
THE LOCAL EQUIVALENCE PROBLEM FOR 7-DIMENSIONAL, 2-NONDEGENERATE CR

MANIFOLDS WHOSE CUBIC FORM IS OF CONFORMAL UNITARY TYPE

A Dissertation

by

CURTIS WADE PORTER

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, J.M. Landsberg
Co-Chair of Committee, Igor Zelenko
Committee Members, Melanie Becker

Harold Boas
Paulo Lima-Filho
Colleen Robles

Head of Department, Emil Straube

August 2016

Major Subject: Mathematics

Copyright 2016 Curtis Wade Porter



ABSTRACT

We apply E. Cartan’s method of equivalence to classify 7-dimensional, 2-nondegenerate CR

manifolds M up to local CR equivalence in the case that the cubic form of M satisfies a certain

symmetry property with respect to the Levi form of M . The solution to the equivalence problem

is given by a parallelism on a principal bundle over M which takes values in su(2, 2) or su(3, 1),

depending on the signature of the nondegenerate part of the Levi form. Differentiating this paral-

lelism provides a complete set of local invariants of M . We exhibit an explicit example of a real

hypersurface in C4 whose invariants are nontrivial.
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1. INTRODUCTION

A CR manifold M of CR-dimension n and CR-codimension c is intrinsically defined to abstract

the structure of a smooth, real, codimension-c submanifold of a complex manifold of complex

dimension n + c. The most trivial example of such a submanifold is Cn × Rc ⊂ Cn+c, and the

obstruction to the existence of a local CR equivalence M → Cn × Rc is the Levi form L of M , a

Cc-valued Hermitian form on the CR bundle of M whose signature in the c = 1 case is a basic

invariant of M ’s CR structure. Accordingly, attempts to classify CR manifolds of hypersurface-type

(c = 1) fundamentally depend on the degree of degeneracy of L.

The primary instrument for achieving such classification is the method of equivalence, a broadly

applicable procedure for constructing invariants of smooth manifolds under a specified notion of

local isomorphism. When a geometric structure on a manifold M is amenable to the procedure,

the method of equivalence constructs a principal bundle B → M and a parallelism ω ∈ Ω1(B, g)

taking values in a Lie algebra g. The curvature tensor dω + ω ∧ ω ∈ Ω2(B, g) along with its

higher derivatives then provides a complete set of local invariants of the geometric structure under

consideration.

When the curvature tensor vanishes identically, M is locally equivalent to the flat model of the

geometry – a homogeneous manifold G/Q where G is a Lie group with Lie algebra g and Q ⊂ G is

a closed Lie subgroup isomorphic to the structure group of B. The “flat model” terminology may

be understood by analogy with the case of Riemannian geometry, wherein ω is the affine extension

of the Levi-Civita connection of a Riemannian manifold M , and the curvature tensor measures the

obstruction to M being locally isometric to a “flat” Euclidean vector space.

The method of equivalence has been successfully implemented to classify CR manifolds whose

Levi form is nondegenerate, and this classification naturally extends to straightenable CR manifolds,

which are locally CR equivalent to the Cartesian product of a Levi-nondegenerate CR manifold

and a complex vector space. For those CR manifolds that are Levi-degenerate but carry no such

local product structure, classification is so far limited to dimension five. This dissertation treats a

generalization of the 5-dimensional case to dimension seven. We now proceed to a description of

the contents of our report.

§2 offers an overview of CR geometry by tracing the history of the subject and its interactions
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with complex analysis, partial differential equations, and the theory of Lie groups. After motivating

the basic definitions in §2.1, we review necessary background material on CR manifolds in §2.2 and

use CR structures to illustrate the efficacy of the method of equivalence for studying differential

geometry in general. In §2.3 we discuss the Levi-degenerate case, including the known results in

dimension five. We also introduce the cubic form C – a higher-order analogue of L that detects

obstruction to CR straightening – and define what it means for C to be of conformal unitary

type, thus arriving at a formal statement of the 7-dimensional problem to be solved in the present

work. All of the structures described theretofore are reformulated in §2.4 in terms of local, adapted

coframings on a 7-dimensional CR manifold M .

The technical core of the dissertation is §3, in which the 7-dimensional equivalence problem is

solved by the construction of a principal bundle B
(1)
4 → M and a parallelism ω ∈ Ω1(B

(1)
4 , su?)

taking values in the Lie algebra of SU? = SU(2, 2) or SU? = SU(3, 1), depending on the signature

of the nondegenerate part of L. A standard reference for the algorithmic procedure of the classical

method of equivalence is [Gar89]. The author also greatly benefited from the exposition of [BGG03],

wherein the general theory is illuminated by the extended examples of Monge-Ampère equations

and conformal geometry.

The parallelism ω and the invariants encoded in its curvature tensor are the subject of §4.

When the curvature tensor vanishes, M is locally CR equivalent to the flat model M? := SU?/P?

described in §4.1. Moreover, we demonstrate in §4.2 that the lowest order invariants appearing in

the curvature tensor suffice to detect local flatness. In §4.3, we show that P? is isomorphic to the

structure group of B
(1)
4 , and that ω fails to satisfy a certain equivariance property with respect to

the principal P?-action on B
(1)
4 , as evidenced by the presence of two-forms in the curvature tensor

that are not semibasic for the bundle projection B
(1)
4 → M . Finally, in §4.4 we exhibit a real

hypersurface M ⊂ C4 that is not locally isomorphic to M?, demonstrating the existence of so-called

“non-flat” CR manifolds which satisfy our hypotheses. Our work in sections 3 and 4 constitutes a

proof of the main result of this dissertation, which may be summarized as follows.

Theorem 1.1 Let M be a hypersurface-type CR manifold of CR dimension 3 such that kerL has

constant rank 1 and C is of conformal unitary type. There exists a principal P?-bundle B
(1)
4 → M

and an absolute parallelism ω ∈ Ω1(B, su?). Differentiating ω provides a complete set of local

invariants of M which measure the obstruction to M being locally CR equivalent to SU?/P?.
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2. HISTORY AND PERSPECTIVES

Cauchy-Riemann (CR) geometry studies boundaries of domains in complex vector spaces and

their generalizations. In one complex dimension, the Riemann mapping theorem shows that any

simply connected domain which is not the entire complex line C is biholomorphically equivalent

to the unit disk D = {z ∈ C : |z| < 1}. Already in C2, however, there are elementary examples

of diffeomorphic yet holomorphically inequivalent domains. Figure 2 depicts the boundaries of the

bidisk D2 = D×D and open ball B = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1} by graphing the moduli of

the standard coordinates z1, z2 of C2.

Figure 2.1: The bidisk and ball in C2

The boundary ∂D2 of the bidisk contains a copy of D, while the boundary ∂B of the ball does

not. If there existed a biholomorphic map F : D2 → B, one could choose a sequence in D2 of open

disks that converge to the boundary disk, and the restriction of F to the disks in this sequence would

form a normal family of holomorphic functions on D. This normal family must have a subsequence

which converges to a holomorphic function f : D ⊂ ∂D2 → ∂B. Now f(z) = (f1(z), f2(z)) takes

values in the sphere, so taking the Laplacian of the equation |f1(z)|2 + |f2(z)|2 = 1 reveals that f

is constant, which in turn implies that F is constant on D2, a contradiction. (The details of this

proof – based on ideas from R. Remmert and K. Stein’s [RS60] as presented in [Nar71] – may be

found in [Ran86, Thm I.2.7]). Hence, no such F can exist.

3



Though the forgoing argument was rather specific to the two domains in question, this example

illustrates a crucial principle: namely, that useful information about a complex domain may be

educed from the differential geometry of its boundary. The central role played by domains in

the field of several complex variables therefore provides ample motivation to study boundaries

of domains – or more generally, hypersurfaces – in complex manifolds. In order to understand

the geometry such a hypersurface inherits from its ambient space, we examine some features of a

complex structure.

2.1 Complex Structure of Cm

We denote i :=
√
−1, so that linear coordinates z1, . . . , zm on Cm (m ∈ N) can be expressed

in terms of their real and imaginary parts zj = xj + iyj (1 ≤ j ≤ m). As a smooth manifold,

Cm is diffeomorphic to its underlying real vector space R2m, and the R-valued coordinates xj , yj

determine a smooth, global coordinate chart on Cm ' R2m. In particular, the tangent bundle is

parallelized by coordinate vector fields

TzR2m = spanR

{
∂

∂xj

∣∣∣∣
z

,
∂

∂yj

∣∣∣∣
z

}m
j=1

; z ∈ Cm,

and the complex-algebraic notion of multiplication by i is recovered infinitesimally in this real-

geometric category by a bundle endomorphism

J : TR2m → TR2m

∂

∂xj
7→ ∂

∂yj
,

∂

∂yj
7→ − ∂

∂xj
.

Evidently, J2 = −1 where 1 is the identity map on TR2m, whence the induced action of J on

the complexified tangent bundle

CTR2m := TR2m ⊗ C

splits its fibers into ±i-eigenspaces defining holomorphic and anti-holomorphic bundles H,H ⊂
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CTR2m:

H := spanC

{
∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)}m
j=1

, H := spanC

{
∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)}m
j=1

.

These bundles have some remarkable properties. We have already remarked that they split the

complexified tangent bundle,

CTR2m = H ⊕H.

Moreover, the Lie bracket of two local sections of H is once again a section of H – a fact which we

abbreviate

[H,H] ⊂ H,

and by taking complex conjugates we can similarly say [H,H] ⊂ H.

The tangent bundle of a hypersurface M ⊂ Cm will also admit a restricted action of J , whereby

the complexified tangent bundle CTM will have intersection with the distinguished subbundles

H,H ⊂ CTR2m. It is exactly this tangential structure which motivates the definition of a CR

manifold. However, a submanifold M ⊂ Cm is an extrinsically defined object, so in order to work

intrinsically we must formulate the definition without reference to an ambient space.

2.2 CR Manifolds, the Levi Form, and the Method of Equivalence

Let M be a smooth (C∞) manifold of real dimension 2n + c for n, c ∈ N. For any vector

bundle p : E → M , Ex := p−1(x) denotes the fiber of E over x ∈ M , Γ(E) denotes the sheaf of

smooth (local) sections of E, and CE denotes the complexified vector bundle whose fiber over x is

CEx := Ex⊗RC. References for background material in CR geometry include [Jac90] and [Bog91].

A CR structure of CR dimension n and codimension c is determined by a rank-2n subbundle

D of the tangent bundle TM , and an almost complex structure J on D; i.e., a smooth bundle

endomorphism J : D → D which satisfies J2 = −1D, where 1D denotes the identity map of D.

The induced action of J on CD splits each fiber CDx = Hx ⊕ Hx, where H ⊂ CD denotes the

smooth, C-rank-n subbundle of i-eigenspaces of J , while H is that of −i-eigenspaces. We refer to

H and H as the CR and anti-CR bundles of M , respectively.
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If M1,M2 are two CR manifolds with respective CR structures (D1, J1), (D2, J2) determining

CR bundles H1, H2, then a CR map is a smooth map F : M1 → M2 whose pushforward F∗ :

TM1 → TM2 satisfies F∗(D1) ⊂ D2 and F∗ ◦ J1 = J2 ◦ F∗. Equivalently, a smooth map F is a

CR map if the induced action of F∗ on CTM1 satisfies F∗(H1) ⊂ H2. A CR equivalence is a local

diffeomorphism which is a CR map. We write M1
∼=CR M2 when M1 is CR equivalent to M2,

bearing in mind that this is a strictly local condition in our lexicon; i.e., M1
∼=CR M2 when every

x ∈M1 is contained in an open neighborhood that is CR equivalent to an open subset of M2.

Local sections Γ(H) of the CR bundle are called CR vector fields. A CR structure is integrable

if the Lie bracket of CR vector fields is again a CR vector field, often abbreviated [H,H] ⊂ H (or

by conjugating, [H,H] ⊂ H). We restrict our attention to integrable CR structures. Note that CR

integrability does not imply that D is an integrable subbundle of TM , which would additionally

require [H,H] ⊂ H ⊕ H. When the latter holds, the Newlander-Nirenberg theorem implies that

the almost-complex structure on D locally integrates to a complex structure, so that

M ∼=CR Cn × Rc. (2.1)

In this most trivial instance (2.1), we say that M is Levi-flat, as the obstruction to this triviality

is the familiar Levi form, the sesquilinear bundle map

L : H ×H → CTM/CD,

defined as follows. For Xx, Yx ∈ Hx and X,Y ∈ Γ(H) such that X|x = Xx and Y |x = Yx,

L(Xx, Yx) := i[X,Y ]|x mod CD.

Though this is defined by the Lie bracket of local extensions of Xx, Yx, the quotient projection

CTM → CTM/CD ensures L is tensorial. In particular, when c = 1 so that D has corank-1 in

TM , L takes values in a complex line bundle and may locally be considered a Hermitian form on

H whose signature remains invariant under CR equivalence.

When c = 1, we say that M is of hypersurface-type, and though all of the structures to be

defined in the sequel can be formulated for higher CR codimension, the results we will discuss

apply exclusively to the hypersurface-type case, so we will assume henceforth that c = 1. Because
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CR codimension is defined to generalize the notion of codimension of a real submanifold M ⊂ Cm,

the hypersurface-type case includes the following class of examples.

Example 2.1 Suppose a CR hypersurface M ⊂ Cn+1 is given locally by a level set of a smooth,

real-valued function with nonvanishing gradient. Submitting Cn+1 to a biholomorphic change of

coordinates if necessary, it is no loss of generality to assume that M is the level set

f(z1, . . . , zn, z1, . . . , zn, zn+1 + zn+1) = − i
2 (zn+1 − zn+1) for some f : Cn → R.

The Levi form L of M is represented as the n×n Hermitian matrix of second-order partial deriva-

tives

L =

[
∂2f

∂zi∂zj

]
i,j≤n

.

A biholomorphic transformation of Cn+1 restricts to give a CR equivalence on M . Though the ma-

trix representation of L may change under such a transformation, its signature remains invariant.

In 1910, E.E. Levi showed ([Lev10]) that for a domain in C2 (later generalized to Cn+1 by J.

Krzoska’s [Krz33]) bounded by M as in Example 2.1, the pseudoconvexity property characterizing a

domain of holomorphy is equivalent to the condition that the matrix L is positive-semidefinite, with

the positive-definite case defining strongly pseudoconvex domains. Levi’s result exemplifies the rich

interaction between the fields of CR geometry, several complex variables, and partial differential

equations.

Perhaps even more fundamental than its interplay with analysis, CR geometry has decidedly

algebraic facets as well. Three years before Levi’s proof was published, the seminal work [Poi07]

of H. Poincaré demonstrated that two real hypersurfaces in C2 can have distinct automorphism

groups, thus precluding biholomorphic equivalence and indicating the existence of invariants which

distinguish inequivalent hypersurfaces. Poincaré devoted particular attention to the 3-dimensional

hypersphere and its symmetry group. In arbitrary dimension, the hypersphere is one of an especially

important class of hypersurfaces known as the real hyperquadrics.
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Example 2.2 To specialize Example 2.1, let f : Cn → R be given by

f(z1, . . . , zn, z1, . . . , zn) = hijzizj ; hij = hji ∈ R,

in accordance with the summation convention. By what we have seen in the general case,

L =
[
hij
]
i,j≤n ,

and we say that L has signature (p, q) if the real, symmetric matrix [h] has p strictly positive and

q strictly negative eigenvalues. When L is nondegenerate so that p + q = n, M is called a real

hyperquadric, and may be exhibited as the homogeneous quotient

M = SU(p+ 1, q + 1)/P

of the special unitary group in signature (p+ 1, q + 1) by a parabolic subgroup P .

Late 19th-century mathematics witnessed the generalization of Euclidean geometry in two sep-

arate directions ([Sha97, Preface]). In one direction, F. Klein’s Erlangen program abstracted and

contextualized the familiar Euclidean geometry and novel non-Euclidean geometries by modeling

them globally as homogeneous spaces of appropriate Lie groups of automorphisms. On the other

hand, the advent of smooth manifolds and vector bundles along with the innovation of covariant

differentiation allowed for “curved” Riemannian manifolds to generalize “flat” Euclidean vector

spaces, and gave rise to Ricci’s computationally convenient tensor calculus in local coordinates.

These two perspectives were unified and clarified under E. Cartan’s notion of espaces généralisés,

now called Cartan geometries. After Poincaré indicated that real hypersurfaces in C2 should have

local invariants under biholomorphic transformations, Cartan produced ([Car33]) a complete set of

such invariants by constructing a Cartan geometry over any M ⊂ C2 for which L 6= 0 (L is a scalar

in dimension three, so this only excludes the Levi-flat case).

Specifically, Cartan constructed a principal bundle B →M with structure group P ⊂ SU(2, 1)

as in Example 2.2, along with an absolute parallelism of B. The absolute parallelism is given

by a globally defined one-form ω ∈ Ω1(B, su(2, 1)) taking values in the Lie algebra su(2, 1) of

SU(2, 1). Invariants of M are obtained in the form of an su(2, 1)-valued CR curvature tensor
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by differentiating ω, just as the curvature tensor of an n-dimensional Riemannian manifold is

obtained by differentiating the so(n)-valued Levi-Civita connection. And just as a Riemannian

manifold whose curvature tensor vanishes is locally isometric to a flat Euclidean vector space,

vanishing of M ’s CR curvature tensor implies that M is locally CR-equivalent to the hypersphere

SU(2, 1)/P . In this sense, the hypersphere is the “flat” or homogeneous model of 3-dimensional

CR geometry, and the CR curvature tensor measures the obstruction to the existence of a CR

equivalence M ∼=CR SU(2, 1)/P .

The procedure Cartan used to construct B and ω is his method of equivalence, an algorith-

mic application of his exterior differential calculus that has been used to classify a wide range of

geometric structures up to local equivalence, including conformal, projective, and Finsler mani-

folds as well as generic distributions arising from geometric PDE. Beginning in the early 1960’s,

N. Tanaka developed a sophisticated modification of Cartan’s method that facilitated the uni-

form construction of Cartan geometries and description of their invariants in broad generality

([Tan62, Tan65, Tan67, Tan70, Tan76, Tan79]).

In particular, Tanaka extended Cartan’s result in 1962 by constructing Cartan geometries corre-

sponding to Levi-nondegenerate, hypersurface-type CR manifolds of any CR dimension ([Tan62]).

However, the technical details underlying Tanaka’s work are forbidding, and his result languished

in relative obscurity until S.S. Chern replicated it in 1974 using Cartan’s classical method in joint

work with J. Moser ([CM74]). We summarize the Tanaka-Chern-Moser (TCM) solution to the CR

equivalence problem in the language of Example 2.2 with the following

Theorem 2.3 (TCM classification) Let M be a hypersurface-type CR manifold of CR dimen-

sion n whose Levi form has signature (p, q) with p + q = n. There exists a principal P -bundle

B → M and an absolute parallelism ω ∈ Ω1(B, su(p + 1, q + 1)). Differentiating ω provides a

complete set of local invariants of M which measure the obstruction to M ∼=CR SU(p+ 1, q+ 1)/P .

As stated, Theorem 2.3 is actually weaker than what Tanaka and Chern proved, since it merely

presents the “solution to the equivalence problem” rather than the assignment of a Cartan geometry

to the given CR structure. The distinction between these two statements depends on the parallelism

ω. If ω satisfies a certain equivariance condition with respect to the principal P -action on B, then

it determines a Cartan connection which is the defining ingredient of a Cartan geometry.

In general, equivariance is unnecessary for the purposes of identifying the homogeneous model
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of a geometric structure or producing invariants that distinguish inequivalent manifolds. However,

Cartan connections have many desirable properties. For example, Cartan connections induce linear

connections on vector bundles associated to the principal bundle constructed by the method of

equivalence, giving rise to an invariant “tractor calculus” ([CG14, ČG02, ČG03, ČG08]) analogous

to Ricci’s tensor calculus for appropriate geometries. We will elaborate on the equivariance condition

in §4.3.

2.3 CR Straightening vs 2-Nondegeneracy and the Cubic Form

The TCM classification settles the equivalence problem for CR manifolds whose Levi form is

nondegenerate, but this does not even exhaust all smooth boundaries of pseudoconvex domains,

for example, so there are many more cases to consider. To approach the middle ground between

Levi-nondegeneracy and Levi-flatness, define the Levi kernel,

Kx := {Xx ∈ Hx | L(Xx, Yx) = 0 ∀Yx ∈ Hx; x ∈M},

which we assume has constant rank 0 < k < n so that K is a smooth subbundle of H (and

by conjugating, K ⊂ H). By definition of K, the Levi form of M descends to a well-defined,

nondegenerate Hermitian form on the quotient bundle

L : H/K ×H/K → CTM/CD.

An application of the Newlander-Nirenberg theorem ([Fre74, Thm 1.1]) reveals that K ⊕K ⊂

CTM is the complexification of a J-invariant, integrable subbundle D◦ ⊂ D, so that M is foliated by

complex manifolds of complex dimension k. Thus, a coordinate chart adapted to this Levi foliation

provides a local diffeomorphism F : M → M × Ck, where M is a CR manifold of CR dimension

n− k. It is not true in general that F must be a CR equivalence onto its image, however, and M.

Freeman studied this phenomenon ([Fre77a]) in the years immediately following the publication of

the Chern-Moser paper, leading to the notion of CR straightening (see also, [Chi91]).

Definition 2.4 A CR manifold M with rankCK = k is straightenable if there exists a CR manifold

M such that M ∼=CR M × Ck.

