

b) $g(x) = \frac{2}{x^2 - 16}$

c) $h(x) = \underline{(x+2)} \underline{e^x}$ Domain: \mathbb{R}

Step 1) C.N

$$h'(x) = (1) \cdot e^x + (x+2) \cdot e^x$$

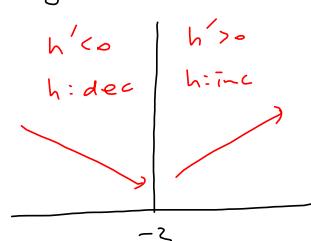
$$= e^x (1 + x + 2)$$

$$= e^x (x + 3) = 0$$

$\cancel{e^x}$ $\cancel{x+3}$

$$\therefore x = -3 : \text{C.N}$$

Step 2) Sign chart for h'



\therefore dec. $(-\infty, -3)$

inc. $(-3, \infty)$

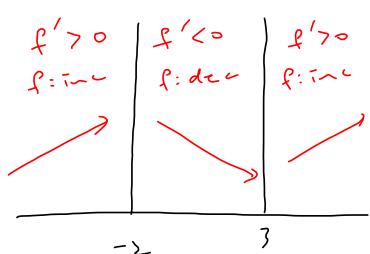
local min: $(-3, h(-3))$

$$= \left(-3, -\frac{1}{e^3} \right)$$

d) $f(x) = (x+2)^5(x-3)^7 e^{(x-6)}$

$\therefore x = -2, 3 : C.N.s$

sign chart for f'



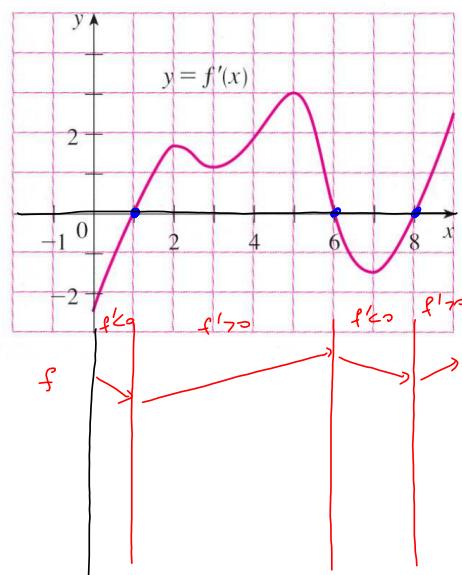
\therefore inc. : $(-\infty, -2), (3, \infty)$

dec. : $(-2, 3)$

local Max. at $x = -2$

local min. at $x = 3$

Ex.8) The graph of the derivative $f'(x)$ is shown below.



dec. : $(0, 1), (6, 8)$

inc. : $(1, 6), (8, 9)$

local min. at $x=1, 6$

local Max. at $x=6$

Section 5.2 The Second Derivative

Definition. Second Derivative: Given a function $y = f(x)$, the **second derivative**, denoted by $f''(x)$, is defined to be the derivative of the first derivative. Thus,

$$(f'(x))' = f''(x) = \frac{d}{dx}(f'(x))$$

||

$$\frac{d}{dx} \left(\frac{df}{dx} \right) = \frac{d^2 f}{dx^2}$$

ex) $f(x) = x^4$
 $f' = 4x^3$
 $f'' = (4x^3)' = 12x^2$

Ex.1) Find the first and second derivative of the following functions:

a) $f(x) = 2x^3 - 14x^2 + 3x - 16$

$$f'(x) = 6x^2 - 28x + 3$$

$$f''(x) = 12x - 28$$

b) $y = \underline{3x^2} \underline{\ln x}$

$$y' = 6x \cdot \underline{\ln x} + 3x^2 \cdot \frac{1}{x}$$

$$= \underline{6x} \cdot \underline{\ln x} + 3x$$

$$y'' = \underbrace{6 \cdot \ln x + 6x \cdot \frac{1}{x}}_{= 6 \cdot \ln x + 6 + 3} + 3$$

$$= 6 \cdot \ln x + 6 + 3$$

$$\therefore y'' = 6 \cdot \ln x + 9$$

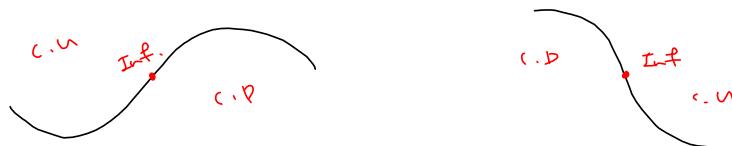
Definition. Concave Up and Down:

- (a) We say that the graph of f is concave up (\smile) on (a, b) if $f'(x)$ is increasing on (a, b) .
- (b) We say that the graph of f is concave down (\frown) on (a, b) if $f'(x)$ is decreasing on (a, b) .

