

MATH 142 BUSINESS CALCULUS

Fall 2019, WEEK 7

JoungDong Kim

Week 7 Section 5.2, 5.3, 5.4 Second Derivative, Limits at Infinity, Additional Curve Sketching

Section 5.2 The Second Derivative

Definition. Second Derivative: Given a function $y = f(x)$, the **second derivative**, denoted by $f''(x)$, is defined to be the derivative of the first derivative. Thus,

$$f''(x) = \frac{d}{dx}(f'(x))$$

Ex.1) Find the first and second derivative of the following functions:

a) $f(x) = 2x^3 - 14x^2 + 3x - 16$

b) $y = 3x^2 \ln x$

Definition. Concave Up and Down:

- (a) We say that the graph of f is concave up (\smile) on (a, b) if $f'(x)$ is increasing on (a, b) .
- (b) We say that the graph of f is concave down (\frown) on (a, b) if $f'(x)$ is decreasing on (a, b) .

Test for Concavity

- (a) If $f''(x) > 0$ on (a, b) , then the graph of f is concave up (\smile) on (a, b) .
- (b) If $f''(x) < 0$ on (a, b) , then the graph of f is concave down (\frown) on (a, b) .

Definition. Inflection Point: A point $(c, f(c))$ on the graph of f is an **inflection point** and c is an **inflection value** if $f(c)$ is defined and the concavity of the graph of f changes at $(c, f(c))$.

Locating Inflection Points:

- (a) Determine the values of x where the second derivative is zero or where the second derivative is undefined.
- (b) Place these values on a number line and create a sign chart for the second derivative.
- (c) The point is an inflection point if the second derivative changes sign and if the x -value is in the domain of $f(x)$.

Ex.2) Given $f(x) = -x^3 + 2x^2 - 3x + 9$ determine the intervals where $f'(x)$ is increasing and decreasing.

Ex.3) Determine the intervals where the functions below are concave up and concave down and locate any inflection points.

a) $f(x) = x^4 - 6x^2$

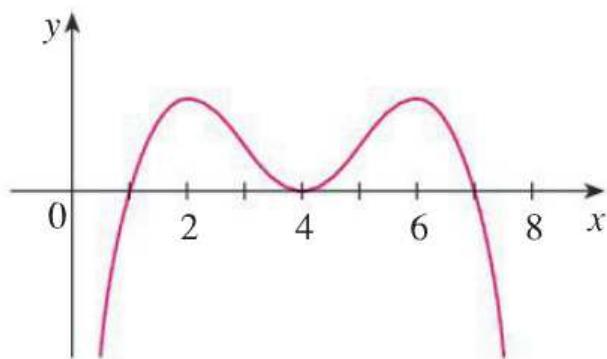
b) $f(x) = \ln(x^2 + 6x + 13)$

Ex.4) Suppose the function $f(x)$ has a domain of all real numbers except $x = 1$. The second derivative of $f(x)$ is shown below,

$$f''(x) = \frac{2x + 4}{(x - 1)^4}.$$

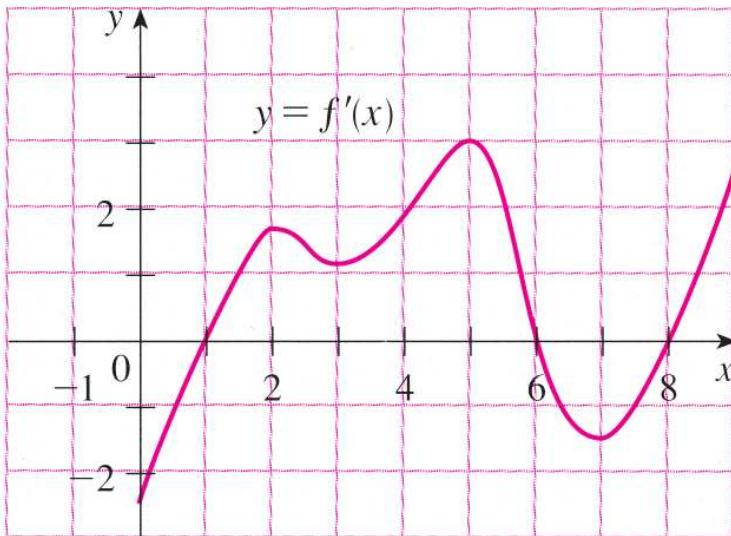
Determine the intervals where the function is concave up and concave down and locate any inflection points.

Ex.5) The graph of the second derivative f'' of a function f is shown below.



- (a) On what intervals is f concave upward?
- (b) On what intervals is f concave downward?
- (c) State the x -coordinates of the points of inflection.

Ex.6) The graph of the derivative f' of a function f is shown below



- a) the interval(s) on which $f(x)$ is increasing.
- b) the interval(s) on which $f(x)$ is decreasing.
- c) At what values of x does f have a local maximum or minimum?
- d) the interval(s) on which $f'(x)$ is increasing.
- e) the interval(s) on which $f'(x)$ is decreasing.
- f) the x -value of the inflection point(s) of $f(x)$.
- g) Sketch a graph of f .

Second Derivative Test

Suppose that f is defined on (a, b) , $f'(c) = 0$, and $c \in (a, b)$.

- (a) If $f''(c) > 0$, then $f(c)$ is a relative (local) minimum.
- (b) If $f''(c) < 0$, then $f(c)$ is a relative (local) maximum.