When M is straightenable, the Levi form L of M descends to the Levi form L of M . Since L
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is nondegenerate, the TCM classification of M extends to a classification of M , as the factor Ck

is Levi-flat and so contributes trivially to the CR structure of M . It therefore remains to classify

non-straightenable M , for which purpose we must first ascertain when straightening can fail. To

this end, we consider the transverse structure to the Levi foliation. CR integrability of M dictates

[H,H] ⊂ H,

hence the CR structure of M is integrable when

[H mod K ⊕K, H mod K ⊕K] ⊂ H mod K ⊕K ⇐⇒ [K,H] ⊂ K ⊕H.

Thus, it is necessary that [K,H] ⊂ K ⊕H in order for M to be straightenable.

Let us rephrase this condition in terms of a family of antilinear operators on CTM . For X ∈

Γ(K) and Y ∈ Γ(H), Y denotes the image of Y under the quotient projection H → H/K, and we

define

adX : H/K → H/K

Y 7→ [X,Y ] mod K ⊕H.

As with the Levi form, the quotient projection ensures adX is well-defined and tensorial in both

X and Y , and we write adK for the collection of all adX . Now we can say that M fails to admit

any straightening when the operators adK : H/K → H/K are nontrivial. Clearly, H must have

rank at least two in order for H/K 6= 0, so the lowest dimension in which straightening can fail is

dimRM = 5. The prototypical example of a nonstraightenable CR hypersurface in dimension five

is the tube over the future light cone ([Fre77b],[IZ13],[MS14]).

Example 2.5 Let M ⊂ C3 be given by

(z1 + z1)2 + (z2 + z2)2 = (z3 + z3)2; (z3 + z3) > 0.

The CR bundle of H ⊂ CTM can be explicitly parametrized as

c1
∂

∂z1
+ c2

∂

∂z2
+
c1(z1 + z1) + c2(z2 + z2)

(z3 + z3)

∂

∂z3
,

11



where c1, c2 are C-valued fiber coordinates. The subbundle K ⊂ H is defined by the constraint

c1(z2 + z2) = c2(z1 + z1).

Let X ∈ Γ(K) be given by c1 = (z1 + z1), c2 = (z2 + z2) and Y ∈ Γ(H) by c1 = 1 and c2 ∈ {0, 1}

so that Y ∈ Γ(H/K) as above. Then

[X,Y ] = −Y =⇒ adX(Y ) = −Y ,

which is nontrivial everywhere on M , as Y /∈ K for at least one of c2 = 0, 1.

Thus we see that M does not admit any CR straightening. Furthermore, M may be exhibited

(c.f. [IZ13],[MS14]) as the homogeneous quotient

M = SO◦(3, 2)/Q

of the identity component of the special orthogonal group in signature (3, 2) by a subgroup Q ⊂

SO◦(3, 2).

The method of equivalence was first employed to classify 5-dimensional, non-straightenable CR

manifolds by P. Ebenfelt in 2001 ([Ebe01]), though his proof was valid only for a restricted class of

CR maps ([Ebe06]). In 2013, S. Pocchiola constructed parallelisms over embedded 5-dimensional

hypersurfaces ([Poc13]), and the general 5-dimensional case was treated by A. Isaev and D. Zaitsev

([IZ13]) using techniques adapted from the Chern-Moser paper. A year later, C. Medori and A.

Spiro presented an alternative proof ([MS14]) based on a variation of Tanaka’s construction. It is

notable that the Isaev-Zaitsev solution to the equivalence problem does not satisfy the equivariance

condition to determine a Cartan geometry, while the Medori-Spiro solution does. In any case, the

solution may be summarized with the notation of Example 2.5 as follows.

Theorem 2.6 Let M be a hypersurface-type CR manifold of CR dimension 2 whose Levi form

has constant rank 1. There exists a principal Q-bundle B → M and an absolute parallelism ω ∈

Ω1(B, so(3, 2)). Differentiating ω provides a complete set of local invariants of M which measure

the obstruction to M ∼=CR SO◦(3, 2)/Q.

In dimension five, both of K and H/K have rank 1, so the action adK : H/K → H/K is by
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scalar multiplication which is either zero or nonzero. In higher dimensions, the question of straight-

enability is more nuanced. Fortunately, Freeman’s [Fre77a] provides a definitive characterization of

straightenability in terms of higher-order generalizations of the Levi form. When the Levi kernel K

of M has constant, nonzero rank, we can define what is sometimes called the cubic form ([Web95])

or third order tensor ([Ebe98]):

C : K ×H ×H → CTM/CD.

For Xx ∈ Kx and Yx, Zx ∈ Hx with CR vector fields X ∈ Γ(K) and Y, Z ∈ Γ(H) which locally

extend them, we define

C(Xx, Yx, Zx) := i[[X,Y ], Z]|x mod CD.

Now ker C ⊂ K is defined to be the kernel in the first factor of C’s domain, and Freeman showed

that M is straightenable exactly when this kernel is all of K. At the other extreme, we have

Definition 2.7 M is called 2-nondegenerate when ker C = 0.

In the intermediate case 0 6= ker C ( K, Freeman’s argument may be iterated to define higher-

order analogues of L, C, leading to higher-nondegeneracy conditions (see also, [BER99, Ch.XI])

and more refined notions of straightening. However, when k = rankCK = 1, 2-nondegeneracy is

synonymous with non-straightenability. In order to make contact with our ad hoc condition of

non-straightenability via the adK maps, we first note that integrability of the Levi kernel shows

that C descends to be well-defined ([Fre77a, Thm 4.4]) on the quotient

C : K ×H/K ×H/K → CTM/CD

(X,Y , Z) 7→ C(X,Y, Z).

We therefore adduce CR integrability and the definition of the Levi kernel to write

C(X,Y , Z) = i[[X,Y ], Z]|x mod CD

= L(adX(Y ), Z).

As such, C may be interpreted as the collection of the adK : H/K → H/K operators into a
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single tensor by way of the nondegenerate Hermitian form L on H/K. To further explore this

perspective, we make use of the Jacobi identity to calculate

L(adX(Y ), Z) = i(− [[Y , Z], X]|x︸ ︷︷ ︸
∈H⊕H

−[[Z,X], Y ]|x) mod CD

= −L(Y , adX(Z)),

whence we see that adK determines a family of normal (albeit antilinear) operators on H/K.

Distinguished among the set of normal operators on a Hermitian inner product space is the group

of unitary operators that act bijectively and preserve the inner product. More generally, we could

consider those invertible operators which preserve the inner product up to some nonzero conformal

factor, and it is in this vein that we offer the following definition.

Definition 2.8 The cubic form C of a 2-nondegenerate CR manifold M is said to be of conformal

unitary type if

L(adX(Y ), adX(Z)) = λL(Y , Z), ∀X ∈ K; Y,Z ∈ H,

where λ is a non-vanishing, C-valued function on M .

Note that the cubic form of a 5-dimensional, 2-nondegenerate CR manifold is automatically

of conformal unitary type. Thus, the most direct generalization to higher CR dimension of the

hypotheses in Theorem 2.6 may be summarized as follows.

Statement of the Problem 1 Let M be a 2-nondegenerate, hypersurface-type CR manifold with

dimRM = 7, rankCK = 1,

such that C is of conformal unitary type. Determine a complete set of local invariants of M under

any CR equivalence.

2.4 7-Dimensional Case: Local Coframing Formulation

In this section as in the sequel, we adhere to the summation convention. We have already

observed that L takes values in a complex line bundle when M has CR codimension 1, whence
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L is locally represented as a nondegenerate Hermitian form on H/K. To achieve such a local

representation in a neighborhood of x ∈ M , we choose a nonvanishing one-form θ0 ∈ Ω1(M) ⊂

Ω1(M,C) that annihilates D ⊂ TM , which we denote θ0 ∈ Γ(D⊥). Incorporating this choice into

our notation, we express the resulting Hermitian form

L0 : H ×H → C

(X,Y ) 7→ iθ0([X,Y ]) = −idθ0(X,Y ).

(2.2)

To understand the local formulation of the hypotheses presented in the Statement of the Problem

as articulated in the preceding section, we extend θ0 to a full local coframing around x.

Definition 2.9 A 0-adapted coframing θ in a neighborhood of x ∈ M consists of local one-forms

θ0, θ1, θ2, θ3 ∈ Γ(H
⊥

) ⊂ Ω1(M,C) – and their complex conjugates – so that θ satisfies

θ0 ∈ Γ(D⊥) ⊂ Ω1(M), θ1, θ2 ∈ Γ(K⊥) ⊂ Ω1(M,C),

θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ1 ∧ θ2 ∧ θ3 6= 0.

Here, θj denotes the complex conjugate θj of a C-valued form. CR integrability [H,H] ⊂ H is

equivalent to

dθi ≡ 0 mod {θ0, θ1, θ2, θ3}; 0 ≤ i ≤ 3, (2.3)

while the integrability of D◦ (recall that CD◦ = K ⊕K) additionally gives

dθl ≡ 0 mod {θ0, θ1, θ2, θ1, θ2}; 0 ≤ l ≤ 2. (2.4)

Furthermore, since θ0 is R-valued,

dθ0 ≡ i`jkθ
j ∧ θk mod {θ0}; (1 ≤ j, k ≤ 2), (2.5)

for some `jk ∈ C∞(M), where ` :=
[
`11 `12

`21 `22

]
is real, symmetric, nondegenerate, and provides a

local matrix representation of L0 (as a Hermitian form) as in (2.2). In order to consider the most

general case, we let ε = ±1 and note that by changing the sign of θ0 if necessary, the matrix ` may
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be diagonalized with diagonal entries 1, ε. If we also let δ1 = 0 and δ−1 = 1 so that ε = (−1)δε ,

then we can say in general that the signature of L0 is (2− δε, δε).

We invoke (2.3) and (2.4) to write

dθj ≡ uj
k
θ3 ∧ θk mod {θ0, θ1, θ2}; (1 ≤ j, k ≤ 2),

for some uj
k
∈ C∞(M,C), so that u :=

[
u1

1
u1

2

u2
1
u2

2

]
is a local matrix representation of adX3 , where

X3 ∈ Γ(K) is dual to θ3 in our coframing θ – i.e., θ3(X3) = 1 while θl(X3) = θi(X3) = 0 for

0 ≤ l ≤ 2 and 1 ≤ i ≤ 3. The hypothesis of 2-nondegeneracy merely says that the matrix u is not

zero, but the hypothesis that the cubic form of M is of conformal unitary type implies that u is

conformally unitary with respect to the 2× 2 matrix ` – specifically, u is invertible and

ut`u = λ`, (2.6)

for some λ ∈ C∞(M,C).

Expressing θ as the column vector [θ0, θ1, θ2, θ3]t and fixing index ranges 1 ≤ j, k ≤ 2, we can

summarize our analysis in this section thusly:

dθ =



dθ0

dθ1

dθ2

dθ3


≡



i`jkθ
j ∧ θk

u1
k
θ3 ∧ θk

u2
k
θ3 ∧ θk

0


mod



θ0

θ0, θ1, θ2

θ0, θ1, θ2

θ0, θ1, θ2, θ3


. (2.7)

We conclude this section with a remark about notation. As we have above, we will continue to

denote the conjugate of every C-valued one-form by putting overlines on its indices. By contrast,

we indicate the conjugate of a C-valued function with an overline on the name of the function itself,

without changing the indices. For example, the conjugate of the second identity in (2.7) would be

written

dθ1 ≡ u1
1
θ3 ∧ θ1 + u1

2
θ3 ∧ θ2 mod {θ0, θ1, θ2}.
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3. THE EQUIVALENCE PROBLEM

The construction carried out in this section will serve as a proof of Theorem 1.1. Because of the

technical nature of the calculation, we offer a brief outline of the steps involved.

In §3.1, the filtration on CTM determined by the CR bundle and Levi kernel is encoded in

a principal bundle B0 of complex coframes on M adapted to this filtration – an “order zero”

adaptation. The structure group G0 of B0 is 21-dimensional, and the globally defined tautological

forms on B0 are extended to a full coframing of B0 over any local trivialization B0
∼= G0×M by the

Maurer-Cartan forms of G0. These Lie-algebra-valued “pseudoconnection” forms are only locally

determined up to combinations of the tautological forms which take values in the same Lie algebra.

We gradually eliminate this ambiguity in the pseudoconnection forms when we restrict to sub-

bundles of B0 defined by coframes that are adapted to higher order, as this reduces the dimension

of the structure group and its Lie algebra. Therefore, in §3.2, we perform the first such reductions.

Restricting to the subbundle B1 ⊂ B0 of coframes which are “orthonormal” for the nondegenerate

part of L reduces the structure group to a 17-dimensional subgroup G1 ⊂ G0. Similarly, our hy-

pothesis on the cubic form implies there is a subbundle B2 ⊂ B1 of coframes which are analogously

adapted to C, and the structure group G2 ⊂ G1 has dimension 13.

In §3.3, we exploit the ambiguity in the pseudoconnection forms on B2 in order to simplify the

expressions of the exterior derivatives of the tautological forms. This process is known as absorbing

torsion, and simplifying the equations facilitates the final two reductions in §3.4. The subbundles

B4 ⊂ B3 ⊂ B2 constructed therein have structure groups G4 ⊂ G3 ⊂ G2 reduced from dimension

13 to dimG3 = 9, and ultimately to dimG4 = 7. At this point, no further reduction is possible

without destroying the tautological forms, but the pseudoconnection forms on B4 are still not

uniquely defined.

To finish the calculation, in §3.5 we prolong to the bundle B
(1)
4 over B4 that parameterizes the

remaining ambiguity of the pseudoconnection forms on B4 in the same way that B4 parameterizes

the ambiguity in our adapted coframes of M . In this sense we begin the method of equivalence anew,

but the structure group of B
(1)
4 as a bundle over B4 is only 1-dimensional. After finding expressions

for the derivatives of the tautological forms on B
(1)
4 , the ambiguity in the pseudoconnection form

on B
(1)
4 is completely eliminated by absorbing torsion in these expressions.

17



3.1 Initial G-Structure

Let V = R⊕ C3, presented as column vectors

V =

{[
r
z1
z2
z3

]
: r ∈ R; z1, z2, z3 ∈ C

}
.

For x ∈M , a coframe vx : TxM
'−→ V is a linear isomorphism that will be called 0-adapted if

• vx(Dx) =

{[
0
z1
z2
z3

]
: z1, z2, z3 ∈ C

}
,

• vx|Dx ◦ J = ivx|Dx ,

• vx(D◦x) =

{[
0
0
0
z3

]
: z3 ∈ C

}
.

Let π : B0 →M denote the bundle of all 0-adapted coframes, where π(vx) = x. A local section

s : M → B0 in a neighborhood of x with s(x) = vx is a 0-adapted coframing θ, written as a column

vector like in §2.4, so that θ|x = vx. The tautological one-form η ∈ Ω1(B0, V ) is intrinsically

(therefore globally) defined by

η|vx(X) := vx(π∗(X|vx)), ∀X ∈ Γ(TB0). (3.1)

It follows directly from the definition of η that if θ is a 0-adapted coframing given by a local section

s of B0, then the tautological form satisfies the so-called reproducing property : θ = s∗η. Naturally,

the reproducing property extends to

dθ = s∗dη. (3.2)

We will find a local expression for η by locally trivializing B0 in a neighborhood of any x ∈M .

To this end, first note that if vx, ṽx ∈ B0 are two coframes in the fiber over x, then by the definition

of 0-adaptation, it must be that
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ṽx =



t 0 0 0

c1 a1
1 a1

2 0

c2 a2
1 a2

2 0

c3 b1 b2 b3


vx; where



t ∈ R \ {0},

cj , bk ∈ C (b3 6= 0); 1 ≤ j, k ≤ 3,

[
a1

1 a
1
2

a2
1 a

2
2

]
∈ GL2C.

(3.3)

Call the subgroup of GL(V ) given by all such matrices G0, and its Lie algebra g0. G0 acts transi-

tively on the fibers of B0, so fixing a 0-adapted coframing θ1 in a neighborhood of x determines a

local trivialization B0
∼= G0 ×M , as every other θ may be written



θ0

θ1

θ2

θ3


=



t 0 0 0

c1 a1
1 a1

2 0

c2 a2
1 a2

2 0

c3 b1 b2 b3





θ0
1

θ1
1

θ2
1

θ3
1


(3.4)

for some G0-valued matrix of smooth functions defined on our neighborhood of x. In this trivial-

ization, the fixed coframing θ1 corresponds to the identity matrix 1 ∈ G0, and by restricting to θ|x,

θ1|x on each side of (3.4), we see that the G0-valued matrix entries parametrize all vx ∈ B0 in the

fiber over x, hence furnish local fiber coordinates for B0.

By the reproducing property, the tautological V -valued one-form η on B0 may now be expressed

locally as



η0

η1

η2

η3


=



t 0 0 0

c1 a1
1 a1

2 0

c2 a2
1 a2

2 0

c3 b1 b2 b3





π∗θ0
1

π∗θ1
1

π∗θ2
1

π∗θ3
1


, (3.5)

or more succinctly,

η = g−1π∗θ1. (3.6)

The matrix in (3.5) is considered to be the inverse g−1 ∈ C∞(B0, G0) in (3.6) so that left-

multiplication on coframes defines a right-principal G0 action on B0. Differentiating (3.6) yields
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the structure equation

dη = −g−1dg ∧ η + g−1π∗dθ1. (3.7)

The pseudoconnection form g−1dg takes values in the Lie algebra g0. We see from the parametriza-

tion (3.3) of G0 that g0 may be presented as matrices of the form



τ 0 0 0

γ1 α1
1 α1

2 0

γ2 α2
1 α2

2 0

γ3 β1 β2 β3


,

where all of the entries are independent, τ ∈ R, and the rest of the entries take arbitrary com-

plex values. For later convenience, we prefer instead to use the following, less obvious choice of

parametrization for g0:



2τ 0 0 0

γ1 α1
1 α1

2 0

γ2 α2
1 α2

2 0

γ3 iγ2 − β1 iγ1 − β2 β3


.

By taking the entries of this matrix to be forms in Ω1(B0,C) which complete η to a local coframing

of B0, the structure equation (3.7) can be written

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 α1
1 α1

2 0

γ2 α2
1 α2

2 0

γ3 iγ2 − β1 iγ1 − β2 β3


∧



η0

η1

η2

η3


+



Ξ0

Ξ1

Ξ2

Ξ3


, (3.8)

where the semibasic two-form Ξ := g−1π∗dθ1 ∈ Ω2(B0, V ) is apparent torsion. Note that the left-

hand side of (3.7) is a globally defined two-form, while the terms on the right-hand side each depend

on our local trivialization of B0. In particular, the pseudoconnection forms in the matrix g−1dg are

determined only up to g0-compatible combinations of the semibasic one-forms {ηj , ηj}3j=0, which

will in turn affect the presentation of the apparent torsion forms. We will use this ambiguity to
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simplify our local expression for Ξ, but first we must find what it is.

Fix index ranges 1 ≤ j, k ≤ 2. The differential reproducing property (3.2) and the identities

(2.7) imply

Ξ0 = iLjkη
j ∧ ηk + ξ0

0 ∧ η0,

Ξj = U j
k
η3 ∧ ηk + ξj0 ∧ η0 + ξj1 ∧ η1 + ξj2 ∧ η2,

Ξ3 = ξ3
0 ∧ η0 + ξ3

1 ∧ η1 + ξ3
2 ∧ η2 + ξ3

3 ∧ η3,

for some unknown, semibasic one-forms ξ ∈ Ω1(B0,C) (with ξ0
0 R-valued) and functions Ljk ∈

C∞(B0), U j
k
∈ C∞(B0,C) whose value along the coframing θ described in §2.4 would be

Ljk(θ|x) = `jk(x) and U j
k
(θ|x) = uj

k
(x). (3.9)

We will “absorb” as much of Ξ into our pseudoconnection forms as possible. It is a standard

notational abuse to recycle the name of a pseudoconnection form after altering it to absorb apparent

torsion. We will try to minimize confusion by denoting modified forms with hats, and then dropping

the hats from the notation as each phase of the absorption process terminates. For example, the

top line of (3.8) reads

dη0 = −2τ ∧ η0 + iLjkη
j ∧ ηk + ξ0

0 ∧ η0

= −(2τ − ξ0
0) ∧ η0 + iLjkη

j ∧ ηk,

so if we let 2τ̂ = 2τ − ξ0
0 , we have simplified the expression to

dη0 = −2τ̂ ∧ η0 + iLjkη
j ∧ ηk.

Observe that 2τ̂ must remain R-valued for this absorption to be g0-compatible, which is exactly

the case as ξ0
0 is R-valued. To absorb the rest of the ξ’s, set

α̂jk = αjk − ξ
j
k, γ̂j = γj − ξj0, γ̂3 = γ3 − ξ3

0 ,

β̂1 = β1 − iξ2
0 + ξ3

1 , β̂2 = β2 − iξ1
0 + ξ3

2 , β̂3 = β3 − ξ3
3 .
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Now the structure equations (3.8) may be written

d



η0

η1

η2

η3


= −



2τ̂ 0 0 0

γ̂1 α̂1
1 α̂1

2 0

γ̂2 α̂2
1 α̂2

2 0

γ̂3 iγ̂2 − β̂1 iγ̂1 − β̂2 β̂3


∧



η0

η1

η2

η3


+



iLjkη
j ∧ ηk

U1
k
η3 ∧ ηk

U2
k
η3 ∧ ηk

0


. (3.10)

3.2 First Two Reductions

We are done absorbing torsion for the moment, so we will drop the hats off of the pseudoconnec-

tion forms in (3.10). The remaining torsion terms are not absorbable, but we can normalize them by

first ascertaining how the functions L,U in (3.10) vary along the fiber over fixed points of M , then

choosing agreeable values from among those that L,U achieve in each fiber, and finally restricting

to a subbundle of B0 determined by the subgroup of G0 which stabilizes the chosen torsion tensor

over each fiber. To proceed, first differentiate the equation for dη0 and reduce modulo η0, η3, η3.

