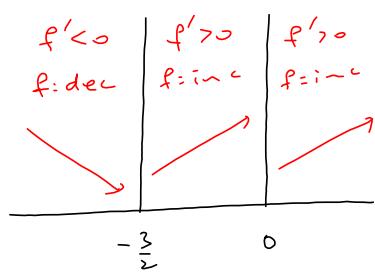
a) $f(x) = x^4 + 2x^3 + 5$

Step 1) Find C.N

$$\begin{aligned} f'(x) &= 4x^3 + 6x^2 \\ &= 2x^2(2x+3) = 0 \\ \therefore x &= 0, -\frac{3}{2} \end{aligned}$$

: C.N,

Step 2) Sign chart for f'



$$\therefore \text{dec. : } (-\infty, -\frac{3}{2})$$

$$\text{inc. : } (-\frac{3}{2}, 0), (0, \infty)$$

$$\text{local min: } \left(-\frac{3}{2}, f\left(-\frac{3}{2}\right) \right)$$

$$= \left(-\frac{3}{2}, \frac{53}{16} \right)$$

b) $g(x) = \frac{2}{x^2 - 16} = 2(x^2 - 16)^{-1}$

Domain: \mathbb{R} except: $(x=4, -4)$: P.Ns

Step 1) C.N

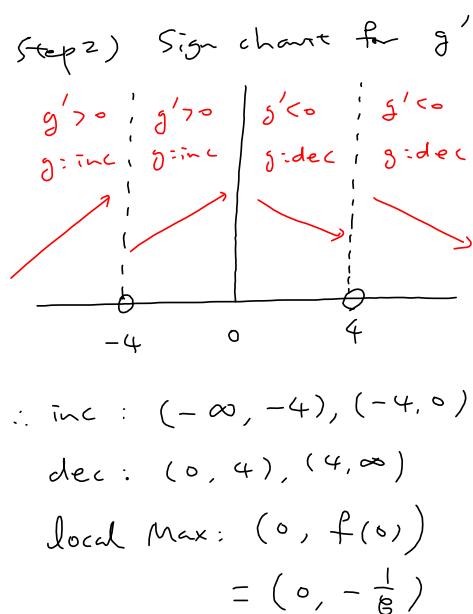
$$g'(x) = -2(x^2 - 16)^{-2} \cdot (2x)$$

$$= \frac{-4x}{(x^2 - 16)^2} = 0$$

$$\Rightarrow -4x = 0$$

$$\therefore x = 0 : \text{C.N}$$

$$\therefore \text{P.Ns: } x = 0, 4, -4$$



c) $h(x) = (x + 2)e^x$