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ABSTRACT

Due to the exponential growth of the dimension of the space of tensors V1⊗· · ·⊗Vn,

any naive method of representing these tensors is intractable on a computer. In

practice, we consider feasible subspaces (subvarieties) which are defined to reduce

the storage cost and the computational complexity. In this thesis, we study two such

types of subvarieties: the third secant variety of the product of n projective spaces,

and tensor network states.

For the third secant variety of the product of n projective spaces, we determine

set-theoretic defining equations, and give an upper bound of the degrees of these

equations.

For tensor network states, we answer a question of L. Grasedyck that arose in

quantum information theory, showing that the limit of tensors in a space of tensor

network states need not be a tensor network state. We also give geometric descrip-

tions of spaces of tensor networks states corresponding to trees and loops.
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1. INTRODUCTION AND BACKGROUND

1.1 Motivation

Tensors are ubiquitous in mathematics and the sciences, and are especially im-

portant in algebraic statistics, biology, signal processing, and complexity theory

[15, 16, 24, 29, 35, 37]. For example, in scientific computation the problem of de-

termining the complexity of matrix multiplication can be viewed as decomposing a

particular tensor (the matrix multiplication operator) according to its rank [28, 29];

in statistics, the problem of recovering the mixing matrix and source vector from

the observation vector can be viewed as the symmetric tensor decomposition of the

associated cumulants [25, 29, 36, 42]; in signal processing, CP decomposition, block

term decomposition and other tensor decompositions are important [23, 27, 29]. In

the study of tensors, the rank and border rank of a tensor are the standard measures

of its complexity. Due to the geometric interpretations of rank and border rank, it

is natural to study the secant varieties of Segre varieties since equations for these

varieties produce tests for the border rank of a tensor. In practice, small secant va-

rieties of Segre varieties play an important role as they correspond to tensors of low

complexity. Another model defined to reduce the complexity of the spaces involved

is tensor network states in quantum information theory. In this thesis we study both

these models.

1.2 Equations for the secant varieties of Segre varieties

The study of equations for secant varieties of Segre varieties is a classical problem

in algebraic geometry, but these equations are still far from being understood [29].

Before exploring the known results of these equations, let us review the basic defini-

tions of rank, border rank and secant varieties of Segre varieties.
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Definition 1. A function f : A1× · · · ×An → C is multilinear if it is linear in each

factor Al. The space of such multilinear functions is denoted by A∗1 ⊗ · · · ⊗ A∗n and

called the tensor product of the vector spaces A∗1, . . . , A
∗
n. Elements T ∈ A∗1⊗· · ·⊗A∗n

are called tensors.

Definition 2. Given β ∈ A∗1, . . . , βn ∈ A∗n, define an element β1 ⊗ · · · ⊗ βn ∈

A∗1 ⊗ · · · ⊗ A∗n by β1 ⊗ · · · ⊗ βn(u1, . . . , un) = β1(u1) · · · βn(un) for any ui ∈ Ai. An

element of A∗1 ⊗ · · · ⊗ A∗n is said to have rank one if it is of the form β1 ⊗ · · · ⊗ βn

for some βi ∈ A∗i . The rank of a tensor T ∈ A1 ⊗ · · · ⊗ An, denoted by R(T ), is the

minimum number r such that T =
r∑

u=1

Zu with each Zu of rank one.

Definition 3. A tensor T has border rank r, denoted by R(T ), if it is a limit of

tensors of rank r but is not a limit of tensors of rank s for any s < r.

Remark 1. Note that R(T ) ≥ R(T ). If T ∈ A1⊗A2 is a matrix, then R(T ) = R(T ).

But this is not always true for T ∈ A1 ⊗ · · · ⊗ An when n ≥ 3. For example, let

T = a1⊗ b1⊗c1 +a1⊗ b1⊗c2 +a1⊗ b2⊗c1 +a2⊗ b1⊗c1 ∈ A⊗B⊗C. One can check

T has rank 3, but T = lim
t→0

1

t
[(t− 1)a1 ⊗ b1 ⊗ c1 + (a1 + ta2)⊗ (b1 + tb2)⊗ (c1 + tc2)],

hence R(T ) = 2.

Definition 4. Define the n-factor Segre variety to be the image of the map

Seg : PA1 × · · · × PAn → P(A1 ⊗ · · · ⊗ An)

([v1] . . . , [vn]) 7→ [v1 ⊗ · · · ⊗ vn]

Remark 2. Seg(PA1×PA2) is the set of rank one matrices, and Seg(PA1×· · ·×PAn)

is the set of rank one tensors.
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Definition 5. The join of two varieties Y, Z ∈ PV is

J(Y, Z) =
⋃

x∈Y,y∈Z,x6=y

P1
xy,

where P1
xy is the projective line through x and y.

Definition 6. The join of k varieties X1, . . . , Xk ⊂ PV is defined by induction to be

J(X1, . . . , Xk) = J(X1, J(X2, . . . , Xk)), and the k-th secant variety of Y is defined

to be the join of k copies of Y , σk(Y ) = J(Y, . . . , Y ).

Remark 3. σk(Seg(PA1 × PA2)) is the set of matrices with rank at most k, and

σk(Seg(PA1 × · · · × PAn)) is the set of tensors with border rank at most k.

It is clear that the ideal of Seg(PA1 × PA2) is generated by all the 2× 2 minors,

denoted by ∧2A∗1 ⊗ ∧2A∗2, and the ideal of σr(Seg(PA1 × PA2)) is generated by all

the (r + 1)× (r + 1) minors, denoted by ∧r+1A∗1 ⊗ ∧r+1A∗2.

Given W = A1⊗· · ·⊗An, define a flattening AI⊗AJ of W to be a decomposition

(Ai1 ⊗ · · · ⊗Aip)⊗ (Aip+1 ⊗ · · · ⊗Ain), where I = {i1, . . . , ip} and J = {ip+1, . . . , in},

I ∪ J = {1, . . . , n}, and I ∩ J = ∅. Since Seg(PA1× · · · ×PAn) can be embedded in

Seg(PAI×PAJ), then ∧2A∗I⊗∧2A∗J give equations for Seg(PA1×· · ·×PAn). It turns

out that Seg(PA1 × · · · × PAn) is ideal theoretically defined by all the 2× 2 minors

of flattenings, i.e. all ∧2A∗I ⊗ ∧2A∗J generate the ideal for Seg(PA1 × · · · × PAn).