0 = d(dη0)

≡ i(dL11 + L11(2τ − α1
1 − α1

1
)− L12α

2
1
− L21α

2
1) ∧ η1 ∧ η1

+ i(dL12 + L12(2τ − α1
1 − α2

2
)− L11α

1
2
− L22α

2
1) ∧ η1 ∧ η2

+ i(dL21 + L21(2τ − α2
2 − α1

1
)− L11α

1
2 − L22α

2
1
) ∧ η2 ∧ η1

+ i(dL22 + L22(2τ − α2
2 − α2

2
)− L12α

1
2 − L21α

1
2
) ∧ η2 ∧ η2 mod {η0, η3, η3}.

If we momentarily agree that j 6= k, we can summarize these conditions

dLjj ≡ −Ljj(2τ − α
j
j − α

j

j
) + Ljkα

k
j

+ Lkjα
k
j

dLjk ≡ −Ljk(2τ − αjj − αkk) + Ljjα
j

k
+ Lkkα

k
j

 mod {η0, η1, η2, η3, η1, η2, η3}. (3.11)

We will restrict to the subbundle B1 ⊂ B0 given by the level sets L11 = 1, L22 = ε (as in §2.4)

and L12 = L21 = 0, which is simply the bundle of 0-adapted coframes in which θ1, θ2 are dual to

CR vector fields that are orthonormal for the Levi form. Such coframings must exist, as one can

apply Gram-Schmidt orthonormalization to nonvanishing CR vector fields which are not in the Levi

kernel. In the notation of §2.4, B1 is determined by local 0-adapted coframings θ which additionally
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satisfy

d



θ0

θ1

θ2

θ3


=



iθ1 ∧ θ1 + εiθ2 ∧ θ2

u1
1
θ3 ∧ θ1 + u1

2
θ3 ∧ θ2

u2
1
θ3 ∧ θ1 + u2

2
θ3 ∧ θ2

0


mod



θ0

θ0, θ1, θ2

θ0, θ1, θ2

θ0, θ1, θ2, θ3


. (3.12)

We call such coframings 1-adapted, and fix a new θ1 among them to locally trivialize B1.

Computing directly with the coordinates of G0 as in (3.4), one finds that any such θ with its Levi

form so normalized differs from θ1 by an element in G0 with

t = |a1
1|2 + ε|a2

1|2 = ε|a1
2|2 + |a2

2|2 and a1
1a

1
2 + εa2

1a
2
2 = 0, (3.13)

(which together imply |a1
1|2 = |a2

2|2). This subgroup G1 ⊂ G0 is therefore the stabilizer of our choice

of torsion normalization, and the structure group of the subbundle B1 ⊂ B0. When restricted to

B1, we see by (3.11) that the pseudoconnection forms satisfy

2τ ≡ α1
1 + α1

1
≡ α2

2 + α2
2
, α1

2 + εα2
1
≡ 0 mod {η0, η1, η2, η3, η1, η2, η3}. (3.14)

Let ι1 : B1 ↪→ B0 be the inclusion map. When we pull back our coframing of B0 along ι1 to get

a coframing of B1, we introduce new names for some one-forms, but we also recycle many of the

current names. For those being recycled, we view the following definition as recursive. Those being

recycled are



η

τ

γj

βk


:= ι∗1



η

τ

γj

βk


; (1 ≤ j, k ≤ 3),
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while we also introduce 

%

ς

α1

ξ1
1

ζ2
1

ξ2
2


:= ι∗1



− i
2 (α1

1 − α1
1
)

− i
2 (α2

2 − α2
2
)

α1
2

τ − 1
2 (α1

1 + α1
1
)

−(α2
1 + εα1

2
)

τ − 1
2 (α2

2 + α2
2
)


. (3.15)

Note that ξ1
1 and ξ2

2 are R-valued, and by (3.14), we know

ξ1
1 , ζ

2
1 , ξ

2
2 ≡ 0 mod {η0, η1, η2, η3, η1, η2, η3}. (3.16)

If we keep the names U j
k

:= ι∗1U
j

k
, then pulling back (3.10) to B1 yields new structure equations

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i% α1 0

γ2 −εα1 τ + iς 0

γ3 iγ2 − β1 iγ1 − β2 β3


∧



η0

η1

η2

η3


+



iη1 ∧ η1 + εiη2 ∧ η2

U1
k
η3 ∧ ηk + ξ1

1 ∧ η1

U2
k
η3 ∧ ηk + ζ2

1 ∧ η1 + ξ2
2 ∧ η2

0


.

(3.17)

We turn our attention to normalizing the U j
k
. Differentiating dη0 and reducing modulo η0, η1, η2

will reveal that these functions are not independent on B1.

0 = d(dη0) ≡ i(U1
2
− εU2

1
)η3 ∧ η2 ∧ η1 mod {η0, η1, η2},

so U1
2

= εU2
1

, and we can declutter some notation by naming

U := U2
1

= εU1
2
, U1 := U1

1
, U2 := U2

2
.

To see how these functions vary in a fiber over a fixed point of M , we differentiate dη1 and dη2 and

reduce modulo η0, η1, η2.

0 = d(dη1)
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≡ (dU1 − U1(β3 − 2i%) + 2Uα1 + εUζ2
1
) ∧ η3 ∧ η1

+ (εdU − εU(β3 − i%− iς)− U1α1 + U2α1 + εU(ξ2
2 − ξ1

1)) ∧ η3 ∧ η2 mod {η0, η1, η2},

and similarly

0 = d(dη2)

≡ (dU − U(β3 − i%− iς)− εU1α1 + εU2α1 + U(ξ1
1 − ξ2

2)− U1ζ2
1 + U2ζ2

1
) ∧ η3 ∧ η1

+ (dU2 − U2(β3 − 2iς)− 2Uα1 − εUζ2
1 ) ∧ η3 ∧ η2 mod {η0, η1, η2}.

With (3.16) in mind, we summarize

dU1 ≡ U1(β3 − 2i%)− 2Uα1

dU ≡ U(β3 − i%− iς) + εU1α1 − εU2α1

dU2 ≡ U2(β3 − 2iς) + 2Uα1

 mod {η0, η1, η2, η3, η1, η2, η3}. (3.18)

Recall that the hypothesis of 2-nondegeneracy provides that for every local 1-adapted coframing

θ, one of U,U1, U2 is nonvanishing at θ|x. We will show that this fact along with the differential

equations (3.18) implies there is a coframe in the fiber over x where U = 1 and U2 = 0 as follows.

Suppose that U(θ1|x) = 0. Let X,Y ∈ Γ(TB1) be the (vertical) vector fields dual to Re(α1)

and Im(α1), respectively, with respect to the coframing of B1 furnished by the real and imaginary

parts of the tautological forms and the pseudoconnection forms. The fiber (B1)x is foliated by flow

curves of X and Y . For t ∈ R, take cX(t) and cY (t) to be the flow curves in the fiber which go

through θ1|x ∈ (B1)x at time t = 0. By (3.18), we calculate

d

dt

∣∣∣∣
t=0

U(cX(t)) = dU

(
d

dt

∣∣∣∣
t=0

cX(t)

)
= (U(β3 − i%− iς) + εU1α1 − εU2α1)

(
X|cX(0)

)
= ε(U1 − U2)(θ1|x),
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and similarly,

d

dt

∣∣∣∣
t=0

U(cY (t)) = −εi(U1 + U2)(θ1|x).

Since we have assumed U(θ1|x) = 0, one of these derivatives must be nonzero, and in particular

U is not identically zero in the fiber over x. Thus, there is some θ̃|x ∈ (B1)x and a neighborhood

around it where U 6= 0. In this neighborhood, we can define X̃ = 1
2UX and Ỹ = − 1

2U Y , and their

corresponding flow curves c̃X(t) and c̃Y (t) which go through θ̃|x when t = 0. For j = 1, 2, we use

(3.18) again to calculate ∀t ∈ R,

d

dt
U j(c̃X(t)) = (−1)j ,

d

dt
U j(c̃Y (t)) = i,

whence U j(c̃X(t)) = (−1)jt + U j(θ̃|x) and U j(c̃Y (t)) = it + U j(θ̃|x). As such, we can move along

flow curves to a coframe where one of U j vanishes, and by our full-rank assumption on the maps

adK , we still have U 6= 0. From this coframe, we move along flow curves of vertical vector fields

dual to Re(β3) and Im(β3) in order to rescale U = 1. Let us restrict to the level set

U = 1, U2 = 0,

which defines a subbundle ι2 : B2 ↪→ B1 of 2-adapted coframes.

Note that we have not yet invoked the hypothesis that the cubic form is of conformal unitary

type. Without this condition, ι∗2U
1 would be an invariant on B2. However, by imposing this

condition, it follows from (2.6) and (3.9) that we restrict to the case

U1 = 0.

As such, sections of B2 are local 1-adapted coframings θ as in (3.12), but which additionally satisfy

d



θ0

θ1

θ2

θ3


=



iθ1 ∧ θ1 + εiθ2 ∧ θ2

εθ3 ∧ θ2

θ3 ∧ θ1

0


mod



θ0

θ0, θ1, θ2

θ0, θ1, θ2

θ0, θ1, θ2, θ3


. (3.19)
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Among such 2-adapted coframings we fix a new θ1 in order to locally trivialize B2. We saw that

B1 was locally trivialized B1
∼= G1 ×M by (3.4), where the subgroup G1 ⊂ G0 was defined by

the added conditions (3.13). Now one calculates that a matrix in G1 applied to the new θ1 will

preserve our latest normalization if and only if we additionally have

a1
1 = b3a

2
2
, a1

2 = εb3a
2
1
, a2

2 = b3a
1
1
, εa2

1 = b3a
1
2
.

Since the diagonal terms in the matrices are nonvanishing, these relations imply a1
2 = a2

1 = 0, while

b3 ∈ C is unimodular. Let G2 ⊂ G1 denote this reduced group of matrices, which is the structure

group of B2. If we let e denote the natural exponential, then we may parametrize G2 by



t2 0 0 0

c1 teir 0 0

c2 0 teis 0

c3 b1 b2 ei(r+s)


; r, s, 0 6= t ∈ R; cj , bk ∈ C. (3.20)

By (3.18), we see that when restricted to B2, we have

β3 ≡ i%+ iς, α1 ≡ 0 mod {η0, η1, η2, η3, η1, η2, η3}. (3.21)

Pulling back our coframing along the inclusion ι2, we rename accordingly. First, some familiar

names



η

τ

%

ς

γ

β1

β2



:= ι∗2



η

τ

%

ς

γ

β1

β2



.
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The only new forms we must define are semibasic by (3.21), viz,

 ξ1
2

ξ3
3

 := ι∗2

 −α1

−β3 + i%+ iς

 .
We will also preserve the names of the unknown apparent torsion forms on B1, except to combine

terms where appropriate:


ξ1
1

ξ2
2

ξ2
1

 := ι∗2


ξ1
1

ξ2
2

ζ2
1 + εα1

 .

Pulling back (3.17) along ι2 yields new structure equations on B2:

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i% 0 0

γ2 0 τ + iς 0

γ3 iγ2 − β1 iγ1 − β2 i%+ iς


∧



η0

η1

η2

η3


+



iη1 ∧ η1 + εiη2 ∧ η2

εη3 ∧ η2 + ξ11 ∧ η1 + ξ12 ∧ η2

η3 ∧ η1 + ξ21 ∧ η1 + ξ22 ∧ η2

ξ33 ∧ η3


,

(3.22)

where ξ1
1 , ξ

2
2 are still R-valued, and by (3.16),(3.21), we can say

ξ1
1 , ξ

1
2 , ξ

2
1 , ξ

2
2 , ξ

3
3 ≡ 0 mod {η0, η1, η2, η3, η1, η2, η3}. (3.23)

3.3 Absorption

This section is devoted to absorbing as much as we can of the apparent torsion from the ξ’s in

(3.22). It is easy to see that we can absorb any η0 components of these forms into the γ’s (using

the β’s to correct the equation for dη3 if necessary). As such, we suppress these components when

we adduce (3.23) to expand ξij = f ijkη
k + ti

jk
ηk:
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ξ1
1 = f1

11η
1 + f1

12η
2 + f1

13η
3 + f

1

11η
1 + f

1

12η
2 + f

1

13η
3,

ξ2
2 = f2

21η
1 + f2

22η
2 + f2

23η
3 + f

2

21η
1 + f

2

22η
2 + f

2

23η
3,

ξ1
2 = f1

21η
1 + f1

22η
2 + f1

23η
3 + t1

21
η1 + t1

22
η2 + t1

23
η3,

ξ2
1 = f2

11η
1 + f2

12η
2 + f2

13η
3 + t2

11
η1 + t2

12
η2 + t2

13
η3,

ξ3
3 = f3

31η
1 + f3

32η
2 + f3

33η
3 + t3

31
η1 + t3

32
η2 + t3

33
η3,

for some functions f, t ∈ C∞(B2,C). Because ξ1
1 and ξ2

2 are R-valued, tj
jk

= f
j

jk for j = 1, 2.

Though these coefficients are unknown, we discover relationships between them by differentiating

the structure equations. First differentiate idη0 and reduce modulo η0.

0 = d(idη0)

≡ −2ξ1
1 ∧ η1 ∧ η1 − (ξ1

2 + εξ2
1
) ∧ η2 ∧ η1 − (εξ2

1 + ξ1
2
) ∧ η1 ∧ η2 − 2εξ2

2 ∧ η2 ∧ η2

≡ (2f1
12 − f1

21 − εt
2
11)η2 ∧ η1 ∧ η1 + (2f

1

12 − f
1

21 − εt211
)η2 ∧ η1 ∧ η1 + 2f1

13η
3 ∧ η1 ∧ η1

+ (2εf2
21 − εf2

12 − t
1
22)η1 ∧ η2 ∧ η2 + (2εf

2

21 − εf
2

12 − t122
)η1 ∧ η2 ∧ η2 + 2εf2

23η
3 ∧ η2 ∧ η2

+ (f1
23 + εt

2
13)η3 ∧ η2 ∧ η1 + (f

1

23 + εt2
13

)η3 ∧ η1 ∧ η2 + 2f
1

13η
3 ∧ η1 ∧ η1

+ (εf2
13 + t

1
23)η3 ∧ η1 ∧ η2 + (εf

2

13 + t1
23

)η3 ∧ η2 ∧ η1 + 2εf
2

23η
3 ∧ η2 ∧ η2

mod {η0}.

Coefficients of independent three-forms vanish independently, so this has revealed six distinct van-

ishing conditions and their complex conjugates. For example, we now know that f1
13 = f2

23 = 0.

We will see that these six equations allow us to simplify our apparent torsion tensor via absorption,

but first we find five more equations by differentiating dη1 and dη2 and reducing modulo η0, η1, η2.

0 = d(dη1)

≡ ε(ξ3
3 + ξ2

2 − ξ1
1) ∧ η3 ∧ η2 + (εξ2

1
− ξ1

2) ∧ η3 ∧ η1

≡ (εf
2

21 − εf
2

12 − εf
1

11 + εt3
31

+ t1
22

)η1 ∧ η3 ∧ η2 + εt3
33
η3 ∧ η3 ∧ η2 + (εf

2

13 − t123
)η3 ∧ η3 ∧ η1

mod {η0, η1, η2},
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and similarly,

0 = d(dη2)

≡ (ξ3
3 + ξ1

1 − ξ2
2) ∧ η3 ∧ η1 + (ξ1

2
− εξ2

1) ∧ η3 ∧ η2

≡ (f
1

12 − f
2

22 − f
1

21 + t3
32

+ εt2
11

)η2 ∧ η3 ∧ η1 + t3
33
η3 ∧ η3 ∧ η1 + (f

1

23 − εt213
)η3 ∧ η3 ∧ η2

mod {η0, η1, η2}.

In addition to concluding that

f1
13 = f2

23 = t3
33

= 0,

we have eight vanishing conditions. The first four

0 = f1
23 + εt

2
13,

0 = f
1

23 − εt213
,

0 = εf2
13 + t

1
23,

0 = εf
2

13 − t123
,

imply

f1
23 = f2

13 = t
1
23 = t

2
13 = 0,

while the latter four

0 = 2εf2
21 − εf2

12 − t
1
22,

0 = 2f1
12 − f1

21 − εt
2
11,

0 = εf
2

21 − εf
2

12 − εf
1

11 + εt3
31

+ t1
22
,

0 = f
1

12 − f
2

22 − f
1

21 + t3
32

+ εt2
11
,

(3.24)
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will be useful for absorbing the remaining terms. The structure equations (3.22) may now be

expanded to read

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i% 0 0

γ2 0 τ + iς 0

γ3 iγ2 − β1 iγ1 − β2 i%+ iς


∧



η0

η1

η2

η3



+



iη1 ∧ η1 + εiη2 ∧ η2

εη3 ∧ η2 + (f1
12η

2 + f
1

11η
1 + f

1

12η
2) ∧ η1 + (f1

21η
1 + t1

21
η1 + t1

22
η2) ∧ η2

η3 ∧ η1 + (f2
12η

2 + t2
11
η1 + t2

12
η2) ∧ η1 + (f2

21η
1 + f

2

21η
1 + f

2

22η
2) ∧ η2

(f3
31η

1 + f3
32η

2 + t3
31
η1 + t3

32
η2) ∧ η3


.

(3.25)

We will simplify notation by focusing only on those two-forms which are involved in each step

of the absorption. For example, in the structure equation for dη3, we have

dη3 = β1 ∧ η1 + β2 ∧ η2 + f3
31η

1 ∧ η3 + f3
32η

2 ∧ η3 + . . .

= (β1 − f3
31η

3) ∧ η1 + (β2 − f3
32η

3) ∧ η2 + . . .

so we let β̂1 = β1−f3
31η

3 and β̂2 = β2−f3
32η

3 to absorb these terms. Now that they are gone, we drop

the hats off of β1, β2, as we will need to modify them again when considering other terms. Many of

the remaining absorbable terms will be absorbed into the diagonal pseudoconnection forms i% and

iς. Note that we can only alter them by purely imaginary, semibasic one-forms. Before proceeding,

we state that the result of our absorption will be that the apparent torsion tensor in (3.25) will be

changed to



iη1 ∧ η1 + εiη2 ∧ η2

εη3 ∧ η2 + ε(t1
22
η1 + t2

11
η2) ∧ η1 + (t1

21
η1 + t1

22
η2) ∧ η2

η3 ∧ η1 + (t2
11
η1 + t2

12
η2) ∧ η1 + ε(t1

22
η1 + t2

11
η2) ∧ η2

0


. (3.26)

We will arrive at (3.26) in two steps – one for each of the apparent torsion coefficients t3
31

and

31



t3
32

that currently remain in the equation for dη3 in (3.25). First consider

dη3 = β1 ∧ η1 − (i%+ iς) ∧ η3 + t3
31
η1 ∧ η3 + . . .

= (β1 − t
3
31η

3) ∧ η1 − (i%+ iς − t3
31
η1 + t

3
31η

1) ∧ η3 + . . .

Let β̂1 := β1 − t
3
31η

3. Note that if we choose any imaginary form ζ ∈ Ω1(B2, iR), and define

i%̂ := i%− 1
2 (t3

31
η1 − t331η

1) + ζ, iς̂ := iς − 1
2 (t3

31
η1 − t331η

1)− ζ, (3.27)

then we have successfully absorbed the t3
31

term in the expression for dη3. We will choose ζ so that

we also absorb terms in the expressions for dη1,dη2. Let

ζ : = − 1
2

(
f

1

11 − f
2

12 + f
2

21 − εt122

)
η1 + 1

2

(
f1

11 − f2
12 + f2

21 − εt
1
22

)
η1.

By the third equation in (3.24),

t3
31
η1 − t331η

1 =
(
−f2

21 + f
2

12 + f
1

11 − εt122

)
η1 −

(
−f2

21 + f2
12 + f1

11 − εt
1
22

)
η1,

so in (3.27) we have

i%̂ = i%− f1

11η
1 + εt1

22
η1 + f1

11η
1 − εt122η

1, (3.28)

iς̂ = iς + f
2

21η
1 − f2

12η
1 − f2

21η
1 + f2

12η
1. (3.29)

Now (3.28) shows

dη1 = −i% ∧ η1 + f
1

11η
1 ∧ η1 + . . .

= −(i%− f1

11η
1 + εt1

22
η1 + f1

11η
1 − εt122η

1) ∧ η1 + εt1
22
η1 ∧ η1 + . . .

= −i%̂ ∧ η1 + εt1
22
η1 ∧ η1 + . . .

On the other hand, by the first equation in (3.24) we can write (3.29) as

iς̂ = iς − f2

21η
1 + (2f

2

21 − f
2

12)η1 − f2
21η

1 + f2
12η

1
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= iς − f2

21η
1 + εt1

22
η1 − f2

21η
1 + f2

12η
1,

which shows

dη2 = −iς ∧ η2 + f2
12η

2 ∧ η1 + f2
21η

1 ∧ η2 + f
2

21η
1 ∧ η2 + . . .

= −(iς − f2

21η
1 + εt1

22
η1 − f2

21η
1 + f2

12η
1) ∧ η2 + εt1

22
η1 ∧ η2 + . . .

= −iς̂ ∧ η2 + εt1
22
η1 ∧ η2 + . . .

This concludes the first step of the absorption, by which we modified (3.25) to yield

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i%̂ 0 0

γ2 0 τ + iς̂ 0

γ3 iγ2 − β̂1 iγ1 − β2 i%̂+ iς̂


∧



η0

η1

η2

η3



+



iη1 ∧ η1 + εiη2 ∧ η2

εη3 ∧ η2 + (f1
12η

2 + εt1
22
η1 + f

1

12η
2) ∧ η1 + (f1

21η
1 + t1

21
η1 + t1

22
η2) ∧ η2

η3 ∧ η1 + (t2
11
η1 + t2

12
η2) ∧ η1 + (εt1

22
η1 + f

2

22η
2) ∧ η2

t3
32
η2 ∧ η3


.

