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Linear algebra review
a× a matrix M

Could represent

LM : Ca → Ca linear map (or Ra → Ra...)

v 7→ Mv .

Write LM : A→ A.

Or could represent bilinear form

BM : A× A→ C

(v ,w) 7→ v tMv

Both cases: group action GL(A): group of invertible linear maps
A→ A, invertible a× a matrices

linear map ; Jordan normal form (eigenvalues, Jordan blocks....)

bilinear maps ???
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Notation

A = Ca : column vectors,

A∗: row vectors = space of linear maps A→ C, where α ∈ A∗,
v ∈ A, α(v) = αv , row-column mult.

A∗⊗A: linear maps A→ A

A∗⊗A∗: bilinear forms A× A→ C.

GL(A) acts on A∗⊗A. g ∈ GL(A), M ∈ A∗⊗A, g ·M = gMg−1.
Jordan normal form: infinite number of orbits (open subset
described by a parameters) “tame” orbit structure.

Bilinear forms: GL(A) acts on A∗⊗A∗ g ∈ GL(A), M ∈ A∗⊗A∗,
g ·M = gMg t . Normal form?
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Easier case

a× b matrix M

Could represent

M : B → A linear map

w 7→ Mw .

Or bilinear form

M : B × A∗ → C

(α,w) 7→ αMw

Both cases: Same group action GL(A)× GL(B)

Normal forms

(
Idk 0
0 0

)
0 ≤ k ≤ min{a,b}: finite
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Group actions

Bilinear forms: GL(A)× GL(B) acts on A⊗B, finite number of
orbits, simple normal form for each.

Use: efficient algorithm to solve system of linear equations (ancient
China, rediscovered by Gauss) Exploit (part of) group action to
put system in easy form.
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GL(A) action on A∗⊗A∗

If B ∈ A∗⊗A∗ symmetric, i.e., B(v ,w) = B(w , v) ∀v ,w ∈ A, ⇒
g · B is too

same for skew.

;

A∗⊗A∗ = S2A∗ ⊕ Λ2A∗

as GL(A)-module.

Exercise: Show orbit structure on A∗⊗A∗ is “tame”, analog of
Jordan normal form.
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Symmetry groups

Given T ∈ A∗⊗A, let GT := {g ∈ GL(A) | g · T = T}, symmetry
group of T

Let TA ⊂ GL(A) diagonal matrices.

Exercise: T ∈ A∗⊗A “generic” GT
∼= gTAg

−1, some fixed g ∈ G .
In particular a-dimensional subgroup of GL(A).

Exercise: Let M =

(
λ 1
0 λ

)
, GM?

Question: Before doing calc, what do we expect in general?

Given T ∈ A⊗B, let GT := {g ∈ GL(A)× GL(B) | g · T = T}

Exercise: Say a = b and T : generic, what is GT ?

Open Q: What are possible GT ⊂ GL(A) for T ∈ A∗⊗A∗?
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Fundamental Theorem of linear algebra

Fix bases {ai}, {bj} of A,B and for r ≤ min{a,b}, set
Ir =

∑r
k=1 ak⊗bk . Let End(A) = A∗⊗A. The following quantities

all equal the rank of T ∈ A⊗B:

(Q) The largest r such that Ir ∈ End(A)× End(B) · T .

(Q) The largest r such that Ir ∈ GL(A)× GL(B) · T .

(mlA) dimA− dim ker(TA : A∗ → B)

(mlB) dimB − dim ker(TB : B∗ → A)

(R) The smallest r such that T is a limit of a sum of r rank one
elements, i.e., such that T ∈ GL(A)× GL(B) · Ir

(R) The smallest r such that T is a sum of r rank one elements.
i.e., such that T ∈ End(A)× End(B) · Ir
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Tensors

Now consider T ∈ A⊗B⊗C . (or T ∈ A1⊗ · · ·⊗ Ak)

Trilinear form A∗ × B∗ × C ∗ → C.

