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Preface

In this book, we use moving frames and exterior differential systems to study
geometry and partial differential equations. These ideas originated about
a century ago in the works of several mathematicians, including Gaston
Darboux, Edouard Goursat and, most importantly, Elie Cartan. Over the
years these techniques have been refined and extended; major contributors
to the subject are mentioned below, under “Further Reading”.

The book has the following features: It concisely covers the classical
geometry of surfaces and basic Riemannian geometry in the language of
moving frames. It includes results from projective differential geometry that
update and expand the classic paper [69] of Griffiths and Harris. It provides
an elementary introduction to the machinery of exterior differential systems
(EDS), and an introduction to the basics of G-structures and the general
theory of connections. Classical and recent geometric applications of these
techniques are discussed throughout the text.

This book is intended to be used as a textbook for a graduate-level
course; there are numerous exercises throughout. It is suitable for a one-
year course, although it has more material than can be covered in a year, and
parts of it are suitable for one-semester course (see the end of this preface for
some suggestions). The intended audience is both graduate students who
have some familiarity with classical differential geometry and differentiable
manifolds, and experts in areas such as PDE and algebraic geometry who
want to learn how moving frame and EDS techniques apply to their fields.

In addition to the geometric applications presented here, EDS techniques
are also applied in CR geometry (see, e.g., [98]), robotics, and control theory
(see [55, 56, 129]). This book prepares the reader for such areas, as well as

ix



x Preface

for more advanced texts on exterior differential systems, such as [20], and
papers on recent advances in the theory, such as [58, 117].

Overview. Each section begins with geometric examples and problems.
Techniques and definitions are introduced when they become useful to help
solve the geometric questions under discussion. We generally keep the pre-
sentation elementary, although advanced topics are interspersed throughout
the text.

In Chapter 1, we introduce moving frames via the geometry of curves in
the Euclidean plane E2. We define the Maurer-Cartan form of a Lie group G
and explain its use in the study of submanifolds of G-homogeneous spaces.
We give additional examples, including the equivalence of holomorphic map-
pings up to fractional linear transformation, where the machinery leads one
naturally to the Schwarzian derivative.

We define exterior differential systems and jet spaces, and explain how
to rephrase any system of partial differential equations as an EDS using jets.
We state and prove the Frobenius system, leading up to it via an elementary
example of an overdetermined system of PDE.

In Chapter 2, we cover traditional material—the geometry of surfaces in
three-dimensional Euclidean space, submanifolds of higher-dimensional Eu-
clidean space, and the rudiments of Riemannian geometry—all using moving
frames. Our emphasis is on local geometry, although we include standard
global theorems such as the rigidity of the sphere and the Gauss-Bonnet
Theorem. Our presentation emphasizes finding and interpreting differential
invariants to enable the reader to use the same techniques in other settings.

We begin Chapter 3 with a discussion of Grassmannians and the Plücker
embedding. We present some well-known material (e.g., Fubini’s theorem on
the rigidity of the quadric) which is not readily available in other textbooks.
We present several recent results, including the Zak and Landman theorems
on the dual defect, and results of the second author on complete intersec-
tions, osculating hypersurfaces, uniruled varieties and varieties covered by
lines. We keep the use of terminology and results from algebraic geometry
to a minimum, but we believe we have included enough so that algebraic
geometers will find this chapter useful.

Chapter 4 begins our multi-chapter discussion of the Cartan algorithm
and Cartan-Kähler Theorem. In this chapter we study constant coefficient
homogeneous systems of PDE and the linear algebra associated to the corre-
sponding exterior differential systems. We define tableaux and involutivity
of tableaux. One way to understand the Cartan-Kähler Theorem is as fol-
lows: given a system of PDE, if the linear algebra at the infinitesimal level
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“works out right” (in a way explained precisely in the chapter), then exis-
tence of solutions follows.

In Chapter 5 we present the Cartan algorithm for linear Pfaffian systems,
a very large class of exterior differential systems that includes systems of
PDE rephrased as exterior differential systems. We give numerous examples,
including many from Cartan’s classic treatise [31], as well as the isometric
immersion problem, problems related to calibrated submanifolds, and an
example motivated by variation of Hodge structure.

In Chapter 6 we take a detour to discuss the classical theory of character-
istics, Darboux’s method for solving PDE, and Monge-Ampère equations in
modern language. By studying the exterior differential systems associated
to such equations, we recover the sine-Gordon representation of pseudo-
spherical surfaces, the Weierstrass representation of minimal surfaces, and
the one-parameter family of non-congruent isometric deformations of a sur-
face of constant mean curvature. We also discuss integrable extensions and
Bäcklund transformations of exterior differential systems, and the relation-
ship between such transformations and Darboux integrability.

In Chapter 7, we present the general version of the Cartan-Kähler The-
orem. Doing so involves a detailed study of the integral elements of an EDS.
In particular, we arrive at the notion of a Kähler-regular flag of integral ele-
ments, which may be understood as the analogue of a sequence of well-posed
Cauchy problems. After proving both the Cartan-Kähler Theorem and Car-
tan’s test for regularity, we apply them to several examples of non-Pfaffian
systems arising in submanifold geometry.

Finally, in Chapter 8 we give an introduction to geometric structures
(G-structures) and connections. We arrive at these notions at a leisurely
pace, in order to develop the intuition as to why one needs them. Rather
than attempt to describe the theory in complete generality, we present one
extended example, path geometry in the plane, to give the reader an idea
of the general theory. We conclude with a discussion of some recent gener-
alizations of G-structures and their applications.

There are four appendices, covering background material for the main
part of the book: linear algebra and rudiments of representation theory,
differential forms and vector fields, complex and almost complex manifolds,
and a brief discussion of initial value problems and the Cauchy-Kowalevski
Theorem, of which the Cartan-Kähler Theorem is a generalization.
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Layout. All theorems, propositions, remarks, examples, etc., are numbered
together within each section; for example, Theorem 1.3.2 is the second num-
bered item in section 1.3. Equations are numbered sequentially within each
chapter. We have included hints for selected exercises, those marked with
the symbol } at the end, which is meant to be suggestive of a life preserver.

Further Reading on EDS. To our knowledge, there are only a small
number of textbooks on exterior differential systems. The first is Cartan’s
classic text [31], which has an extraordinarily beautiful collection of ex-
amples, some of which are reproduced here. We learned the subject from
our teacher Bryant and the book by Bryant, Chern, Griffiths, Gardner and
Goldschmidt [20], which is an elaboration of an earlier monograph [19], and
is at a more advanced level than this book. One text at a comparable level
to this book, but more formal in approach, is [156]. The monograph [70],
which is centered around the isometric embedding problem, is similar in
spirit but covers less material. The memoir [155] is dedicated to extending
the Cartan-Kähler Theorem to the C∞ setting for hyperbolic systems, but
contains an exposition of the general theory. There is also a monograph
by Kähler [89] and lectures by Kuranishi [97], as well the survey articles
[66, 90]. Some discussion of the theory may be found in the differential
geometry texts [142] and [145].

We give references for other topics discussed in the book in the text.

History and Acknowledgements. This book started out about a decade
ago. We thought we would write up notes from Robert Bryant’s Tuesday
night seminar, held in 1988–89 while we were graduate students, as well
as some notes on exterior differential systems which would be more intro-
ductory than [20]. The seminar material is contained in §8.6 and parts of
Chapter 6. Chapter 2 is influenced by the many standard texts on the sub-
ject, especially [43] and [142], while Chapter 3 is influenced by the paper
[69]. Several examples in Chapter 5 and Chapter 7 are from [31], and the
examples of Darboux’s method in Chapter 6 are from [63]. In each case,
specific attributions are given in the text. Chapter 7 follows Chapter III of
[20] with some variations. In particular, to our knowledge, Lemmas 7.1.10
and 7.1.13 are original. The presentation in §8.5 is influenced by [11], [94]
and unpublished lectures of Bryant.

The first author has given graduate courses based on the material in
Chapters 6 and 7 at the University of California, San Diego and at Case
Western Reserve University. The second author has given year-long gradu-
ate courses using Chapters 1, 2, 4, 5, and 8 at the University of Pennsylvania
and Université de Toulouse III, and a one-semester course based on Chap-
ters 1, 2, 4 and 5 at Columbia University. He has also taught one-semester
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undergraduate courses using Chapters 1 and 2 and the discussion of con-
nections in Chapter 8 (supplemented by [141] and [142] for background
material) at Toulouse and at Georgia Institute of Technology, as well as
one-semester graduate courses on projective geometry from Chapters 1 and
3 (supplemented by some material from algebraic geometry), at Toulouse,
Georgia Tech. and the University of Trieste. He also gave more advanced
lectures based on Chapter 3 at Seoul National University, which were pub-
lished as [107] and became a precursor to Chapter 3. Preliminary versions
of Chapters 5 and 8 respectively appeared in [104, 103].

We would like to thank the students in the above classes for their feed-
back. We also thank Megan Dillon, Phillipe Eyssidieux, Daniel Fox, Sung-
Eun Koh, Emilia Mezzetti, Joseph Montgomery, Giorgio Ottaviani, Jens
Piontkowski, Margaret Symington, Magdalena Toda, Sung-Ho Wang and
Peter Vassiliou for comments on the earlier drafts of this book, and An-
nette Rohrs for help with the figures. The staff of the publications division
of the AMS—in particular, Ralph Sizer, Tom Kacvinsky, and our editor,
Ed Dunne—were of tremendous help in pulling the book together. We are
grateful to our teacher Robert Bryant for introducing us to the subject.
Lastly, this project would not have been possible without the support and
patience of our families.



xiv Preface

Dependence of Chapters

3.1−3.3

3.4−3.174
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Suggested uses of this book:

• a year-long graduate course covering moving frames and exterior
differential systems (chapters 1–8);

• a one-semester course on exterior differential systems and applica-
tions to partial differential equations (chapters 1 and 4–7);

• a one-semester course on the use of moving frames in algebraic
geometry (chapter 3, preceded by part of chapter 1);

• a one-semester beginning graduate course on differential geometry
(chapters 1, 2 and 8).



Chapter 1

Moving Frames and
Exterior Differential
Systems

In this chapter we motivate the use of differential forms to study problems
in geometry and partial differential equations. We begin with familiar ma-
terial: the Gauss and mean curvature of surfaces in E3 in §1.1, and Picard’s
Theorem for local existence of solutions of ordinary differential equations in
§1.2. We continue in §1.2 with a discussion of a simple system of partial dif-
ferential equations, and then in §1.3 rephrase it in terms of differential forms,
which facilitates interpreting it geometrically. We also state the Frobenius
Theorem.

In §1.4, we review curves in E2 in the language of moving frames. We
generalize this example in §§1.5–1.6, describing how one studies subman-
ifolds of homogeneous spaces using moving frames, and introducing the
Maurer-Cartan form. We give two examples of the geometry of curves in ho-
mogeneous spaces: classifying holomorphic mappings of the complex plane
under fractional linear transformations in §1.7, and classifying curves in E3

under Euclidean motions (i.e., rotations and translations) in §1.8. We also
include exercises on plane curves in other geometries.

In §1.9, we define exterior differential systems and integral manifolds.
We prove the Frobenius Theorem, give a few basic examples of exterior dif-
ferential systems, and explain how to express a system of partial differential
equations as an exterior differential system using jet bundles.

1



2 1. Moving Frames and Exterior Differential Systems

Throughout this book we use the summation convention: unless other-
wise indicated, summation is implied whenever repeated indices occur up
and down in an expression.

1.1. Geometry of surfaces in E3 in coordinates

Let E3 denote Euclidean three-space, i.e., the affine space R3 equipped with
its standard inner product.

Given two smooth surfaces S, S ′ ⊂ E3, when are they “equivalent”? For
the moment, we will say that two surfaces are (locally) equivalent if there
exist a rotation and translation taking (an open subset of) S onto (an open
subset of) S ′.

Figure 1. Are these two surfaces equivalent?

