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History: 1950's, Soviet Union- Is brute force search
avoidable?

A traveling saleswoman visits 20 cities: Moscow, Leningrad,
Stalingrad, ...

Is there a route less than 50,000km?

Only known method: essentially brute force search

Number of paths to check grows exponentially.

Can routes be found more efficiently?

Cause for hope: it is very easy to check if a proposed route is less
then 50,000km.
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1970's: Cook, Karp, Levin: Precise conjecture

P: the class of problems that are “easy” to solve (e.g. determining
existence of a perfect matching in a bipartite graph)

NP: the class of problems that are “easy” to verify (e.g., the
traveling saleswoman)

Conjecture
P £ NP.
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Late 1970’s: Valiant, computer science ~~ algebra
Problem: count the number of perfect matchings of a bipartite
graph.

Figure: Amy is allergic to vrapes, Bob insists on Sanana, Carol dislikes
apple.

Count by computing a polynomial. Let X = (xj’) incidence matrix
of the graph, where XJ' = 1 if 3 edge between vertices / and j and
is otherwise zero.
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Late 1970’s: Valiant, computer science ~~ algebra

perfect matching <> each row paired with a column such that
corresponding matrix entry is 1

i.e., identity matrix or permutation of its columns.
S,: permutations of {1,..., n}.

The permanent of X = (xJ’) is

perm,(X) := > X1y Xon):

oeS,

==
= O O
Il
[E=Y

1
perm,(X) = # perfect matchings, e.g. perm; | 0
0



Late 1970’s: Valiant, computer science ~~ algebra

VNP: sequences of polynomials that are “easy” to write down.
For example, (perm,) € VNP.
VP: sequences of polynomials that are “easy” to compute.

For example, (det,) € VP (Gaussian elimination).

Conjecture (Valiant (1979))
VP £ VNP.
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Permanents via determinants

permpy(Y) := Z yi(l)yﬁ(z) “ Yo(m)
O'EGm

det,(X Z sign(o Xy 0(2) ”( )

UEGn

For example

and

1 1 1 1
Yi ¥ yi =Y
perm = + = detp < )
2 < )/12 y2 > )’1 }/2 Y1 Y1 Y1 y22



Permanents via small determinants?

[B. Grenet (2011)]:

0 »1 ¥ ¥ 0 0 0
0 1 0 0 y3 y2 O
0 0 1 0 0 yl y3
perms(Y)=det; | 0 0 0 1 yi 0 y3
v 0 0 0 1 0 O
y30 0 0 0 1 0
v 0 0 0 0 0 1

Question: Can every perm,, be expressed in this way for some n?
Valiant: Yes! In fact n ~ 2™ works.

Conjecture (Valiant (1979))

Let n(m) be a polynomial. ¥m > 0, A affine linear functions
xi(y2) with permiy(Y) = ety (X(Y)).

28



Differential Geometry detour

Given a surface in 3-space, its Gauss image in the two-sphere is
the union of all unit normal vectors to the surface:

e O
' -
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Differential Geometry detour

Can define the Gauss image without a distance function, via
conormal lines.

Dimension of image still defined.
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Classical Theorem: Surfaces with Gauss image a curve are:

» The union of tangent rays to a space curve.

> A generalized cone, i.e., the union of lines connecting a point
to a plane curve. (Includes case of cylinders, where point is at
infinity.)
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Connection to complexity theory?

Gauss images are defined in higher dimensions.
The hypersurface

{detn(X) = 0} C {n x n matrices} = C™

has low dimensional Gauss image (2n — 2 v. expected n? — 2).

Under substitution X = X(Y'), Gauss image stays degenerate.

Theorem (Mignon-Ressayre (2004))

If n(m) < ’"72 then A affine linear functions xJ’(yts) such that
perm,,(Y) = det,(X(Y)).

12/28



Algebraic geometry: the study of zero sets of polynomials

Our situation: Polynomials on spaces of polynomials.
Let
P(Xl,...,XN) = Z C,'L__’,'dX,'1 -"X,'d

1< <-ig<N

homogeneous, degree d in N variables;
Study polynomials on the coefficients ¢, . ;..

These coefficients are coordinates on the vector space
N+d—1
SymdcN = ("),
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Geometric Complexity Theory approach to Valiant's
conjecture [Mulmuley-Sohoni (2001)]

Idea: Find a sequence of polynomials {Pp,} such that

» Pm(gm) = 0 for all polynomials

qm( Y) = detn(m)(X( Y))

when n(m) is a polynomial,
> Pn(perm,,) # 0.

Use representation theory (systematic study of symmetries via
linear algebra) to find {Pp,}.
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Algebraic geometry

Theorem (L-Manivel-Ressayre (2013))
An explicit {Pm} ~~ strengthened Mignon-Ressayre Theorem.