Bilinear map A∗ × B∗ → C .

Linear map TA : A∗ → B⊗C

Example: A∗,B∗,C = A algebra, T = TA structure tensor. i.e.,
TA(a1, a2) := a1a2.

In particular, A,B,C space of n × n matrices T = M〈n〉 structure
tensor of matrix multiplication.

T ∈ A⊗B⊗C has rank one if ∃ a ∈ A, b ∈ B, c ∈ C such that
T = a⊗b⊗c .
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Tensors
For r ≤ min{a,b, c}, write Ir =

∑r
`=1 a`⊗b`⊗c`.

Definitions:

Q(T ) subrank: largest r such that
Ir ∈ End(A)× End(B)× End(C ) · T

Q(T ) border subrank: largest r such that

Ir ∈ GL(A)× GL(B)× GL(C ) · T

ml multi-linear ranks:
(mlA(T ),mlB(T ),mlC (T )) := (rankTA, rankTB , rankTC )

R(T ) border rank: The smallest r such that T is a limit of rank r
tensors i.e. such that T ∈ GL(A)× GL(B)× GL(C ) · Ir ,
allowing re-embeddings

R(T ) rank: smallest r such that T is a sum of r rank one tensors
i.e., such that T ∈ End(A)× End(B)× End(C ) · Ir , allowing
re-embeddings of T to Cr⊗Cr⊗Cr
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Inequalities and first open problems

Q(T ) ≤ Q(T ) ≤ min{mlA(T ),mlB(T ),mlC (T )}
≤ max{mlA(T ),mlB(T ),mlC (T )} ≤ R(T ) ≤ R(T )

all may be strict, even when a = b = c.

Say a = b = c = m, then T : generic ⇒ R(T ) = R(T ) ' m2

3 and
this is largest possible R. (Lickteig 1980’s, symmetric case
Terracini 1916, higher order symmetric mostly Terracini 1916,
finished Alexander-Hirschowitz 1990’s)

Open Q: Exact largest possible in general 3-factor (see
Abo-Ottaviani-Peterson for state of art).

Open Q: Largest possible R(T )? (state of art, see
Buczynski-Han-Mella-Teitler)

If multilinear ranks maximal = m, call T concise ⇒ R(T ) ≥ m,
say minimal border rank if = m.

Open Problem:Classify concise tensors of minimal border rank. 11 / 25



Geometry of rank

Imagine curve represents the set of tensors of rank one sitting in
the N3 dimensional space of tensors.
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Geometry of rank

{ tensors of rank two} =

{ points on a secant line to set of tensors of rank one}

x

y

z=x+y
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Geometry of border rank

u

v

The limit of secant lines is a tangent line!

Note: most points on just one secant line.

Most points: if on secant line, usually not on tangent line

Plane curve: both. Rank one matrices like curves in the plane 14 / 25



Polynomials and limits

Clear: P: poly, P(Tt) = 0 for t > 0 ⇒ P(T0) = 0.

⇒ Cannot describe rank via zero sets of polynomials.

Matrices: Matrix border rank given by polynomials.

Tensor border rank?

Tensors of border rank ≤ r Euclidean closed

S ⊂ V set, define Zariski closure by first
IS := {polys P | P(s) = 0∀s ∈ S}.

S
zar

:= {v ∈ V | P(v) = 0∀P ∈ IS}.

Theorem: In our situation S = S
zar

(whenever S
zar

is irreducible
and S contains a Zariski-open subset of S

zar
).

⇒ can determine border rank with polynomials!
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Border rank via Polynomials

Matrices: easy, just minors (efficient to compute thanks to
Gaussian elimination)

Tensors??

Open

State of the art: border rank ≤ 4 (Friedland)

Next time: some known equations.
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Normal forms?

Bilinear forms: finite number of orbits

Endomorphisms: finite number of cases, each with finite number of
parameters “tame”

Tensors?