Since σr(Seg(PA1×· · ·×PAn)) can be embedded in σr(Seg(PAI×PAJ)), ∧r+1A∗I⊗

∧r+1A∗J give equations for σr(Seg(PA1 × · · · × PAn)). When studying Bayesian

networks, Garcia, Stillman and Sturmfels conjectured that all the 3 × 3 minors of

flattenings give all the equations for σ2(Seg(PA1 × · · · × PAn)) [22]. Landsberg and

Manivel showed the set theoretic version of this conjecture is true [30], and Raicu

proved the ideal theoretic version is true [44]. For more history, see [3, 30,34,44].
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It turns out that minors of flattenings are not enough to define higher secant

varieties of Segre varieties. In 1983 Strassen discovered equations for σ3(Seg(PA1 ×

PA2×PA3)) beyond 4× 4 minors of flattenings [48]. Landsberg and Manivel proved

σ3(Seg(PA1 × PA2 × PA3)) is set theoretically defined by Strassen’s equations and

4 × 4 minors of flattenings [20, 31]. Landsberg and Weyman proved the ideal of

σ3(Seg(PA1×PA2×PA3)) is generated in degree 4 by the module which arises from

Strassen’s commutation condition [34].

For the fourth secant varieties of Segre varieties, Friedland showed σ4(Seg(PA1×

PA2 × PA3)) is the zero set of certain equations of degree 5, 9 and 16 [20]. Bates

and Oeding showed σ4(Seg(PA1 × PA2 × PA3)) is the zero set of certain equations

of degree 5, 6 and 9 by numerical methods [4]. Friedland and Gross gave this result

a computer-free proof [21].

For higher secant varieties of Segre varieties, for example σ6(P3× P3× P3), there

are no equations known. On the other hand, there are some qualitative descriptions of

equations of secant varieties of Segre varieties. Draisma and Kuttler proved that for

arbitrary fixed r, there is an uniform bound d(r) such that σr(Seg(PA1×· · ·×PAn))

is set theoretically defined by equations of degree at most d(r) for any n [17].

In this thesis, we determine set theoretic equations for the third secant variety

of the Segre product of n projective spaces, and from the proof of this statement

we derive an upper bound for the degrees of these equations. Given any partition

I ∪J ∪K = {1, . . . , n}, σ3(Seg(PA1×· · ·×PAn)) can be embedded in σ3(Seg(PAI×

PAJ ×PAK)), thus Strassen’s equations for all the partitions I ∪ J ∪K = {1, . . . , n}

and 4×4 minors for all the flattenings give us equations for σ3(Seg(PA1×· · ·×PAn)).

Our main result is [43]:

Theorem 1. σ3(Seg(PA1 × · · · × PAn)) is set theoretically defined by Strassen’s
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equations of all partitions I ∪J ∪K = {1, . . . , n} and all 4× 4 minors of flattenings.

Corollary 1. σ3(Seg(PA1 × · · · × PAn)) is set theoretically defined by Strassen’s

equations of degree 4 for the partitions {i} ∪ {j} ∪ {1, . . . , î, · · · , ĵ, · · · , n} and all

4× 4 minors of flattenings.

1.3 Tensor network states

Tensor network states are interesting models in physics defined to reduce the

complexity of the spaces involved. In physics, tensors describe states of quantum

mechanical systems. If a system has n particles, its state is an element of H1 ⊗

· · · ⊗ Hn with Hj Hilbert spaces. In numerical many-body physics, in particular

solid state physics, one wants to simulate quantum states of thousands of particles,

often arranged on a regular lattice (e.g., atoms in a crystal). Due to the exponential

growth of the dimension of H1 ⊗ · · · ⊗Hn with n, any naive method of representing

these tensors is intractable on a computer. Tensor network states were defined by

restricting to a subset of tensors that is physically reasonable, in the sense that

the corresponding spaces of tensors are only locally entangled because interactions

(entanglement) in the physical world appear to just happen locally. These spaces are

associated to graphs, i.e. for a fixed graph, we can associate complex vector spaces

to each vertex and edge, and define a corresponding tensor network state. More

precisely:

Let V1, . . . , Vn be complex vector spaces, let vi = dimVi. Let Γ be a graph with

n vertices vj, 1 ≤ j ≤ n, and m edges es, 1 ≤ s ≤ m, and let ~e = (e1, . . . , em) ∈ Nm.

Associate Vj to the vertex vj and an auxiliary vector space Es of dimension es to

the edge es. Make Γ into a directed graph. (The choice of directions will not effect

the end result.) Let V = V1 ⊗ · · · ⊗ Vn. For Γ, s ∈ e(j) means es is incident to vj,

s ∈ in(j) are the incoming edges and s ∈ out(j) the outgoing edges.
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Define a tensor network state TNS(Γ, ~e,V) to be:

TNS(Γ, ~e,V) := (1.1)

{T ∈ V | ∃Tj ∈ Vj ⊗ (⊗s∈in(j)Es)⊗ (⊗t∈out(j)E∗t ), T = Con(T1 ⊗ · · · ⊗ Tn)},

where Con is the contraction of all the Es’s with all the E∗s ’s.

Such spaces have been studied since the 1980’s, and go under different names:

tensor network states, finitely correlated states (FCS), valencebond solids (VBS),

matrix product states (MPS), projected entangled pairs states (PEPS), and multi-

scale entanglement renormalization ansatz states (MERA), see, e.g., [14, 18, 19, 26,

45,49] and the references therein. We will use the term tensor network states.

If Γ is a tree, then TNS(Γ, ~e,V) is closed [24]. Lars Grasedyck asked if every

tensor network state is Zariski closed. In this thesis, we give a counterexample and

show a tensor network state is not closed if the corresponding graph contains a cycle

whose vertices have non-subcritical dimensions. We also give geometric descriptions

of spaces of tensor networks states corresponding to trees and loops.

Grasedyck’s question has a surprising connection to the area of Geometric Com-

plexity Theory, in that the result is equivalent to the statement that the boundary

of the Mulmuley-Sohoni type variety associated to matrix multiplication is strictly

larger than the projections of matrix multiplication (and re-expressions of matrix

multiplication and its projections after changes of bases). Tensor Network States are

also related to graphical models in algebraic statistics [29].
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2. PRELIMINARIES

2.1 Dimensions of Secant Varieties of Segre Varieties

Terracini’s lemma is a fundamental tool to compute the dimension of a join

variety. Let Y, Z be projective varieties, and Ŷ , Ẑ be the cones over Y, Z.

Lemma 1 (Terracini’s lemma). Let (v, w) ∈ Ŷ × Ẑ be a general point, and [u] =

[v + w] ∈ J(Y, Z), then

T̂[u]J(Y, Z) = T̂[v]Y + T̂[w]Z,

where T̂[v]Y denotes the affine tangent space of Y at [v].