Test for Concavity

- (a) If $f''(x) > 0$ on (a, b) , then the graph of f is concave up (\smile) on (a, b) .
- (b) If $f''(x) < 0$ on (a, b) , then the graph of f is concave down (\frown) on (a, b) .

Definition. Inflection Point: A point $(c, f(c))$ on the graph of f is an **inflection point** and c is an **inflection value** if $f(c)$ is defined and the concavity of the graph of f changes at $(c, f(c))$.



Locating Inflection Points:

- Determine the values of x where the second derivative is zero or where the second derivative is undefined. $f''=0$, or $f''\text{DNE}$
- Place these values on a number line and create a sign chart for the second derivative.
- The point is an inflection point if the second derivative changes sign and if the x -value is in the domain of $f(x)$.

Ex.2) Given $f(x) = -x^3 + 2x^2 - 3x + 9$ determine the intervals where $f'(x)$ is increasing and decreasing.

$$f' = -3x^2 + 4x - 3$$

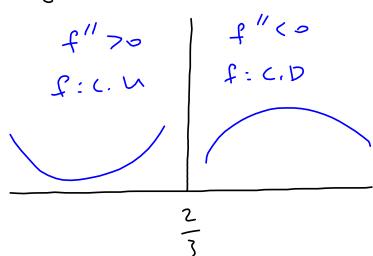
$$f'' > 0$$

$$\therefore f \text{ is C. U.}$$

$$f'' = -6x + 4 = 0$$

$$\therefore x = \frac{4}{6} = \frac{2}{3}$$

Sign chart for f''



$$\therefore \text{C.U.: } (-\infty, \frac{2}{3})$$

$$\text{C.D.: } (\frac{2}{3}, \infty)$$

$$\text{Inf: } \left(\frac{2}{3}, f\left(\frac{2}{3}\right) \right) = \left(\frac{2}{3}, \frac{205}{27} \right)$$

Ex.3) Determine the intervals where the functions below are concave up and concave down and locate any inflection points.

a) $f(x) = x^4 - 6x^2$

$$f' = 4x^3 - 12x$$

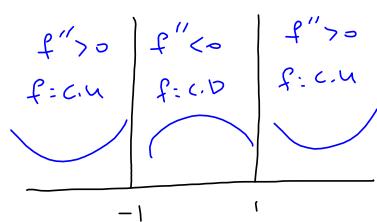
$$f'' = 12x^2 - 12$$

$$= 12(x^2 - 1)$$

$$= 12(x-1)(x+1) = 0$$

$$\therefore x = 1, -1$$

sign chart for f''



$$\therefore \text{c.u.: } (-\infty, -1), (1, \infty)$$

$$\text{c.d.: } (-1, 1)$$

$$\text{Inf.: } (-1, f(-1)) = (-1, -5)$$

$$(1, f(1)) = (1, -5)$$

b) $f(x) = \ln(x^2 + 6x + 13)$ Domain: \mathbb{R}

$$f'(x) = \frac{1}{(x^2 + 6x + 13)} \cdot (2x + 6)$$

$$= \frac{2x + 6}{x^2 + 6x + 13}$$

$$f''(x) = \frac{(2) \cdot (x^2 + 6x + 13) - (2x + 6) \cdot (2x + 6)}{(x^2 + 6x + 13)^2}$$

$$= \frac{2x^2 + 12x + 26 - 4x^2 - 24x - 36}{(x^2 + 6x + 13)^2}$$

$$= \frac{-2x^2 - 12x - 10}{(x^2 + 6x + 13)^2} = \frac{-2(x^2 + 6x + 5)}{(x^2 + 6x + 13)^2}$$

$$= \frac{-2(x+1)(x+5)}{(x^2 + 6x + 13)^2} = 0$$

$$\therefore x = -1, -5$$

sign chart for f''

$$\therefore \text{c. D: } (-\infty, -5), (-1, \infty)$$

$$\text{c. u: } (-5, -1)$$

$$\text{Inf: } (-5, f(-5)) = (-5, \ln 8)$$

$$(-1, f(-1)) = (-1, \ln 8)$$

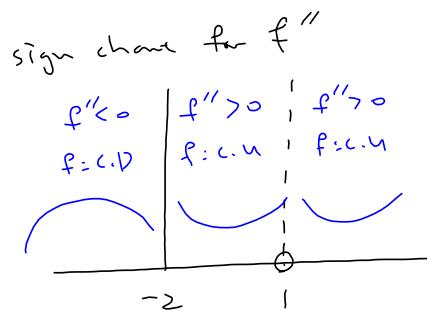
- Ex.4) Suppose the function $f(x)$ has a domain of all real numbers except $x = 1$. The second derivative of $f(x)$ is shown below,

$$f''(x) = \frac{2x+4}{(x-1)^4}.$$

Determine the intervals where the function is concave up and concave down and locate any inflection points.