Kronecker C2⊗Ca⊗Cb: yes! tame

C3⊗C3⊗C3: yes! tame

In general: NO “wild”
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Aside for those familiar with Dynkin diags.

Write marked Dynkin diag. for space with group action. Cases
A⊗B, A⊗A∗, C2⊗A⊗B. Add new node and adjoin edges from
new node to marked nodes.Finite if get Dynkin diag. of finite
dimensional simple Lie alg. Tame (not finite) if get Dynkin diag.
of affine simple Lie alg. Otherwise wild.
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Tensor Rank Decomposition

Linear algebra: determine rank of matrix easy. finding a rank
decomposition easy. r > 1, never unique.

Tensors: determine rank of tensor hard. No general technique.
(methods for T low rank and with nice combinatorial properties)
But: often unique!

If can decompose, extremely useful for applications.

e.g. blind source separation (P. Comon)

19 / 25



Classical algebraic geometry

V = CN , X ⊂ PV variety,

σr (X ) := {z ∈ PV | ∃x1, . . . , xr ∈ X , such that z ∈ span(x1, . . . , xr )}

r -th secant variety

Palantini, Terracini, Fulton-Hansen, Alexander-Hirschowitz, Zak, ...

σr (Seg(PA× PB × PC )) = {[T ] | R(T ) ≤ r}
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Classical algebraic geometry

Consider rank at most r matrices:
σr (Seg(PA× PB)) = {[T ] | R(T ) ≤ r}

Invariant under changes of bases ⇒ its ideal
Iσr (Seg(PA×PB)) ⊂ Sym(A∗⊗B∗) invariant under changes of bases

Special case: rank one - saw matrix has rank one iff size two
minors zero. Degree two polynomials.

Consider all homogeneous degree two polynomials on matrices:

S2(A∗⊗B∗) = S2A∗⊗S2B∗ ⊕ Λ2A∗⊗Λ2B∗

Size two minors ??

What about S2(A∗⊗B∗⊗C ∗)? any subspace in
Iσr (Seg(PA×PB×PC))?

21 / 25



More Open Problems

• Tensors of minimal border rank revisited: find defining eqns. for
σm(Seg(Pm−1 × Pm−1 × Pm−1)) State of art: m ≤ 4 (Friedland,
2010)

• Even more ambitious: generators of ideal. State of art: m ≤ 3
(L-Weyman, 2007)

• Hay in a haystack: A random tensor in Cm⊗Cm⊗Cm has border
rank ∼ m2

3 . Find an explicit sequence of tensors of border rank
m1+ε. State of art: (2.03)m. (L-Michalek, 2020).
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Open Problems cont’d

• Cost v. Value in quantum information: Approximate Cost of T
∼ R(T ), Approximate Value ∼ Q(T ),

True cost/value T�N := T⊗N∈ (A⊗N)⊗(B⊗N)⊗(C⊗N)

R
:

(T ) := limN→∞(R(T⊗N))
1
N , Q

:
(T ) := limN→∞(Q(T⊗N))

1
N

Find low cost high value tensors. (see work of
Christandl-Vrana-Zuiddam)
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Approaches to value
Q, Q not related to classically studied objects.

Idea: define easier to compute quantities bounding Q

; slice rank (Tao, 2016) and Strength/product rank (for higher
order tensors)

Variant over finite fields inspired by random tensors: analytic rank
(Gowers) “low (product) rank implies bias” Very recent:
Cohen-Moshkovitz: bias implies low (product) rank.

over C ; geometric rank (Kopparty-Moshkovitz-Zuiddam, 2020)

; classical linear algebra and classical algebraic geometry:

spaces of matrices of bounded rank, linear Pm−1’s ⊂ P(Cm⊗Cm)
having non-transverse interections with σr (Seg(Pm−1 × Pm−1))

Next time : one running example to illustrate the utility of
geometry in study of tensors - complexity of matrix multiplication.

Workshop lecture: geometry associated to tensor network states. 24 / 25



Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. recent developments:
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