Definition 7. We call a variety X ⊂ Pn nondegenerate if it spans Pn, i.e. is not

contained in any hyperplane. If X ⊂ Pn is an irreducible nondegenerate variety whose

r-th secant variety σr(X) has dimension strictly less than min{r dimX+r−1, n}, we

say that X is defective, and define the defect δr(X) = r dimX + r− 1− dimσr(X).

Here we list some known results on the dimensions of secant varieties of Segre

varieties, for more results see [1, 8–11,13].

Theorem 2 ( [12]). Consider σr(Seg(Pa1−1 × · · · × Pan−1)), and assume an ≥∏n−1
i=1 ai −

∑n−1
i=1 ai − n+ 1.

1. If r ≤
∏n−1

i=1 ai −
∑n−1

i=1 ai − n + 1, then σr(Seg(Pa1−1 × · · · × Pan−1)) has the

expected dimension r(a1 + · · ·+ an − n+ 1)− 1;

2. If an > r ≥
∏n−1

i=1 ai −
∑n−1

i=1 ai − n+ 1, then σr(Seg(Pa1−1 × · · · × Pan−1)) has

defect δr = r2 − r(
∏n−1

i=1 ai −
∑n−1

i=1 ai − n+ 1);

3. If r ≥ min{a1, . . . , an}, then σr(Seg(Pa1−1 × · · · × Pan−1)) = P
∏n

i=1 ai−1.
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Theorem 3 ( [13]). The secant varieties of the Segre product of k copies of P1,

σr(Seg(P1 × · · · × P1)), have the expected dimension except when k = 2, 4.

2.2 Subspace Varieties

Subspace varieties are important auxiliary varieties in the study of equations for

secant varieties.

Definition 8. The subspace variety Subb1,...,bn(A1 ⊗ · · · ⊗ An) is defined to be

Subb1,...,bn(A1 ⊗ · · · ⊗ An) := P{T ∈ A1 ⊗ · · · ⊗ An| dim(T (A∗j)) ≤ bj}.

Proposition 1 ( [29]). The ideal of the subspace variety Subb1,...,bn(A1 ⊗ · · · ⊗ An)

is generated in degrees bj + 1 for 1 ≤ j ≤ n by the irreducible modules in ∧bj+1A∗j ⊗

∧bj+1(A∗1 ⊗ · · · ⊗ A∗j−1 ⊗ A∗j+1 ⊗ · · · ⊗ A∗n).

The following Kempf-Weyman desingularization of Subb1,...,bn(A1 ⊗ · · · ⊗ An) is

useful for finding equations, minimal free resolutions, and establishing properties of

singularities [29,50].

Proposition 2 ( [50]). Consider the product of Grassmannians

B = G(b1, A1)× · · · ×G(bn, An)

and the bundle

p : S1 ⊗ · · · ⊗ Sn → B,

where Sj is the tautological rank bj subspace bundle over G(bj, Aj). Assume that

b1 ≤ · · · ≤ bn. Then the total space Z̃ of S1 ⊗ · · · ⊗ Sn maps to A1 ⊗ · · · ⊗ An. The

map Z̃ → A1 ⊗ · · · ⊗ An gives a desingularization of Subb1,...,bn(A1 ⊗ · · · ⊗ An).
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2.3 Strassen’s Equations

In 1983 V. Strassen [48] discovered equations for tensors of bounded border rank

beyond minors of flattenings. We present a version of Strassen’s equations due to G.

Ottaviani, which is easy to generalize to higher cases.

Given T ∈ A ⊗ B ⊗ C, i.e. T : B∗ → A ⊗ C, IdA ⊗ T gives a linear map

A⊗B∗ → A⊗A⊗C, compose IdA⊗ T with the projection A⊗A→ ∧2A to define

T∧BA : A⊗B∗ → ∧2A⊗ C.

Theorem 4 ( [41]). Let T ∈ A⊗B ⊗ C, and assume 3 ≤ dimA ≤ dimB ≤ dimC.

If [T ] ∈ σr(Seg(PA × PB × PC)), then rank(T∧BA) ≤ r(dimA − 1). Thus the size

r(dimA−1)+1 minors of T∧BA furnish equations for σr(Seg(PA×PB×PC)), which

are called Strassen’s equations.

Proof. If T = a⊗b⊗c, then the image of T∧BA is a∧A⊗c and thus rank(T∧BA) = dimA−

1 and the theorem follows because rank((T1 + T2)
∧
BA) ≤ rank(T1

∧
BA)+rank(T2

∧
BA)

Theorem 5 ( [20,31]). σ3(Seg(PA× PB × PC)) is the zero set of the size 4 minors

of flattenings and Strassen’s equations.

2.4 Inheritance and Prolongation

Inheritance is a general technique for studying equations of G-varieties.

Proposition 3 ( [30]). For all vector spaces Bj with dimBj = bj ≥ dimAj =

aj ≥ r, a module Sµ1B
∗
1 ⊗ · · · ⊗ SµnB

∗
n such that l(µj) ≤ aj for all j, is in the

ideal Id (σr(Seg(PB1 × · · · × PBn))) if and only if Sµ1A
∗
1⊗· · ·⊗SµnA∗n is in the ideal

Id (σr(Seg(PB1 × · · · × PBn))).

Corollary 2 ( [30]). Let dimAj ≥ r, 1 ≤ j ≤ n. The ideal of σr(Seg(PA1 × · · · ×

PAn)) is generated by the modules inherited from the ideal of σr(Seg(Pr−1 × · · · ×

9



Pr−1)) and the modules generating the ideal of Subr,...,r(A1⊗· · ·⊗An). The analogous

scheme and set theoretic results hold as well.

According to this corollary, when studying these equations we only need consider

the small dimensional cases.

Prolongation is a general technique for finding equations of secant varieties. We

list some basic facts about equations for secant varieties obtained by prolongation.

Proposition 4 ( [29,47]). Let X, Y ⊂ PV be subvarieties and assume that Iδ(X) = 0

for δ < d1 and Iδ(Y ) = 0 for δ < d2. Then Iδ(J(X, Y )) = 0 for δ ≤ d1 + d2 − 2.

Corollary 3 ( [29, 47]). Let X1, . . . , Xr ⊂ PV be varieties such that Iδ(Xj) = 0 for

δ < dj. Then Iδ(J(X1, . . . , Xr)) = 0 for δ ≤ d1 + · · ·+ dr − r.

As a special case we have:

Proposition 5 ( [29]). There are no nonzero degree d ≤ r homogeneous polynomials

vanishing on σr(Seg(PA1 × · · · × PAn)).

