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Strassen’s spectacular failure

Standard algorithm for matrix multiplication, row-column:∗ ∗ ∗∗∗
∗

 =

∗ 
uses O(n3) arithmetic operations.

Strassen (1968) set out to prove this standard algorithm was
indeed the best possible.

At least for 2× 2 matrices. At least over F2.

He failed.
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Strassen’s algorithm

Let A,B be 2× 2 matrices A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
. Set

I = (a11 + a22)(b11 + b22),

II = (a21 + a22)b11,

III = a11(b12 − b22)

IV = a22(−b11 + b21)

V = (a11 + a12)b22

VI = (−a11 + a21)(b11 + b12),

VII = (a12 − a22)(b21 + b22),

If C = AB, then

c11 = I + IV − V + VII ,

c21 = II + IV ,

c12 = III + V ,

c22 = I + III − II + VI . 3 / 24



Astounding conjecture
Iterate: ; 2k × 2k matrices using 7k � 8k multiplications,

and n × n matrices with O(n2.81) arithmetic operations.

Bini 1978, Schönhage 1983, Strassen 1987, Coppersmith-Winograd
1988 ; O(n2.3755) arithmetic operations.

Astounding Conjecture

For all ε > 0, n × n matrices can be multiplied using O(n2+ε)
arithmetic operations.

; asymptotically, multiplying matrices is nearly as easy as adding
them!

1988-2011 no progress, 2011-14 Stouthers,Williams,LeGall
O(n2.373) arithmetic operations.
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The matrix multiplication tensor

Set N = n2.

Matrix multiplication is a bilinear map

M〈n〉 : CN × CN → CN ,

In other words
M〈n〉 ∈ CN∗⊗CN∗⊗CN .

Exercise: As a trilinear map, M〈n〉(X ,Y ,Z ) = trace(XYZ ).
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Strassen’s algorithm as a rank expression

Rank one tensors correspond to bilinear maps that can be
computed using one scalar multiplication.

The rank of a tensor T is essentially the number of scalar
multiplications needed to compute the corresponding bilinear map.

standard presentation is M〈n〉 =
∑n

i ,j ,k=1 x
i
j⊗y

j
k⊗z

k
i

Strassen’s presentation is

M〈2〉 =x11⊗y11⊗z11
+ (−x12 + x21 − x22 )⊗(−y12 + y21 − y22 )⊗(−z12 + z21 − z22 )

+ (x12 + x22 )⊗(y12 + y22 )⊗(z12 + z22 )

+ (−x21 + x22 )⊗(−y21 + y22 )⊗(−z21 + z22 )

+ Z3 · [x12⊗y21⊗(z11 − z12 + z21 − z22 )]
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Tensor formulation of conjecture

Theorem (Strassen): M〈n〉 can be computed using O(nτ )
arithmetic operations ⇔ R(M〈n〉) = O(nτ )

Let ω := infτ{R(M〈n〉) = O(nτ )}

ω is called the exponent of matrix multiplication.

Classical: ω ≤ 3.

Corollary of Strassen’s algorithm: ω ≤ log2(7) ' 2.81.

Astounding Conjecture

ω = 2

Conjecture is about a point (matrix multiplication) lying on a
secant r -plane to set of tensors of rank one.
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Bini’s sleepless nights

Bini-Capovani-Lotti-Romani (1979) investigated if M〈2〉, with one
matrix entry set to zero, could be computed with five
multiplications (instead of the näıve 6), i.e., if this reduced matrix
multiplication tensor had rank 5.

They used numerical methods.

Their code appeared to have a problem.
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Recall our picture
{ tensors of rank two} =

{ points on a secant line to set of tensors of rank one}

x

y

z=x+y

Tensors of rank 5: points on a secant 5-plane
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Recall our second picture

u

v

Theorem (Bini 1980) R(M〈n〉) = O(nω), so border rank is also a
legitimate complexity measure.

10 / 24



Debt from last time

a(t)⊗b(t) curve of rank one matrices

a′(0)⊗b(0) + a(0)⊗b′(0) tangent vector to a(0)⊗b(0)

visibly sum of two rank one elements.

a(t)⊗b(t)⊗c(t) curve of rank one tensors

a′(0)⊗b(0)⊗c(0) + a(0)⊗b′(0)⊗c(0) + a(0)⊗b(0)⊗c ′(0) tangent
vector to a(0)⊗b(0)⊗c(0)

Exercise: not sum of two rank one elements when a′(0) 6= λa(0),
b′(0) 6= µb(0), and c ′(0) 6= νc(0).
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How to disprove astounding conjecture?