It would be impractical and not illuminating to try to test all possible
motions to see if one of them maps S onto S ′. Instead, we will work as
follows:

Fix one surface S and a point p ∈ S. We will use the Euclidean motions
to put S into a normalized position in space with respect to p. Then any
other surface S ′ will be locally equivalent to S at p if there is a point p′ ∈ S′
such that the pair (S ′, p′) can be put into the same normalized position as
(S, p).

The implicit function theorem implies that there always exist coordinates
such that S is given locally by a graph z = f(x, y). To obtain a normalized
position for our surface S, first translate so that p = (0, 0, 0), then use a
rotation to make TpS the xy-plane, i.e., so that zx(0, 0) = zy(0, 0) = 0. We
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will call such coordinates adapted to p. At this point we have used up all
our freedom of motion except for a rotation in the xy-plane.

If coordinates are adapted to p and we expand f(x, y) in a Taylor series
centered at the origin, then functions of the coefficients of the series that
are invariant under this rotation are differential invariants.

In this context, a (Euclidean) differential invariant of S at p is a function
I of the coefficients of the Taylor series for f at p, with the property that,
if we perform a Euclidean change of coordinates



x̃
ỹ
z̃


 = A



x
y
z


+



a
b
c


 ,

where A is a rotation matrix and a, b, c are arbitrary constants, after which
S is expressed as a graph z̃ = f̃(x̃, ỹ) near p, then I has the same value

when computed using the Taylor coefficients of f̃ at p. Clearly a necessary
condition for (S, p) to be locally equivalent to (S ′, p′) is that the values
of differential invariants of S at p match the values of the corresponding
invariants of S ′ at p′.

For example, consider the Hessian of z = z(x, y) at p:

Hessp =

(
zxx zyx
zxy zyy

)∣∣∣∣
p

.(1.1)

Assume we are have adapted coordinates to p. If we rotate in the xy plane,
the Hessian gets conjugated by the rotation matrix. The quantities

K0 = det(Hessp) = (zxxzyy − z2xy) |p,
H0 =

1
2trace(Hessp) =

1
2(zxx + zyy) |p .

(1.2)

are differential invariants because the determinant and trace of a matrix are
unchanged by conjugation by a rotation matrix. Thus, if we are given two
surfaces S, S ′ and we normalize them both at respective points p and p′ as
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above, a necessary condition for there to be a rigid motion taking p′ to p
such that the Taylor expansions for the two surfaces at the point p coincide
is that K0(S) = K0(S

′) and H0(S) = H0(S
′).

The formulas (1.2) are only valid at one point, and only after the surface
has been put in normalized position relative to that point. To calculate K
and H as functions on S it would be too much work to move each point to
the origin and arrange its tangent plane to be horizontal. But it is possi-
ble to adjust the formulas to account for tilted tangent planes (see §2.10).
One then obtains the following functions, which are differential invariants
under Euclidean motions of surfaces that are locally described as graphs
z = z(x, y):

K(x, y) =
zxxzyy − z2xy
(1 + z2x + z2y)

2
,

H(x, y) =
1

2

(1 + z2y)zxx − 2zxzyzxy + (1 + z2x)zyy

(1 + z2x + z2y)
3
2

,

(1.3)

respectively giving the Gauss and mean curvature of S at p = (x, y, z(x, y)).

Exercise 1.1.1: By locally describing each surface as a graph, calculate the
Gauss and mean curvature functions for a sphere of radius R, a cylinder of
radius r (e.g., x2+ y2 = r2) and the smooth points of the cone x2+ y2 = z2.

Once one has found invariants for a given submanifold geometry, one
may ask questions about submanifolds with special invariants. For surfaces
in E3, one might ask which surfaces have K constant or H constant. These
can be treated as questions about solutions to certain partial differential
equations (PDE). For example, from (1.3) we see that surfaces with K ≡ 1
are locally given by solutions to the PDE

zxxzyy − z2xy = (1 + z2x + z2y)
2.(1.4)

We will soon free ourselves of coordinates and use moving frames and dif-
ferential forms. As a provisional definition, a moving frame is a smoothly
varying basis of the tangent space to E3 defined at each point of our sur-
face. In general, using moving frames one can obtain formulas valid at every
point analogous to coordinate formulas valid at just one preferred point. In
the present context, the Gauss and mean curvatures will be described at all
points by expressions like (1.2) rather than (1.3); see §2.1.

Another reason to use moving frames is that the method gives a uni-
form procedure for dealing with diverse geometric settings. Even if one is
originally only interested in Euclidean geometry, other geometries arise nat-
urally. For example, consider the warp of a surface, which is defined to be
(k1 − k2)2, where the kj are the eigenvalues of (1.1). It turns out that this



1.2. Differential equations in coordinates 5

quantity is invariant under a larger change of coordinates than the Eucli-
dean group, namely conformal changes of coordinates, and thus it is easier
to study the warp in the context of conformal geometry.

Regardless of how unfamiliar a geometry initially appears, the method of
moving frames provides an algorithm to find differential invariants. Thus we
will have a single method for dealing with conformal, Hermitian, projective
and other geometries. Because it is familiar, we will often use the geometry
of surfaces in E3 as an example, but the reader should keep in mind that
the beauty of the method is its wide range of applicability. As for the use
of differential forms, we shall see that when we express a system of PDE as
an exterior differential system, the geometric features of the system—i.e.,
those which are independent of coordinates—will become transparent.

1.2. Differential equations in coordinates

The first questions one might ask when confronted with a system of differ-
ential equations are: Are there any solutions? If so, how many?

In the case of a single ordinary differential equation (ODE), here is the
answer:

Theorem 1.2.1 (Picard1). Let f(x, u) : R2 → R be a function with f and
fu continuous. Then for all (x0, u0) ∈ R2, there exist an open interval I 3 x0
and a function u(x) defined on I, satisfying u(x0) = u0 and the differential
equation

du

dx
= f(x, u).(1.5)

Moreover, any other solution of this initial value problem must coincide with
this solution on I.

In other words, for a given ODE there exists a solution defined near x0
and this solution is unique given the choice of a constant u0. Thus for an
ODE for one function of one variable, we say that solutions depend on one
constant. More generally, Picard’s Theorem applies to systems of n first-
order ODE’s involving n unknowns, where solutions depend on n constants.

The graph in R2 of any solution to (1.5) is tangent at each point to
the vector field X = ∂

∂x + f(x, u) ∂∂u . This indicates how determined ODE
systems generalize to the setting of differentiable manifolds (see Appendix
B). If M is a manifold and X is a vector field on M , then a solution to the
system defined by X is an immersed curve c : I →M such that c′(t) = Xc(t)

for all t ∈ I. (This is also referred to as an integral curve of X.) Away
from singular points, one is guaranteed existence of local solutions to such
systems and can even take the solution curves as coordinate curves:

1See, e.g., [140], p.423
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Theorem 1.2.2 (Flowbox coordinates2). Let M be an m-dimensional C∞

manifold, let p ∈ M , and let X ∈ Γ(TM) be a smooth vector field which
is nonzero at p. Then there exists a local coordinate system (x1, . . . , xm),
defined in a neighborhood U of p, such that ∂

∂x1 = X.

Consequently, there exists an open set V ⊂ U × R on which we may
define the flow of X, φ : V → M , by requiring that for any point q ∈ U ,
∂
∂tφ(q, t) = X|φ(q,t) The flow is given in flowbox coordinates by

(x1, . . . , xm, t) 7→ (x1 + t, x2, . . . , xm).

With systems of PDE, it becomes difficult to determine the appropriate
initial data for a given system (see Appendix D for examples). We now
examine a simple PDE system, first in coordinates, and then later (in §5.2)
using differential forms.

Example 1.2.3. Consider the system for u(x, y) given by

ux = A(x, y, u),

uy = B(x, y, u),
(1.6)

where A,B are given smooth functions. Since (1.6) specifies both partial
derivatives of u, at any given point p = (x, y, u) ∈ R3 the tangent plane to
the graph of a solution passing through p is uniquely determined.

In this way, (1.6) defines a smoothly-varying field of two-planes on R3,
just as the ODE (1.5) defines a field of one-planes (i.e., a line field) on R2.
For (1.5), Picard’s Theorem guarantees that the one-planes “fit together”
to form a solution curve through any given point. For (1.6), existence of
solutions amounts to whether or not the two-planes “fit together”.

We can attempt to solve (1.6) in a neighborhood of (0, 0) by solving a
succession of ODE’s. Namely, if we set y = 0 and u(0, 0) = u0, Picard’s
Theorem implies that there exists a unique function ũ(x) satisfying

dũ

dx
= A(x, 0, ũ), ũ(0) = u0.(1.7)

After solving (1.7), hold x fixed and use Picard’s Theorem again on the
initial value problem

du

dy
= B(x, y, u), u(x, 0) = ũ(x).(1.8)

This determines a function u(x, y) on some neighborhood of (0, 0). The
problem is that this function may not satisfy our original equation.

Whether or not (1.8) actually gives a solution to (1.6) depends on
whether or not the equations (1.6) are “compatible” as differential equa-
tions. For smooth solutions to a system of PDE, compatibility conditions

2See, e.g., [142] vol. I, p.205
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arise because mixed partials must commute, i.e., (ux)y = (uy)x. In our
example,

(ux)y =
∂

∂y
A(x, y, u) = Ay(x, y, u) +Au(x, y, u)

∂u

∂y
= Ay +BAu,

(uy)x = Bx +ABu,

so setting (ux)y = (uy)x reveals a “hidden equation”, the compatibility
condition

Ay +BAu = Bx +ABu.(1.9)

We will prove in §1.9 that the commuting of second-order partials in this case
implies that all higher-order mixed partials commute as well, so that there
are no further hidden equations. In other words, if (1.9) is an identity in
x, y, u, then solving the ODE’s (1.7) and (1.8) in succession gives a solution
to (1.6), and solutions depend on one constant.

Exercise 1.2.4: Show that, if (1.9) is an identity, then one gets the same
solution by first solving for ũ(y) = u(0, y).

If (1.9) is not an identity, there are several possibilities. If u appears in
(1.9), then it gives an equation which every solution to (1.6) must satisfy.
Given a point p = (0, 0, u0) at which (1.9) is not an identity, and such that
the implicit function theorem may be applied to (1.9) to determine u(x, y)
near (0, 0), then only this solved-for u can be the solution passing through
p. However, it still may not satisfy (1.6), in which case there is no solution
through p.

If u does not appear in (1.9), then it gives a relation between x and y,
and there is no solution defined on an open set around (0, 0).

Remark 1.2.5. For more complicated systems of PDE, it is not as easy to
determine if all mixed partials commute. The Cartan-Kähler Theorem (see
Chapters 5 and 7) will provide an algorithm which tells us when to stop
checking compatibilities.

Exercises 1.2.6:
1. Consider this special case of Example 1.2.3:

ux = A(x, y),

uy = B(x, y),

where A and B satisfy A(0, 0) = B(0, 0) = 0. Verify that solving the initial
value problems (1.7)–(1.8) gives

u(x, y) = u0 +

∫ x

s=0
A(s, 0)ds+

∫ y

t=0
B(x, t)dt.(1.10)
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Under what condition does this function u satisfy (1.6)? Verify that the
resulting condition is equivalent to (1.9) in this special case.
2. Rewrite (1.10) as a line integral involving the 1-form

ω := A(x, y)dx+B(x, y)dy,

and determine the condition which ensures that the integral is independent
of path.
3. Determine the space of solutions to (1.6) in the following special cases:

(a) A = −x
u , B = − y

u .
(b) A = B = x

u .
(c) A = −x

u , B = y.

1.3. Introduction to differential equations without
coordinates

Example 1.2.3 revisited. Instead of working on R2×R with coordinates
(x, y)× (u), we will work on the larger space R2 ×R ×R2 with coordinates
(x, y) × (u) × (p, q), which we will denote J1(R2,R), or J1 for short. This
space, called the space of 1-jets of mappings from R2 to R, is given additional
structure and generalized in §1.9.