2.5 Normal forms of points in σ3(Seg(PA1 × · · · × PAn))

In this section we present how points of σ3(Seg(PA1 × · · · × PAn)) are explicitly

parametrized.

Proposition 6 ( [5]). Let X denote Seg(PA1 × · · · × PAn) and p = [v] ∈ σ2(X),

then v has one of the following normal forms:

1, p ∈ X;

2, v = x+ y with [x], [y] ∈ X;

3, v = x′ with x′ ∈ T̂[x]X.

Theorem 6 ( [5]). Let X denote Seg(PA1×· · ·×PAn) and p = [v] ∈ σ3(X)\σ2(X),

then v has one of the following normal forms:

10



1. v = x+ y + z with [x], [y], [z] ∈ X;

2. v = x+ x′ + y with [x], [y] ∈ X and x′ ∈ T̂[x]X;

3. v = x+ x′ + x′′, where [x(t)] ⊂ X is a curve and x′ = x′(0), x′′ = x′′(0);

4. v = x′ + y′, where [x], [y] ∈ X are distinct points that lie on a line contained

in X, x′ ∈ T̂[x]X, and y′ ∈ T̂[y]X.

Normal forms for Theorem 6 are as follows:

Theorem 7 ( [5]). Let X denote Seg(PA1×· · ·×PAn) and p = [v] ∈ σ3(X)\σ2(X),

then v has one of the following normal forms:

1. v = a11 ⊗ · · · ⊗ an1 + a12 ⊗ · · · ⊗ an2 + a13 ⊗ · · · ⊗ an3 ;

2. v =
n∑
i=1

a11 ⊗ · · · ⊗ ai−11 ⊗ ai2 ⊗ ai+1
1 ⊗ · · · ⊗ an1 + a13 ⊗ · · · ⊗ an3 ;

3. v =
∑
i<j

a11⊗ · · ·⊗ ai−11 ⊗ ai2⊗ ai+1
1 ⊗ · · ·⊗ aj−11 ⊗ aj2⊗ a

j+1
1 ⊗ · · ·⊗ an1 +

n∑
i=1

a11⊗

· · · ⊗ ai−11 ⊗ ai3 ⊗ ai+1
1 ⊗ · · · ⊗ an1 ;

4. v =
n∑
s=2

a12 ⊗ a21 ⊗ · · · ⊗ as−11 ⊗ as2 ⊗ as+1
1 ⊗ · · · ⊗ an1 +

n∑
i=1

a11 ⊗ · · · ⊗ ai−11 ⊗ ai3 ⊗

ai+1
1 ⊗ · · · ⊗ an1 ,

where aij ∈ Ai, and the vectors need not all be linearly independent.
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3. EQUATIONS FOR THE THIRD SECANT VARIETY OF AN N-FACTOR

SEGRE VARIETY

3.1 Outline of the proof of the main result

Our main result on equations of the third secant varieties of Segre varieties is:

Theorem 8. σ3(Seg(PA1 × · · · × PAn)) is set theoretically defined by Strassen’s

equations of all partitions I ∪J ∪K = {1, . . . , n} and all 4× 4 minors of flattenings.

Given T ∈ A1⊗ · · · ⊗An, for each Ai we fix a basis {aij} and its dual basis {αij}.

Let Xk := Seg(PA1×· · ·×PAk×P(Ak+1⊗· · ·⊗An)), and X := Seg(PA1×· · ·×PAn).

Outline of the proof of the main result. If T ∈ A1 ⊗ · · · ⊗ An satisfies all the

equations given by 4 × 4 minors of flattenings, we may assume that 3 ≥ dimA1 ≥

· · · ≥ dimAn ≥ 2 [30]. If T satisfies Strassen’s equations of the partition {1}∪ {2}∪

{3, . . . , n}, then T ∈ σ3(X2). We split our discussion into 4 cases to show T ∈ σ3(X).

Case 1: T ∈ σ3(X2) \ σ2(X2) and T /∈ Sub3,2,...,2(A1 ⊗ · · · ⊗ An), then T has

one of the four types of the normal forms in Theorem 7 for σ3(X2). Because 4 × 4

minors of T : A∗1 ⊗ A∗3 → A2 ⊗ A4 ⊗ · · · ⊗ An vanish, T has to have the same type

of normal form for σ3(X3). Similarly, by considering 4× 4 minors of T : A∗1 ⊗A∗k →

A2 ⊗ · · · ⊗ Âk ⊗ · · · ⊗An we use induction to show that T has to maintain the same

type of normal form for σ3(X).

Case 2: T ∈ σ3(X2) \ σ2(X2) and T ∈ Sub3,2,...,2(A1⊗ · · · ⊗An) \Sub2,2,...,2(A1⊗

· · · ⊗ An), then T has one of the normal forms in Theorem 7 for σ3(X2). Because

dimA2 = · · · = dimAn = 2, the discussion of this case is more complicated than

Case 1, and we split the argument into several subcases for each type of normal form.

For each subcase, by considering 4× 4 minors of T : A∗1 ⊗A∗3 → A2 ⊗A4 ⊗ · · · ⊗An
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and T : A∗2 ⊗ A∗3 → A1 ⊗ A4 ⊗ · · · ⊗ An, we show T has one of the normal forms for

σ3(X3). Note that the type of the normal form of T for σ3(X2) could be different

from the type of the normal form of T for σ3(X3). By induction, we show that T

has one of the normal forms of points in σ3(X).

Case 3: T ∈ σ3(X2) \ σ2(X2) and T ∈ Sub2,2,...,2(A1 ⊗ · · · ⊗ An). In this case, T

has two types of normal forms, T = (a11⊗a21 +a12⊗a22)⊗b31 +a11⊗a22⊗b32 +a12⊗a21⊗b33

or T = a11⊗ a21⊗ b31 + a11⊗ a22⊗ b32 + a12⊗ a21⊗ b33 for some b3j ∈ A3⊗ · · · ⊗An. For the

generic normal form T = (a11⊗a21 +a12⊗a22)⊗ b31 +a11⊗a22⊗ b32 +a12⊗a21⊗ b33, we show

that there is a rank 2 matrix φ21 in the kernel of T∧A2A1
: A1⊗A∗2 → A3⊗· · ·⊗An, and