$$f'' = \frac{2(x+2)}{(x-1)^4} = 0$$

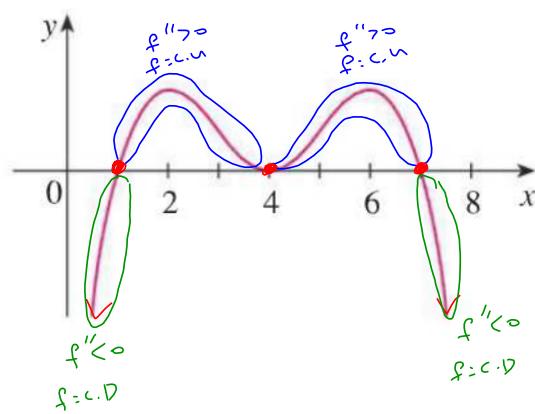
$$\therefore x = -2, \quad P.N.s: x = -2, 1$$



$$\therefore C.D: (-\infty, -2) \\ C.U: (-2, 1), (1, \infty)$$

Inf. at $x = -2$

Ex.5) The graph of the second derivative f'' of a function f is shown below.



(a) On what intervals is f concave upward?

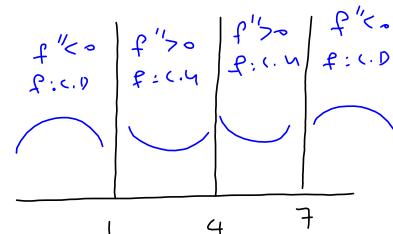
$$(1, 4), (4, 7)$$

(b) On what intervals is f concave downward?

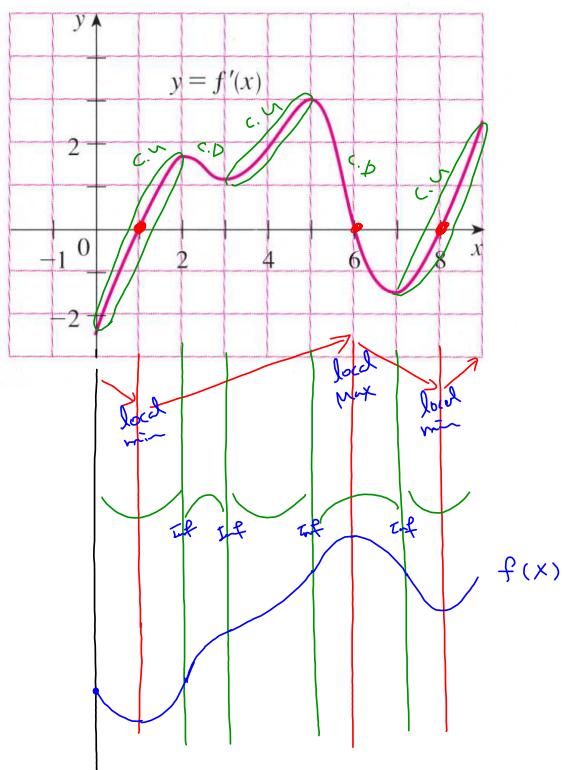
$$(-\infty, 1), (7, \infty)$$

(c) State the x -coordinates of the points of inflection.

$$x = 1, 7$$



Ex.6) The graph of the derivative f' of a function f is shown below



Second Derivative Test

Suppose that f is defined on (a, b) , $f'(c) = 0$, and $c \in (a, b)$.

- (a) If $f''(c) > 0$, then $f(c)$ is a relative (local) minimum.
 - (b) If $f''(c) < 0$, then $f(c)$ is a relative (local) maximum.

Ex.7) Determine where the local extrema of $f(x) = -x^3 + 12x - 5$ occur (and classify) using the Second Derivative Test for Local Extrema.

Step 1) C.N

$$f' = -3x^2 + 12$$

$$= -3(x^2 - 4)$$

$$= -3(x-2)(x+2) = 0$$

$$\therefore x=2, -2 : \text{Ans}$$

Step 2) Use the Second Derivative Test

$$f'' = -6x$$

Then

$$f''(-2) = -6(-2) = 12 > 0 \quad : \quad \checkmark$$

∴ f has a local min at $x = -2$

$$\therefore \text{local min} = (-2, f(-2)) = (-2, -21)$$

$$f''(z) = -6(z) = -12 < 0 : \text{凸}$$

∴ f has a local Max at $x = z$

$$\therefore \text{local Max: } (2, f(2)) = (2, 11)$$