We begin round two by dropping the hats off the pseudoconnection forms. Round two will

proceed analogously to round one, only this time we will use the two remaining vanishing conditions;

i.e., the second and the last equations of (3.24). We have

dη3 = β2 ∧ η2 − (i%+ iς) ∧ η3 + t3
32
η2 ∧ η3 + . . .

= (β2 − t
3
32η

3) ∧ η2 − (i%+ iς − t3
32
η2 + t

3
32η

2) ∧ η3 + . . .

so let β̂2 = β2 − t
3
32η

3. We’ll look for a new semibasic ζ ∈ Ω1(B2, iR) to write

i%̂ := i%− 1
2 (t3

32
η2 − t332η

2) + ζ, iς̂ := iς − 1
2 (t3

32
η2 − t332η

2)− ζ, (3.30)
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and use the fact that the final equation in (3.24) implies

t3
32
η2 − t332η

2 =
(
−f1

12 + f
2

22 + f
1

21 − εt211

)
η2 −

(
−f1

12 + f2
22 + f1

21 − εt
2
11

)
η2.

This time, define

ζ := 1
2

(
f

1

12 + f
2

22 − f
1

21 − εt211

)
η2 − 1

2

(
f1

12 + f2
22 − f1

21 − εt
2
11

)
η2,

so that (3.30) reads

iς̂ = iς − f2

22η
2 + εt2

11
η2 + f2

22η
2 − εt211η

2,

i%̂ = i%+ f
1

12η
2 − f1

21η
2 − f1

12η
2 + f1

21η
2

= i%− f1

12η
2 + εt2

11
η2 − f1

12η
2 + f1

21η
2,

where the last equality follows from the second equation in (3.24). As promised, we now have

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i%̂ 0 0

γ2 0 τ + iς̂ 0

γ3 iγ2 − β1 iγ1 − β̂2 i%̂+ iς̂


∧



η0

η1

η2

η3



+



iη1 ∧ η1 + εiη2 ∧ η2

εη3 ∧ η2 + ε(t1
22
η1 + t2

11
η2) ∧ η1 + (t1

21
η1 + t1

22
η2) ∧ η2

η3 ∧ η1 + (t2
11
η1 + t2

12
η2) ∧ η1 + ε(t1

22
η1 + t2

11
η2) ∧ η2

0


.

(3.31)

3.4 Last Two Reductions

After removing the hats from our pseudoconnection forms, we normalize some of the remaining

torsion coefficients and reduce the structure group as before. To see how these functions vary in
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the fiber, we first differentiate dη1 and reduce modulo η0, η1, η3.

0 = d(dη1)

≡ (dt1
21
− t1

21
(τ − 2i%+ iς)) ∧ η1 ∧ η2 + (dt1

22
− t1

22
(τ − i%)− εβ2) ∧ η2 ∧ η2 mod {η0, η1, η3}.

Now differentiate dη2 and reduce modulo η0, η2, η3.

0 = d(dη2)

≡ (dt2
11
− t2

11
(τ − iς)− β1) ∧ η1 ∧ η1 + (dt2

12
− t2

12
(τ + i%− 2iς)) ∧ η2 ∧ η1 mod {η0, η2, η3}.

The two identities

dt1
22
≡ t1

22
(τ − i%) + εβ2

dt2
11
≡ t2

11
(τ − iς) + β1

 mod {η0, η1, η2, η3, η1, η2} (3.32)

imply that there is a subbundle B3 ⊂ B2 of 3-adapted coframes on which

t1
22

= t2
11

= 0.

Observe how (3.32) shows that when restricted to B3, we have

β1, β2 ≡ 0 mod {η0, η1, η2, η3, η1, η2}. (3.33)

We fix a 3-adapted coframing θ1 in order to locally trivialize B3. An explicit parametrization of

the structure group G3 ⊂ G2 of B3 is found by taking g−1 ∈ C∞(B2, G2) to be the matrix in (3.20)

and solving in coordinates the differential equations β1 = 0 and β2 = 0 from the identity

g−1dg =



2τ 0 0 0

γ1 τ + i% 0 0

γ2 0 τ + iς 0

γ3 iγ2 − β1 iγ1 − β2 i%+ iς


.
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The result of this calculation is thatG3 is comprised of those matrices inG2 which satisfy b1 = i
te

irc2

and b2 = i
te

isc1 so that we locally have B3
∼= G3 ×M where G3 is parametrized by



t2 0 0 0

c1 teir 0 0

c2 0 teis 0

c3 i
te

irc2 i
te

isc1 ei(r+s)


; r, s, 0 6= t ∈ R; cj ∈ C. (3.34)

If ι3 : B3 ↪→ B2 is the inclusion map, then we let

F 1 := ι∗3t
1
21
, F 2 := ι∗3t

2
12
.

Aside from this relabeling, we maintain the names of every one-form that we pull back along ι3, so

that the structure equations are the same except that β1, β2 are now semibasic. Thus, on B3 we

have

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i% 0 0

γ2 0 τ + iς 0

γ3 iγ2 iγ1 i%+ iς


∧



η0

η1

η2

η3


+



iη1 ∧ η1 + εiη2 ∧ η2

εη3 ∧ η2 + F 1η1 ∧ η2

η3 ∧ η1 + F 2η2 ∧ η1

β1 ∧ η1 + β2 ∧ η2


. (3.35)

We use (3.33) to expand β1 and β2, implicitly using that we can absorb η0 coefficients into γ3.

β1 = f11η
1 + t11η

1 + f12η
2 + t12η

2 + f13η
3, β2 = f21η

1 + t21η
1 + f22η

2 + t22η
2 + f23η

3,

for some new functions f, t ∈ C∞(B3,C).

We now seek to normalize t11 and t22 to zero. This will require us to collect a few identities.

First differentiate dη0.

0 = d(dη0)

= (−2dτ + iγ1 ∧ η1 − iγ1 ∧ η1 + εiγ2 ∧ η2 − εiγ2 ∧ η2) ∧ η0,
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whence

2dτ ≡ iγ1 ∧ η1 − iγ1 ∧ η1 + εiγ2 ∧ η2 − εiγ2 ∧ η2 mod {η0}. (3.36)

Now differentiate dη1.

0 = d(dη1)

= (−dγ1 + (τ − i%) ∧ γ1 − εγ2 ∧ η3 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1 + εγ3 ∧ η2) ∧ η0

+ (−dτ − id%− iγ1 ∧ η1 + εiγ2 ∧ η2 + εη3 ∧ η3 + F 1F 2η2 ∧ η1 + |F 1|2η2 ∧ η2) ∧ η1

+ (dF 1 − F 1(τ − 2i%+ iς) + εF
2
η3) ∧ η1 ∧ η2 + εβ1 ∧ η1 ∧ η2 + εβ2 ∧ η2 ∧ η2.

(3.37)

If we reduce this modulo η0, η1, η1, we see that f23 = 0 in the expansion of β2. Furthermore, if we

reduce modulo η1, η2, then by the top line we conclude

dγ1 ≡ (τ − i%) ∧ γ1 − εγ2 ∧ η3 − F 1γ2 ∧ η1 + εγ3 ∧ η2 mod {η0, η1, η2}. (3.38)

Next, differentiate dη2.

0 = d(dη2)

= (−dγ2 + (τ − iς) ∧ γ2 − γ1 ∧ η3 + F 2γ2 ∧ η1 − F 2γ1 ∧ η2 + γ3 ∧ η1) ∧ η0

+ (−dτ − idς − εiγ2 ∧ η2 + iγ1 ∧ η1 + εη3 ∧ η3 + F 2F 1η1 ∧ η2 + |F 2|2η1 ∧ η1) ∧ η2

+ (dF 2 − F 2(τ + i%− 2iς) + F
1
η3) ∧ η2 ∧ η1 + β1 ∧ η1 ∧ η1 + β2 ∧ η2 ∧ η1.

(3.39)

Reducing modulo η0, η2, η2 shows f13 = 0 in the expansion of β1. Reducing mod η1, η2 then gives

dγ2 ≡ (τ − iς) ∧ γ2 − γ1 ∧ η3 − F 2γ1 ∧ η2 + γ3 ∧ η1 mod {η0, η1, η2}. (3.40)
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Finally, we differentiate dη3.

0 = d(dη3)

= −(dγ3 + γ3 ∧ (2τ − i%− iς) + γ1 ∧ β1 + γ2 ∧ β2) ∧ η0

− i(dγ2 + γ2 ∧ (τ − iς)− F 2γ1 ∧ η2 + γ3 ∧ η1) ∧ η1

− i(dγ1 + γ1 ∧ (τ − i%)− F 1γ2 ∧ η1 + εγ3 ∧ η2) ∧ η2

+ (−id%− idς − εiγ2 ∧ η2 − iγ1 ∧ η1 + εβ1 ∧ η2 + β2 ∧ η1) ∧ η3

+ (dβ1 − (τ − iς) ∧ β1 − F 2β2 ∧ η2) ∧ η1 + (dβ2 − (τ − i%) ∧ β2 − F 1β1 ∧ η1) ∧ η2.

(3.41)

For later use, we note that by reducing modulo η0, η1, η2, we get

id%+ idς ≡ −εiγ2 ∧ η2 − iγ1 ∧ η1 + εβ1 ∧ η2 + β2 ∧ η1 mod {η0, η1, η2, η3}. (3.42)

Returning to the unreduced equation (3.41), if we reduce modulo η0, η1, η3, plug in the identity for

dγ1 from (3.38), and expand β1 and β2, then we have

0 ≡ (dt21 − 2t21(τ − i%) + 2iF 1γ2) ∧ η1 ∧ η2 − F 1t12η
2 ∧ η1 ∧ η2

+ (dt22 − t22(2τ − i%− iς)− ε2iγ3) ∧ η2 ∧ η2 mod {η0, η1, η3}.

If we instead reduce modulo η0, η2, η3 and plug in dγ2 from (3.40), we see

0 ≡ (dt11 − t11(2τ − i%− iς)− 2iγ3) ∧ η1 ∧ η1 − F 2t21η
1 ∧ η2 ∧ η1

+ (dt12 − 2t12(τ − iς) + 2iF 2γ1) ∧ η2 ∧ η1 mod {η0, η2, η3}.

The two together show

dt22 ≡ t22(2τ − i%− iς) + ε2iγ3

dt11 ≡ t11(2τ − i%− iς) + 2iγ3

 mod {η0, η1, η2, η3, η1, η2}. (3.43)

These imply that we can find a subbundle where one of t11, t22 vanishes identically, but it is

not yet clear that there are any coframings on which both vanish. To show this, we revisit the
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equations (3.37),(3.39). For the former, we wedge the right side of the equation with η2.

0 = (d2η1) ∧ η2

= (−dγ1 + (τ − i%) ∧ γ1 − εγ2 ∧ η3 − F 1γ2 ∧ η1 + εγ3 ∧ η2) ∧ η0 ∧ η2

+ (−dτ − id%− iγ1 ∧ η1 + εiγ2 ∧ η2 + εη3 ∧ η3) ∧ η1 ∧ η2

+ F 1F 2η2 ∧ η1 ∧ η1 ∧ η2 + εt11η
1 ∧ η1 ∧ η2 ∧ η2.

Similarly, wedge the right side of the identity for d(dη2) with η1.

0 = (d2η2) ∧ η1

= (−dγ2 + (τ − iς) ∧ γ2 − γ1 ∧ η3 − F 2γ1 ∧ η2 + γ3 ∧ η1) ∧ η0 ∧ η1

+ (−dτ − idς − εiγ2 ∧ η2 + iγ1 ∧ η1 + εη3 ∧ η3) ∧ η2 ∧ η1

+ F 2F 1η1 ∧ η2 ∧ η2 ∧ η1 + t22η
2 ∧ η2 ∧ η1 ∧ η1.

Now subtract the latter from the former, reduce modulo η0, η3, and plug in 2dτ and id%+ idς from

(3.36) and (3.42).

0 = (d2η1) ∧ η2 − (d2η2) ∧ η1

≡ −(2dτ + id%+ idς) ∧ η1 ∧ η2 + (εt11 − t22)η2 ∧ η2 ∧ η1 ∧ η1 mod {η0, η3}

≡ 2(εt11 − t22)η2 ∧ η2 ∧ η1 ∧ η1 mod {η0, η3}.

Thus we see that εt11 = t22, and by (3.43) there exists a subbundle B4 ⊂ B3 of 4-adapted

coframes on which t11 = t22 = 0. We also see from (3.43) that when restricted to B4,

γ3 ≡ 0 mod {η0, η1, η2, η3, η1, η2}. (3.44)

Fix a new 4-adapted coframing θ1 in order to locally trivialize B4. As with G3, we seek a

parametrization of the structure group G4 ⊂ G3 of B4 by taking g−1 ∈ C∞(B3, G3) to be the
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matrix (3.34) and solving the differential equation γ3 = 0 in

g−1dg =



2τ 0 0 0

γ1 τ + i% 0 0

γ2 0 τ + iς 0

γ3 iγ2 iγ1 i%+ iς


.

The result is that we locally have B4
∼= G4 ×M where G4 is all matrices of the form



t2 0 0 0

c1 teir 0 0

c2 0 teis 0

i
t2 c

1c2 i
te

irc2 i
te

isc1 ei(r+s)


; r, s, 0 6= t ∈ R; c1, c2 ∈ C. (3.45)

Pulling back along ι4 : B4 ↪→ B3, we keep the names of all the forms, and relabel

T 3 := ι∗4(f21 − f12), F 3
1 := ι∗4t12, F 3

2 := ι∗4t21,

so that the structure equations (3.35) pull back to

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i% 0 0

γ2 0 τ + iς 0

0 iγ2 iγ1 i%+ iς


∧



η0

η1

η2

η3



+



iη1 ∧ η1 + εiη2 ∧ η2

εη3 ∧ η2 + F 1η1 ∧ η2

η3 ∧ η1 + F 2η2 ∧ η1

−γ3 ∧ η0 + T 3η1 ∧ η2 + F 3
1 η

2 ∧ η1 + F 3
2 η

1 ∧ η2


.

(3.46)

We absorb the real part of T 3 as follows. As in §3.3, we focus only on the relevant two-forms.

dη3 = −iγ2 ∧ η1 − iγ1 ∧ η2 − (i%+ iς) ∧ η3 + T 3η1 ∧ η2 + . . .

= −i(γ2 − i 1
2ReT 3η2) ∧ η1 − i(γ1 + i 1

2ReT 3η1) ∧ η2
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− (i%+ i 1
2ReT 3η0 + iς − i 1

2ReT 3η0) ∧ η3 + iImT 3η1 ∧ η2 + . . .

so let

i%̂ := i%+ i 1
2ReT 3η0, iς̂ := iς − i 1

2ReT 3η0, γ̂1 := γ1 + i 1
2ReT 3η1, γ̂2 := γ2 − i 1

2ReT 3η2,

and note that these choices leave the structure equations for dη1,dη2 unaltered. We drop the hats

as we prepare to absorb new torsion introduced by the pullback along ι4 of γ3. According to (3.44),

we expand

γ3 = −f3
0 η

0 − f3
1 η

1 − T 3
1
η1 − f3

2 η
2 − T 3

2
η2 − f3

3 η
3,

for some functions f, T ∈ C∞(B4,C). We absorb the f3
1 and f3

2 terms via

iγ̂2 := iγ2 − f3
1 η

0, iγ̂1 := iγ1 − f3
2 η

0.

Now drop the hats for one final absorption – the imaginary part of f3
3 – which will proceed in a

similar manner to how we treated the real part of T 3 above. Notably, we modify forms so that the

equations for dη1,dη2 remain unaffected. We have

dη3 = −iγ2 ∧ η1 − iγ1 ∧ η2 − (i%+ iς) ∧ η3 + f3
3 η

3 ∧ η0 + . . .

= −i(γ2 + i 1
2 Im(f3

3 )η2) ∧ η1 − i(γ1 + i 1
2 Im(f3

3 )η1) ∧ η2

− (i%+ iς + iIm(f3
3 )η0) ∧ η3 + Re(f3

3 )η3 ∧ η0 . . . ,

so we define

i%̂ := i%+ i 1
2 Im(f3

3 )η0, iς̂ := iς + i 1
2 Im(f3

3 )η0, γ̂1 := γ1 + i 1
2 Im(f3

3 )η1, γ̂2 := γ2 + i 1
2 Im(f3

3 )η2.

Let us drop the hats and rename

f3 := Re(f3
3 ), it3 := iImT 3.
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By arranging for these torsion coefficients to be purely real and imaginary, we have exhausted

the ambiguity in the pseudoconnection forms γ1, γ2, i%, iς ∈ Ω1(B4,C) which is associated with

Lie-algebra compatible additions of semibasic, iR-valued forms to i% and iς. In particular, i% and iς

are now completely and intrinsically determined by our choices of torsion normalization, manifested

in the structure equations

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i% 0 0

γ2 0 τ + iς 0

0 iγ2 iγ1 i%+ iς


∧



η0

η1

η2

η3



+



iη1 ∧ η1 + εiη2 ∧ η2

εη3 ∧ η2 + F 1η1 ∧ η2

η3 ∧ η1 + F 2η2 ∧ η1

f3η3 ∧ η0 + it3η1 ∧ η2 + T 3
1
η1 ∧ η0 + T 3

2
η2 ∧ η0 + F 3

1 η
2 ∧ η1 + F 3

2 η
1 ∧ η2


.

(3.47)

In contrast to i% and iς, the pseudoconnection forms τ , γ1, and γ2 are not uniquely determined by

the structure equations (3.47), as they are only determined up to permissible additions of semibasic,

R-valued one-forms to τ . Specifically, these structure equations are unaltered if we replace


τ̂

γ̂1

γ̂2

 :=


τ

γ1

γ2

+


y 0 0

0 y 0

0 0 y



η0

η1

η2

 ; y ∈ C∞(B4,R). (3.48)

The new variable y fully parameterizes the remaining ambiguity in our pseudoconnection forms;

i.e., adding any other combination of semibasic forms to τ, γ1, γ2 will not preserve the structure

equations.

3.5 Prolongation

The collection of all choices (3.48) of τ̂ , γ̂1, γ̂2 preserving (3.47) defines an affine, real line bundle

π̂ : B
(1)
4 → B4 with y as a fiber coordinate. B

(1)
4 is the prolongation of our G4-structure π : B4 →

M , and may be interpreted as the bundle of coframes on B4 which are adapted to the structure
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equations, so that we are essentially starting over the method of equivalence. We commit our

usual notational abuse of recycling names as we recursively define the following global, tautological

one-forms on B
(1)
4 .



η0

η1

η2

η3

%

ς

τ

γ1

γ2



:=



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

y 0 0 0 0 0 1 0 0

0 y 0 0 0 0 0 1 0

0 0 y 0 0 0 0 0 1



π̂∗



η0

η1

η2

η3

%

ς

τ

γ1

γ2



. (3.49)

These four R-valued forms, along with the real and imaginary parts of these five C-valued forms,

are one real dimension shy of a full, global coframing of B
(1)
4 . As usual, we find the missing one-form

by differentiating the tautological forms and normalizing torsion until the resulting pseudoconnec-

tion form is uniquely (hence, globally) defined. From (3.49) we see that if we maintain the names of

our torsion coefficients after pulling back along π̂, the structure equations (3.47) still hold on B
(1)
4 :

dη0 = −2τ ∧ η0 + iη1 ∧ η1 + εiη2 ∧ η2,

dη1 = −γ1 ∧ η0 − (τ + i%) ∧ η1 + εη3 ∧ η2 + F 1η1 ∧ η2,

dη2 = −γ2 ∧ η0 − (τ + iς) ∧ η2 + η3 ∧ η1 + F 2η2 ∧ η1,

dη3 = −iγ2 ∧ η1 − iγ1 ∧ η2 − (i%+ iς) ∧ η3 + f3η3 ∧ η0 + it3η1 ∧ η2

+ T 3
1
η1 ∧ η0 + T 3

2
η2 ∧ η0 + F 3

1 η
2 ∧ η1 + F 3

2 η
1 ∧ η2.