Let u : U → R be a smooth function defined on an open set U ⊂ R2.
We associate to u the surface in J1 given by

u = u(x, y), p = ux(x, y), q = uy(x, y).(1.11)

which we will refer to as the lift of u. The graph of u is the projection of
the lift (1.11) in J1 to R2 × R.

We will eventually work on J1 without reference to coordinates. As a
step in that direction, consider the differential forms

θ := du− pdx− qdy, Ω := dx ∧ dy
defined on J1. Suppose i : S ↪→ J1 is a surface such that i∗Ω 6= 0 at each
point of S. Since dx, dy are linearly independent 1-forms on S, we may use
x, y as coordinates on S, and the surface may be expressed as

u = u(x, y), p = p(x, y), q = q(x, y).

Suppose i∗θ = 0. Then

i∗du = pdx+ qdy.

On the other hand, since u restricted to S is a function of x and y, we have

du = uxdx+ uydy.
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Because dx, dy are independent on S, these two equations imply that p = ux
and q = uy on S. Thus, surfaces i : S ↪→ J1 such that i∗θ = 0 and i∗Ω is
nonvanishing correspond to lifts of maps u : U → R.

Now consider the 3-fold j : Σ ↪→ J1 defined by the equations

p = A(x, y, u), q = B(x, y, u).

Let i : S ↪→ Σ be a surface such that i∗θ = 0 and i∗Ω is nonvanishing. Then
the projection of S to R2 ×R is the graph of a solution to (1.6). Moreover,
all solutions to (1.6) are the projections of such surfaces, by taking S as the
lift of the solution.

Thus we have a correspondence

solutions to (1.6)⇔ surfaces i : S ↪→ Σ such that i∗θ ≡ 0 and i∗Ω 6= 0.

On such surfaces, we also have i∗dθ ≡ 0, but

dθ = −dp ∧ dx− dq ∧ dy,
j∗dθ = −(Axdx+Aydy +Audu) ∧ dx− (Bxdx+Bydy +Budu) ∧ dy,
i∗dθ = (Ay −Bx +AuB −BuA)i∗(Ω).

(To obtain the second line we use the defining equations of Σ and to obtain
the third line we use i∗(du) = Adx+Bdy.) Because i∗Ω 6= 0, the equation

Ay −Bx +AuB −BuA = 0(1.12)

must hold on S. This is precisely the same as the condition (1.9) obtained
by checking that mixed partials commute.

If (1.12) does not hold identically on Σ, then it gives another equation
which must hold for any solution. But since dimΣ = 3, in that case (1.12)
already describes a surface in Σ. If there is any solution surface S, it must
be an open subset of the surface in Σ given by (1.12). This surface will only
be a solution if θ pulls back to be zero on it. If (1.12) is an identity, then we
may use the Frobenius Theorem (see below) to conclude that through any
point of Σ there is a unique solution S (constructed, as in §1.2, by solving
a succession of ODE’s). In this sense, (1.12) implies that all higher partial
derivatives commute.

We have now recovered our observations from §1.2.

The general game plan for treating a system of PDE as an exterior
differential system (EDS) will be as follows:

One begins with a “universal space” (J1 in the above example) where the
various partial derivatives are represented by independent variables. Then
one restricts to the subset Σ of the universal space defined by the system of
PDE by considering it as a set of equations among independent variables.
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Solutions to the PDE correspond to submanifolds of Σ on which the vari-
ables representing what we want to be partial derivatives actually are partial
derivatives. These submanifolds are characterized by the vanishing of certain
differential forms.

These remarks will be explained in detail in §1.9.
Picard’s Theorem revisited. On R2 with coordinates (x, u), consider θ =
du−f(x, u)dx. Then there is a one-to-one correspondence between solutions
of the ODE (1.5) and curves c : R → R2 such that c∗(θ) = 0 and c∗(dx) is
nonvanishing.

More generally, the flowbox coordinate theorem 1.2.2 implies:

Theorem 1.3.1. Let M be a C∞ manifold of dimension m, and let
θ1, . . . , θm−1 ∈ Ω1(M) be pointwise linearly independent in some open neigh-
borhood U ⊂M . Then through p ∈ U there exists a curve c : R → U , unique
up to reparametrization, such that c∗(θj) = 0 for 1 ≤ j ≤ m− 1.

(For a proof, see [142].)

The Frobenius Theorem. In §1.9 we will prove the following result, which
is a generalization, both of Theorem 1.3.1 and of the asserted existence of
solutions to Example 1.2.3 when (1.9) holds, to an existence theorem for
certain systems of PDE:

Theorem 1.3.2 (Frobenius Theorem, first version). Let Σ be a C∞ man-
ifold of dimension m, and let θ1, . . . , θm−n ∈ Ω1(Σ) be pointwise linearly

independent. If there exist 1-forms αij ∈ Ω1(Σ) such that dθj = αji ∧ θi for
all j, then through each p ∈ Σ there exists a unique n-dimensional manifold
i : N ↪→ Σ such that i∗(θj) = 0 for 1 ≤ j ≤ m− n.

In order to motivate our study of exterior differential systems, we re-
word the Frobenius Theorem more geometrically as follows: Let Σ be an
m-dimensional manifold such that through each point x ∈ Σ there is an
n-dimensional subspace Ex ⊂ TxΣ which varies smoothly with x (such a
structure is called a distribution). We consider the problem of finding sub-
manifolds X ⊂ Σ such that TxX = Ex for all x ∈ X.

Consider Ex
⊥ ⊂ T ∗xΣ. Let θax, 1 ≤ a ≤ m − n, be a basis of Ex

⊥. We
may choose the θax to vary smoothly to obtain m − n linearly independent
forms θa ∈ Ω1(Σ). Let I = {θ1, . . . , θm−n}diff denote the differential ideal
they generate in Ω∗(Σ) (see §B.4). The submanifolds X tangent to the
distribution E are exactly the n-dimensional submanifolds i : N ↪→ Σ such
that i∗(α) = 0 for all α ∈ I. Call such a submanifold an integral manifold
of I.
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To find integral manifolds, we already know that if there are any, their
tangent space at any point x ∈ Σ is already uniquely determined, namely
it is Ex. The question is whether these n-planes can be “fitted together” to
obtain an n-dimensional submanifold. This information is contained in the
derivatives of the θa’s, which indicate how the n-planes “move” infinitesi-
mally.

If we are to have i∗(θa) = 0, we must also have d(i∗θa) = i∗(dθa) = 0. If
there is to be an integral manifold through x, or even an n-plane Ex ⊂ TxΣ
on which α |Ex= 0, ∀α ∈ I, the equations i∗(dθa) = 0 cannot impose any
additional conditions, i.e., we must have dθa|Ex = 0 because we already have
a unique n-plane at each point x ∈ Σ. To recap, for all a we must have

dθa = αa1 ∧ θ1 + . . .+ αam−n ∧ θm−n(1.13)

for some αab ∈ Ω1(Σ), because the forms θax span Ex
⊥.

Notation 1.3.3. Suppose I is an ideal and φ and ψ are k-forms. Then we
write φ ≡ ψmod I if φ = ψ + β for some β ∈ I.

Let {θ1, . . . , θm−n}alg ⊂ Ω∗(Σ) denote the algebraic ideal generated by
θ1, . . . , θm−n (see §B.4). Now (1.13) may be restated as

dθa ≡ 0 mod {θ1, . . . , θm−n}alg.(1.14)

The Frobenius Theorem states that this necessary condition is also sufficient:

Theorem 1.3.4 (Frobenius Theorem, second version). Let I be a differ-
ential ideal generated by the linearly independent 1-forms θ1, . . . , θm−n on
an m-fold Σ, i.e., I = {θ1, . . . , θm−n}diff. Suppose I is also generated al-
gebraically by θ1, . . . , θm−n, i.e., I = {θ1, . . . , θm−n}alg. Then through any
p ∈ Σ there exists an n-dimensional integral manifold of I. In fact, in a suf-
ficiently small neighborhood of p there exists a coordinate system y1, . . . , ym

such that I is generated by dy1, . . . , dym−n.

We postpone the proof until §1.9.
Definition 1.3.5. We will say a subbundle I ⊂ T ∗Σ is Frobenius if the
ideal generated algebraically by sections of I is also a differential ideal. We
will say a distribution ∆ ⊂ Γ(TΣ) is Frobenius if ∆⊥ ⊂ T ∗Σ is Frobenius.
Equivalently (see Exercise 1.3.6.2 below), ∆ is Frobenius if ∀X,Y ∈ ∆,
[X,Y ] ∈ ∆, where [X,Y ] is the Lie bracket.

If {θa} fails to be Frobenius, not all hope is lost for an n-dimensional
integral manifold, but we must restrict ourselves to the subset j : Σ′ ↪→ Σ
on which (1.14) holds, and see if there are n-dimensional integral manifolds
of the ideal generated by j∗(θa) on Σ′. (This was what we did in the special
case of Example 1.2.3.)
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Exercises 1.3.6:
1. Which of the following ideals are Frobenius?

I1 = {dx1, x2dx3 + dx4}diff
I2 = {dx1, x1dx3 + dx4}diff

2. Show that the differential forms and vector field conditions for being
Frobenius are equivalent, i.e., ∆ ⊂ Γ(TΣ) satisfies [∆,∆] ⊆ ∆ if and only if
∆⊥ ⊂ T ∗Σ satisfies dθ ≡ 0mod∆⊥ for all θ ∈ Γ(∆⊥).
3. On R3 let θ = Adx + Bdy + Cdz, where A = A(x, y, z), etc. Assume
the differential ideal generated by θ is Frobenius, and explain how to find a
function f(x, y, z) such that the differential systems {θ}diff and {df}diff are
equivalent.

1.4. Introduction to geometry without coordinates:
curves in E2

We will return to our study of surfaces in E3 in Chapter 2. To see how to
use moving frames to obtain invariants, we begin with a simpler problem.

Let E2 denote the oriented Euclidean plane. Given two parametrized
curves c1, c2 : R → E2, we ask two questions: When does there exist a
Euclidean motion A : E2 → E2 (i.e., a rotation and translation) such that
A(c1(R)) = c2(R)? And, when do there exist a Euclidean motion A : E2 →
E2 and a constant c such that A(c1(t)) = c2(t+ c) for all t?

Figure 2. Are these two curves equivalent?

Instead of using coordinates at a point, we will use an adapted frame
, i.e., for each t we take a basis of Tc(t)E2 that is “adapted” to Euclidean
geometry. This geometry is induced by the group of Euclidean motions—the
changes of coordinates of E2 preserving the inner product and orientation—
which we will denote by ASO(2).
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In more detail, the group ASO(2) consists of transformations of the form
(
x1

x2

)
7→
(
t1

t2

)
+R

(
x1

x2

)
,(1.15)

where R ∈ SO(2) is a rotation matrix. It can be represented as a matrix
Lie group by writing

ASO(2) =

{
M ∈ GL(3,R)

∣∣∣∣M =

(
1 0
t R

)
, t ∈ R2, R ∈ SO(2)

}
.(1.16)

Then its action on E2 is given by x 7→Mx, where we represent points in E2

by x = t
(
1 x1 x2

)
.

We may define a mapping from ASO(2) to E2 by
(
1 0
x R

)
7→ x =

(
x1
x2

)
,(1.17)

which takes each group element to the image of the origin under the trans-
formation (1.15). The fiber of this map over every point is a left coset of
SO(2) ⊂ ASO(2), so E2, as a manifold, is the quotient ASO(2)/SO(2). Fur-
thermore, ASO(2) may be identified with the bundle of oriented orthonormal
bases of E2 by identifying the columns of the rotation matrix R = (e1, e2)
with an oriented orthonormal basis of TxE2, where x is the basepoint given
by (1.17). (Here we use the fact that for a vector space V , we may identify
V with TxV for any x ∈ V .)