Let σr ⊂ CN⊗CN⊗CN = CN3
: tensors of border rank at most r .

Find a polynomial P (in N3 variables) in the ideal of σr , i.e., such
that P(T ) = 0 for all T ∈ σr .

Show that P(M〈n〉) 6= 0.

Embarassing (?): had not been known even for M〈2〉, i.e., for σ6
when N = 4.

Arora and Barak: lower bounds are “complexity theory’s
Waterloo ”
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Why I thought this would be easy

Consider rank at most r matrices:
σr (Seg(PA× PB)) = {[T ] | R(T ) ≤ r}

Invariant under changes of bases ⇒ its ideal
Iσr (Seg(PA×PB)) ⊂ Sym(A∗⊗B∗) invariant under changes of bases

Special case: rank one - saw matrix has rank one iff size two
minors zero. Degree two polynomials.

Consider all homogeneous degree two polynomials on matrices:

S2(A∗⊗B∗) = S2A∗⊗S2B∗ ⊕ Λ2A∗⊗Λ2B∗

Size two minors ??

Exercise: What about S2(A∗⊗B∗⊗C ∗)?

Any subspace in Iσr (Seg(PA×PB×PC))?
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Why did I think this would be easy?: Representation
Theory

Matrices of rank at most r : zero set of size r + 1 minors.

Tensors of border rank at most 1: zero set of size 2 minors of
flattenings tensors to matrices: A⊗B⊗C = (A⊗B)⊗C .

Tensors of border rank at most 2: zero set of degree 3 polynomials.

Representation theory: systematic way to search for polynomials.

2004 L-Manivel: No polynomials in ideal of σ6 of degree less than
12

2013 Hauenstein-Ikenmeyer-L: No polynomials in ideal of σ6 of
degree less than 19. However there are polynomials of degree 19.
Caveat: too complicated to evaluate on M〈2〉. Good news: easier
polynomial of degree 20 (trivial representation) ;

(L 2006, Hauenstein-Ikenmeyer-L 2013) R(M〈2〉) = 7.
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Polynomials via a retreat to linear algebra
T ∈ A⊗B⊗C = CN⊗CN⊗CN may be recovered from the linear
space T (C ∗) ⊂ A⊗B.

tensors up to changes of bases ∼ linear subspaces of spaces of
matrices up to changes of bases.

Even better than linear maps are endomorphisms. Assume
T (C ∗) ⊂ A⊗B contains an element of full rank. e.g.
T (γ1) : B∗ → A. Use it to obtain an isomorphism A⊗B ' End(A)
via T (γ)T (γ1)−1 : A→ A; space of endomorphisms.

R(T ) = N ⇔ N-dimensional space of simultaneously
diagonalizable endomorphisms (matrices)

R(T ) = N ⇔ limit of N-dimensional spaces of simultaneously
diagonalizable endomorphisms

Good News: Classical linear algebra!

Bad News: Open question.
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Retreat to linear algebra, cont’d

Simultaneously diagonalizable matrices ⇒ commuting matrices

Good news: Easy to Test.

Better news (Strassen): Can upgrade to tests for higher border
rank than N: R(T ) ≥ N + 1

2(rank of commutator)

; (Strassen 1983) R(M〈n〉) ≥ 3
2n

2

Variant: (Lickteig 1985) R(M〈n〉) ≥ 3
2n

2 + n
2 − 1

1985-2012: no further progress other than for M〈2〉.
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Retreat to linear algebra, cont’d

Perspective: Strassen mapped space of tensors to space of
matrices, found equations by taking minors.

Classical trick in algebraic geometry to find equations via minors.

; (L-Ottaviani 2013) R(M〈n〉) ≥ 2n2 − n

These equations were found using representation theory: found via
a G = GL(A)× GL(B)× GL(C ) module map from A⊗B⊗C to a
space of matrices (systematic search possible).

Explicitly: A⊗B⊗C 7→ Hom(ΛpA⊗B∗,Λp+1A⊗C ) Given
T =

∑
ijk T

ijkai⊗bj⊗ck , map is

as1 ∧ · · · asp⊗βt 7→
∑

i ,k T
itkai ∧ as1 ∧ · · · asp⊗ck

Punch line: Found equations by exploiting symmetry of σr
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Bad News: Barriers

Theorem (Bernardi-Ranestad,Buczynski-Galcazka,Efremenko-
Garg-Oliviera-Wigderson): Game (almost) over for determinantal
methods.