(3.50)
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For the remaining tautological forms, we have in analogy with (3.8),

d



i%

iς

τ

γ1

γ2


= −



0 0 0 0 0

0 0 0 0 0

0 0 ψ 0 0

0 0 0 ψ 0

0 0 0 0 ψ


∧



0

0

η0

η1

η2


+



Ξ%

Ξς

Ξτ

Ξ1

Ξ2


, (3.51)

where ψ ∈ Ω1(B
(1)
4 ) is our new pseudoconnection form and the Ξ ∈ Ω2(B

(1)
4 ,C) are π̂-semibasic,

apparent torsion two-forms. As always, we discover explicit expressions for our Ξ’s by differentiating

the known structure equations (3.50). Differentiating the equation for dη0 yields something familiar:

0 = d(dη0)

= (−2dτ + iγ1 ∧ η1 − iγ1 ∧ η1 + εiγ2 ∧ η2 − εiγ2 ∧ η2) ∧ η0,

whence we conclude

2dτ = iγ1 ∧ η1 − iγ1 ∧ η1 + εiγ2 ∧ η2 − εiγ2 ∧ η2 + 2ζ0 ∧ η0, (3.52)

for some R-valued ζ0 ∈ Ω1(B
(1)
4 ). Using the equation for dη1, we find

0 = d(dη1)

= (−dγ1 + (τ − i%) ∧ γ1 − εγ2 ∧ η3 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1 − εT 3
1
η1 ∧ η2 − εf3η3 ∧ η2) ∧ η0

+ (−dτ − id%− iγ1 ∧ η1 + εiγ2 ∧ η2 + εη3 ∧ η3 + εit3η2 ∧ η2 + F 1F 2η2 ∧ η1 + |F 1|2η2 ∧ η2) ∧ η1

+ (dF 1 − F 1(τ − 2i%+ iς) + εF
2
η3 + εF 3

2 η
2) ∧ η1 ∧ η2,
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which by Cartan’s lemma yields


−dγ1 + (τ − i%) ∧ γ1 − εγ2 ∧ η3 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1 − εT 3

1
η1 ∧ η2 − εf3η3 ∧ η2

−dτ − id%− iγ1 ∧ η1 + εiγ2 ∧ η2 + εη3 ∧ η3 + εit3η2 ∧ η2 + F 1F 2η2 ∧ η1 + |F 1|2η2 ∧ η2

(dF 1 − F 1(τ − 2i%+ iς) + εF
2
η3 + εF 3

2 η
2) ∧ η1



= −


ζ1
0 ζ1

1 ξ1
2

ζ1
1 ζ%1 ξ%2

ξ1
2 ξ%2 ζ1

 ∧

η0

η1

η2

 ,
(3.53)

for some ξ, ζ ∈ Ω1(B
(1)
4 ,C). Plugging this back into the same equation 0 = d(dη1) reduced by η1

shows

0 ≡ ξ1
2 ∧ η2 ∧ η0 + ξ%2 ∧ η2 ∧ η1 mod {η1}

⇒ 0 ≡ ξ1
2 , ξ

%
2 mod {η0, η1, η2, η1}.

(3.54)

Moving on to dη2,

0 = d(dη2)

= (−dγ2 + (τ − iς) ∧ γ2 − γ1 ∧ η3 − F 2γ1 ∧ η2 + F 2γ2 ∧ η1 − T 3
2
η2 ∧ η1 − f3η3 ∧ η1) ∧ η0

+ (−dτ − idς + iγ1 ∧ η1 − εiγ2 ∧ η2 + εη3 ∧ η3 − it3η1 ∧ η1 + F 2F 1η1 ∧ η2 + |F 2|2η1 ∧ η1) ∧ η2

+ (dF 2 − F 2(τ + i%− 2iς) + F
1
η3 + F 3

1 η
1) ∧ η2 ∧ η1.

By the same argument,


−dγ2 + (τ − iς) ∧ γ2 − γ1 ∧ η3 − F 2γ1 ∧ η2 + F 2γ2 ∧ η1 − T 3

2
η2 ∧ η1 − f3η3 ∧ η1

−dτ − idς + iγ1 ∧ η1 − εiγ2 ∧ η2 + εη3 ∧ η3 − it3η1 ∧ η1 + F 2F 1η1 ∧ η2 + |F 2|2η1 ∧ η1

(dF 2 − F 2(τ + i%− 2iς) + F
1
η3 + F 3

1 η
1) ∧ η2



= −


ζ2
0 ζ2

2 ξ2
1

ζ2
2 ζς2 ξς1

ξ2
1 ξς1 ζ2

 ∧

η0

η2

η1

 ,
(3.55)
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for more, yet-unknown ξ, ζ ∈ Ω1(B
(1)
4 ,C) which satisfy

0 ≡ ξ2
1 ∧ η1 ∧ η0 + ξς1 ∧ η1 ∧ η2 mod {η2}

⇒ 0 ≡ ξ2
1 , ξ

ς
1 mod {η0, η1, η2, η2}.

(3.56)

From (3.52),(3.53), and (3.55) we have gleaned

dτ = i
2γ

1 ∧ η1 − i
2γ

1 ∧ η1 + ε i2γ
2 ∧ η2 − ε i2γ

2 ∧ η2 + ζ0 ∧ η0,

id% = − 3i
2 γ

1 ∧ η1 + i
2γ

1 ∧ η1 + ε i2γ
2 ∧ η2 + ε i2γ

2 ∧ η2 + εη3 ∧ η3 + εit3η2 ∧ η2

+ F 1F 2η2 ∧ η1 + |F 1|2η2 ∧ η2 + (ζ1
1 − ζ0) ∧ η0 + ζ%1 ∧ η1 + ξ%2 ∧ η2,

idς = i
2γ

1 ∧ η1 + i
2γ

1 ∧ η1 − ε 3i
2 γ

2 ∧ η2 + ε i2γ
2 ∧ η2 + εη3 ∧ η3 − it3η1 ∧ η1

+ F 2F 1η1 ∧ η2 + |F 2|2η1 ∧ η1 + (ζ2
2 − ζ0) ∧ η0 + ζς2 ∧ η2 + ξς1 ∧ η1,

dγ1 = (τ − i%) ∧ γ1 − εγ2 ∧ η3 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1 − εT 3
1
η1 ∧ η2 − εf3η3 ∧ η2

+ ζ1
0 ∧ η0 + ζ1

1 ∧ η1 + ξ1
2 ∧ η2,

dγ2 = (τ − iς) ∧ γ2 − γ1 ∧ η3 − F 2γ1 ∧ η2 + F 2γ2 ∧ η1 − T 3
2
η2 ∧ η1 − f3η3 ∧ η1

+ ζ2
0 ∧ η0 + ζ2

2 ∧ η2 + ξ2
1 ∧ η1.

(3.57)

We learn a bit more about the ξ’s and ζ’s by differentiating the final equation from (3.50).

0 = d(dη3)

= i(−dγ2 + (τ − iς) ∧ γ2 + F 2γ1 ∧ η2 + T 3
2
η2 ∧ η1) ∧ η1

+ i(−dγ1 + (τ − i%) ∧ γ1 + F 1γ2 ∧ η1 + εT 3
1
η1 ∧ η2) ∧ η2

+ (−id%− idς − iγ1 ∧ η1 − εiγ2 ∧ η2 + εi(t3 + f3)η2 ∧ η2 + i(t3 − f3)η1 ∧ η1) ∧ η3

+ (F 3
2 γ

1 + i(t3 − f3)γ1 + εT 3
1
η3) ∧ η2 ∧ η0

+ (F 3
1 γ

2 − i(t3 + f3)γ2 + T 3
2
η3) ∧ η1 ∧ η0
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+ (dT 3
1
− T 3

1
(3τ − 2i%− iς)− F 3

2 γ
2 + (T 3

2
F

2 − f3F 3
2 )η2) ∧ η1 ∧ η0

+ (dT 3
2
− T 3

2
(3τ − i%− 2iς)− F 3

1 γ
1 + (T 3

1
F

1 − f3F 3
1 )η1) ∧ η2 ∧ η0

+ (dF 3
1 − 2F 3

1 (τ − iς)− F 3
2F

1
η2 − F 3

2F
2η1) ∧ η2 ∧ η1

+ (dF 3
2 − 2F 3

2 (τ − i%)− F 3
1F

2
η1 − F 3

1F
1η2) ∧ η1 ∧ η2

+ i(dt3 − 2t3τ + f3t3η0) ∧ η1 ∧ η2 + (df3 − 2f3τ) ∧ η3 ∧ η0.

After plugging in (3.57), this becomes

0 = (ζ%1 + ξς1 + 2iγ1 + (|F 2|2 + 2i(t3 − f3))η1) ∧ η3 ∧ η1

+ (ξ%2 + ζς2 + ε2iγ2 + (|F 1|2 − ε2i(t3 + f3))η2) ∧ η3 ∧ η2

+ (iζ1
0 + F 3

2 γ
1 + i(t3 − f3)γ1 + εT 3

1
η3) ∧ η2 ∧ η0

+ (iζ2
0 + F 3

1 γ
2 − i(t3 + f3)γ2 + T 3

2
η3) ∧ η1 ∧ η0

+ (dT 3
1
− T 3

1
(3τ − 2i%− iς)− F 3

2 γ
2 + (T 3

2
F

2 − f3F 3
2 )η2) ∧ η1 ∧ η0

+ (dT 3
2
− T 3

2
(3τ − i%− 2iς)− F 3

1 γ
1 + (T 3

1
F

1 − f3F 3
1 )η1) ∧ η2 ∧ η0

+ (dF 3
1 − 2F 3

1 (τ − iς) + 2iF 2γ1 − F 3
2F

1
η2 − (F 3

2F
2 + 2iT 3

2
)η1) ∧ η2 ∧ η1

+ (dF 3
2 − 2F 3

2 (τ − i%) + 2iF 1γ2 − F 3
1F

2
η1 − (F 3

1F
1 + ε2iT 3

1
)η2) ∧ η1 ∧ η2

+ i(dt3 − 2t3τ + f3t3η0 − ζ1
1 + ζ2

2 ) ∧ η1 ∧ η2 + (df3 − 2f3τ + ζ1
1 + ζ2

2 − 2ζ0) ∧ η3 ∧ η0.

(3.58)

For later use, we observe that if we reduce by {η0, η3, η1, η2} or {η1, η2, η1, η2}, respectively, then

we can say

0 ≡ dt3 − 2t3τ + f3t3η0 − ζ1
1 + ζ2

2

0 ≡ df3 − 2f3τ + ζ1
1 + ζ2

2 − 2ζ0

 mod {η0, η1, η2, η3, η1, η2}. (3.59)

Now we return to the unreduced equation (3.58). With (3.54) and (3.56) in mind, we see that
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reduction modulo {η0, η1, η1}, {η0, η2, η2}, {η1, η3, η1, η2}, {η2, η3, η1, η2}, respectively yields

ζς2 ≡ −ε2iγ2 − (|F 1|2 − ε2i(t3 + f3))η2 mod {η0, η1, η1, η2, η3},

ζ%1 ≡ −2iγ1 − (|F 2|2 + 2i(t3 − f3))η1 mod {η0, η2, η2, η1, η3},

ζ1
0 ≡ iF 3

2 γ
1 − (t3 − f3)γ1 + εiT 3

1
η3 mod {η1, η3, η1, η2, η2, η0},

ζ2
0 ≡ iF 3

1 γ
2 + (t3 + f3)γ2 + iT 3

2
η3 mod {η2, η3, η1, η2, η1, η0}.

(3.60)

Thus, if we define

ξς2 := ζς2 + ε2iγ2 + (|F 1|2 − ε2i(t3 + f3))η2,

ξ%1 := ζ%1 + 2iγ1 + (|F 2|2 + 2i(t3 − f3))η1,

ξ1
0 := ζ1

0 − iF 3
2 γ

1 + (t3 − f3)γ1 − εiT 3
1
η3,

ξ2
0 := ζ2

0 − iF 3
1 γ

2 − (t3 + f3)γ2 − iT 3
2
η3,

ξ0 := ζ0 + ψ,

ξ1
1 := ζ1

1 + ψ,

ξ2
2 := ζ2

2 + ψ,
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then we are left with an expression for each of the Ξ’s in the structure equations (3.51) of B
(1)
4 :

Ξτ = i
2γ

1 ∧ η1 − i
2γ

1 ∧ η1 + ε i2γ
2 ∧ η2 − ε i2γ

2 ∧ η2 + ξ0 ∧ η0,

Ξ% = − 3i
2 γ

1 ∧ η1 − 3i
2 γ

1 ∧ η1 + ε i2γ
2 ∧ η2 + ε i2γ

2 ∧ η2 + εη3 ∧ η3 + F 1F 2η2 ∧ η1

+ (|F 1|2 − εit3)η2 ∧ η2 − (|F 2|2 + 2i(t3 − f3))η1 ∧ η1 + (ξ1
1 − ξ0) ∧ η0 + ξ%1 ∧ η1 + ξ%2 ∧ η2,

Ξς = i
2γ

1 ∧ η1 + i
2γ

1 ∧ η1 − ε 3i
2 γ

2 ∧ η2 − ε 3i
2 γ

2 ∧ η2 + εη3 ∧ η3 + F 2F 1η1 ∧ η2

+ (|F 2|2 + it3)η1 ∧ η1 − (|F 1|2 − ε2i(f3 + t3))η2 ∧ η2 + (ξ2
2 − ξ0) ∧ η0 + ξς1 ∧ η1 + ξς2 ∧ η2,

Ξ1 = (τ − i%) ∧ γ1 − εγ2 ∧ η3 + iF 3
2 γ

1 ∧ η0 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1 + (t3 − f3)γ1 ∧ η0

− εf3η3 ∧ η2 − εT 3
1
η1 ∧ η2 + εiT 3

1
η3 ∧ η0 + ξ1

0 ∧ η0 + ξ1
1 ∧ η1 + ξ1

2 ∧ η2,

Ξ2 = (τ − iς) ∧ γ2 − γ1 ∧ η3 + iF 3
1 γ

2 ∧ η0 − F 2γ1 ∧ η2 + F 2γ2 ∧ η1 + (t3 + f3)γ2 ∧ η0

− f3η3 ∧ η1 − T 3
2
η2 ∧ η1 + iT 3

2
η3 ∧ η0 + ξ2

0 ∧ η0 + ξ2
2 ∧ η2 + ξ2

1 ∧ η1,

(3.61)

where, by (3.54),(3.56), and (3.60), we now have

0 ≡



ξ1
2 , ξ

%
2 mod {η0, η1, η2, η1},

ξ2
1 , ξ

ς
1 mod {η0, η1, η2, η2},

ξ%1 mod {η0, η2, η2, η1, η3},

ξς2 mod {η0, η1, η1, η2, η3},

ξ1
0 , ξ

2
0 mod {η0, η1, η1, η2, η2, η3}.

(3.62)

Using the fact that id% is iR-valued, we can write

0 = Ξ% + Ξ
%

= (ξ1
1 + ξ1

1
− 2ξ0) ∧ η0 + ξ%1 ∧ η1 + ξ%

1
∧ η1 + ε2it3η2 ∧ η2 + 4i(t3 − f3)η1 ∧ η1

+ (ξ%2 − F
1
F

2
η1) ∧ η2 + (ξ%

2
− F 1F 2η1) ∧ η2,

(3.63)
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which along with (3.54) shows that t3 = f3 = 0. Plugging these zeros into (3.59) yields

0 ≡ −ξ1
1 + ξ2

2

0 ≡ ξ1
1 + ξ2

2 − 2ξ0

 mod {η0, η1, η2, η3, η1, η2},

so in particular,

ξ1 := ξ1
1 − ξ0

ξ2 := ξ2
2 − ξ0

 ≡ 0 mod {η0, η1, η2, η3, η1, η2}. (3.64)

We know that ξ0 is R-valued, so we can replace ψ with ψ̂ = ψ − ξ0, which has the effect of

removing the ξ0 term in the equation for dτ and replacing ξii with ξi := ξii − ξ0 (i = 1, 2) in the

equation for dγi. We therefore update our structure equations

dτ = −ψ̂ ∧ η0 + i
2γ

1 ∧ η1 − i
2γ

1 ∧ η1 + ε i2γ
2 ∧ η2 − ε i2γ

2 ∧ η2,

id% = − 3i
2 γ

1 ∧ η1 − 3i
2 γ

1 ∧ η1 + ε i2γ
2 ∧ η2 + ε i2γ

2 ∧ η2 + εη3 ∧ η3 + F 1F 2η2 ∧ η1

+ |F 1|2η2 ∧ η2 − |F 2|2η1 ∧ η1 + ξ1 ∧ η0 + ξ%1 ∧ η1 + ξ%2 ∧ η2,

idς = i
2γ

1 ∧ η1 + i
2γ

1 ∧ η1 − ε 3i
2 γ

2 ∧ η2 − ε 3i
2 γ

2 ∧ η2 + εη3 ∧ η3 + F 2F 1η1 ∧ η2

+ |F 2|2η1 ∧ η1 − |F 1|2η2 ∧ η2 + ξ2 ∧ η0 + ξς1 ∧ η1 + ξς2 ∧ η2,

dγ1 = −ψ̂ ∧ η1 + (τ − i%) ∧ γ1 − εγ2 ∧ η3 + iF 3
2 γ

1 ∧ η0 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1

− εT 3
1
η1 ∧ η2 + εiT 3

1
η3 ∧ η0 + ξ1

0 ∧ η0 + ξ1 ∧ η1 + ξ1
2 ∧ η2,

dγ2 = −ψ̂ ∧ η2 + (τ − iς) ∧ γ2 − γ1 ∧ η3 + iF 3
1 γ

2 ∧ η0 − F 2γ1 ∧ η2 + F 2γ2 ∧ η1

− T 3
2
η2 ∧ η1 + iT 3

2
η3 ∧ η0 + ξ2

0 ∧ η0 + ξ2
1 ∧ η1 + ξ2 ∧ η2,

(3.65)
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where by (3.62) and (3.64) we can say

0 ≡



ξ1
2 , ξ

%
2 mod {η0, η1, η2, η1},

ξ2
1 , ξ

ς
1 mod {η0, η1, η2, η2},

ξ%1 mod {η0, η2, η2, η1, η3},

ξς2 mod {η0, η1, η1, η2, η3},

ξ1
0 , ξ

2
0 , ξ

1, ξ2 mod {η0, η1, η1, η2, η2, η3}.

By collecting coefficients of redundant two-forms and suppressing forms which are only wedged

against themselves in all of the equations, we may more specifically assume

0 ≡



ξ1
2 , ξ

%
2 mod {η0, η1, η1},

ξ2
1 , ξ

ς
1 mod {η0, η2, η2},

ξ%1 mod {η0, η2, η3},

ξς2 mod {η0, η1, η3}

ξ1
0 mod {η1, η1, η2, η3},

ξ2
0 mod {η1, η2, η2, η3},

ξ1, ξ2 mod {η1, η2, η3}.

Let us therefore expand

ξ1
0 = P 1

01η
1 + P 1

01
η1 + P 1

02
η2 + P 1

03η
3,

ξ1
2 = P 1

20η
0 + P 1

21η
1 + P 1

21
η1,

ξ1 = Q1
1
η1 +Q1

2
η2 +Q1

3η
3,

ξ%1 = R10η
0 +R12η

2 +R13η
3,

ξς1 = S10η
0 + S12η

2 + S12η
2,

ξ2
0 = P 2

01
η1 + P 2

02η
2 + P 2

02
η2 + P 2

03η
3,

ξ2
1 = P 2

10η
0 + P 2

12η
2 + P 2

12
η2,

ξ2 = Q2
1
η1 +Q2

2
η2 +Q2

3η
3,

ξ%2 = R20η
0 +R21η

1 +R21η
1,

ξς2 = S20η
0 + S21η

1 + S23η
3,

for some functions P,Q,R, S ∈ C∞(B
(1)
4 ,C). With these in hand, we return to our argument about

the imaginary value of id% from (3.63).

0 = Ξ% + Ξ
%

= (ξ1 + ξ1) ∧ η0 + ξ%1 ∧ η1 + ξ%
1
∧ η1 + (ξ%2 − F

1
F

2
η1) ∧ η2 + (ξ%

2
− F 1F 2η1) ∧ η2

= (Q1
1
η1 +Q1

2
η2 +Q1

3η
3 +Q

1

1η
1 +Q

1

2η
2 +Q

1

3η
3) ∧ η0 + (R10η

0 +R12η
2 +R13η

3) ∧ η1
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+ (R10η
0 +R12η

2 +R13η
3) ∧ η1 + (R20η

0 +R21η
1 +R21η

1 − F 1
F

2
η1) ∧ η2

+ (R20η
0 +R21η

1 +R21η
1 − F 1F 2η1) ∧ η2.

Thus we see that

Q1
3 = R13 = 0, R21 = F

1
F

2
, R10 = Q

1

1, R20 = Q
1

2, R12 = R21.

Similarly, iς is iR-valued, and we have

0 = Ξς + Ξ
ς

= (ξ2 + ξ2) ∧ η0 + (ξς1 − F
2
F

1
η2) ∧ η1 + (ξς

1
− F 2F 1η2) ∧ η1 + ξς2 ∧ η2 + ξς

2
∧ η2

= (Q2
1
η1 +Q2

2
η2 +Q2

3η
3 +Q

2

1η
1 +Q

2

2η
2 +Q

2

3η
3) ∧ η0 + (S10η

0 + S12η
2 + S12η

2 − F 2
F

1
η2) ∧ η1

+ (S10η
0 + S12η

2 + S12η
2 − F 2F 1η2) ∧ η1 + (S20η

0 + S21η
1 + S23η

3) ∧ η2

+ (S20η
0 + S21η

1 + S23η
3) ∧ η2,

whence

Q2
3 = S23 = 0, S12 = F

1
F

2
, S10 = Q

2

1, S20 = Q
2

2, S12 = S21.

We reveal a few more relations by revisiting our original structure equations.

0 ≡ d2η1 mod {η1}

≡ ξ1
2 ∧ η2 ∧ η0 + ξ%2 ∧ η2 ∧ η1 mod {η1}

≡ P 1
21η

1 ∧ η2 ∧ η0 +Q
1

2η
0 ∧ η2 ∧ η1 mod {η1}

⇒P 1
21 = Q

1

2.

Similarly,

0 ≡ d2η2 mod {η2}

≡ ξ2
1 ∧ η1 ∧ η0 + ξς1 ∧ η1 ∧ η2 mod {η2}
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≡ P 2
12η

2 ∧ η1 ∧ η0 +Q
2

1η
0 ∧ η1 ∧ η2 mod {η2}

⇒P 2
12 = Q

2

1.

And finally,

0 ≡ d2η3 mod {η1, η2}

≡ (ξ%1 + ξς1) ∧ η3 ∧ η1 + (ξ%2 + ξς2) ∧ η3 ∧ η2 + iξ1
0 ∧ η2 ∧ η0 + iξ2

0 ∧ η1 ∧ η0

+ i(−ξ1 + ξ2) ∧ η1 ∧ η2 + (ξ1 + ξ2) ∧ η3 ∧ η0 mod {η1, η2}

≡ (Q
1

1 +Q
2

1)η0 ∧ η3 ∧ η1 + (Q
1

2 +Q
2

2)η0 ∧ η3 ∧ η2

+ i(P 1
01η

1 + P 1
03η

3) ∧ η2 ∧ η0 + i(P 2
02η

2 + P 2
03η

3) ∧ η1 ∧ η0 mod {η1, η2}

⇒P 1
03 = i(Q

1

2 +Q
2

2), P 2
03 = i(Q

1

1 +Q
2

1), P 1
01 = P 2

02.