Returning to the curve c(t), we choose an oriented orthonormal basis
of Tc(t)E2 as follows: A natural element of Tc(t)E2 is c′(t), but this may
not be of unit length. So, we take e1(t) = c′(t)/|c′(t)|, and this choice also
determines e2(t). Of course, to do this we must assume that the curve is
regular:

Definition 1.4.1. A curve c(t) is said to be regular if c′(t) never vanishes.
More generally, a map f : M → N between differentiable manifolds is
regular if df is everywhere defined and of rank equal to dimM .

What have we done? We have constructed a map to the Lie group
ASO(2) as follows:

C : R → ASO(2),

t 7→
(

1 0
c(t) (e1(t), e2(t))

)
.

We will obtain differential invariants of our curve by differentiating this
mapping, and taking combinations of the derivatives that are invariant under
Euclidean changes of coordinates.
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Consider v(t) = |c′(t)|, called the speed of the curve. It is invariant under
Euclidean motions and thus is a differential invariant. However, it is only
an invariant of the mapping, not of the image curve (see Exercise 1.4.2.2).
The speed measures how much (internal) distance is being distorted under
the mapping c.

Consider de1
dt . We must have de1

dt = λ(t)e2(t) for some function λ(t) be-
cause |e1(t)| ≡ 1 (see Exercise 1.4.2.1 below). Thus λ(t) is a differential in-
variant, but it again depends on the parametrization of the curve. To deter-
mine an invariant of the image alone, we let c̃(t) be another parametrization

of the same curve. We calculate that λ̃(t) = ṽ(t)
v(t)λ(t), so we set κ(t) = λ(t)

v(t) .

This κ(t), called the curvature of the curve, measures how much c is in-
finitesimally moving away from its tangent line at c(t).

A necessary condition for two curves c, c̃ to have equivalent images is that
there exists a diffeomorphism ψ : R → R such that κ(t) = κ̃(ψ(t)). It will
follow from Corollary 1.6.13 that the images of curves are locally classified
up to congruence by their curvature functions, and that parametrized curves
are locally classified by κ, v.

Exercises 1.4.2:
1. Let V be a vector space with a nondegenerate inner product 〈, 〉. Let
v(t) be a curve in V such that F (t) := 〈v(t), v(t)〉 is constant. Show that
v′(t) ⊥ v(t) for all t. Show the converse is also true.

2. Suppose that c is regular. Let s(t) =
∫ t
0 |c′(τ)|dτ and consider c paramet-

rized by s instead of t. Since s gives the length of the image of c : [0, s]→ E2,
s is called an arclength parameter. Show that in this preferred parametriza-
tion, κ(s) = |de1ds |.
3. Show that κ(t) is constant iff the curve is an open subset of a line (if
κ = 0) or circle of radius 1

κ .
4. Let c(t) = (x(t), y(t)) be given in coordinates. Calculate κ(t) in terms
of x(t), y(t) and their derivatives.
5. Calculate the function κ(t) for an ellipse. Characterize the points on the
ellipse where the maximum and minimum values of κ(t) occur.
6. Can κ(t) be unbounded if c(t) is the graph of a polynomial?

Exercise 1.4.3 (Osculating circles):
(a) Calculate the equation of a circle passing through three points in the
plane.
(b) Calculate the equation of a circle passing through two points in the
plane and having a given tangent line at one of the points.

Parts (a) and (b) may be skipped; the exercise proper starts here:

(c) Show that for any curve c ⊂ E2, at each point x ∈ c one can define an
osculating circle by taking the limit of the circle through the three points
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c(t), c(t1), c(t2) as t1, t2 → t. (A line is defined to be a circle of infinite
radius.)
(d) Show that one gets the same circle if one takes the limit as t → t1 of
the circle through c(t), c(t1) that has tangent line at c(t) parallel to c′(t).
(e) Show that the radius of the osculating circle is 1/κ(t).
(f) Show that if κ(t) is monotone, then the osculating circles are nested. }

1.5. Submanifolds of homogeneous spaces

Using the machinery we develop in this section and §1.6, we will answer the
questions about curves in E2 posed at the beginning of §1.4. The quotient
E2 = ASO(2)/SO(2) is an example of a homogeneous space, and our answers
will follow from a general study of classifying maps into homogeneous spaces.

Definition 1.5.1. Let G be a Lie group, H a closed Lie subgroup, and G/H
the set of left cosets of H. Then G/H is naturally a differentiable manifold
with the induced differentiable structure coming from the quotient map (see
[77], Theorem II.3.2). The space G/H is called a homogeneous space.

Definition 1.5.2 (Left and right actions). Let G be a group that acts on a
set X by x 7→ σ(g)(x). Then σ is called a left action if σ(a) ◦ σ(b) = σ(ab),
or a right action if σ(a) ◦ σ(b) = σ(ba),

For example, the action of G on itself by left-multiplication is a left
action, while left-multiplication by g−1 is a right action.

A homogeneous space G/H has a natural (left) G-action on it; the sub-
group stabilizing [e] is H, and the stabilizer of any point is conjugate to
H. Conversely, a manifold X is a homogeneous space if it admits a smooth
transitive action by a Lie group G. If H is the isotropy group of a point
x0 ∈ X, then X ' G/H, and x0 corresponds to [e] ∈ G/H, the coset of
the identity element. (See [77, 142] for additional facts about homogeneous
spaces.)

In the spirit of Klein’s Erlanger Programm (see [76, 92] for historical
accounts), we will consider G as the group of motions of G/H. We will
study the geometry of submanifolds M ⊂ G/H, where two submanifolds
M,M ′ ⊂ G/H will be considered equivalent if there exists a g ∈ G such that
g(M) =M ′.

To determine necessary conditions for equivalence we will find differential
invariants as we did in §1.1 and §1.4. (Note that we need to specify whether
we are interested in invariants of a mapping or just of the image.) After
finding invariants, we will then interpret them as we did in the exercises in
§1.4.



Chapter 2

Euclidean Geometry
and Riemannian
Geometry

In this chapter we return to the study of surfaces in Euclidean space E3 =
ASO(3)/SO(3). Our goal is not just to understand Euclidean geometry, but
to develop techniques for solving equivalence problems for submanifolds of
arbitrary homogeneous spaces. We begin with the problem of determining
if two surfaces in E3 are locally equivalent up to a Euclidean motion. More
precisely, given two immersions f, f̃ : U → E3, where U is a domain in
R2, when do there exist a local diffeomorphism φ : U → U and a fixed
A ∈ ASO(3) such that f̃ ◦ φ = A ◦ f? Motivated by our results on curves
in Chapter 1, we first try to find a complete set of Euclidean differential
invariants for surfaces in E3, i.e., functions I1, . . . , Ir that are defined in
terms of the derivatives of the parametrization of a surface, with the property
that f(U) differs from f̃(U) by a Euclidean motion if and only if (f̃ ◦φ)∗Ij =
f∗Ij for 1 ≤ j ≤ r.

In §2.1 we derive the Euclidean differential invariants Gauss curvature
K and mean curvature H using moving frames. Unlike with curves in E3,
for surfaces in E3 there is not always a unique lift to ASO(3), and we are led
to define the space of adapted frames. (Our discussion of adapted frames for
surfaces in E3 is later generalized to higher dimensions and codimensions in
§2.5.) We calculate the functions H,K for two classical classes of surfaces
in §2.2; developable surfaces and surfaces of revolution, and discuss basic
properties of these surfaces.

35
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Scalar-valued differential invariants turn out to be insufficient (or at least
not convenient) for studying equivalence of surfaces and higher-dimensional
submanifolds, and we are led to introduce vector bundle valued invariants.
This study is motivated in §2.4 and carried out in §2.5, resulting in the
definitions of the first and second fundamental forms, I and II. In §2.5 we
also interpret II and Gauss curvature, define the Gauss map and derive the
Gauss equation for surfaces.

Relations between intrinsic and extrinsic geometry of submanifolds of
Euclidean space are taken up in §2.6, where we prove Gauss’s theorema
egregium, derive the Codazzi equation, discuss frames for C∞ manifolds and
Riemannian manifolds, and prove the fundamental lemma of Riemannian
geometry. We include many exercises about connections, curvature, the
Laplacian, isothermal coordinates and the like. We conclude the section
with the fundamental theorem for hypersurfaces.

In §2.7 and §2.8 we discuss two topics we will need later on, space forms
and curves on surfaces. In §2.9 we discuss and prove the Gauss-Bonnet and
Poincaré-Hopf theorems. We conclude this chapter with a discussion of non-
orthonormal frames in §2.10, which enables us to finally prove the formula
(1.3) and show that surfaces with H identically zero are minimal surfaces.

The geometry of surfaces in E3 is studied further in §3.1 and throughout
Chapters 5–7. Riemannian geometry is discussed further in Chapter 8.

2.1. Gauss and mean curvature via frames

Guided by Cartan’s Theorem 1.6.11, we begin our search for differential
invariants of immersed surfaces f : U 2 → E3 by trying to find a lift F : U →
ASO(3) which is adapted to the geometry of M = f(U). The most näıve
lift would be to take

F (p) =

(
1 0

f(p) Id

)
.

Any other lift F̃ is of the form

F̃ = F

(
1 0
0 R

)

for some map R : U → SO(3).

Let x = f(p); then TxE3 has distinguished subspaces, namely f∗(TpU)
and its orthogonal complement. We use our rotational freedom to adapt
to this situation by requiring that e3 always be normal to the surface, or
equivalently that {e1, e2} span TxM . This is analogous to our choice of
coordinates at our preferred point in Chapter 1, but is more powerful since
it works on an open set of points in U .



Chapter 3

Projective Geometry

This chapter may be considered as an update to the paper of Griffiths and
Harris [69], which began a synthesis of modern algebraic geometry and mov-
ing frames techniques. Other than the first three sections, it may be skipped
by readers anxious to arrive at the Cartan-Kähler Theorem. An earlier ver-
sion of this chapter, containing more algebraic results than presented here,
constituted the monograph [107].

We study the local geometry of submanifolds of projective space and
applications to algebraic geometry. We begin in §3.1 with a discussion of
Grassmannians, one of the most important classes of manifolds in all of ge-
ometry, and some uses of Grassmannians in Euclidean geometry. We define
the Euclidean and projective Gauss maps. We then describe moving frames
for submanifolds of projective space and define the projective second funda-
mental form in §3.2. In §3.3 we give some basic definitions from algebraic
geometry. We give examples of homogeneous algebraic varieties and explain
several constructions of auxiliary varieties from a given variety X ⊂ PV :
the secant variety σ(X), the tangential variety τ(X) and the dual variety
X∗. In §3.4 we describe the basic properties of varieties with degenerate
Gauss maps and classify the surface case. We return in §§3.5–3.7 to discuss
moving frames and differential invariants in more detail, with plenty of ho-
mogeneous examples in §3.6. We discuss osculating hypersurfaces and prove
higher-order Bertini theorems in §3.7.

In §3.8 and §3.9, we apply our machinery respectively to study uniruled
varieties and to characterize quadric hypersurfaces (Fubini’s Theorem). Va-
rieties with degenerate duals and associated varieties are discussed in §3.10
and §3.11 respectively. We prove the bounds of Zak and Landman on the
dual defect from our differential-geometric perspective. In §3.12 we study
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varieties with degenerate Gauss images in further detail. In §3.14 we state
and prove rank restriction theorems: we show that the projective second fun-
damental form has certain genericity properties in small codimension if X is
not too singular. We describe how to calculate dimσ(X) and dim τ(X) in-
finitesimally, and state the Fulton-Hansen Theorem relating tangential and
secant varieties. In §3.13 we state Zak’s theorem classifying Severi varieties,
the smooth varieties of minimal codimension having secant defects. Section
§3.15 is dedicated to the proof of Zak’s theorem. In §3.16 we generalize
Fubini’s Theorem to higher codimension, and finally in §3.17 we discuss
applications to the study of complete intersections.

In this chapter, when we work over the complex numbers, all tangent,
cotangent, etc., spaces are the holomorphic tangent, cotangent, etc., spaces
(see Appendix C). We will generally use X to denote an algebraic variety
and M to denote a complex manifold.