φ21(T ) ∈ S2A1⊗ (A3⊗ · · · ⊗An). So if for each 2 ≤ i ≤ n, T has the generic type of

normal form for σ3(Seg(PA1×PAi×P(A2⊗· · ·⊗Âi⊗· · ·⊗An))), then similarly we have

a 2× 2 matrix φi1 ∈ Ker(T∧AiA1
) with full rank, and φn1 ◦ · · · ◦ φ21(T ) ∈ SnA1. Since

each φi1 is nonsingular, T ∈ σ3(X) if and only if φn1 ◦ · · · ◦ φ21(T ) ∈ σ3(νn(PA1)),

where νn is the n-th Veronese embedding. Since the equations for σ3(νn(P1)) are

known [33], we can check Strassen’s equations and 4 × 4 minors of flattenings give

equations for σ3(X) in this situation. If for some 2 ≤ i ≤ n, say i = 2, T does

not have the generic normal form for σ3(X2), T must have the other type of normal

form T = a11 ⊗ a21 ⊗ b31 + a11 ⊗ a22 ⊗ b32 + a12 ⊗ a21 ⊗ b33. By considering 4 × 4 minors

of T : A∗1 ⊗ A∗3 → A2 ⊗ A4 ⊗ · · · ⊗ An, T : A∗2 ⊗ A∗3 → A1 ⊗ A4 ⊗ · · · ⊗ An, and

T : A∗1⊗A∗2⊗A∗3 → A4⊗· · ·⊗An, we deduce T ∈ σ3(X3). Then we use induction to

show T ∈ σ3(X) by checking each type of the normal forms in Theorem 7, under the

assumption that T is not of the generic normal form for σ3(X2). When proceeding

by induction, because dimT (A∗3 ⊗ · · · ⊗ A∗n) ≤ 3 we can view T as a tensor in

T (A∗3 ⊗ · · · ⊗ A∗n) ⊗ A3 ⊗ · · · ⊗ An and reduce most cases to Case 2. For the

remaining cases, we show directly T ∈ σ3(X).

Case 4: T ∈ σ2(X2), then T has one of the three types of the normal forms
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in Proposition 6 for σ3(X2). We verify by induction that for each normal form

T ∈ σ3(X).

3.2 Proof of the main theorem

We only need to show that if T satisfies Strassen’s equations of all partitions

I ∪ J ∪K = {1, . . . , n} and 4 × 4 minors of all flattenings I ∪ J = {1, . . . , n}, then

T ∈ σ3(Seg(PA1×· · ·×PAn)). For each Ai we fix a basis {aij} and its dual basis {αij}.

Let Xk := Seg(PA1×· · ·×PAk×P(Ak+1⊗· · ·⊗An)), and X := Seg(PA1×· · ·×PAn).

For any flattening I ∪J = {1, . . . , n}, 4×4 minors of T : A∗I → AJ vanish if and only

if dimT (A∗I) ≤ 3. By Corollary 2, we can assume 3 ≥ dimA1 ≥ · · · ≥ dimAn ≥ 2.

Since T satisfies Strassen’s equations of the partition {1}∪{2}∪{3, . . . , n} and 4×4

minors of all flattenings, by Theorem 5 we have T ∈ σ3(X2). We split our discussion

into 4 cases to show T ∈ σ3(X).

3.2.1 Case 1: T ∈ σ3(X2) \ σ2(X2), T /∈ Sub3,2,...,2(A1 ⊗ · · · ⊗ An)

Since T has one of the normal forms in Theorem 7, we use induction to show

T ∈ σ3(X) by verifying each normal form.

Type 1: Without loss of generality, let T = a11⊗a21⊗u1+a12⊗a22⊗u2+a13⊗a23⊗u3,

where ui ∈ A3 ⊗ · · · ⊗An. dimT (A∗1 ⊗A∗3) ≤ 3 implies that ui : A∗3 → A4 ⊗ · · · ⊗An

has rank ≤ 1 for all i, say ui = b3i ⊗ vi for some b3i ∈ A3 and vi ∈ A4 ⊗ · · · ⊗ An.

Therefore T = a11⊗a21⊗ b31⊗v1 +a12⊗a22⊗ b32⊗v2 +a13⊗a23⊗ b33⊗v3, i.e. T ∈ σ3(X3).

Now we use induction, assume T = a11⊗a21⊗b31⊗· · ·⊗bk1 +a12⊗a22⊗b32⊗· · ·⊗bk2 +

a13⊗a23⊗b33⊗· · ·⊗bk3, then dimT (A∗1⊗A∗k) ≤ 3 implies that bki : A∗k → Ak+1⊗· · ·⊗An

has rank ≤ 1 for all 1 ≤ i ≤ 3.

Type 2: T = a11 ⊗ a21 ⊗ v32 + a11 ⊗ a22 ⊗ v31 + a12 ⊗ a21 ⊗ v31 + a13 ⊗ a23 ⊗ v33, where

v3i ∈ A3 ⊗ · · · ⊗ An. Since T /∈ σ2(X2), v
3
1 and v33 are non-zero. dimT (A∗1 ⊗ A∗3) ≤ 3
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implies v31 and v33 : A∗3 → A4⊗ · · · ⊗An have rank 1, say v3i = b3i ⊗ v4i for i = 1, 3 and

some b3i ∈ A3, v
4
i ∈ A4⊗· · ·⊗An, and for each j = 2, 3, a21⊗ v32(α3

j ) +a22⊗ v31(α3
j ) is a

linear combination of a21⊗v32(α3
1)+a

2
2⊗v31(α3

1) and a21⊗v31(α3
1), then v32 = b31⊗v42+b32⊗v41

for some b32 ∈ A3 and v42 ∈ A4 ⊗ · · · ⊗ An. Thus T = a12 ⊗ a21 ⊗ b31 ⊗ v41 + a11 ⊗ a21 ⊗

b31 ⊗ v42 + a11 ⊗ a21 ⊗ b32 ⊗ v41 + a11 ⊗ a22 ⊗ b31 ⊗ v41 + a13 ⊗ a23 ⊗ b33 ⊗ v43.

Now we use induction, and assume that T =
k∑
i=1

b11⊗· · ·⊗ bi−11 ⊗ bi2⊗ bi+1
1 ⊗· · ·⊗

bk1 + b13 ⊗ · · · ⊗ bk3, where bij = aij for i = 1, 2 and 1 ≤ j ≤ 3. The induction argument

is similar to the case k = 3 above.

Type 3: T = a11⊗ a22⊗ v32 + a12⊗ a21⊗ v32 + a12⊗ a22⊗ v31 + a11⊗ a21⊗ v33 + a11⊗ a23⊗

v31 + a13⊗ a21⊗ v31, where v3i ∈ A3⊗ · · · ⊗An. If v31 = 0, T has been discussed in Case

1 Type 1. If v32 = 0, T has been discussed in Case 1 Type 2. So we assume v31 and

v32 are non-zero. dimT (A∗1⊗A∗3) ≤ 3 implies v31 = u31⊗u41, v32 = u31⊗u42 +u32⊗u41 and

v33 = u31⊗u43+u32⊗u42+u33⊗u41 for some u31, u
3
2, u

3
3 ∈ A3, and u41, u

4
2, u

4
3 ∈ A4⊗· · ·⊗An.