We give preference to the Q’s in our notation, so we can rename the only remaining R := R12 and

S := S12. We also rename P0 := P 1
01 = P 2

02 to emphasize that the equations for dγ1 and dγ2 have
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this term in common. Dropping the hat off of ψ in (3.65), we summarize our results so far.

dτ = −ψ ∧ η0 + i
2γ

1 ∧ η1 − i
2γ

1 ∧ η1 + ε i2γ
2 ∧ η2 − ε i2γ

2 ∧ η2,

id% = − 3i
2 γ

1 ∧ η1 − 3i
2 γ

1 ∧ η1 + ε i2γ
2 ∧ η2 + ε i2γ

2 ∧ η2 + εη3 ∧ η3 + F 1F 2η2 ∧ η1 + F
1
F

2
η1 ∧ η2

+ |F 1|2η2 ∧ η2 − |F 2|2η1 ∧ η1 + (Q1
1
η1 −Q1

1η
1 +Q1

2
η2 −Q1

2η
2) ∧ η0

+Rη2 ∧ η1 +Rη1 ∧ η2,

idς = i
2γ

1 ∧ η1 + i
2γ

1 ∧ η1 − ε 3i
2 γ

2 ∧ η2 − ε 3i
2 γ

2 ∧ η2 + εη3 ∧ η3 + F 1F 2η1 ∧ η2 + F
1
F

2
η2 ∧ η1

+ |F 2|2η1 ∧ η1 − |F 1|2η2 ∧ η2 + (Q2
1
η1 −Q2

1η
1 +Q2

2
η2 −Q2

2η
2) ∧ η0

+ Sη2 ∧ η1 + Sη1 ∧ η2,

dγ1 = −ψ ∧ η1 + (τ − i%) ∧ γ1 − εγ2 ∧ η3 + iF 3
2 γ

1 ∧ η0 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1

− εT 3
1
η1 ∧ η2 + εiT 3

1
η3 ∧ η0 + (P0η

1 + P 1
01
η1 + P 1

02
η2 + i(Q

1

2 +Q
2

2)η3) ∧ η0

+ (Q1
1
η1 +Q1

2
η2 −Q1

2η
2) ∧ η1 + (P 1

20η
0 + P 1

21
η1) ∧ η2,

dγ2 = −ψ ∧ η2 + (τ − iς) ∧ γ2 − γ1 ∧ η3 + iF 3
1 γ

2 ∧ η0 − F 2γ1 ∧ η2 + F 2γ2 ∧ η1

− T 3
2
η2 ∧ η1 + iT 3

2
η3 ∧ η0 + (P 2

01
η1 + P0η

2 + P 2
02
η2 + i(Q

1

1 +Q
2

1)η3) ∧ η0

+ (Q2
1
η1 −Q2

1η
1 +Q2

2
η2) ∧ η2 + (P 2

10η
0 + P 2

12
η2) ∧ η1.

(3.66)

By replacing ψ̂ := ψ + 1
2 (P0 + P 0)η0, we absorb the real part of P0 in the equations for dγ1

and dγ2 without affecting the equation for dτ . After this absorption (and dropping the hat),

ψ is uniquely and globally determined, and we may replace P0 in our equations with ip0 where

p0 ∈ C∞(B
(1)
4 ) is the R-valued − i

2 (P0 − P 0).

Note that our equations are now free of any unknown one-forms, which is just in time for us

to introduce the last one we will need. It shows up in the equation for dψ, which we obtain by

differentiating 2dτ .

0 = d(2dτ)

54



=
(
− 2dψ − 4ψ ∧ τ + 2iγ1 ∧ γ1 + ε2iγ2 ∧ γ2 . . .

+ i(P 1
02
− εP 2

01
)η1 ∧ η2 + i(P

1

02 − εP
2

01)η2 ∧ η1 + i(P 1
20 + εP

2

10)η2 ∧ η1 + i(εP 2
10 + P

1

20)η1 ∧ η2 . . .

+ ε(Q1
1

+Q2
1
)η3 ∧ η2 + ε(Q

1

1 +Q
2

1)η3 ∧ η2 + (Q
1

2 +Q
2

2)η3 ∧ η1 + (Q1
2

+Q2
2
)η3 ∧ η1 . . .

+ F
3

2γ
1 ∧ η1 + F 3

2 γ
1 ∧ η1 + εF

3

1γ
2 ∧ η2 + εF 3

1 γ
2 ∧ η2 . . .

+ εT
3

1η
3 ∧ η1 + εT 3

1
η3 ∧ η1 + εT

3

2η
3 ∧ η2 + εT 3

2
η3 ∧ η2

)
∧ η0.

Thus, for some R-valued ζ ∈ Ω1(B
(1)
4 ), we have a final structure equation

dψ = −2ψ ∧ τ + iγ1 ∧ γ1 + εiγ2 ∧ γ2 + ζ ∧ η0 + i
2 (P 1

02
− εP 2

01
)η1 ∧ η2

+ i
2 (P

1

02 − εP
2

01)η2 ∧ η1 + i
2 (P 1

20 + εP
2

10)η2 ∧ η1 + i
2 (εP 2

10 + P
1

20)η1 ∧ η2

+ ε 1
2 (Q1

1
+Q2

1
)η3 ∧ η2 + ε 1

2 (Q
1

1 +Q
2

1)η3 ∧ η2 + 1
2 (Q

1

2 +Q
2

2)η3 ∧ η1 + 1
2 (Q1

2
+Q2

2
)η3 ∧ η1

+ 1
2F

3

2γ
1 ∧ η1 + 1

2F
3
2 γ

1 ∧ η1 + ε 1
2F

3

1γ
2 ∧ η2 + ε 1

2F
3
1 γ

2 ∧ η2

+ ε 1
2T

3

1η
3 ∧ η1 + ε 1

2T
3
1
η3 ∧ η1 + ε 1

2T
3

2η
3 ∧ η2 + ε 1

2T
3
2
η3 ∧ η2.

(3.67)

In order to expand ζ, we first revisit

0 = d2η3

≡ (dF 3
2 − 2F 3

2 (τ − i%) + 2iF 1γ2 + (i(Q1
1
−Q2

1
)− F 3

1F
2
)η1) ∧ η1 ∧ η2 mod {η0, η3, η2},

which implies

dF 3
2 ≡ 2F 3

2 (τ − i%)− 2iF 1γ2 − (i(Q1
1
−Q2

1
)− F 3

1F
2
)η1 mod {η0, η2, η3, η1, η2}. (3.68)

Now differentiate dγ1 and reduce by all of the η’s except η0, η1.

0 = d2γ1

≡ −ζ ∧ η0 ∧ η1 + i(dF 3
2 − 2F 3

2 (τ − i%) + 2iF 1γ2) ∧ γ1 ∧ η0

+ (idp0 − 4ip0τ +Q1
1
γ1 +Q

1

1γ
1 +Q

2

2γ
2 + (Q1

2
− iF

1
F 3

2 )γ2) ∧ η1 ∧ η0 mod {η2, η3, η1, η2, η3}.
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Plugging in (3.68) then yields

d2γ1 ≡ (−idp0 + 4ip0τ − ζ −Q
1

1γ
1 − (Q2

1
− iF 3

1F
2
)γ1 −Q2

2γ
2 − (Q1

2
− iF

1
F 3

2 )γ2) ∧ η0 ∧ η1

mod {η2, η3, η1, η2, η3},

⇒ d2γ1 ≡ (idp0 − 4ip0τ − ζ −Q1
1
γ1 − (Q

2

1 + iF
3

1F
2)γ1 −Q2

2
γ2 − (Q

1

2 + iF 1F
3

2)γ2) ∧ η0 ∧ η1

mod {η1, η2, η3, η2, η3},

where we have used the fact that ζ and p0 are R-valued. We exploit this further to calculate

0 ≡ d2γ1 ∧ η1 − d2γ1 ∧ η1 mod {η2, η3, η2, η3}

≡
(
− 2ζ − (Q

1

1 +Q
2

1 + iF
3

1F
2)γ1 − (Q

2

2 +Q
1

2 + iF 1F
3

2)γ2 . . .

− (Q1
1

+Q2
1
− iF 3

1F
2
)γ1 − (Q2

2
+Q1

2
− iF

1
F 3

2 )γ2
)
∧ η0 ∧ η1 ∧ η1

mod {η0, η1, η2, η3, η1, η2, η3},

by which we find

ζ ≡ − 1
2 (Q

1

1 +Q
2

1 + iF
3

1F
2)γ1 − 1

2 (Q
2

2 +Q
1

2 + iF 1F
3

2)γ2

− 1
2 (Q1

1
+Q2

1
− iF 3

1F
2
)γ1 − 1

2 (Q2
2

+Q1
2
− iF

1
F 3

2 )γ2 mod {η0, η1, η2, η3, η1, η2, η3}.
(3.69)

Thus, if we define ξ ∈ Ω1(B
(1)
4 ) to be

ξ := ζ + 1
2 (Q

1

1 +Q
2

1 + iF
3

1F
2)γ1 + 1

2 (Q
2

2 +Q
1

2 + iF 1F
3

2)γ2

+ 1
2 (Q1

1
+Q2

1
− iF 3

1F
2
)γ1 + 1

2 (Q2
2

+Q1
2
− iF

1
F 3

2 )γ2,

then by (3.69) we know

ξ ≡ 0 mod {η0, η1, η2, η3, η1, η2, η3},

which along with the fact that ξ is R-valued (and wedged against η0) means we can expand

ξ = O1η
1 +O1η

1 +O2η
2 +O2η

2 +O3η
3 +O3η

3, (3.70)
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for some O ∈ C∞(B
(1)
4 ,C). We incorporate the expressions (3.69) and (3.70) into our equation

(3.67) for dψ, which we append to our list of completely determined structure equations

dη0 = −2τ ∧ η0 + iη1 ∧ η1 + εiη2 ∧ η2,

dη1 = −γ1 ∧ η0 − (τ + i%) ∧ η1 + εη3 ∧ η2 + F 1η1 ∧ η2,

dη2 = −γ2 ∧ η0 − (τ + iς) ∧ η2 + η3 ∧ η1 + F 2η2 ∧ η1,

dη3 = −iγ2 ∧ η1 − iγ1 ∧ η2 − (i%+ iς) ∧ η3 + T 3
1
η1 ∧ η0 + T 3

2
η2 ∧ η0 + F 3

1 η
2 ∧ η1 + F 3

2 η
1 ∧ η2,

dτ = −ψ ∧ η0 + i
2γ

1 ∧ η1 − i
2γ

1 ∧ η1 + ε i2γ
2 ∧ η2 − ε i2γ

2 ∧ η2,

id% = − 3i
2 γ

1 ∧ η1 − 3i
2 γ

1 ∧ η1 + ε i2γ
2 ∧ η2 + ε i2γ

2 ∧ η2 + εη3 ∧ η3 + F 1F 2η2 ∧ η1 + F
1
F

2
η1 ∧ η2

+ |F 1|2η2 ∧ η2 − |F 2|2η1 ∧ η1 + (Q1
1
η1 −Q1

1η
1 +Q1

2
η2 −Q1

2η
2) ∧ η0

+Rη2 ∧ η1 +Rη1 ∧ η2,

idς = i
2γ

1 ∧ η1 + i
2γ

1 ∧ η1 − ε 3i
2 γ

2 ∧ η2 − ε 3i
2 γ

2 ∧ η2 + εη3 ∧ η3 + F 1F 2η1 ∧ η2 + F
1
F

2
η2 ∧ η1

+ |F 2|2η1 ∧ η1 − |F 1|2η2 ∧ η2 + (Q2
1
η1 −Q2

1η
1 +Q2

2
η2 −Q2

2η
2) ∧ η0

+ Sη2 ∧ η1 + Sη1 ∧ η2,

dγ1 = −ψ ∧ η1 + (τ − i%) ∧ γ1 − εγ2 ∧ η3 + iF 3
2 γ

1 ∧ η0 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1

− εT 3
1
η1 ∧ η2 + εiT 3

1
η3 ∧ η0 + (ip0η

1 + P 1
01
η1 + P 1

02
η2 + i(Q

1

2 +Q
2

2)η3) ∧ η0

+ (Q1
1
η1 +Q1

2
η2 −Q1

2η
2) ∧ η1 + (P 1

20η
0 + P 1

21
η1) ∧ η2,

dγ2 = −ψ ∧ η2 + (τ − iς) ∧ γ2 − γ1 ∧ η3 + iF 3
1 γ

2 ∧ η0 − F 2γ1 ∧ η2 + F 2γ2 ∧ η1

− T 3
2
η2 ∧ η1 + iT 3

2
η3 ∧ η0 + (P 2

01
η1 + ip0η

2 + P 2
02
η2 + i(Q

1

1 +Q
2

1)η3) ∧ η0

+ (Q2
1
η1 −Q2

1η
1 +Q2

2
η2) ∧ η2 + (P 2

10η
0 + P 2

12
η2) ∧ η1,

dψ = −2ψ ∧ τ + iγ1 ∧ γ1 + εiγ2 ∧ γ2 + (O1η
1 +O1η

1 +O2η
2 +O2η

2 +O3η
3 +O3η

3) ∧ η0

− 1
2 (Q

1

1 +Q
2

1 + iF
3

1F
2)γ1 ∧ η0 − 1

2 (Q
2

2 +Q
1

2 + iF 1F
3

2)γ2 ∧ η0

− 1
2 (Q1

1
+Q2

1
− iF 3

1F
2
)γ1 ∧ η0 − 1

2 (Q2
2

+Q1
2
− iF

1
F 3

2 )γ2 ∧ η0 + i
2 (P 1

02
− εP 2

01
)η1 ∧ η2

+ i
2 (P

1

02 − εP
2

01)η2 ∧ η1 + i
2 (P 1

20 + εP
2

10)η2 ∧ η1 + i
2 (εP 2

10 + P
1

20)η1 ∧ η2

+ ε 1
2 (Q1

1
+Q2

1
)η3 ∧ η2 + ε 1

2 (Q
1

1 +Q
2

1)η3 ∧ η2 + 1
2 (Q

1

2 +Q
2

2)η3 ∧ η1 + 1
2 (Q1

2
+Q2

2
)η3 ∧ η1

+ 1
2F

3

2γ
1 ∧ η1 + 1

2F
3
2 γ

1 ∧ η1 + ε 1
2F

3

1γ
2 ∧ η2 + ε 1

2F
3
1 γ

2 ∧ η2

+ ε 1
2T

3

1η
3 ∧ η1 + ε 1

2T
3
1
η3 ∧ η1 + ε 1

2T
3

2η
3 ∧ η2 + ε 1

2T
3
2
η3 ∧ η2.

(3.71)
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Let π := π ◦ π̂ so we have the bundle π : B
(1)
4 → M . At this point, the coframing of B

(1)
4

given by the five R-valued forms η0, τ, %, ς, ψ and the real and imaginary parts of the five C-valued

forms η1, η2, η3, γ1, γ2 is uniquely and globally determined by the structure equations (3.71). Thus,

this coframing constitutes a solution in the sense of E. Cartan to the equivalence problem for

7-dimensional, 2-nondegenerate CR manifolds whose cubic form is of conformal unitary type.
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4. THE PARALLELISM

4.1 Homogeneous Model

Consider C4 with its standard basis v = (v1, v2, v3, v4) of column vectors and corresponding

complex, linear coordinates z1, z2, z3, z4. A basis v = (v1, v2, v3, v4) of column vectors for C4 will

be called an oriented frame if

v1 ∧ v2 ∧ v3 ∧ v4 = v1 ∧ v2 ∧ v3 ∧ v4. (4.1)

Let B
(1)
C denote the set of oriented frames, and observe that fixing an identity element v determines

an isomorphism B
(1)
C
∼= SL4C whereby the oriented frame v is identified with the 4 × 4 matrix

[v1, v2, v3, v4]. If Gr(2, 4) ⊂ P(Λ2C4) denotes the Grassmannian manifold of 2-planes in C4, then

B
(1)
C fibers over Gr(2, 4) via the projection map

π(v) = Jv1 ∧ v2K,

where the bold brackets denote the projective equivalence class à la Plücker embedding. This

fibration exhibits Gr(2, 4) as the homogeneous quotient of SL4C by the parabolic subgroup P ⊂

SL4C represented as all matrices of the form

P =



∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗


,

i.e., the stabilizer subgroup of the plane spanned by v1, v2.

Let ε, δε be as in §2.4, and introduce a Hermitian inner product h of signature (2 + δε, 2 − δε)

on C4 given in our linear coordinates by

h(z, w) = z1w4 + z4w1 − εz2w2 + z3w3.

Now SU? := SU(2 + δε, 2 − δε) ⊂ SL4C denotes the subgroup {A ∈ SL4C | h(Az,Aw) =
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h(z, w) ∀z, w ∈ C4}, and Gr(2, 4) decomposes into SU? orbits as follows. Let Π ∈ Gr(2, 4). In

the SU(2, 2) case, h|Π has one of the signatures (2, 0),(0, 2),(1, 1),(1, 0),(0, 1),(0, 0). In the SU(3, 1)

case, h|Π has one of the signatures (2, 0),(1, 1),(1, 0). In both cases, we let M? denote SU? ·Jv1∧v2K,

which is an orbit of codimension-one in Gr(2, 4) where h|Π has signature (1, 0).

An oriented frame v ∈ B(1)
C will be called a Hermitian frame if

[h(vi, vj)]
4
i,j=1 =



0 0 0 1

0 −ε 0 0

0 0 1 0

1 0 0 0


. (4.2)

In particular, v is a Hermitian frame. Let B(1) ⊂ B(1)
C be the subset of Hermitian frames, and note

that fixing v once again determines an isomorphism B(1) ∼= SU? in the same manner as before. The

most general transformation of v which preserves the 2-plane Jv1 ∧ v2K ∈ Gr(2, 4) and yields a new

Hermitian frame v is given by

v1 = 1
t e

i/4(−r+s)v1,

v2 = c2e−
i/4(r+3s)v1 + e−

i/4(r+3s)v2,

v3 = −c1ei/4(3r+s)v1 + e
i/4(3r+s)v3,

v4 = te
i/4(−r+s)(iy − 1

2 (|c1|2 − ε|c2|2))v1 + εc2te
i/4(−r+s)v2 + c1te

i/4(−r+s)v3 + te
i/4(−r+s)v4,

for r, s, t, y ∈ R (t 6= 0) and c1, c2 ∈ C. Thus we see that the eight-dimensional Lie group P? :=

P ∩ SU? is parametrized by



1
t e

i/4(−r+s) c2e−i/4(r+3s) −c1ei/4(3r+s) tei/4(−r+s)(iy − 1
2 (|c1|2 − ε|c2|2))

0 e−i/4(r+3s) 0 εc2tei/4(−r+s)

0 0 ei/4(3r+s) c1tei/4(−r+s)

0 0 0 tei/4(−r+s)



. (4.3)
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The restriction of the projection π to B(1) now determines a fibration over our model space M? by

which we realize M? as the homogeneous quotient SU?/P?. Observe that our parametrization of

P? may be decomposed into the product P? = P 2
?P

1
?P

0
? where the factors are matrices of the form

P 2
? =



1 0 0 iy

0 1 0 0

0 0 1 0

0 0 0 1


, P 1

? =



1 c2 −c1 − 1
2 (|c1|2 − ε|c2|2)

0 1 0 εc2

0 0 1 c1

0 0 0 1


,

P 0
? =



1
t e

i/4(−r+s) 0 0 0

0 e−i/4(r+3s) 0 0

0 0 ei/4(3r+s) 0

0 0 0 tei/4(−r+s)


,

(4.4)

with matrix entries as above. Each of P 0
? , P

2
? , and the product P 2

?P
1
? define subgroups of SU?, and

there is a corresponding tower of fibrations

P 2
?

// SU?

��
(P 2
?P

1
? )/P 2

?
// SU?/P 2

?

��
P 0
?

// SU?/(P 2
?P

1
? )

��
SU?/P?