Throughout this chapter we often commit the following abuse of nota-
tion: We omit the ◦ in symmetric products and the ⊗ when the product is
clear from the context. For example, we will often write ωα0 eα for ωα0 ⊗eα.

3.1. Grassmannians

In projective geometry, Grassmannians play a central role, so we begin with
a study of Grassmannians and the Plücker embedding. We also give appli-
cations to Euclidean geometry.

We fix index ranges 1 ≤ i, j ≤ k, and k+ 1 ≤ s, t, u ≤ n for this section.

Let V be a vector space over R or C and let G(k, V ) denote the Grass-
mannian of k-planes that pass through the origin in V . To specify a k-plane
E, it is sufficient to specify a basis v1, . . . , vk of E. We continue our nota-
tional convention that {v1, . . . , vk} denotes the span of the vectors v1, . . . , vk.
After fixing a reference basis, we identify GL(V ) with the set of bases for
V , and define a map

π : GL(V )→ G(k, V ),

(e1, . . . , en) 7→ {e1, . . . , ek},
If we let ẽ1, . . . , ẽn denote the standard basis of V , i.e., ẽA is a column vector
with a 1 in the A-th slot and zeros elsewhere, the fiber of this mapping over
π(Id) = {ẽ1, . . . , ẽk}, is the subgroup

Pk =

{
g =

(
gij gis
0 gts

)
| det(g) 6= 0

}
⊂ GL(V ).

More generally, for g ∈ GL(V ), π−1(π(g)) = gPkg
−1.

Of particular importance is projective space PV = G(1, V ), the space
of all lines through the origin in V . We define a line in PV to be the



Chapter 4

Cartan-Kähler I:
Linear Algebra and
Constant-Coefficient
Homogeneous Systems

We have seen that differentiating the forms that generate an exterior dif-
ferential system often reveals additional conditions that integral manifolds
must satisfy (e.g., the Gauss and Codazzi equations for a surface in Eucli-
dean space). The conditions are consequences of the fact that mixed partials
must commute. What we did not see was a way of telling when one has dif-
ferentiated enough to find all hidden conditions. We do know the answer
in two cases: If a system is in Cauchy-Kowalevski form there are no extra
conditions. In the case of the Frobenius Theorem, if the system passes a
first-order test, then there are no extra conditions.

What will emerge over the next few chapters is a test, called Cartan’s
Test, that will tell us when we have differentiated enough.

The general version of Cartan’s Test is described in Chapter 7. For a
given integral element E ∈ Vn(I)x of an exterior differential system I on
a manifold Σ, it guarantees existence of an integral manifold to the system
with tangent plane E if E passes the test.

In Chapter 5, we present a version of Cartan’s Test valid for a class
of exterior differential systems with independence condition called linear
Pfaffian systems. These are systems that are generated by 1-forms and
have the additional property that the variety of integral elements through a
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144 4. Constant-Coefficient Homogeneous Systems

point x ∈ Σ is an affine space. The class of linear Pfaffian systems includes
all systems of PDE expressed as exterior differential systems on jet spaces.
One way in which a linear Pfaffian system is simpler than a general EDS is
that an integral element E ∈ Vn(I,Ω)x passes Cartan’s Test iff all integral
elements at x do.

In this chapter we study first-order, constant-coefficient, homogeneous
systems of PDE for analytic maps f : V →W expressed in terms of tableaux.
We derive Cartan’s Test for this class of systems, which determines if the
initial data one might näıvely hope to specify (based on counting equations)
actually determines a solution.

We dedicate an entire chapter to such a restrictive class of EDS because
at each point of a manifold Σ with a linear Pfaffian system there is a naturally
defined tableau, and the system passes Cartan’s Test for linear Pfaffian
systems at a point x ∈ Σ if and only if its associated tableau does and the
torsion of the system (defined in Chapter 5) vanishes at x.

In analogy with the inverse function theorem, Cartan’s Test for linear
Pfaffian systems (and even in its most general form) implies that if the linear
algebra at the infinitesimal level works out right, the rest follows. What we
do in this chapter is determine what it takes to get the linear algebra to
work out right.

Throughout this chapter, V is an n-dimensional vector space, and W
is an s-dimensional vector space. We use the index ranges 1 ≤ i, j, k ≤ n,
1 ≤ a, b, c ≤ s. V has the basis v1, . . . , vn and V ∗ the corresponding dual
basis v1, . . . , vn; W has basis w1, . . . , ws and W

∗ the dual basis w1, . . . , ws.

4.1. Tableaux

Let x = xivi, u = uawa denote elements of V and W respectively. We will
consider (x1, . . . , xn), respectively (u1, . . . , un), as coordinate functions on
V and W respectively. Any first-order, constant-coefficient, homogeneous
system of PDE for maps f : V →W is given in coordinates by equations

Bri
a

∂ua

∂xi
= 0, 1 ≤ r ≤ R,(4.1)

where the Bri
a are constants. For example, the Cauchy-Riemann system

u1x1 − u2x2 = 0, u1x2 + u2x1 = 0 has B11
1 = 1, B12

2 = −1, B12
1 = 0, B11

2 = 0,

B21
2 = 1, B22

1 = 1, B21
1 = 0 and B22

2 = 0.



Chapter 5

Cartan-Kähler II:
The Cartan Algorithm
for Linear Pfaffian
Systems

We now generalize the test from Chapter 4 to a test valid for a large class of
exterior differential systems called linear Pfaffian systems, which are defined
in §5.1. In §§5.2–5.4 we present three examples of linear Pfaffian systems that
lead us to Cartan’s algorithm and the definitions of torsion and prolongation,
all of which are given in §5.5. For easy reference, we give a summary and
flowchart of the algorithm in §5.6. Additional aspects of the theory, includ-
ing characteristic hyperplanes, Spencer cohomology and the Goldschmidt
version of the Cartan-Kähler Theorem, are given in §5.7. In the remainder
of the chapter we give numerous examples, beginning with elementary prob-
lems coming mostly from surface theory in §5.8, then an example motivated
by variation of Hodge structure in §5.9, then the Cartan-Janet Isometric Im-
mersion Theorem in §5.10, followed by a discussion of isometric embeddings
of space forms in §5.11 and concluding with a discussion of calibrations and
calibrated submanifolds in §5.12.

5.1. Linear Pfaffian systems

Recall that a Pfaffian system on a manifold Σ is an exterior differential
system generated by 1-forms, i.e., I = {θa}diff, θa ∈ Ω1(Σ), 1 ≤ a ≤ s. If
Ω = ω1 ∧ . . . ∧ ωn represents an independence condition, let J := {θa, ωi}
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164 5. The Cartan Algorithm for Linear Pfaffian Systems

and I := {θa}. We will often use J to indicate the independence condition
in this chapter, and refer to the system as (I, J).

Definition 5.1.1. (I, J) is a linear Pfaffian system if dθa ≡ 0 mod J for
all 1 ≤ a ≤ s.

Exercise 5.1.2: Let (I, J) be a linear Pfaffian system as above. Let πε,
1 ≤ ε ≤ dimΣ − n − s, be a collection of 1-forms such that T ∗Σ is locally
spanned by θa, ωi, πε. Show that there exist functions Aaεi, T

a
ij defined on Σ

such that

dθa ≡ Aaεiπ
ε ∧ ωi + T aijω

i ∧ ωj mod I.(5.1)

Example 5.1.3. The canonical contact system on J2(R2,R2) is a linear
Pfaffian system because

d(du− p11dx− p12dy) = −dp11 ∧ dx− dp12 ∧ dy
≡ 0mod{dx, dy, du− p11dx− p12dy, dv − p21dx− p22dy},

d(dv − p21dx− p22dy) = −dp21 ∧ dx− dp22 ∧ dy
≡ 0mod{dx, dy, du− p11dx− p12dy, dv − p21dx− p22dy},

and the same calculation shows that the pullback of this system to any
submanifold Σ ⊂ J2(R2,R2) is linear Pfaffian. More generally, we have

Example 5.1.4. Any system of PDE expressed as the pullback of the con-
tact system on Jk(M,N) to a subset Σ is a linear Pfaffian system. If M has
local coordinates (x1, . . . , xn) and N has local coordinates (u1, . . . , us), then
Jk = Jk(M,N) has local coordinates (xi, ua, pai , p

a
L), where L = (l1, . . . , lp)

is a symmetric multi-index of length p ≤ k−1. In these coordinates, the con-
tact system I is {θa = dua−pai dxi, θaL = dpaL−paLjdxj}, and J = {θa, θaL, dxi}.
On Jk(M,N),

dθa = −dpaj ∧ dxj

dθaL = −dpaLj ∧ dxj

}
≡ 0 mod J,

and these equations continue to hold when we restrict to any subset Σ ⊂ J k.

Example 5.1.5. On R6, let θ = y1dy2 + y3dy4 + y5dx, let I = {θ} and
J = {θ, dx}. Then

dθ = dy1 ∧ dy2 + dy3 ∧ dy4 + dy5 ∧ dx

≡ (dy3 − y3

y1
dy1) ∧ dy4mod{θ, dx}.

In this case, (I, J) is not a linear Pfaffian system.
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Rename Σ′ as Σ -

Input:
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Figure 1. Our final flowchart.

Warning: Where the algorithm ends up (i.e., in which “Done” box in
the flowchart) may depend on the component one is working on.

Summary. Let (I, J) be a linear Pfaffian system on Σ. We summarize
Cartan’s algorithm:

(1) Take a local coframing of Σ adapted to the filtration I ⊂ J ⊂ T ∗Σ.
Let x ∈ Σ be a general point. Let V ∗ = (J/I)x, W

∗ = Ix, and
let vi = ωix, w

a = θax and vi, wa be the corresponding dual basis
vectors.

(2) Calculate dθa; since the system is linear, these are of the form

dθa ≡ Aaεiπ
ε ∧ ωi + T aijω

i ∧ ωj mod I.

Define the tableau at x by

A = Ax := {Aaεivi⊗wa ⊆ V ∗⊗W | 1 ≤ ε ≤ r} ⊆W⊗V ∗.
Let δ denote the natural skew-symmetrization map δ : W ⊗V ∗⊗
V ∗ →W⊗Λ2V ∗ and let

H0,2(A) :=W⊗Λ2V ∗/δ(A⊗V ∗).
The torsion of (I, J) at x is

[T ]x := [T aijwa⊗vi ∧ vj ] ∈ H0,2(A).

(3) If [T ]x 6= 0, then start again on Σ′ ⊂ Σ defined by the equations
[T ] = 0, with the additional requirement that J/I has rank n over
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Σ′. Since the additional requirement is a transversality condition,
it will be generically satisfied as long as dimΣ′ ≥ n. In practice
one works infinitesimally, using the equations d[T ] = 0, and checks
what relations d[T ] ≡ 0 mod I imposes on the forms πε used before.

(4) Assume [T ]x = 0. Let Ak := A ∩ (span{vk+1, . . . , vn}⊗W ). Let

A(1) := (A⊗V ∗) ∩ (W⊗S2V ∗), the prolongation of the tableau A.
Then

dimA(1) ≤ dimA+ dimA1 + . . .+ dimAn−1

and A is involutive if equality holds.
Warning: One can fail to obtain equality even when the system

is involutive if the bases were not chosen sufficiently generically.
In practice, one does the calculation with a natural, but perhaps
nongeneric basis and takes linear combinations of the columns of
A to obtain genericity. If the bases are generic, then equality holds
iff A is involutive.

When doing calculations, it is convenient to define the char-
acters sk by s1 + . . . + sk = dimA − dimAk, in which case the
inequality becomes dimA(1) ≤ s1 + 2s2 + . . .+ nsn. If sp 6= 0 and
sp+1 = 0, then sp is called the character of the tableau and p the
Cartan integer. If A is involutive, then the Cartan-Kähler Theo-
rem applies, and one has local integral manifolds depending on sp
functions of p variables.