Denote aij by uij when i = 1, 2, then T =
∑

1≤i<j≤4

u11⊗ · · · ⊗ ui2⊗ · · · ⊗ u
j
2⊗ · · · ⊗ u41 +

4∑
i=1

u11 ⊗ · · · ⊗ ui3 ⊗ · · · ⊗ u41.

The induction argument is similar the above argument.

Type 4: T = a12⊗a21⊗v32 +a12⊗a22⊗v31 +a11⊗a21⊗v33 +a11⊗a23⊗v31 +a13⊗a21⊗v31

for some v3j ∈ A3 ⊗ · · · ⊗ An. Since T /∈ σ2(X2), v
3
1 6= 0, then dimT (A∗1 ⊗ A∗3) ≤ 3

implies v31 = u31⊗u41, v32 = u31⊗u42 +u32⊗u41, v33 = u31⊗u43 +u33⊗u41 for some u3j ∈ A3,

u4j ∈ A4 ⊗ · · · ⊗An. Denote aij by uij for i = 1, 2, then T =
4∑
i=2

u12 ⊗ · · · ⊗ ui2 ⊗ · · · ⊗

u41 +
4∑
i=1

u11 ⊗ · · · ⊗ ui3 ⊗ · · · ⊗ u41.

The induction argument is similar.
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3.2.2 Case 2: T ∈ σ3(X2) \ σ2(X2),

T ∈ Sub3,2,...,2(A1 ⊗ · · · ⊗ An) \ Sub2,2,...,2(A1 ⊗ · · · ⊗ An)

We show T ∈ σ3(X) by induction on each type of the normal forms.

Type 1: T = a11 ⊗ b21 ⊗ b31 + a12 ⊗ b22 ⊗ b32 + a13 ⊗ b23 ⊗ b33, where b2j ∈ A2 and

b3j ∈ A3 ⊗ · · · ⊗An. Without loss of generality, we can assume b21 and b22 are linearly

independent, then b23 = b21 or b23 = b21 + b22.

If b23 = a21, since dimT (A∗2 ⊗ A∗3) ≤ 3, then either b32 : A∗3 → A4 ⊗ · · · ⊗ An has

rank 1, or both b31 and b33 have rank 1 as maps A∗3 → A4 ⊗ · · · ⊗ An.

When b32 : A∗3 → A4 ⊗ · · · ⊗ An has rank 1, let b32 = a32 ⊗ b42 for some b42 ∈

A4 ⊗ · · · ⊗ An. We only need to consider the case that at least one of b31 and

b33 : A∗3 → A4 ⊗ · · · ⊗ An has rank 2. Without loss of generality we can assume

b31 = u31 ⊗ b41 + u33 ⊗ b43 for some u3i ∈ A3 and b4i ∈ A4 ⊗ · · · ⊗ An where i = 1, 3, then

dimT (A∗1 ⊗ A∗3) ≤ 3 requires b33(α
3
j ) = xjb

4
1 + yjb

4
3 for some xj, yj, where j = 1, 2.

Consider A3 ⊗ V4, where V4 is spanned by b41 and b43, after a change of basis, we

can assume b31 = u31 ⊗ b41 + u33 ⊗ b43 and b33 = λu31 ⊗ b41 + u31 ⊗ b43 + λu33 ⊗ b43, or

b33 = µu31 ⊗ b41 + νu33 ⊗ b43. Then T = T ′ + a12 ⊗ b22 ⊗ a32 ⊗ b42, where T ′ = (a11 + λa13)⊗

b21 ⊗ u31 ⊗ b41 + (a11 + λa13)⊗ b21 ⊗ u33 ⊗ b43 + a13 ⊗ b21 ⊗ u31 ⊗ b43 ∈ T̂(a11+λa13)⊗b21⊗u31⊗b43X3, or

T = (a11 + µa13)⊗ b21 ⊗ u31 ⊗ b41 + (a11 + νa13)⊗ b21 ⊗ u33 ⊗ b43 + a12 ⊗ b22 ⊗ a32 ⊗ b42.

When b31 and b33 : A∗3 → A4 ⊗ · · · ⊗ An have rank 1, say b31 = a31 ⊗ b41 and

b33 = u33 ⊗ b43 for some u33 ∈ A3 and b4i ∈ A4 ⊗ · · · ⊗ An where i = 1, 3, and assume

b32 : A∗3 → A4 ⊗ · · · ⊗ An has rank 2, dimT (A∗2 ⊗ A∗3) ≤ 3 requires u33 = a31 up

to a scalar, and dimT (A∗1 ⊗ A∗3) ≤ 3 requires b41 = b43 up to a scalar, then T =

(a11 + a13)⊗ b21 ⊗ a31 ⊗ b41 + a12 ⊗ b22 ⊗ a31 ⊗ b32(α3
1) + a12 ⊗ b22 ⊗ a32 ⊗ b32(α3

2).

If b23 = b21 + b22, dimT (A∗2⊗A∗3) ≤ 3 implies b31 or b32 : A∗3 → A4⊗· · ·⊗An has rank

1. If only one of them has rank 1, without loss of generality we assume that b32 = a31⊗
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u41+a32⊗u42, and b31 = u31⊗u43. dimT (A∗2⊗A∗3) ≤ 3 implies b33 = u31⊗u44 for some u44 ∈

A4⊗· · ·⊗An. dimT (A∗1⊗A∗3) ≤ 3 requires that u43 and u44 are linearly dependent, then

we can assume u44 = u43. dimT (A∗1⊗A∗3) ≤ 3 also requires u44 is a linear combination

of u41 and u42. Consider A3 ⊗ V4, where V4 is the subspace of A4 ⊗ · · · ⊗ An spanned

by u41 and u42, after a change of basis, we can assume b32 = a31⊗u41 +a32⊗u42 is still the

identity matrix, and b31 = b33 = a31⊗u42 or a31⊗u41. Then T = (a11+a13)⊗b21⊗a31⊗u42+T ′,

where T ′ = a12⊗ b22⊗ a31⊗u41 + a12⊗ b22⊗ a32⊗u42 + a13⊗ b22⊗ a31⊗u42 ∈ T̂a12⊗b22⊗a31⊗u42X3,

or T = (a11 + a13)⊗ b21 ⊗ a31 ⊗ u41 + (a12 + a13)⊗ b22 ⊗ a31 ⊗ u41 + a12 ⊗ b22 ⊗ a32 ⊗ u42.