. (4.5)

The four vector-valued functions B(1) → C4 given by v 7→ vj (1 ≤ j ≤ 4) may be differentiated

to obtain one-forms ωij ∈ Ω1(B(1),C) which we express by

dvj = viω
i
j ,

so that ω := [ωij ] is the Maurer-Cartan form of SU?. Differentiating (4.1) will show that trace(ω) =
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0, while differentiating (4.2) reveals



ω4
1
−εω2

1
ω3

1
ω1

1

ω4
2
−εω2

2
ω3

2
ω1

2

ω4
3
−εω2

3
ω3

3
ω1

3

ω4
4
−εω2

4
ω3

4
ω1

4



+



ω4
1 ω4

2 ω4
3 ω4

4

−εω2
1 −εω2

2 −εω2
3 −εω2

4

ω3
1 ω3

2 ω3
3 ω3

4

ω1
1 ω1

2 ω1
3 ω1

4



= 0,

which is simply to say that ω takes values in the Lie algebra su? of SU?. These conditions show

that if we let

η0 := −Im(ω4
1), η1 := ω3

1 , η2 := ω4
2 , η3 := ω3

2 , τ := Re(ω1
1),

i% := 1
2 (3ω3

3 + ω2
2), iς := − 1

2 (3ω2
2 + ω3

3), iγ1 := ω3
4 , −iγ2 := ω1

2 , ψ := −Im(ω1
4),

then we can write

ω =



−τ − i 1
4%+ i 1

4 ς −iγ2 −iγ1 −iψ

−εη2 −i 1
4%− i 3

4 ς εη3 −εiγ2

η1 η3 i 3
4%+ i 1

4 ς iγ1

−iη0 η2 η1 τ − i 1
4%+ i 1

4 ς



, (4.6)
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and the SU? Maurer-Cartan equations dω + ω ∧ ω = 0 read

dη0 = −2τ ∧ η0 + iη1 ∧ η1 + εiη2 ∧ η2,

dη1 = −γ1 ∧ η0 − (τ + i%) ∧ η1 + εη3 ∧ η2,

dη2 = −γ2 ∧ η0 − (τ + iς) ∧ η2 + η3 ∧ η1,

dη3 = −iγ2 ∧ η1 − iγ1 ∧ η2 − (i%+ iς) ∧ η3,

dτ = −ψ ∧ η0 + i
2γ

1 ∧ η1 − i
2γ

1 ∧ η1 + ε i2γ
2 ∧ η2 − ε i2γ

2 ∧ η2,

id% = − 3i
2 γ

1 ∧ η1 − 3i
2 γ

1 ∧ η1 + ε i2γ
2 ∧ η2 + ε i2γ

2 ∧ η2 + εη3 ∧ η3,

idς = i
2γ

1 ∧ η1 + i
2γ

1 ∧ η1 − ε 3i
2 γ

2 ∧ η2 − ε 3i
2 γ

2 ∧ η2 + εη3 ∧ η3,

dγ1 = −ψ ∧ η1 + (τ − i%) ∧ γ1 − εγ2 ∧ η3,

dγ2 = −ψ ∧ η2 + (τ − iς) ∧ γ2 − γ1 ∧ η3,

dψ = −2ψ ∧ τ + iγ1 ∧ γ1 + εiγ2 ∧ γ2.

(4.7)

Observe that the equations (4.7) show

d(ψ − 2τ + η0) = (ψ − 2τ + η0) ∧ (η0 − ψ) + i(γ1 − η1) ∧ (γ1 − η1) + εi(γ2 − η2) ∧ (γ2 − η2),

d(γ1 − η1) = −(ψ − 2τ + η0) ∧ η1 + (γ1 − η1) ∧ η0 + (τ − i%) ∧ (γ1 − η1)− ε(γ2 − η2) ∧ η3,

d(γ2 − η2) = −(ψ − 2τ + η0) ∧ η2 + (γ2 − η2) ∧ η0 + (τ − iς) ∧ (γ2 − η2)− (γ1 − η1) ∧ η3,

which proves that the Pfaffian system I := {ψ − 2τ + η0, γ1 − η1, γ2 − η2, γ1 − η1, γ2 − η2} on

B(1) is Frobenius. We let BI denote the maximal integral manifold of I that contains v, with

ι : BI ↪→ B(1) as the inclusion. Then ω ∈ Ω1(B(1), su?) pulls back to

ι∗ω = ι∗



−τ − i 1
4%+ i 1

4 ς −iη2 −iη1 −i(2τ − η0)

−εη2 −i 1
4%− i 3

4 ς εη3 −εiη2

η1 η3 i 3
4%+ i 1

4 ς iη1

−iη0 η2 η1 τ − i 1
4%+ i 1

4 ς



∈ Ω1(BI , su?),
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and in particular on BI we have

ι∗dω + ι∗ω ∧ ι∗ω = 0. (4.8)

Moreover, when restricted to the fibers of π|BI : BI →M? (where the pullbacks of the η’s vanish),

(4.8) is exactly the Maurer-Cartan equations of the abelian subgroup P 0
? ⊂ SU?. By a theorem

of E. Cartan ([IL03, Thm 1.6.10]), there exist local lifts BI → SU? by which the fibers of BI are

diffeomorphic to P 0
? , and the fibration

P 0
?

// BI

��
M?

corresponds to the lowest level of the tower (4.5).

Using our identifications B(1) ∼= SU? and BI ∼= SU?/(P
2
?P

1
? ), we see that B(1) fibers over

BI as the P 2
?P

1
? -orbits of Hermitian frames in BI . We therefore identify an intermediate bundle

B ∼= SU?/P
2
? as the (P 2

?P
1
? )/P 2

? -orbits (P 2
? is normal in P 2

?P
1
? ). The significance of B is that it

corresponds to the bundle B4 constructed in §3 when M = M?.

4.2 Bianchi Identities, Fundamental Invariants

We return to the bundle π : B
(1)
4 →M as in §3. The coframing constructed therein is interpreted

as a parallelism ω ∈ Ω1(B
(1)
4 , su?) by writing ω as in (4.6). The structure equations (3.71) on B

(1)
4

are now summarized

dω = −ω ∧ ω + C

where the curvature tensor C ∈ Ω2(B
(1)
4 , su?) may be written

C =



C1
1 −iC1

2 −iC
3

4 −iC1
4

−εF 2
η2 ∧ η1 C2

2 εC
3

2 −εiC1

2

F 1η1 ∧ η2 C3
2 C3

3 iC3
4

0 F 2η2 ∧ η1 F
1
η1 ∧ η2 C1

1


, (4.9)

for Cij ∈ Ω2(B
(1)
4 ,C) given by
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C3
2 = T 3

1
η1 ∧ η0 + T 3

2
η2 ∧ η0 + F 3

1 η
2 ∧ η1 + F 3

2 η
1 ∧ η2,

C1
1 = 1

4 (Q1
1
−Q2

1
)η0 ∧ η1 + 1

4 (Q1
2
−Q2

2
)η0 ∧ η2 + 1

4 (Q
1

1 −Q
2

1)η1 ∧ η0 + 1
4 (Q

1

2 −Q
2

2)η2 ∧ η0

+ 1
2F

1F 2η1 ∧ η2 − 1
2F

1
F

2
η1 ∧ η2 + 1

2 |F
1|2η2 ∧ η2 − 1

2 |F
2|2η1 ∧ η1

+ 1
4 (R− S)η1 ∧ η2 + 1

4 (R− S)η2 ∧ η1,

C2
2 = 1

4 (Q1
1

+ 3Q2
1
)η0 ∧ η1 + 1

4 (Q1
2

+ 3Q2
2
)η0 ∧ η2 + 1

4 (Q
1

1 + 3Q
2

1)η1 ∧ η0 + 1
4 (Q

1

2 + 3Q
2

2)η2 ∧ η0

− 1
2F

1F 2η1 ∧ η2 + 1
2F

1
F

2
η1 ∧ η2 − 1

2 |F
1|2η2 ∧ η2 + 1

2 |F
2|2η1 ∧ η1

+ 1
4 (R+ 3S)η1 ∧ η2 + 1

4 (R+ 3S)η2 ∧ η1,

C3
3 = − 1

4 (3Q1
1

+Q2
1
)η0 ∧ η1 − 1

4 (3Q1
2

+Q2
2
)η0 ∧ η2 + 1

4 (3Q
1

1 +Q
2

1)η0 ∧ η1 + 1
4 (3Q

1

2 +Q
2

2)η0 ∧ η2

− 1
2F

1F 2η1 ∧ η2 + 1
2F

1
F

2
η1 ∧ η2 − 1

2 |F
1|2η2 ∧ η2 + 1

2 |F
2|2η1 ∧ η1

− 1
4 (3R+ S)η1 ∧ η2 − 1

4 (3R+ S)η2 ∧ η1,

C1
2 = iF 3

1 γ
2 ∧ η0 − F 2γ1 ∧ η2 + F 2γ2 ∧ η1 − T 3

2
η2 ∧ η1 + iT 3

2
η3 ∧ η0

+ (P 2
01
η1 + ip0η

2 + P 2
02
η2 + i(Q

1

1 +Q
2

1)η3) ∧ η0 + (P 2
10η

0 + P 2
12
η2) ∧ η1

+ (Q2
1
η1 −Q2

1η
1 +Q2

2
η2) ∧ η2,

C3
4 = iF 3

2 γ
1 ∧ η0 + F 1γ1 ∧ η2 − F 1γ2 ∧ η1 − εT 3

1
η1 ∧ η2 + εiT 3

1
η3 ∧ η0

+ (ip0η
1 + P 1

01
η1 + P 1

02
η2 + i(Q

1

2 +Q
2

2)η3) ∧ η0 + (P 1
20η

0 + P 1
21
η1) ∧ η2

+ (Q1
1
η1 +Q1

2
η2 −Q1

2η
2) ∧ η1,

C1
4 = (O1η

1 +O1η
1 +O2η

2 +O2η
2 +O3η

3 +O3η
3) ∧ η0 − 1

2 (Q
1

1 +Q
2

1 + iF
3

1F
2)γ1 ∧ η0

− 1
2 (Q

2

2 +Q
1

2 + iF 1F
3

2)γ2 ∧ η0 − 1
2 (Q1

1
+Q2

1
− iF 3

1F
2
)γ1 ∧ η0 − 1

2 (Q2
2

+Q1
2
− iF

1
F 3

2 )γ2 ∧ η0

+ i
2 (P 1

02
− εP 2

01
)η1 ∧ η2 + i

2 (P
1

02 − εP
2

01)η2 ∧ η1 + i
2 (P 1

20 + εP
2

10)η2 ∧ η1
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+ i
2 (εP 2

10 + P
1

20)η1 ∧ η2 + ε 1
2 (Q1

1
+Q2

1
)η3 ∧ η2 + ε 1

2 (Q
1

1 +Q
2

1)η3 ∧ η2 + 1
2 (Q

1

2 +Q
2

2)η3 ∧ η1

+ 1
2 (Q1

2
+Q2

2
)η3 ∧ η1 + 1

2F
3

2γ
1 ∧ η1 + 1

2F
3
2 γ

1 ∧ η1 + ε 1
2F

3

1γ
2 ∧ η2 + ε 1

2F
3
1 γ

2 ∧ η2

+ ε 1
2T

3

1η
3 ∧ η1 + ε 1

2T
3
1
η3 ∧ η1 + ε 1

2T
3

2η
3 ∧ η2 + ε 1

2T
3
2
η3 ∧ η2.

The coefficients which appear at lowest order are F 1, F 2. We find how they vary on B
(1)
4 by

differentiating the structure equations

0 = d(dη1)

= (dF 1 − F 1(τ − 2i%+ iς) + εF
2
η3 + εF 3

2 η
2 −Rη1 − P 1

21
η0) ∧ η1 ∧ η2,

and similarly,

0 = d(dη2)

= (dF 2 − F 2(τ + i%− 2iς) + F
1
η3 + F 3

1 η
1 − Sη2 − P 2

12
η0) ∧ η2 ∧ η1.

Therefore, for some functions f1
1
, f1

2 , f
2
1 , f

2
2
∈ C∞(B

(1)
4 ,C) we can write

dF 1 = F 1(τ − 2i%+ iς)− εF 2
η3 − εF 3

2 η
2 +Rη1 + P 1

21
η0 + f1

1
η1 + f1

2 η
2,

dF 2 = F 2(τ + i%− 2iς)− F 1
η3 − F 3

1 η
1 + Sη2 + P 2

12
η0 + f2

1 η
1 + f2

2
η2.

(4.10)

Recall ([IL03, Prop B.3.3]) that a form α ∈ Ω•(B
(1)
4 ,C) is π-basic if and only if α and dα are

π-semibasic. We consider the R-valued semibasic forms

|F 1|2η0, |F 2|2η0, (4.11)

and use (4.10) to calculate

d(|F 1|2η0) = −(F
1
R+ f

1

1F
1)η0 ∧ η1 − (F 1R+ f1

1
F

1
)η0 ∧ η1 + i|F 1|2η1 ∧ η1 + εF

1
F

2
η0 ∧ η3

− (F
1
f1

2 − εF
3

2F
1)η0 ∧ η2 − (F 1f

1

2 − εF 3
2F

1
)η0 ∧ η2 + εi|F 1|2η2 ∧ η2 + εF 1F 2η0 ∧ η3,

d(|F 2|2η0) = −(F
2
S + f

2

1F
2)η0 ∧ η2 − (F 2S + f2

2
F

2
)η0 ∧ η2 + i|F 2|2η1 ∧ η1 + εF

1
F

2
η0 ∧ η3

− (F
2
f2

1 − εF
3

1F
2)η0 ∧ η1 − (F 2f

2

1 − εF 3
1F

2
)η0 ∧ η1 + εi|F 2|2η2 ∧ η2 + εF 1F 2η0 ∧ η3.
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These are semibasic as well, so we’ve shown that the one-forms (4.11) on B
(1)
4 are the π-pullbacks

of well-defined invariants on M .

Let us make a few more observations about the equations (4.10). First, they show that if F 1 or

F 2 is locally constant on B
(1)
4 , then they must locally vanish. Second, we see that if either of F 1,

F 2 vanishes identically, the other must as well. By the same token, we will have

F 3
1 = F 3

2 = R = S = P 1
21

= P 2
12

= 0 (4.12)

in this case. In fact, if either of F 1, F 2 = 0, we will show that every coefficient function in the

curvature tensor C must vanish too. This will follow by differentiating more of the structure

equations. We revisit

0 = d2η3

= (dT 3
1 − T

3
1 (3τ − 2i%− iς)− F 3

2 γ
2 − (Q1

1 +Q2
1)η

3 − iP 2
01η

1) ∧ η1 ∧ η0

+ (dT 3
2 − T

3
2 (3τ − i%− 2iς)− F 3

1 γ
1 − (Q1

2 +Q2
2)η

3 − iP 1
02η

2) ∧ η2 ∧ η0

+ (dF 3
1 − 2F 3

1 (τ − iς) + 2iF 2γ1 − (R+ S)η3 + (i(Q2
2 −Q

1
2)− F

3
2 F

1
)η2 − (F 3

2 F
2 + 2iT 3

2 )η
1) ∧ η2 ∧ η1

+ (dF 3
2 − 2F 3

2 (τ − i%) + 2iF 1γ2 − (R+ S)η3 + (i(Q1
1 −Q

2
1)− F

3
1 F

2
)η1 − (F 3

1 F
1 + ε2iT 3

1 )η
2) ∧ η1 ∧ η2

+ (T 3
2 F

2 − iP 1
01)η

2 ∧ η1 ∧ η0 + (T 3
1 F

1 − iP 2
02)η

1 ∧ η2 ∧ η0.
(4.13)

Reducing (4.13) by η0 and plugging in F 3
1 = F 3

2 = 0 implies T 3
1

= T 3
2

= 0 and Q1
1

= Q2
1
, Q2

2
= Q1

2
.

Then, returning to the unreduced (4.13) and setting T 3
1

= T 3
2

= 0 will show

T 3
1

= T 3
2

= Q1
1

= Q1
2

= Q2
1

= Q2
2

= P 1
01

= P 1
02

= P 2
01

= P 2
02

= 0. (4.14)

We assume that we have (4.12) and (4.14) as we now differentiate id% and idς;

0 = d(id%)

= −3p0η
0 ∧ η1 ∧ η1 + εp0η

0 ∧ η2 ∧ η2

+ i
2 (εP 2

10 + 3P
1

20)η0 ∧ η1 ∧ η2 − i
2 (εP

2

10 + 3P 1
20)η0 ∧ η2 ∧ η1,
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and

0 = d(idς)

= p0η
0 ∧ η1 ∧ η1 − ε3p0η

0 ∧ η2 ∧ η2

− i
2 (ε3P 2

10 + P
1

20)η0 ∧ η1 ∧ η2 + i
2 (ε3P

2

10 + P 1
20)η0 ∧ η2 ∧ η1,

which together demonstrate

p0 = P 1
20 = P 2

10 = 0. (4.15)

Finally, we simply state that differentiating dγ1 and dγ2 will now show

O1 = O2 = O3 = 0. (4.16)

By (4.12),(4.14),(4.15), and (4.16), we have shown that C = 0 when one of (4.11) vanishes. In

this case, the structure equations of M are exactly the Maurer-Cartan equations (4.7), and M is

locally CR-equivalent to the homogeneous model M?.

4.3 Equivariance

Let us establish some general definitions which we will use to interpret the bundles π̂ : B
(1)
4 → B4

and π : B
(1)
4 →M constructed in §3. A reference for this material is [ČS09]. Let G be a Lie group

with Lie algebra g, H ⊂ G a Lie subgroup with Lie algebra h ⊂ g, and exp : h→ H the exponential

map. For each g ∈ G, G acts on itself isomorphically by conjugation a 7→ gag−1 ∀a ∈ G, which

induces the adjoint representation Adg : g→ g acting automorphically on g. By restriction of this

adjoint action, g is a representation of H as well.

Suppose we have a manifold M and a principal bundle π : B →M with structure group H. For

h ∈ H, we let Rh : B → B denote the right principal action of h on the fibers of B. In particular,

the vertical bundle kerπ∗ ⊂ TB is trivialized by fundamental vector fields ζX associated to X ∈ h,

where the value at u ∈ B of ζX is d
dt

∣∣
t=0

Rexp(tX)(u). The bundle π : B → M defines a Cartan

geometry of type (G,H) if it admits a Cartan connection:

Definition 4.1 A Cartan connection is a g-valued one form ω ∈ Ω1(B, g) which satisfies:

• ω : TuB → g is a linear isomorphism for every u ∈ B,
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• ω(ζX) = X for every X ∈ h,

• R∗hω = Adh−1 ◦ ω for every h ∈ H.

The purpose of this section is to prove the following

Proposition 4.2 For B = B
(1)
4 and G = SU?, the bundles π̂ : B

(1)
4 → B4 and π : B

(1)
4 → M are

principal bundles with structure groups isomorphic to H = P 2
? and H = P?, respectively – c.f. §4.1.

The su?-valued parallelism ω constructed in the previous section defines a Cartan connection for

the former bundle, but not the latter.

By construction, ω satisfies the first property of a Cartan connection, and the fundamental

vector fields are spanned by vertical vector fields dual to the pseudoconnection forms that are

vertical for π̂ or π, so it remains to determine if ω satisfies the final, equivariancy condition. In the

process, we confirm the first statement of the proposition when we realize a local trivialization of

the bundle π : B
(1)
4 →M via those of the bundles π̂ : B

(1)
4 → B4 and π : B4 →M .

Let g4 be the Lie algebra of G4. We know that G4 ⊂ GL(V ), so g4 ⊂ V ⊗ V ∗ and we

can define g
(1)
4 to be the kernel in g4 ⊗ V ∗ of the skew-symmetrization map V ⊗ V ∗ ⊗ V ∗ →

V ⊗ Λ2V ∗. This abelian group parameterizes the ambiguity in the pseudoconnection forms on B4

(c.f. [BGG03, §3.1.2]). In particular, if we write η ∈ Ω1(B4, V ) for the tautological form on B4 and

use underlines to indicate a coframing of B4 which satisfies the structure equations (3.47), we have

a local trivialization B
(1)
4
∼= g

(1)
4 ×B4 as all coframings of B4 which satisfy the structure equations:



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

y 0 0 0 0 0 1 0 0

0 y 0 0 0 0 0 1 0

0 0 y 0 0 0 0 0 1





η0

η1

η2

η3

%

ς

τ

γ1

γ2



. (4.17)

We abbreviate the coframing (4.17) by ηy ∈ B(1)
4 , and we let η+ denote the column vector (3.49)
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of tautological forms on B
(1)
4 . With this notation we can concisely say

η+ = π̂∗ηy.

For fixed y̌ ∈ R, let ǧ ∈ g
(1)
4 be the group element represented by the matrix (4.17) where the fiber

coordinate y ∈ C∞(B
(1)
4 ) equals y̌. The right principal g

(1)
4 -action Rǧ : B

(1)
4 → B

(1)
4 is simply given

by matrix multiplication

Rǧ : ηy 7→ ǧ−1ηy = ηy−y̌.

Thus, the pullback R∗ǧ : T ∗ηy−y̌B
(1)
4 → T ∗ηyB

(1)
4 of the tautological forms along this principal action

is also given by matrix multiplication

R∗ǧη+ = ǧ−1η+.

More explicitly,

R∗ǧ



η0

η1

η2

η3

%

ς

τ

γ1

γ2



=



η0

η1

η2

η3

%

ς

τ − y̌η0

γ1 − y̌η1

γ2 − y̌η2



. (4.18)

It remains to determine R∗ǧψ, for which we enlist the help of the structure equations (3.71) of

B
(1)
4 . We differentiate the equation

R∗ǧ(τ) = τ − y̌η0
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and use (4.18) to conclude

−R∗ǧ(ψ) ∧ η0 = −(ψ − 2y̌τ) ∧ η0,

whence we see that

R∗ǧ(ψ) ≡ ψ − 2y̌τ mod {η0}.

Let us therefore write

R∗ǧ(ψ) = ψ − 2y̌τ + aη0

for some a ∈ R and differentiate again, this time reducing by η0, η2, η3, η2, η3 to get

0 ≡ 1
2 (R∗ǧ(F

3

2)− F 3

2)γ1 ∧ η1 + 1
2 (R∗ǧ(F

3

2)− F 3

2)γ1 ∧ η1 − i(a− y̌2)η1 ∧ η1

mod {η0, η2, η3, η2, η3}.

Thus we conclude

R∗ǧ(ψ) = ψ − 2y̌τ + y̌2η0,

which along with (4.18) shows

R∗ǧω =



−(τ − y̌η0)− i 1
4%+ i 1

4 ς −i(γ2 − y̌η2) −i(γ1 − y̌η1) −i(ψ − 2y̌τ + y̌2η0)

−εη2 −i 1
4%− i 3

4 ς εη3 −εi(γ2 − y̌η2)

η1 η3 i 3
4%+ i 1

4 ς i(γ1 − y̌η1)

−iη0 η2 η1 (τ − y̌η0)− i 1
4%+ i 1

4 ς



.