(5) If A is not involutive, prolong, i.e., start over on the pullback of the
canonical system on the Grassmann bundle to the space of integral
elements. In calculations this amounts to adding the elements of
A(1) as independent variables, and adding differential forms θai :=

Aaεiπ
ε − paijωj to the ideal, where paijv

ivj⊗wa ∈ A(1).

5.7. Additional remarks on the theory

Another interpretation of A(1). We saw in Chapter 4 that for a constant-
coefficient, first-order, homogeneous system defined by a tableau A, the
prolongation A(1) is the space of admissible second-order terms paijx

ixj in a
power series solution of the system. This was because the constants paij had

to satisfy paijwa⊗vi⊗vj ∈ A(1).

The following proposition, which is useful for computing A(1), is the
generalization of this observation to linear Pfaffian systems:

Proposition 5.7.1. After fixing x ∈ Σ and a particular choice of 1-forms
πai mod I satisfying dθa ≡ πai ∧ ωimod I, A(1) may be identified with the
space of 1-forms π̃ai mod I satisfying dθa ≡ π̃ai ∧ωimod I, as follows: any such



Chapter 6

Applications to PDE

Introduction. Consider the well-known closed-form solution of the wave
equation utt − c2uxx = 0 due to d’Alembert:

u(x, t) = f(x+ ct) + g(x− ct),(6.1)

where f and g are arbitrary C2 functions. It is rare that all solutions of
a given PDE are obtained by a single formula (especially, one which does
not involve integration). The key to obtaining the d’Alembert solution is to
rewrite the equation in “characteristic coordinates” η = x + ct, ξ = x − ct,
yielding uηξ = 0. By integrating in η or in ξ, we get

uη = F (η), uξ = G(ξ),

where F and G are independent arbitrary functions; then (6.1) follows by
another integration. For which other PDE do such solution formulas exist?
And, how can we find them in a systematic way?

In this chapter we study invariants of exterior differential systems that
aid in constructing integral manifolds, and we apply these to the study of
first and second-order partial differential equations, and classical surface
theory. (For second-order PDE, we will restrict attention to equations for
one function of two variables.) All functions and forms are assumed to be
smooth.

In §6.1 we define symmetry vector fields and in particular Cauchy char-
acteristic vector fields for EDS. We discuss the general properties of Cauchy
characteristics, and use them to recover the classical result that any first-
order PDE can be solved using ODE methods. In §6.2 we define the
Monge characteristic systems associated to second-order PDE, and discuss
hyperbolic exterior differential systems. In §6.3 we discuss a systematic
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method, called Darboux’s method, which helps uncover solution formulas
like d’Alembert’s (when they exist), and more generally determines when a
given PDE is solvable by ODE methods. We also define the derived systems
associated to a Pfaffian system.

In §6.4 we treat Monge-Ampère systems, focusing on several geometric
examples. We show how solutions of the sine-Gordon equation enable us to
explicitly parametrize surfaces in E3 with constant negative Gauss curva-
ture. We show how consideration of complex characteristics, for equations
for minimal surfaces and for surfaces of constant mean curvature (CMC),
leads to solutions for these equations in terms of holomorphic data. In par-
ticular, we derive the Weierstrass representation for minimal surfaces and
show that any CMC surface has a one-parameter family of non-congruent
deformations.

In §6.5 we discuss integrable extensions and Bäcklund transformations.
Examples discussed include the Cole-Hopf and Miura transformations, the
KdV equation, and Bäcklund’s original transformation for pseudospherical
surfaces. We also prove Theorem 6.5.14, relating Bäcklund transformations
to Darboux-integrability.

6.1. Symmetries and Cauchy characteristics

Infinitesimal symmetries. One of Lie’s contributions to the theory of
ordinary differential equations was to put the various solution methods for
special kinds of equations in a uniform context, based on infinitesimal sym-
metries of the equation—i.e., vector fields whose flows take solutions to
solutions. This generalizes to EDS when we let the vector fields act on
differential forms via the Lie derivative operator L (see Appendix B):

Definition 6.1.1. Let I be an EDS on Σ. A vector field v ∈ Γ(TΣ) is an
(infinitesimal) symmetry of I if Lvψ ∈ I for all ψ ∈ I.

Exercises 6.1.2:
1. The Lie bracket of any two symmetries is a symmetry; thus, symmetries
of a given EDS form a Lie algebra. }
2. To show that v is a symmetry, it suffices to check the condition in Defi-
nition 6.1.1 on a set of forms which generate I differentially. }
3. Let I be the Pfaffian system generated by the contact form θ = dy−zdx
on R3. Verify that

v = f
∂

∂x
+ g

∂

∂y
+ (gx + zgy − zfx − z2fy)

∂

∂z
,(6.2)

for any functions f(x, y), g(x, y), is a symmetry. Then, find the most general
symmetry vector field for I. }



Chapter 7

Cartan-Kähler III:
The General Case

In this chapter we will discuss the Cartan-Kähler Theorem, which guarantees
the existence of integral manifolds for arbitrary exterior differential systems
in involution. This theorem is a generalization of the Cauchy-Kowalevski
Theorem (see Appendix D), which gives conditions under which an analytic
system of partial differential equations has an analytic solution (defined
in the neighborhood of a given point) satisfying a Cauchy problem, i.e.,
initial data for the solution specified along a hypersurface in the domain.
Similarly, the “initial data” for the Cartan-Kähler Theorem is an integral
manifold of dimension n, which we want to extend to an integral manifold
of dimension n + 1. In Cauchy-Kowalevski, the equations are assumed to
be of a special form, which has the feature that no conflicts arise when one
differentiates them and equates mixed partials. The condition of involutivity
is a generalization of this, guaranteeing that no new integrability conditions
arise when one looks at the equations that higher jets of solutions must
satisfy.

The reader may wonder why one bothers to consider any exterior dif-
ferential systems other than linear Pfaffian systems. For, as remarked in
Chapter 5, the prolongation of any exterior differential system is a linear
Pfaffian system, so theoretically it is sufficient to work with such systems.
However, in practice it is generally better to work on the smallest space
possible. In fact, certain spectacular successes of the EDS machinery were
obtained by cleverly rephrasing systems that were näıvely expressed as lin-
ear Pfaffian systems as systems involving generators of higher degree on a
smaller manifold. One elementary example of this is the study of linear

243



244 7. Cartan-Kähler III: The General Case

Weingarten surfaces (see §6.4); a more complex example is Bryant’s proof
of the existence of manifolds with holonomy G2 [17].

We begin this chapter with a more detailed study of the space of integral
elements of an EDS. Before proving the full Cartan-Kähler Theorem, in §7.2
we give an example that shows how one can use the Cauchy-Kowalevski The-
orem to construct triply orthogonal systems of surfaces. (This also serves as
a model for the proof in §7.3.) In §7.4 we discuss Cartan’s Test, a procedure
by which one can test for involution, and which was already described in
Chapter 5 for the special case of linear Pfaffian systems. Then in §7.5 we
give a few more examples that illustrate how one applies Cartan’s Test in
the non-Pfaffian case.

7.1. Integral elements and polar spaces

Suppose I is an exterior differential system on Σ; we will assume that I
contains no 0-forms (otherwise, we could restrict to subsets of Σ on which
the 0-forms vanish). Recall from §1.9 that Vn(I)p ⊂ G(n, TpΣ) denotes the
space of n-dimensional integral elements in TpΣ and Vn = Vn(I) ⊂ Gn(TΣ)
the space of all n-dimensional integral elements. In this chapter we will
obtain a criterion that guarantees that a given E ∈ Vn(I)p is tangent to
an integral manifold. We think of this as “extending” (p,E) to an integral
manifold.

Coordinates on Gn(TΣ). To study the equations that define Vn, we use
local coordinates on the Grassmann bundle Gn(TΣ). Given E ∈ Gn(TpΣ),
there are coordinates x1, . . . , xn and y1, . . . , ys on Σ near p such that E is
spanned by the vectors ∂/∂xi. By continuity, there is a neighborhood of E

in Gn(TΣ) consisting of n-planes Ẽ such that dx1∧· · ·∧dxn|
Ẽ
6= 0. For each

Ẽ, there are numbers pai such that dya|
Ẽ
= pai dx

i|
Ẽ
; these pai , along with the

x’s and y’s, form a local coordinate system on Gn(TΣ).

Recall from Exercise 1.9.4 that E ∈ Vn(I) if and only if every ψ ∈ In
vanishes on E. Each such ψ has some expression

ψ =
∑

I,J

fIJ dy
I ∧ dxJ ,

where I and J are multi-indices with components in increasing order, such
that |I| + |J | = n, and the fIJ are smooth functions on Σ. Then ψ|

Ẽ
=

Fψdx
1 ∧ . . . ∧ dxn|

Ẽ
, where the Fψ are polynomials in the pai , given by

F =
∑

I,J,L

fI,J (x, y)p
i1
l1
. . . piklkdx

L ∧ dxJ ,



Chapter 8

Geometric Structures
and Connections

We study the equivalence problem for geometric structures. That is, given
two geometric structures (e.g., pairs of Riemannian manifolds, pairs of man-
ifolds equipped with foliations, etc.), we wish to find differential invariants
that determine existence of a local diffeomorphism preserving the geometric
structures. We begin in §8.1 with two examples, 3-webs in the plane and Rie-
mannian geometry, before concluding the section by defining G-structures.
In order to find differential invariants, we will need to take derivatives in
some geometrically meaningful way, and we spend some time (§§8.2–8.4)
figuring out just how to do this. In §8.3 we define connections on coframe
bundles and briefly discuss a general algorithm for finding differential in-
variants of G-structures. In §8.5 we define and discuss the holonomy of
a Riemannian manifold. In §8.6 we present an extended example of the
equivalence problem, finding the differential invariants of a path geometry.
Finally, in §8.7 we discuss generalizations of G-structures and recent work
involving these generalizations.

8.1. G-structures

In this section we present two examples of G-structures and then give a
formal definition.

First example: 3-webs in R2.

First formulation of the question. Let L = {L1, L2, L3} be a collection of
three pairwise transverse foliations of an open subset U ⊆ R2. Such a
structure is called a 3-web; see Figure 1.

Let L̃ = {L̃1, L̃2, L̃3} be another 3-web on an open subset Ũ ⊂ R2.
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268 8. Geometric Structures and Connections

Figure 1. U is the region inside the circle

Problem 8.1.1. When does there exist a diffeomorphism φ : U → Ũ such
that φ∗(L̃j) = Lj?

If there exists such a φ, we will say the webs L, L̃ are equivalent. We
would like to find differential invariants that determine when two webs are
equivalent, as we did for local equivalence of submanifolds of homogeneous
spaces.

In particular, let L0 be the 3-web

L0
1 = {y = const}, L0

2 = {x = const}, L0
3 = {y − x = const};

call this the flat case. We ask: when is a 3-web locally equivalent to the flat
case?

Second formulation of the question. Let y′ = F (x, y) be an ordinary differ-

ential equation in the plane. Let y′ = F̃ (x, y) be another.

Problem 8.1.2. When does there exist a change of coordinates ψ : R2 → R2

of the form ψ(x, y) = (α(x), β(y)) such that ψ∗F̃ = (β′/α′)F? (I.e., so that
solutions to one ODE are carried to solutions of the other.)

In particular, given F , is it equivalent to y′ = 1 via a change of coordi-
nates of the form of ψ?

Exercise 8.1.3: Determine local equivalence of first-order ordinary differ-
ential equations in the plane y′ = F (x, y) under arbitrary changes of coor-
dinates. }
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To see that Problems 8.1.1, 8.1.2 are the same, note that any two trans-
verse foliations can be used to give local coordinates x, y, and the space of
integral curves of an ODE in coordinates provides the third foliation. The
diffeomorphisms of R2 that preserve the two coordinate foliations are exactly
those of the form of ψ.

In order to study the local equivalence of webs, we would like to associate
a coframe to a 3-web. For example, we could take a coframe {ω1, ω2} such
that

(a) ω1 annihilates L1,

(b) ω2 annihilates L2, and

(c) ω1 − ω2 annihilates L3.