For the experts: Determinantal methods detect zero dimensional
schemes (want zero dimensional smoothable schemes).

Spans of zero dimensional (local) schemes of length 6m on Segre
fill ambient space. (Bernardi-Ranestad+Buczynski)

In particular, cannot use to show R(T ) > 6m.

Punch line: Barrier to progress.

18 / 24



How to go further?

So far, lower bounds via symmetry of σr .

The matrix multiplication tensor also has symmetry:

T ∈ A⊗B⊗C , recall the symmetry group of T
GT := {g ∈ GL(A)× GL(B)× GL(C ) | g · T = T}

GL×3n ⊂ GM〈n〉 ⊂ GL×3
n2

= GL(A)× GL(B)× GL(C ):

Proof: (g1, g2, g3) ∈ GL×3n

trace(XYZ ) = trace((g1Xg2
−1)(g2Yg3

−1)(g3Zg1
−1))
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How to exploit GT? “Border substitution method”
R(T ) ≤ r ⇔ ∃ curve Et ⊂ G (r ,A⊗B⊗C ) such that

i) For t 6= 0,
Et = span〈a1(t)⊗b1(t)⊗c1(t), . . . , ar (t)⊗br (t)⊗cr (t)〉

ii) T ∈ E0.

For all g ∈ GT , gEt also works.

; (L-Michalek 2017) can insist on normalized curves, e.g., for
M〈n〉, E0 such that (g1, g2, g3)E0 = E0, when each gj upper
triangular.

; R(M〈n〉) ≥ 2n2 − log2n− 1

; Hay in a haystack: A random tensor in Cm⊗Cm⊗Cm has
border rank ∼ m2

3 . Find an explicit sequence of tensors of border
rank m1+ε. previously: 2m −

√
m (L-Ottaviani, 2013) using border

substitution: (2.03)m (L-Michalek, 2020).

More bad news: this method cannot go much further. 20 / 24



New idea: Buczynska-Buczynski
Use more algebraic geometry: Consider not just curve of r points,
but the curve of ideals It ∈ Sym(A∗ ⊕ B∗ ⊕ C ∗) it gives rise to:
border apolarity method

T = limt→0
∑r

j=1 aj(t)⊗bj(t)⊗cj(t)

It ideal of
[a1(t)⊗b1(t)⊗c1(t)] ∪ · · · ∪ [ar (t)⊗br (t)⊗cr (t)] ⊂ PA× PB × PC

Can insist that limiting ideal I0 is Borel fixed: reduces to small
search in each multi-degree.

Instead of single curve Et ⊂ G (r ,A⊗B⊗C ) limiting to Borel fixed
point, for each (i , j , k) get curve in G (r ,S iA∗⊗S jB∗⊗SkC ∗), each
limiting to Borel fixed point and satisfying compatibility conditions.

Upshot: algorithm that either produces all normalized candidate
I0’s or proves border rank > r . ; significant progress on many
border rank problems: see my lecture series 21 / 24



Other Open Problems

• Tensors of minimal border rank: find defining eqns. for
σm(Seg(Pm−1 × Pm−1 × Pm−1)) State of art: m ≤ 4 (Friedland,
2010)

• Even more ambitious: generators of ideal. State of art: m ≤ 3
(L-Weyman, 2007)

• Cost v. Value in quantum information: Approximate Cost of T
∼ R(T ), Approximate Value ∼ Q(T ),

True cost/value T�N := T⊗N∈ (A⊗N)⊗(B⊗N)⊗(C⊗N)

R
:

(T ) := limN→∞(R(T⊗N))
1
N , Q

:
(T ) := limN→∞(Q(T⊗N))

1
N

Find low cost high value tensors. (see work of
Christandl-Vrana-Zuiddam)
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Approaches to value

Q, Q not related to classically studied objects.

Idea: define easier to compute quantities bounding Q

; slice rank (Tao, 2016) and Strength/product rank (for higher
order tensors)

Variant over finite fields inspired by random tensors: analytic rank
(Gowers) “low (product) rank implies bias” Very recent:
Cohen-Moshkovitz: bias implies low (product) rank.

over C ; geometric rank (Kopparty-Moshkovitz-Zuiddam, 2020)

; classical linear algebra and classical algebraic geometry:

spaces of matrices of bounded rank, linear Pm−1’s ⊂ P(Cm⊗Cm)
having non-transverse interections with σr (Seg(Pm−1 × Pm−1))

• Workshop lecture: geometry associated to tensor network states.
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Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. recent developments:
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