(4.19)

It is clear that g
(1)
4 is isomorphic to P 2

? as they are both one-dimensional, abelian Lie groups.
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We formally define an isomorphism ϕ : g
(1)
4 → P 2

? by mapping the element represented by the

inverse of the matrix (4.17) to the P 2
? matrix in (4.4). In particular,

ϕ(ǧ−1) =



1 0 0 iy̌

0 1 0 0

0 0 1 0

0 0 0 1


,

so it is straightforward to check that Adϕ(ǧ−1)◦ω agrees with the matrix (4.19). Thus we have shown

that π̂ : B
(1)
4 → B4 is a principal P 2

? -bundle for which ω ∈ Ω1(B
(1)
4 , su?) is a Cartan connection.

Recall that the bundle π : B4 → M from §3.4 is locally trivialized as B4
∼= G4 ×M by fixing

a 4-adapted coframing θ1 of M . This trivialization parameterizes local 4-adapted coframings by

g−1θ1 where g−1 is the matrix (3.45). Furthermore, the tautological forms on B4 have the local

expression



η0

η1

η2

η3


=



t2 0 0 0

c1 teir 0 0

c2 0 teis 0

i
t2 c

1c2 i
te

irc2 i
te

isc1 ei(r+s)





π∗θ0
1

π∗θ1
1

π∗θ2
1

π∗θ3
1


;

r, s, 0 6= t ∈ C∞(B4);

c1, c2 ∈ C∞(B4,C),

As such, the coframing ηy of B4 in (4.17) above may be expanded



t2 0 0 0 0 0 0 0 0

c1 teir 0 0 0 0 0 0 0

c2 0 teis 0 0 0 0 0 0

i
t2 c

1c2 i
te

irc2 i
te

isc1 ei(r+s) 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

yt2 0 0 0 0 0 1 0 0

yc1 yteir 0 0 0 0 0 1 0

yc2 0 yteis 0 0 0 0 0 1





π∗θ0
1

π∗θ1
1

π∗θ2
1

π∗θ3
1

%

ς

τ

γ1

γ2



, (4.20)

and this defines a local trivialization of the bundle π : B
(1)
4 → M as B

(1)
4
∼= G

(1)
4 ×M where the
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structure group G
(1)
4
∼= g

(1)
4 × G4 is parametrized as shown. We extend the isomorphism ϕ above

to an isomorphism G
(1)
4 → P? by mapping the inverse of the matrix (4.20) to the matrix (4.3). In

this way we realize π : B
(1)
4 →M as a principal P?-bundle over M .

We need not attempt to verify the equivariancy condition on this bundle; ω cannot be a Cartan

connection for π : B
(1)
4 → M since the curvature tensor C given by (4.9) is not π-semibasic; see

[ČS09, Lem 1.5.1].

4.4 A Non-Flat Example

Recall from §4.2 that a necessary and sufficient condition for a 2-non-degenerate CR manifold

M to be locally CR equivalent to the homogeneous model M? is that the coefficients F 1, F 2 of

the fundamental invariants (4.11) vanish. We saw that this implies the curvature tensor C as in

(4.9) is trivial, and such M is therefore called flat. To demonstrate the existence of non-flat M ,

we consider C4 with complex coordinates {zi, zi}4i=1, and let M be the hypersurface given by the

level set ρ−1(0) of a smooth function ρ : C4 → R. In this setting, we can take the contact form

θ0 ∈ Ω1(M) to be

θ0 := −i∂ρ = −i
∂ρ

∂zi
dzi. (4.21)

After a change of coordinates if necessary, the equation ρ = 0 may be written

F (z1, z2, z3, z1, z2, z3) = z4 + z4,

for F : C3 → R, and the forms dzj ,dzj (1 ≤ j ≤ 3) complete θ0 to a local coframing of M . In the

simplified case that F is given by

F (z1, z2, z3, z1, z2, z3) = f(z1 + z1, z2 + z2, z3 + z3)

for some f : R3 → R, we have

Fj :=
∂F

∂zj
=
∂F

∂zj
=: Fj ,
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and we denote their common expression by fj . Thus, (4.21) may be written

θ0 = −ifjdz
j + idz4. (4.22)

Second order partial derivatives are indicated by two subscripts, so that differentiating (4.22)

gives the following matrix representation of the Levi form of M with respect to the coframing

{dzj ,dzj}3j=1:


f11 f12 f13

f12 f22 f23

f13 f23 f33

 .

If we impose the condition that f12 = 0 while all other fjk are nonvanishing, then Levi-

degeneracy is equivalent to the partial differential equation

0 = det(fjk) = f11f22f33 − f11(f23)2 − f22(f13)2, (4.23)

which is satisfied, for example, when

(f23)2 = 1
2f22f33, (f13)2 = 1

2f11f33. (4.24)

We further assume that fjj > 0 for j = 1, 2, 3, so that when (4.24) holds, fk3 = ±
√

1
2fkkf33 for

k = 1, 2, and the coframing given by



θ0

θ1

θ2

θ3


=



1 0 0 0

0
√
f11 0 ±

√
1
2f33

0 0
√
f22 ±

√
1
2f33

0 0 0 1





θ0

dz1

dz2

dz3


(4.25)

diagonalizes the Levi form,

dθ0 = iθ1 ∧ θ1 + iθ2 ∧ θ2.

We will compute the structure equations for a concrete example: let x1, x2, x3 be coordinates
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for R3 and take R3
+ to be the subspace where all coordinates are strictly positive. Define

f(x1, x2, x3) = −x3 ln

(
x1x2

(x3)2

)
. (4.26)

In the sequel, we will continue to denote xj = zj + zj in order to compactify notation. Thus, (4.22)

is given by

θ0 = i
x3

x1
dz1 + i

x3

x2
dz2 + i

(
ln

(
x1x2

(x3)2

)
− 2

)
dz3 + idz4,

and our first approximation (4.25) at an adapted coframing is



θ0

θ1

θ2

θ3


=



1 0 0 0

0
√
x3

x1
0 − 1√

x3

0 0
√
x3

x2
− 1√

x3

0 0 0 1





θ0

dz1

dz2

dz3


. (4.27)

We differentiate to determine the structure equations so far,

dθ0 = iθ1 ∧ θ1 + iθ2 ∧ θ2,

dθ1 = 1
x3
θ3 ∧ θ1 + 1√

x3
θ1 ∧ θ1 − 1

2x3
θ1 ∧ θ3 + 1

2x3
θ1 ∧ θ3,

dθ2 = 1
x3
θ3 ∧ θ2 + 1√

x3
θ2 ∧ θ2 − 1

2x3
θ2 ∧ θ3 + 1

2x3
θ2 ∧ θ3,

dθ3 = 0.

(4.28)

Recall that the structure group G0 of all 0-adapted coframings is parametrized by (3.3), and that

the subgroup G1 which preserves 1-adaptation is given by the additional conditions (3.13). The

structure equations (4.28) show that our coframing is 1-adapted as in (3.12), and we maintain this

property when we submit it to a G1-transformation to get a new coframing



η0

θ1′

θ2′

θ3′


=



2 0 0 0

0 1 i 0

0 1 −i 0

0 0 0 1
x3





θ0

θ1

θ2

θ3


. (4.29)
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The new structure equations are

dη0 = iθ1′ ∧ θ1
′
+ iθ2′ ∧ θ2

′
,

dθ1′ = θ3′ ∧ θ2
′
+ 1+i

4
√
x3
θ1′ ∧ θ1

′
+ 1−i

4
√
x3
θ1′ ∧ θ2

′
+ 1−i

4
√
x3
θ2′ ∧ θ1

′
+ 1+i

4
√
x3
θ2′ ∧ θ2

′

+ 1
2θ

1′ ∧ (θ3
′
− θ3′),

dθ2′ = θ3′ ∧ θ1
′
+ 1−i

4
√
x3
θ1′ ∧ θ1

′
+ 1+i

4
√
x3
θ1′ ∧ θ2

′
+ 1+i

4
√
x3
θ2′ ∧ θ1

′
+ 1−i

4
√
x3
θ2′ ∧ θ2

′

+ 1
2θ

2′ ∧ (θ3
′
− θ3′),

dθ3′ = θ3′ ∧ θ3
′
,

(4.30)

so our coframing (4.29) is now 2-adapted according to (3.19). The structure group G2 of the bundle

of 2-adapted coframes is parametrized by (3.20), so our 2-adaptation is preserved when we apply a

G2 transformation to get a new coframing



η0

η1

η2

θ3′′


=



1 0 0 0

c1 1 0 0

c2 0 1 0

0 b1 b2 1





η0

θ1′

θ2′

θ3′


, (4.31)

for some c1, c2, b1, b2 ∈ C∞(M,C). The effect of this transformation on the first three structure

equations may be written

dη0 = iη1 ∧ η1 + iη2 ∧ η2 + iη0 ∧ (c1η1 − c1η1 + c2η2 − c2η2),

dη1 ≡ η3 ∧ η2 + b2
2 η

1 ∧ η2 − 2
√
x3(b1−2ic1)−1−i

4
√
x3

η1 ∧ η1 − 2
√
x3(2b1+b2)−1+i

4
√
x3

η1 ∧ η2

+ 1−i
4
√
x3
η2 ∧ η1 +

4
√
x3(ic1−b2)+1+i

4
√
x3

η2 ∧ η2 + 1
2η

1 ∧ (θ3
′′
− θ3′′) mod {η0},

dη2 ≡ η3 ∧ η1 − b1
2 η

1 ∧ η2 +
4
√
x3(ic2−b1)+1−i

4
√
x3

η1 ∧ η1 − 2
√
x3(b1+2b2)−1−i

4
√
x3

η2 ∧ η1

+ 1+i
4
√
x3
η1 ∧ η2 − 2

√
x3(b2−2ic2)−1+i

4
√
x3

η2 ∧ η2 + 1
2η

2 ∧ (θ3
′′
− θ3′′) mod {η0}.

(4.32)

We choose functions b, c that eliminate the coefficients of η1 ∧ η1 and η2 ∧ η2 in the identities for

dη1,dη2 in (4.32). Therefore, set

c1 :=
−1 + i

4
√
x3

, c2 :=
1 + i

4
√
x3
, b1 = b2 = 0.
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Now we have

dη0 = iη1 ∧ η1 + iη2 ∧ η2 + 1
4
√
x3
η0 ∧ ((1− i)η1 + (1 + i)η1 + (1 + i)η2 + (1− i)η2),

dη1 = η3 ∧ η2 + 1−i
4
√
x3
η1 ∧ η2 + 1−i

4
√
x3
η2 ∧ η1 + 1

2η
1 ∧ (θ3

′′
− θ3′′)− 1

8x3
η0 ∧ (iη1 + η1 + η2 + iη2),

dη2 = η3 ∧ η1 + 1+i
4
√
x3
η2 ∧ η1 + 1+i

4
√
x3
η1 ∧ η2 + 1

2η
2 ∧ (θ3

′′
− θ3′′) + 1

8x3
η0 ∧ (η1 − iη1 − iη2 + η2),

dθ3′′ = θ3′′ ∧ θ3
′′
.

(4.33)

Finally, we apply a G3-transformation – see (3.34) – to get



η0

η1

η2

η3


=



1 0 0 0

0 1 0 0

0 0 1 0

c3 0 0 1





η0

η1

η2

θ3′′


, (4.34)

which effects the following alteration of the latter three structure equations (4.33)

dη1 = η3 ∧ η2 + 1−i
4
√
x3
η1 ∧ η2 + 1−i

4
√
x3
η2 ∧ η1 + 1

2η
1 ∧ (θ3

′′
− θ3′′)

+ 1
8x3

η0 ∧ ((4x3(c3 − c3)− i)η1 − η1 − η2 − (8x3c
3 + i)η2),

dη2 = η3 ∧ η1 + 1+i
4
√
x3
η2 ∧ η1 + 1+i

4
√
x3
η1 ∧ η2 + 1

2η
2 ∧ (θ3

′′
− θ3′′)

+ 1
8x3

η0 ∧ (η1 − (8x3c
3 + i)η1 + (4x3(c3 − c3)− i)η2 + η2),

dη3 ≡ η3 ∧ η3 + ic3η1 ∧ η1 + ic3η2 ∧ η2 mod {η0}.

(4.35)

If we take

γ1 ≡ 1
8x3

((4x3(c3 − c3)− i)η1 − η1 − η2 − (8x3c
3 + i)η2) mod {η0},

γ2 ≡ 1
8x3

(η1 − (8x3c
3 + i)η1 + (4x3(c3 − c3)− i)η2 + η2) mod {η0},

then we can equivalently express (4.35) as

dη1 = −γ1 ∧ η0 + η3 ∧ η2 + 1−i
4
√
x3
η1 ∧ η2 + 1−i

4
√
x3
η2 ∧ η1 + 1

2η
1 ∧ (θ3

′′
− θ3′′),

dη2 = −γ2 ∧ η0 + η3 ∧ η1 + 1+i
4
√
x3
η2 ∧ η1 + 1+i

4
√
x3
η1 ∧ η2 + 1

2η
2 ∧ (θ3

′′
− θ3′′),

dη3 ≡ −iγ2 ∧ η1 − iγ1 ∧ η2 + η3 ∧ η3 + i16x3c
3−1

8x3
(η1 ∧ η1 + η2 ∧ η2)

− i
8x3

η1 ∧ η2 + i
8x3

η2 ∧ η1 mod {η0}.
(4.36)
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We select c3 to eliminate the η1 ∧ η1 and η2 ∧ η2 terms in the identity (4.36) for dη3, viz,

c3 := − i

16x3
.

Now the forms η0, η1, η2, η3 on M are completely determined. We summarize in terms of our

C4 coordinates z1, z2, z3, z4, whose real parts we assume to be strictly positive (except for z4),

η0 = 2i z
3+z3

z1+z1
dz1 + 2i z

3+z3

z2+z2
dz2 + 2i

(
ln
(

(z1+z1)(z2+z2)

(z3+z3)2

)
− 2
)

dz3 + 2idz4,

η1 = (1−i)
√
z3+z3

2(z1+z1)
dz1 − (1−i)

√
z3+z3

2(z2+z2)
dz2 − (1+i)

2
√
z3+z3

ln
(

(z1+z1)(z2+z2)

(z3+z3)2

)
dz3 − 1+i

2
√
z3+z3

dz4,

η2 = (1+i)
√
z3+z3

2(z1+z1)
dz1 − (1+i)

√
z3+z3

2(z2+z2)
dz2 − (1−i)

2
√
z3+z3

ln
(

(z1+z1)(z2+z2)

(z3+z3)2

)
dz3 − 1−i

2
√
z3+z3

dz4,

η3 = 1
8(z1+z1)

dz1 + 1
8(z2+z2)

dz2 +
6 + ln

(
(z1+z1)(z2+z2)

(z3+z3)2

)
8(z3 + z3)

dz3 + 1
8(z3+z3)

dz4.

The structure equations for these forms are

dη0 = iη1 ∧ η1 + iη2 ∧ η2 + 1
4
√
x3
η0 ∧ ((1− i)η1 + (1 + i)η1 + (1 + i)η2 + (1− i)η2),

dη1 = η3 ∧ η2 + 1−i
4
√
x3
η1 ∧ η2 + 1−i

4
√
x3
η2 ∧ η1 + 1

2η
1 ∧ (η3 − η3)− 1

16x3
η0 ∧ (iη1 + 2η1 + 2η2 + iη2),

dη2 = η3 ∧ η1 + 1+i
4
√
x3
η2 ∧ η1 + 1+i

4
√
x3
η1 ∧ η2 + 1

2η
2 ∧ (η3 − η3) + 1

16x3
η0 ∧ (2η1 − iη1 − iη2 + 2η2),

dη3 = 1
64(x3)3/2

((1 + i)η1 − (1− i)η1 − (1− i)η2 + (1 + i)η2) ∧ η0

+ 1
16x3

η1 ∧ η1 + 1
16x3

η2 ∧ η2 + η3 ∧ η3,

(4.37)

which shows that the coframing η0, η1, η2, η3 of M defines a section of the bundle B4 → M of

4-adapted coframes. If we denote the pullbacks along this section of the pseudoconnection forms
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on B4 by their same names, then we write

τ = 1
8
√
x3

((1− i)η1 + (1 + i)η1 + (1 + i)η2 + (1− i)η2),

i% = 1
2 (η3 − η3) + 1

8
√
x3

((1− i)η1 − (1 + i)η1 − (1 + i)η2 + (1− i)η2),

iς = 1
2 (η3 − η3)− 1

8
√
x3

((1− i)η1 − (1 + i)η1 − (1 + i)η2 + (1− i)η2),

γ1 = 1+i
64(x3)3/2

η0 − 1
16x3

(iη1 + 2η1 + 2η2 + iη2),

γ2 = 1−i
64(x3)3/2

η0 + 1
16x3

(2η1 − iη1 − iη2 + 2η2),

(4.38)

and the structure equations (4.37) may be written according to (3.47)

d



η0

η1

η2

η3


= −



2τ 0 0 0

γ1 τ + i% 0 0

γ2 0 τ + iς 0

0 iγ2 iγ1 i%+ iς


∧



η0

η1

η2

η3



+



iη1 ∧ η1 + iη2 ∧ η2

η3 ∧ η2 + F 1η1 ∧ η2

η3 ∧ η1 + F 2η2 ∧ η1

T 3
1
η1 ∧ η0 + T 3

2
η2 ∧ η0 + F 3

1 η
2 ∧ η1 + F 3

2 η
1 ∧ η2


,

for

F 1 = − 1− i

4
√
z3 + z3

, F 2 = − 1 + i

4
√
z3 + z3

, (4.39)

T 3
1

= − 1− i

64(z3 + z3)3/2
, T 3

2
=

1 + i

64(z3 + z3)3/2
, F 3

1 =
i

8(z3 + z3)
, F 3

2 = − i

8(z3 + z3)
.

In particular, the coefficients (4.39) of the fundamental invariants (4.11) are nonvanishing, so M is

not locally CR equivalent to the homogeneous model M?.

At this point, the forms η, %, ς, τ, γ on M are adapted to the B4 structure equations, so they

define a section of the bundle B
(1)
4 → M , and they are exactly the pullbacks along this section

of the tautological forms with the same names (3.49) on B
(1)
4 . Thus, to find the pullback of the

full parallelism ω ∈ Ω1(B
(1)
4 , su?) as in §4.2, it remains to find an expression for the pullback of ψ,
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which we will also call ψ. To accomplish this, we differentiate τ and γ1 according to the structure

equations (3.71). We begin with τ ,

dτ = i
2γ

1 ∧ η1 − i
2γ

1 ∧ η1 + i
2γ

2 ∧ η2 − i
2γ

2 ∧ η2

+
1

128(x3)3/2
η0 ∧ ((1 + i)η1 + (1− i)η1 − (1− i)η2 − (1 + i)η2),

so we see

ψ ≡ 1

128(x3)3/2
((1 + i)η1 + (1− i)η1 − (1− i)η2 − (1 + i)η2) mod {η0}.

To find the coefficient of η0 in the full expansion of ψ, one takes the real part of the coefficient of

η0 ∧ η1 in the expression

dγ1 − (τ − i%) ∧ γ1 + γ2 ∧ η3 − iF 3
2 γ

1 ∧ η0 − F 1γ1 ∧ η2 + F 1γ2 ∧ η1.

We simply state that the result of this calculation is

ψ =
1

128(z3 + z3)2
η0 +

1

128(z3 + z3)3/2
((1 + i)η1 + (1− i)η1 − (1− i)η2 − (1 + i)η2).

With this one-form in hand, the pullback of the parallelism ω to M is completely determined.
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5. CONCLUSION

The computational intensity of §3 reveals how formidable the challenge of classification in Levi-

degenerate CR geometry can be. In dimension seven alone, the equivalence problem remains open

with regard to those M for which C is not of conformal unitary type or rankCK = 2, though

homogeneous models may have been discovered in these cases ([San15]). Moreover, the question of

whether a Cartan geometry can be associated to the case we studied is also unresolved. Recall that

the Isaev-Zaitsev and Medori-Spiro solutions in dimension five differed in this respect, which is not

without precedent.

In Cartan’s celebrated “five variables” paper [Car10], the parallelism he constructs over a man-

ifold equipped with a generic distribution of growth vector (2,3,5) does not satisfy the equivariance

condition of Definition 4.1. However, Tanaka’s solution to the equivalence problem ([Tan70, Tan79])

for a much more general class of differential systems proved the existence of a canonical Cartan con-

nection for such a geometry. This discrepancy is attributable to the choices of torsion normalization

implemented in each construction (c.f. [Ste64, Ch VII Prop 2.1]).

The ingenuity of Tanaka’s procedure lies partially in its utilization of Lie algebra cohomology to

ensure that equivariancy is maintained in each stage of torsion normalization, though this comes at

the expense of hypotheses on the geometric structure which limit the procedure’s applicability. In

particular, Levi-degenerate geometries do not fall under Tanaka’s purview due to the fact that the

Levi kernel is integrable. However, in ongoing work with Igor Zelenko, we adapt Tanaka’s construc-

tion to generalize the known results in dimensions five and seven, and we anticipate some degree of

resolution to the question of when Cartan geometries can be constructed over 2-nondegenerate CR

manifolds.

Beyond 2-nondegeneracy, we hinted in §2.3 that Freeman’s work also characterizes higher nonde-

generacy conditions which have yet to be classified. Similarly, despite limited progress in low dimen-

sions ([SS00],[ČS02],[SS06]), equivalence problems abound for higher-codimensional CR structures.

It seems likely that CR geometry and the method of equivalence will continue to motivate each

other’s evolution as they have so far.
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[ČG02] Andreas Čap and A. Rod Gover. Tractor calculi for parabolic geometries. Trans. Amer.

Math. Soc., 354(4):1511–1548, 2002.
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