If both b31 and b32 have rank 1, let b31 = a31 ⊗ u41 and b32 = u32 ⊗ u42. If u41 and

u42 are linearly independent, dimT (A∗1 ⊗ A∗3) ≤ 3 implies b33 : A∗3 → A4 ⊗ · · · ⊗ An

has rank 1. If u41 and u42 are dependent, say u41 = u42, and if u32 = a31 up to a

scalar, since dimT (A∗1 ⊗ A∗3) ≤ 3, then b33(α
3
1) = xb33(α

3
2) + yu41 for some x, y. So

T = (a11+ya13)⊗b21⊗a31⊗u41+(a12+ya13)⊗b22⊗a31⊗u41+a13⊗(b21+b22)⊗(xa31+a32)⊗b33(α3
2).

If u32 and a31 are independent, we can assume u32 = a32, since dimT (A∗2 ⊗ A∗3) ≤ 3,

then b33 : A∗3 → A4 ⊗ · · · ⊗ An has rank 1.

Now we use induction. Assume T = a11 ⊗ b21 ⊗ · · · ⊗ bk1 + a12 ⊗ b22 ⊗ · · · ⊗ bk2 + a13 ⊗

b23⊗ · · · ⊗ bk3, without loss of generality we can assume b21 = a21, b
2
2 = a22, then b23 = a21

or b23 = a21 + a22. The induction argument is similar to the case k = 3.

Type 2: T = a11⊗ b21⊗ b32 + a11⊗ b22⊗ b31 + a12⊗ b21⊗ b31 + a13⊗ b23⊗ b33, without loss

of generality we can assume b21 = a21 and b22 = a22, then b23 = a21, or b23 = a22 + λa21 for

some λ ∈ C.

When b23 = a21, dimT (A∗2⊗A∗3) ≤ 3 forces b31 : A∗3 → A4⊗· · ·⊗An has rank 1, say

b31 = a31 ⊗ b41. If b33 : A∗3 → A4 ⊗ · · · ⊗ An has rank 2, say b33 = a31 ⊗ b42 + a32 ⊗ b43, then

dimT (A∗1⊗A∗3) ≤ 3 requires that b41 and b32(α
3
2) are both in the subspace spanned by

b42 and b43. After a change of basis, we can assume that b33 = a31 ⊗ b42 + a32 ⊗ b43, and

b31 = a31 ⊗ b42 or b31 = a31 ⊗ b43. We can assume b32(α
3
2) = b42 + λb43 or b32(α

3
2) = b43. So we
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have four cases:

Case 1: If b31 = a31⊗ b43 and b32(α
3
2) = b42 +λb43, T = a11⊗a21⊗a31⊗ b32(α3

1)+a11⊗a21⊗

(λa32)⊗b43+a11⊗a22⊗a31⊗b43+a12⊗a21⊗a31⊗b43+a11⊗a21⊗a32⊗b42+a13⊗a21⊗a31⊗b42+a13⊗a21⊗

a32⊗b43. Let S(t) = (a11+ta13+t2a12)⊗(a21+t2a22)⊗(a31+ta32+t2λa32)⊗(b43+tb42+t2b32(α
3
1)),

then T = S ′′(0).

Case 2: If b31 = a31 ⊗ b43 and b32(α
3
2) = b43, then T = T ′ + T ′′, where T ′ = a11 ⊗ a21 ⊗

a31⊗ b32(α3
1) +a11⊗a21⊗a32⊗ b43 +a11⊗a22⊗a31⊗ b43 +a12⊗a21⊗a31⊗ b43 ∈ T̂a11⊗a21⊗a31⊗b43X3,

and T ′′ = a13 ⊗ a21 ⊗ a31 ⊗ b42 + a13 ⊗ a21 ⊗ a32 ⊗ b43 ∈ T̂a13⊗a21⊗a31⊗b43X3.

Case 3: If b31 = a31⊗b42 and b32(α
3
2) = b42+λb

4
3, T = T ′+(λa11+a

1
3)⊗a21⊗a32⊗b43, where

T ′ = a11⊗a21⊗a31⊗b32(α3
1)+a11⊗a21⊗a32⊗b42+a11⊗a22⊗a31⊗b42+(a12+a13)⊗a21⊗a31⊗b42 ∈

T̂a11⊗a21⊗a31⊗b42X3.

Case 4: If b31 = a31⊗b42 and b32(α
3
2) = b43, then T = T ′+(a11+a13)⊗a21⊗a32⊗b43, where

T ′ = a11⊗a21⊗a31⊗b32(α3
1)+a11⊗a22⊗a31⊗b42+(a12+a13)⊗a21⊗a31⊗b42 ∈ T̂a11⊗a21⊗a31⊗b42X3.

If b33 : A∗3 → A4 ⊗ · · · ⊗ An has rank 1, say b33 = (xa31 + ya32) ⊗ b43, and b41 and b43

are linearly independent, dimT (A∗1 ⊗ A∗3) ≤ 3 forces b32(α
3
2) is a linear combination

of b41 and b43. We can assume b32(α
3
2) = b41 or b32(α

3
2) = b43 + λb41. If b32(α

3
2) = b41,

T = T ′+a13⊗a21⊗(xa31+ya32)⊗b43, where T ′ = a11⊗a21⊗a31⊗b32(α3
1)+a11⊗a21⊗a32⊗b41+

a11⊗a22⊗a31⊗b41+a12⊗a21⊗a31⊗b41 ∈ T̂a11⊗a21⊗a31⊗b41X3. If b32(α
3
2) = b43+λb41, we can assume

b33 = a32⊗b43 or b33 = (a31+µa32)⊗b43. If b33 = a32⊗b43, then T = T ′+(a11+a13)⊗a21⊗a32⊗b43,

where T ′ = a11⊗a21⊗a31⊗b32(α3
1)+a11⊗a21⊗(λa32)⊗b41+a11⊗a22⊗a31⊗b41+a12⊗a21⊗a31⊗b41 ∈

T̂a11⊗a21⊗a31⊗b41X3. If b33 = (a31 + µa32) ⊗ b43, and if µ 6= 0, let ã32 = a31 + µa32, then T =

T ′+(1/µa11+a
1
3)⊗a21⊗ã32⊗b43, where T ′ = a11⊗a21⊗a31⊗[b32(α

3
1)−1/µ(b43+λb

4
1)]+a

1
1⊗a21⊗

(λ/µã32)⊗b41+a11⊗a22⊗a31⊗b41+a12⊗a21⊗a31⊗b41 ∈ T̂a11⊗a21⊗a31⊗b41X3. If µ = 0, T = T ′+T ′′,

where T ′ = a11⊗a21⊗a31⊗b32(α3
1)+a11⊗a21⊗(λa32)⊗b41+a11⊗a22⊗a31⊗b41+a12⊗a21⊗a31⊗b41 ∈

T̂a11⊗a21⊗a31⊗b41X3, and T ′′ = a11 ⊗ a21 ⊗ a32 ⊗ b43 + a13 ⊗ a21 ⊗ a31 ⊗ b43 ∈ T̂a11⊗a21⊗a31⊗b43X3.