Bonus! solved a classical problem: find defining equations for the

variety of hypersurfaces with degenerate Gauss images (dual
varieties).
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A practical problem: efficient linear algebra

Standard algorithm for matrix multiplication, row-column:

* k% X * *

uses O(n3) arithmetic operations.

Strassen (1968) set out to prove this standard algorithm was
indeed the best possible.

At least for 2 x 2 matrices.

He failed.
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Strassen's algorithm

1.1 1 1
Let A, B be 2 x 2 matrices A = (a% a%> , B= <b£ b2) Set

I = (af + a5)(b1 + b3),
Il = (a3 + a3) by,
Il = a}(b3 — b3)
IV = a3(—b} + b?)
V = (a1 + a3)b3
VI = (—al + a2)(b} + b3),
VIl = (a3 — a3)(bf + b3),

If C = AB, then
Gt=14+1IV-V4+ Vi,
A=1+1V,
cd=1ll+V,

g =1+1l—1l+ V.
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Astounding conjecture

Iterate: ~~ 2K x 2K matrices using 7% < 8% multiplications,

2.81)

and n x n matrices with O(n arithmetic operations.

Conjecture

For all ¢ > 0, n x n matrices can be multiplied using O(n**<)
arithmetic operations.

~ asymptotically, multiplying matrices is nearly as easy as adding
them!
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How to disprove astounding conjecture via algebraic
geometry?

Study polynomials on spaces of bilinear maps.

Set N = n?.
Matrix multiplication is a bilinear map

M(n) : (CN X (CN — (CN.

{bilinear maps T : CN x CN — CN}: vector space of dim = N3.

Idea: Look for polynomials P, on CM such that

» P,(T)=0V T computable with O(N) arithmetic operations,
and

> Pn(M<n>) 75 0.
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How to disprove? - Precise formulation

M<1> CxC—-C
(x,y) = xy
denotes scalar multiplication.

Set

Mé‘i;:@fx@%(cr

(Oeay e xe)s (Vay ooy ye) = (aya, ooy Xelr)-

{bilinear maps computable with r scalar multiplications}

= set of degenerations of M%.

= End(C") x End(C") x End(C") - M?i;,
=: Arith,
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How to disprove?- Precise formulation

T : C" x C" — C" has tensor rank at most r if T € Arith,, and
write R(T) <'r.

Theorem (Strassen (1969))

R(Mny) = O(n") if and only if M,y can be computed with O(n")
arithmetic operations.
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How to prove the astounding conjecture?
Idea:Find collections {P; ,} such that
> Pjn(Ts) =0 for all j if and only if T, € Arithp(,2+c)
» Show P; ,(M) = 0 for all j.

Problem: The zero set of all polynomials vanishing on

S:={(z,w) | z=0, w# 0} C C?,

A 3

€

is the line
{(z,w) | z=0} c C%

A 3

€



Good news: not a problem for matrix multiplication
For a set X ¢ CN, let
X ={yeCV|P(y)=0vP>P|x=0}cCN
the Zariski closure of X.
Polynomials can only detect membership in Arith, C C".
Arith, C Arith,.

T € C" has tensor border rank at most r if T € Arith,.
Write R(T) < r.

Theorem (Bini (1980))

R(M;)) = O(n") if and only if M,y can be computed with O(n")
arithmetic operations.
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State of the art

o [Classical] R(M;y) > n?
o [Strassen (1983)] R(M,,)) > 3n?
o [Lickteig (1985)] R(M(,)) > 3n® +

e [L-Ottaviani (2012)] R(M;») > 2n* — n
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The classical result: proof by retreat to linear algebra

Write A, B, C = C".
View a bilinear map

T:-AxB—C
(a,b) — T(a, b)

as a linear map

Ta: A — {linear maps B — C}
ar—{bw— T(a,b)}

Then R(T) > rank(Ta).
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Back to permanent v. determinant

Zariski closure is potentially serious difficulty:

Conjecture (Mulmuley (2014))

There are sequences in the closure of the degenerations of the
determinant than are not in VP.

Algebraic geometry disadvantage: potentially wild sequences of
polynomials.

Mignon-Ressayre: n < ’"72 — perm,, € End(C™) - det,

L-Manivel-Ressayre: n < ’"72 = perm,, ¢ End(C™) - det,
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Algebraic geometry advantage

End(C") - det, = GL, - det,

An orbit closure!

Peter-Weyl Theorem: In principle, modulo the boundary,
representation theory describes the ideal of the orbit closure as a
GL 2-module.

~> interesting questions regarding Kronecker v. plethysm
coefficients

~ difficult extension problem.
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Thank you for your attention

For more on tensors, their geometry and applications, resp. Gauss
maps and local differential geometry:

Notes from a fall 2014 class on geometry and complexity
theory at UC Berkeley/Simons Inst. Theoretical computing:
www.math.tamu.edu/~jml/alltmp.pdf

A survey on GCT: www.math.tamu.edu/~jml/Lgctsurvey.pdf
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