In the case of an ODE in coordinates, we could similarly take ω1 =
F (x, y)dx, ω2 = dy.

Remark 8.1.4. Note that we are imitating the flat model (L0) on the in-
finitesimal level. This is what we did in Chapter 2 for Riemannian geometry
when we took a basis of the cotangent space corresponding to the standard
flat structure on the infinitesimal level. Just as any Riemannian metric looks
flat to first order, so does any 3-web in the plane.

Just as in the case of choosing a frame for a submanifold of a homoge-
neous space, we need to determine how unique our choice of adapted frame
is, and we will then work on the space of adapted frames.

Any other frame satisfying conditions (a) and (b) must satisfy

ω̃1 = λ−1ω1,

ω̃2 = µ−1ω2

for some nonvanishing functions λ, µ. Any frame satisfying (c) must be of
the form

ω̃2 − ω̃1 = ν−1(ω2 − ω1).

Combining these three conditions, we see λ = µ = ν. Let FL ⊂ FGL(U) be
the space of coframes satisfying (a),(b),(c), a fiber bundle with fiber ' R∗.

Dually, if we write a point of FL as a frame f = (p, e1, e2), then e1 is
tangent to L2,p, e2 is tangent to L1,p, and e1 + e2 is tangent to L3,p.

Fixing a section (ω1, ω2), we may use local coordinates (x, y, λ) on FL.
On FL we have tautological forms

(
ω1

ω2

)
:=

(
λ 0
0 λ

)−1(
ω1

ω2

)
.
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Exercise 8.1.5: Show that these tautological forms are the pullbacks of
the tautological forms of FGL(U). Thus, they are independent of our initial
choice of ω1, ω2.

For submanifolds of homogeneous spaces, there was a canonical cofram-
ing of the space of adapted frames. Here, we have two 1-forms, but dimFL =
3 so we seek a third 1-form. When we faced the problem of completing a set
of geometrically determined vectors to a basis before (as with submanifolds
of homogeneous spaces), we differentiated. We do the same here:

d

(
ω1

ω2

)
= −

(
dλ
λ2 0

0 dλ
λ2

)
∧
(
ω1

ω2

)
+ λ

(
dω1

dω2

)
.

Since λdωj is semi-basic for the projection to R2, we may write λdωj =
T jω1∧ω2 for some functions T 1, T 2 : FL → R. Write θ = dλ

λ . Our equations
now have the form

d

(
ω1

ω2

)
= −

(
θ 0
0 θ

)
∧
(
ω1

ω2

)
+

(
T 1ω1 ∧ ω2

T 2ω1 ∧ ω2

)
.(8.1)

In analogy with the situation in §5.5, we will refer to the terms T 1, T 2

as “apparent torsion”. More precisely, as we will see in §3, this is the
torsion of θ. The forms ω1, ω2, θ give a coframing of FL, but θ is not
uniquely determined. In fact the choice of a θ satisfying (8.1) is unique

up to modification by ω1, ω2: any other choice must be of the form θ̃ =
θ + aω1 + bω2. In particular, if we choose θ̃ = θ − T 2ω1 + T 1ω2, our new
choice has the effect that the apparent torsion is zero; there is a unique such
form θ. So, renaming θ̃ as θ, we have

Proposition 8.1.6. There exists a unique form θ ∈ Ω1(FL) such that the
equations

d

(
ω1

ω2

)
= −

(
θ 0
0 θ

)
∧
(
ω1

ω2

)

are satisfied.

Any choice of θ such that the derivative of the tautological forms is of
the form (8.1) will be called a connection (or connection form), and a choice
of θ such that the torsion of θ is zero will be called a torsion-free connection.

The canonical coframing (ω1, ω2, θ) that we have constructed on FL
enables us to begin to solve Problem 8.1.1:

Corollary 8.1.7. Let φ : U → U ′ be a diffeomorphism such that φ∗(L̃j) =

Lj , and let Φ : FGL(U) → FGL(Ũ) be the induced diffeomorphism on the
coframe bundles (i.e., Φ takes a coframe to its pullback under φ−1). Then

Φ(FL) = Φ(FL̃) and Φ∗(ω̃1, ω̃2, θ̃) = (ω1, ω2, θ).

Exercise 8.1.8: Prove this corollary.
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Birkhäuser, 1994.

[8] W. Barth, M. Larsen, On the homotopy groups of complex projective algebraic manifolds
Math. Scand. 30 (1972), 88–94.

[9] R. Baston, M. Eastwood, The Penrose transform. Its interaction with representation
theory, Oxford University Press, 1989.

[10] E. Berger, R. Bryant, P. Griffiths, The Gauss equations and rigidity of isometric em-
beddings, Duke Math. J. 50 (1983) 803–892.

[11] A.L. Besse, Einstein Manifolds, Springer, 1987.

[12] R. Bishop, There is more than one way to frame a curve, Am. Math. Monthly 82 (1975),
246–251.

[13] A. Bobenko, Exploring surfaces through methods from the theory of integra-
ble systems: Lectures on the Bonnet Problem, preprint (1999), available at
http://arXiv.org/math.DG/9909003

[14] R. Bott, L. Tu, Differential forms in algebraic topology, Springer, 1982.
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Math. Fr. 59 (1931), 88–118; see also pp. 1199–1230 in Oeuvres Complètes, Part 2.
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ordre, Gauthier-Villars, 1890.
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de la Faculté de Toulouse, deuxième serie 1 (1899), 31–78.

[65] Mark L. Green, Generic initial ideals, pp. 119–186 in Six lectures on commutative
algebra (J. Elias et al, eds.), Progr. Math. 166, Birkhäuser, 1998.
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II, projective second fundamental form, 77

| IIM,x |, 80

III, projective third fundamental form, 96

IIIv , 129

Γ(E), smooth sections of E, 335

Γβα,i, 277

∆rµ
αβγ

, 95

Λ2V , 313

ΛkV , 314

ΞA, characteristic variety of a tableau, 157

Ωk(M),Ω∗(M), 336

Ωk(M,V ), 338

Ω(p,q)(M), 345

δσ(X), secant defect, 129

δτ (X), tangential defect, 129

δ∗, dual defect, 120

φ∗, pullback by φ, 337

φ∗, pushforward by φ, 337

κg , 59

κn, 60

τ(X), tangential variety, 86

τ(Y,X), 131

τg , 60

A(1), 147

A(l), 147

Ann(v), 129

ASO(2), 12

ASO(3), 23

as space of frames, 24

Baseloc | IIM,x |, 80

C∞(M), 335

ck, codimension of polar space, 256

Cl(V,Q), 331

d, exterior derivative, 337

dk, 97

det, 102

det, 315

E3, Euclidean three-space, 2

E6, exceptional Lie group, 102

End(V ), 312

F(M), 49

F1

Euclidean, 37

projective, 78

F4, exceptional Lie group, 102

F4, differential invariant, 107

Fk, 108

FFk, 97
| FFk |, 97
g, Lie algebra of Lie group G, 17

G2, exceptional Lie group, 323

G(k, V ), Grassmannian, 72

G(n,m), 198

G(n, TΣ), 177

GL(V ), 316

Gr(k, V ), orthogonal Grassmannian, 75

H0,2(A), 175

Hi,j(A), 180

Hi,j(g), 283

Holθu, 287

Hom(V,W ), 312

I, differential ideal, 340

Ik, k-th homogeneous component of I, 340

I(1), derived system, 216

(I, J), linear Pfaffian system, 164

J(Y, Z), join of varieties, 86

K(V ), 330

LX , Lie derivative, 339

mx, functions vanishing at x, 335

O(V,Q), orthogonal group, 317

371
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(p, q)-forms, 345

[Rθ], 282

S2V , 313

SkV , 314

sk
characters of a tableau, 154

characters of an EDS, 258

Sm, spinor variety, 106

Singloc | IIM,x |, 80

SL(V ), SLn, special linear group, 317

SO(V,Q), special orthogonal group, 317

Sp(V, ω), symplectic group, 317

SU(n), special unitary group, 319

T(V ), 273

TM , tangent bundle, 335

T ∗M , cotangent bundle, 335

TxM , tangent space, 335

T ∗xM , cotangent space, 335

U(n), unitary group, 319

VC, complexification of V , 343

Xsmooth, 82

[X,Y ], 336

, interior product, 315

∇, 277

⊗, tensor product, 312

], 53

{ }, linear span, 340

{ }alg, 340

{ }diff, 340

abuse of notation, 29, 72, 170

adjoint representation, 321

affine connection, 285

affine tangent space, 76

algebraic variety, 82

degree of, 82

dimension of, 82

general point of, 83

ideal of, 82

almost complex manifold, 274, 282, 344

almost complex structure, 344

almost symplectic manifold, 274

Ambrose-Singer Theorem, 290

apparent torsion, 165

arclength parameter, 14

associated hypersurface, 124

associated varieties, 123

associative submanifolds, 201, 265

associator, 325

asymptotic directions, 80

asymptotic line, 60, 226, 238

Bäcklund transformations, 235–241

Bäcklund’s Theorem, 237

basic differential form, 339

Bertini Theorem, 112

higher-order, 112

Bertrand curve, 26

Bezout’s Theorem, 82

Bianchi identities, 53–54

Bonnet surface, 44, 231

Burger’s equation, 208, 232

calibrated submanifold, 198

calibration, 197

associative, 201

Cayley form, 202

coassociative, 201

special Lagrangian, 200

canonical system

on Grassmann bundle, 177

on space of jets, 28

Cartan geometry, 296

Cartan integer, 156, 179

Cartan Lemma, 314

Cartan system, 209
Cartan’s algorithm for linear Pfaffian sys-

tems, 178

Cartan’s five variables paper, 217

Cartan’s Test, 256

Cartan-Dieudonné Theorem, 331

Cartan-Janet Theorem, 192

Cartan-Kähler Theorem, 254–256
for linear Pfaffian systems, 176

for tableaux, 156

Goldschmidt version, 181
catenoid, 43

Cauchy problem, 349

Cauchy-Kowalevski form, 350

Cauchy-Kowalevski Theorem, 243, 351

Cauchy-Riemann equations, 347

tableau, 144, 156

Cayley submanifold, 202

character of a tableau, 156

characteristic hyperplane, 181

characteristic systems (Monge), 213
characteristic variety, 157

dimension and degree of, 159

characteristics

Cauchy, 205, 259

quotient by, 210

confounded, 213

first-order, 214

method of, 207–208

Monge, 213

characters, 258

of linear Pfaffian system, 179

of tableau, 154

Chebyshev net, 227

Christoffel symbols, 277

Clifford algebras, 331

fundamental lemma of, 332

Clifford torus, 58

co-roots, 329
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coassociative submanifold, 201