Ex.7) Determine where the local extrema of $f(x) = -x^3 + 12x - 5$ occur (and classify) using the Second Derivative Test for Local Extrema.

Section 5.3 Limits at Infinity

Definition. Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \rightarrow \infty} f(x) = L$$

means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large.

Definition. Horizontal Asymptote: The line $y = L$ is called a horizontal asymptote of the curve $y = f(x)$ if either

$$\lim_{x \rightarrow \infty} f(x) = L \quad \text{or} \quad \lim_{x \rightarrow -\infty} f(x) = L.$$

Limit of Power Function at Infinity

If p is a positive real number,

$$\lim_{x \rightarrow \pm\infty} \frac{1}{x^p} = 0.$$

Ex.8) Find the limits:

a) $\lim_{x \rightarrow \infty} x$

b) $\lim_{x \rightarrow -\infty} x$

c) $\lim_{x \rightarrow \infty} (x - x^2)$

d) $\lim_{x \rightarrow -\infty} (x - x^3)$

e) $\lim_{x \rightarrow \infty} \frac{1}{x}$

f) $\lim_{x \rightarrow -\infty} \frac{1}{x}$

g) $\lim_{x \rightarrow \infty} \frac{1}{x^4}$

h) $\lim_{x \rightarrow \infty} \frac{7x + 12}{x^2 + 10x + 5}$

i) $\lim_{x \rightarrow \infty} \frac{7x^3 + 4x}{2x^3 - x^2 + 3}$

j)
$$\lim_{x \rightarrow -\infty} \frac{3x + 4}{2x + 1}$$

k)
$$\lim_{x \rightarrow -\infty} \frac{x^2 + 7x + 12}{x + 5}$$

l)
$$\lim_{t \rightarrow \infty} \frac{t^4 - t^2 + 1}{t^5 + t^3 - t}$$

m)
$$\lim_{x \rightarrow -\infty} \frac{x^4 + 2x + 3}{x(x^2 - 1)}$$

n)
$$\lim_{x \rightarrow \infty} \frac{\sqrt{1 + 4x^2}}{4 + x}$$

o)
$$\lim_{x \rightarrow -\infty} \frac{\sqrt{1 + 4x^2}}{4 + x}$$

p) $\lim_{x \rightarrow \infty} \frac{3}{1 + e^{-5x}}$

q) $\lim_{x \rightarrow -\infty} \frac{3}{1 + e^{-5x}}$

r) $\lim_{x \rightarrow \infty} \frac{e^{3x} - 2e^{-3x}}{e^{3x} + e^{-3x}}$

s) $\lim_{x \rightarrow -\infty} \frac{e^{3x} - 2e^{-3x}}{e^{3x} + e^{-3x}}$

Finding limits at infinity for a rational function, $f(x)$: Look for the highest degree of x :

- (a) If it is in the denominator, then $\lim_{x \rightarrow \pm\infty} f(x) = 0$.
- (b) If it is in the numerator, then $\lim_{x \rightarrow \pm\infty} f(x) = \pm\infty$.
- (c) If the degree of the polynomial in the numerator and denominator is the same then $\lim_{x \rightarrow \pm\infty} f(x) = \text{ratio of the leading coefficients}$.

Finding the Vertical Asymptote and Horizontal Asymptote.

- (a) Vertical asymptote: undefined point but if it could be cancelled, it is not vertical asymptote but hole.
- (b) Horizontal asymptote: use infinite limit $x \rightarrow \infty$ and $x \rightarrow -\infty$.

Ex.9) Find all horizontal and vertical asymptotes of the functions below.

a) $f(x) = \frac{3x + 2}{x - 4}$

b) $g(x) = \frac{x^2 + 9}{x}$

c) $h(x) = \frac{x + 3}{x^2 + 7x + 12}$

Ex.10) Find all horizontal and vertical asymptotes of $f(x) = \frac{6e^x}{1 - 4e^x}$.

Section 5.4 Additional Curve Sketching

Graphing Strategy:

- (a) Analyze $f(x)$
 - i. Find the domain of f .
 - ii. Find the intercepts.
 - iii. Find asymptotes.
- (b) Analyze $f'(x)$
 - i. Find the critical values.
 - ii. Use sign chart for $f'(x)$ and determine intervals of increasing/decreasing.
 - iii. Find all relative(local) extrema.
- (c) Analyze $f''(x)$
 - i. Use sign chart for $f''(x)$ and find intervals where the graph of the function is concave up and concave down.
 - ii. Find all inflection values.
- (d) Sketch the graph of f using all of the above information. Plot additional points as needed.

Ex.11) Use the graphing strategy to sketch a graph of $f(x) = x^3 - 27x$.

Ex.12) Use the graphing strategy to sketch a graph of $f(x) = \frac{2x^2 + 11x + 14}{x^2 - 4}$.

Ex.13) Use the graphing strategy to sketch a graph of $f(x) = (x - 2)e^x$.

Ex.14) Use the given information to sketch the graph of f .

- Domain: $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$
- Asymptotes: $x = -1, x = 1, y = 0$
- $f(-2) = 1, f(0) = 0, f(2) = 1$
- $f'(x) > 0$ on $(-\infty, -1) \cup (0, 1)$
- $f'(x) < 0$ on $(-1, 0) \cup (1, \infty)$
- $f''(x) > 0$ on $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$