Codazzi equation

for Darboux frames, 43

matrix form, 49

codimension, 245

coisotropic hypersurface, 124

complete intersection, 140

complex characteristic variety, 158

complex contact structure, 348
complex manifold, 343, 344

complex structure, 318, 344

complexification

of a real vector space, 318

cone, 44

characterization of, 125

over a variety, 86

connection

affine, 285

on coframe bundle, 278–283
on induced vector bundles, 284
on vector bundle, 277
symmetric, 285

connection form, 279
conormal space, of submanifold in PN , 77

contact manifold, 33
contact system

on space of jets, 28
contact, order of, 83
cotangent

bundle, 335

space, 335

covariant differential operator, 54, 277
cubic form, 94

curvature
Gauss, 38

geometric interpretation of, 47

in coordinates, 4
mean, 38

geometric interpretation of, 68

in coordinates, 4
of curve in E2, 14

of curve in E3, 25
of G-structure, 280

Ricci, 53, 262
scalar, 53, 262, 266, 330

sectional, 53

traceless Ricci, 330

Weyl, 330

curvature-line coordinates, 188

curve
arclength parameter, 14
Bertrand, 26

regular, 13

speed of, 14

curve in E2

curvature, 14

osculating circle, 14

curve in E3

curvature, 25

differential invariants, 25–26

torsion, 25

cylinder, 44

Darboux

-integrable, 218, 239

method of, 217–222

semi-integrable, 222

Darboux frame, 42

Darboux’s Theorem, 32

de Rham Splitting Theorem, 289

decomposable tensor, 312

derived flag, 216

derived system, 216

determinant

of linear endomorphism, 315

developable surface, 40

differential form, 336

basic, semi-basic, 339

closed, 338

homogeneous, 340

left-invariant, 17

vector-valued, 338

differential ideal, 340

differential invariant

Euclidean, 3

dual basis, 311

dual variety, 87, 118

defect of, 120

reflexivity, 119

dual vector space, 311

Dupin

cyclides of, 361

theorem of, 253

e-structure, 304

embedded tangent space, 76

Engel structure, 217

equivalent

G-structures, 275

webs, 268

Euclidean group, 23

Euler characteristic, 62

exterior derivative, 337–338

exterior differential system, 29

hyperbolic, 214–215

linear Pfaffian, 164

Pfaffian, 341

symmetries, 204–205

with independence condition, 27

face of calibration, 199

first fundamental form (Riemannian), 46

first-order adapted frames (Euclidean), 45
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flag

A-generic, 154

complete, 85

derived, 216

partial, 85

flag variety, 85, 316

flat

G-structure, 275

3-web, 268

path geometry, 296

Riemannian manifold, 52

isometric immersions of, 194

surface, 41

flow of a vector field, 6

flowbox coordinates, 6

flowchart for Cartan’s algorithm, 178

focal hypersurface, 89

focal surface, 237, 266

frame
Darboux, 42

frame bundle

general, 49
orthonormal, 50

Frenet equations, 25

Frobenius ideal, 11
Frobenius structure, 308

Frobenius system

tableau of, 146
Frobenius Theorem, 10–12, 30

proof, 30

Fubini cubic form, 94
Fubini forms, 94, 107

Fulton-Hansen Theorem, 130

fundamental form
effective calculation of, 97

k-th, 97

prolongation property of, 97

via spectral sequences, 98

G-structure, 267–275

1-flat, 280

2-flat, 281

curvature, 280, 282

definition, 274

flat, 275

prolongation, 281

G/H-structure of order two, 296

Gauss curvature

geometric interpretation of, 47

in coordinates, 4

via frames, 36–38

Gauss equation, 47

Gauss image, 77

characterization of, 93

Gauss map

algebraic, 55

Euclidean, 46

projective, 77

varieties with degenerate, 89

Gauss’ theorema egregium, 48

Gauss-Bonnet formula, 64

Gauss-Bonnet theorem, 62

for compact hypersurfaces, 64

local, 60

Gauss-Bonnet-Chern Theorem, 65

general point, 83

generalized conformal structure, 309

generalized Monge system, 139

generic point, 83

geodesic, 59

of affine connection, 285

geodesic curvature, 59

geodesic torsion, 60

Grassmann bundle, 177

canonical system on, 177

Grassmannian, 72, 316

isotropic, 84

tangent space of, 73

half-spin representation, 107

Hartshorne’s conjecture, 140

heat equation, 350

helicoid, 39

Hermitian form, 319

Hermitian inner product, 319

hexagonality, 271

higher associated hypersurface, 124

holomorphic map, 345

holonomy, 286–295

holonomy bundle, 287

holonomy group, 287

homogeneous space, 15

Hopf differential, 230

horizontal curve, 287

horizontal lift, 287

hyperbolic space, 58

isometric immersions of, 197

hyperplane section of a variety, 88

hypersurfaces in EN

fundamental theorem for, 55

ideal

algebraic, 340

differential, 340

Frobenius, 11

incidence correspondence, 88

independence condition, 27

index of a vector field, 61

index of relative nullity, 80

induced vector bundle, 283

initial data, 349

initial value problem, 349

integrable extension, 232

via conservation law, 233
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integral

intermediate/general, 219

integral curve, 5

integral element, 27

Kähler-ordinary, 245

Kähler-regular, 249

ordinary, 256

integral manifold, 27, 29

interior product, 315

involutive

integral element, 256

linear Pfaffian system, 176

tableau, 155

isometric embedding, 169–173

isothermal coordinates, 57

existence of, 185

isotropic Grassmannian, 84

isotropy representation, 16

Jacobi identity, 320

jets, 27

join of varieties, 86

Kähler manifold, 199

KdV equation, 234, 236

prolongation algebra, 235

Killing form, 323

Laplace system

tableau for, 157

Laplace’s equation, 223

Laplacian, 56

left action, 15

left-invariant

differential form, 17

vector field, 17, 320

level, 155

Lie algebra, 320

of a Lie group, 17

semi-simple, 327

simple, 327

Lie bracket, 336

Lie derivative, 339

Lie group, 316

linear representation of, 316

matrix, 16, 316–318

Maurer-Cartan form of, 17

lift, 16

first-order adapted, 37

line congruence, 237

line of curvature, 60, 253

isothermal coordinates along, 188

linear map, 311

transpose/adjoint of, 312

linear normality

Zak’s theorem on, 128

linear Pfaffian systems, 164

Cartan’s algorithm for, 178

involutivity, 176

linear projection of variety, 88

linear syzygy, 111

Liouville’s equation, 218, 237

locally ruled variety, 89

locally symmetric, 290

majorants, 150

manifold

contact, 33

restraining, 255

symplectic, 31

matrix Lie groups, 316–318

Maurer-Cartan equation, 18

Maurer-Cartan form

of a matrix Lie group, 17

of an arbitrary Lie group, 17

maximal torus, 327

mean curvature

geometric interpretation of, 68

in coordinates, 4

via frames, 36–38

mean curvature vector, 69

minimal hypersurfaces, 266

minimal submanifold, 197

minimal surface, 68, 228–229

Riemannian metric of, 186

minimizing submanifold, 197

minuscule variety, 104

modified KdV equation, 234

Monge’s method, 224

Monge-Ampère

equation, 222

system, 223

moving frame, 4

adapted, 12

multilinear, 312

multiplicity of intersection, 83

musical isomorphism, 53

Newlander-Nirenberg Theorem, 345

Nijenhuis tensor, 346

non-characteristic initial data, 157

nondegenerate quadratic form, 322

normal bundle, 46, 66

normal curvature, 60

normal space, of submanifold in PN , 77

octonions, 324–326

orthogonal Grassmannian, 75

orthogonal group, 317

orthogonal involutive Lie algebra, 291

osculating circle, 14

osculating hypersurface, 109, 111

osculating quadric hypersurface, 109
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parabolic subgroup, 84, 104

parallel surfaces, 225

parallel transport, 287

path geometry, 295–308

definition of, 295, 298

dual, 297

flat, 296

Pfaff’s Theorem, 33

Pfaffian, 322

Pfaffian system, 341

linear, 164

Picard’s Theorem, 5, 10

Poincaré-Hopf Theorem, 62

point transformation, 295

polar spaces, 246–248

principal curvatures, 39

principal framing, 42

principal symbol, 145

projective differential invariants
in coordinates, 108

projective second fundamental form, 77

coordinate description of, 81
frame definition of, 79

projective structure, 286

prolongation, 147, 177, 214, 220
of a G-structure, 281

prolongation property, 97

strict, 105
prolongation structures, 233

pseudospherical surfaces, 226–227

Bäcklund transformation for, 237
of revolution, 227

pullback, 337

pushforward, 337

rank

of a Lie algebra, 327

of a Pfaffian system, 341

of a tensor, 313
rational homogeneous variety, 83

reductive

Lie group/Lie algebra, 327

refined third fundamental form, 129

regular curve, 13

regular second-order PDE, 174

relative tangent star, 131

representation

isotropy, 16
of Lie algebra, 320

of Lie group, 316

restraining manifold, 255

retracting space, 209

Ricci curvature, 53, 262

Riemann curvature tensor, 52–55, 273

Riemann invariant, 217

Riemann surface, 346

Riemannian geometry, 271–273

fundamental lemma, 50–51, 273

Riemannian manifold, 47

flat, 52

Riemannian metric, 46, 47

right action, 15

root, 328

root system, 328

ruled surface, 41

ruled variety, 113

S-structure, 309

scalar curvature, 53, 262, 266, 330

Schur’s Lemma, 317

Schwarzian derivative, 22

secant defect, 129

secant variety, 86

second fundamental form

base locus of, 80

Euclidean, 46

projective, 77

singular locus of, 80
second-order PDE

characteristic variety, 182

classical notation, 174
tableau, 175

section

of vector bundle, 335

sectional curvature, 53

Segre product of varieties, 84

fundamental forms of, 101

Segre variety, 84, 159

fundamental forms of, 100

semi-basic form, 339

semi-Riemannian manifold, 274

semi-simple Lie algebra, 327

Severi variety, 102

fundamental form of, 103

Zak’s theorem on, 128

signature
of quadratic form, 322

simple Lie algebra, 327

sine-Gordon equation, 223, 226, 235

singular solutions, 191

space form, 57

isometric immersions of, 194

special Lagrangian submanifolds, 200, 265

special linear group, 317

special orthogonal group, 317
special unitary group, 319

Spencer cohomology, 180

spin representation, 106, 107

spinor variety, 85, 106

stabilizer type, 282

submanifold

associative, 265

Lagrangian, 185, 264

special Lagrangian, 200, 265
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surface

Bonnet, 44

catenoid, 43

cone, 44

constant mean curvature, 229–231

cylinder, 44

developable, 40

flat, 41

focal, 237, 266

helicoid, 39

isothermal coordinates on, 57

linear Weingarten, 183, 224, 261

minimal, 68, 228

of revolution, 41, 227

parallel, 225

pseudospherical, 226

ruled, 41

warp of, 4

with degenerate Gauss image, 91
symbol mapping, 157

symbol relations, 145, 174

symmetric connection, 285
symmetric Lie algebra, 291

symmetric space, 290

symmetries, 241
symplectic form, 32, 185, 199, 212, 264, 317

symplectic group, 317

symplectic manifold, 31

tableau, 145

determined, 158

of linear Pfaffian system, 174

of order p, 147

tangent

bundle, 335

space, 335

tangent star, 86

tangential defect, 129

critical, 135
tangential surface, 40

tangential variety, 86

dimension of, 128

tautological EDS

for torsion-free G-structures, 293

tautological form

for coframe bundle, 49

tensor product, 312

Terracini’s Lemma, 87

third fundamental form

projective, 96

torsion

of connection, 279

of curve in E3, 25

of G-structure, 280

of linear Pfaffian system, 165, 175

transformation

Bäcklund, 232, 236

Cole-Hopf, 232, 238

fractional linear, 20

Lie, 231

Miura, 234

triangulation, 61

triply orthogonal systems, 251–254

umbilic point, 39

uniruled complex manifold, 310

uniruled variety, 113

unitary group, 319

variation of Hodge structure, 189

variety

algebraic, 82
dual, 87, 118

flag, 85

miniscule, 104

rational homogeneous, 83

ruled, 113

secant, 86
Segre, 84
spinor, 85, 106
tangential, 86
uniruled, 113
Veronese, 85

vector bundle

induced, 283
vector field, 335

flow of a, 6
left-invariant, 17

Veronese embedding, 85
Veronese re-embedding, 85, 109

Veronese variety, 85
fundamental forms of, 99

vertical vector, 339
volume form, 46

Waring problems, 313
warp of a surface, 4

wave equation, 203, 349
web, 267

hexagonality of, 271
wedge product, 314

matrix, 18

Weierstrass representation, 228–229
weight, 327

highest, 329
multiplicity of, 327

weight diagram for invariants, 305

weight lattice, 329

weight zero invariant, 300

Weingarten equation, 224
Weingarten surface, linear, 183, 224, 261

Weyl curvature, 330
Wirtinger inequality, 199
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Zak’s theorem

on linear normality, 128

on Severi varieties, 128

on tangencies, 131