If b41 and b43 are linearly dependent, say b41 = b43, then T = T ′ + T ′′, where T ′ =
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a11⊗ a21⊗ a31⊗ b32(α3
1) + a11⊗ a22⊗ a31⊗ b41 + (a12 + xa13)⊗ a21⊗ a31⊗ b41 ∈ T̂a11⊗a21⊗a31⊗b41X3,

and T ′′ = a11 ⊗ a21 ⊗ a32 ⊗ b32(α3
2) + (ya13)⊗ a21 ⊗ a32 ⊗ b41 ∈ T̂a11⊗a21⊗a32⊗b41X3.

When b23 = a22 +λa21, dimT (A∗2⊗A∗3) ≤ 3 implies three cases. Case 1: b31 = a31⊗b41

and b32 = a31⊗ b42 for some b41, b
4
2 ∈ A4⊗· · ·⊗An; Case 2: b31 = a31⊗ b41 and b33 = a31⊗ b43

for some b41, b
4
3 ∈ A4 ⊗ · · · ⊗ An; Case 3: b31 = a31 ⊗ b41 and b33 = a32 ⊗ b43 for some

b41, b
4
3 ∈ A4 ⊗ · · · ⊗ An.

For case 1, if b33 = u33 ⊗ u43 for some u33 ∈ A3 and u43 ∈ A4 ⊗ · · · ⊗ An, then

T = T ′+a13⊗(a22+λa21)⊗u33⊗u43, where T ′ = a11⊗a21⊗a31⊗b42+a11⊗a22⊗a31⊗b41+a12⊗a21⊗

a31⊗ b41 ∈ T̂a11⊗a21⊗a31⊗b41X3. If b33 : A∗3 → A4⊗ · · ·⊗An has rank 2, dimT (A∗1⊗A∗3) ≤ 3

requires b41 = b42 up to a scalar, and b41 is a linear combination of b33(α
3
1) and b33(α

3
2), say

b33(α
3
1) = xb33(α

3
2)+yb41 or b41 = b33(α

3
2) up to a scalar, then T = (a11 +a12 +yλa13)⊗a21⊗

a21⊗a31⊗b41+(a11+ya13)⊗a22⊗a31⊗b41+a13⊗(a22+λa21)⊗(xa31+a32)⊗b33(α3
2), or T = T ′+T ′′,

where T ′ = a11⊗a22⊗a31⊗b41+a13⊗a22⊗a31⊗b33(α3
1)+a

1
3⊗a22⊗a32⊗b41 ∈ T̂a13⊗a22⊗a31⊗b41X3, and

T ′′ = (a11+a
1
2)⊗a21⊗a31⊗b41+a13⊗a21⊗a31⊗λb33(α3

1)+a
1
3⊗a21⊗(λa32)⊗b41 ∈ T̂a13⊗a21⊗a31⊗b41X3.

For case 2, if b43 = b41 up to a scalar, then b31 = b33 up to a scalar, and T =

a11⊗ a21⊗ b32 + (a11 + a13)⊗ a22⊗ b31 + (a12 +λa13)⊗ a21⊗ b31, which is discussed in Case 2

Type 1. Hence we assume b41 and b43 are linearly independent. dimT (A∗1 ⊗ A∗3) ≤ 3

implies b32(α
3
2) = b41 up to a scalar, then T = T ′ + a13 ⊗ (a22 + λa21) ⊗ a31 ⊗ b43, where

T ′ = a11⊗ a21⊗ a31⊗ b32(α3
1) + a11⊗ a21⊗ a32⊗ b41 + a11⊗ a22⊗ a31⊗ b41 + a12⊗ a21⊗ a31⊗ b41 ∈

T̂a11⊗a21⊗a31⊗b41X3.

For case 3, dimT (A∗2 ⊗ A∗3) ≤ 3 requires b32(α
3
2) = b41 up to a scalar. Then

T = T ′+ a13⊗ (a22 + λa21)⊗ a32⊗ b43, where T ′ = a11⊗ a21⊗ a31⊗ b32(α3
1) + a11⊗ a21⊗ a32⊗

b41 + a11 ⊗ a22 ⊗ a31 ⊗ b41 + a12 ⊗ a21 ⊗ a31 ⊗ b41 ∈ T̂a11⊗a21⊗a31⊗b41X3.

Now we assume T =
k∑
i=1

b11 ⊗ · · · ⊗ bi−11 ⊗ bi2 ⊗ bi+1
1 ⊗ · · · ⊗ bk1 + b13 ⊗ · · · ⊗ bk3. The

induction argument is similar to the case k = 3.
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Type 3: T = a11 ⊗ b22 ⊗ b32 + a12 ⊗ b21 ⊗ b32 + a12 ⊗ b22 ⊗ b31 + a11 ⊗ b21 ⊗ b33 + a11 ⊗ b23 ⊗

b31 + a13 ⊗ b21 ⊗ b31. Without loss of generality, we can assume b21 = a21, b
2
2 = a22, and

b23 = xa21 + ya22. dimT (A∗2⊗A∗3) ≤ 3 implies two cases. Case 1: b31 = a31⊗ b41 for some

b41 ∈ A4 ⊗ · · · ⊗ An, b32(α
3
2) = b41 up to a scalar, and b32(α

3
1) = b33(α

3
2) + λb41 for some

λ ∈ C; Case 2: b31 = a31 ⊗ b41, and b32 = a31 ⊗ b42 for some b41, b
4
2 ∈ A4 ⊗ · · · ⊗ An.

For case 1, T = a11 ⊗ a22 ⊗ a31 ⊗ b33(α
3
2) + a11 ⊗ a22 ⊗ a32 ⊗ b41 + a12 ⊗ a21 ⊗ a31 ⊗

b33(α
3
2) + a12 ⊗ a21 ⊗ a32 ⊗ b41 + a12 ⊗ a22 ⊗ a31 ⊗ b41 + a11 ⊗ a21 ⊗ a32 ⊗ b33(α3

2) + a11 ⊗ a21 ⊗

a31 ⊗ b33(α3
1) + a11 ⊗ (y + λ)a22 ⊗ a31 ⊗ b41 + (xa11 + λa12 + a13)⊗ a21 ⊗ a31 ⊗ b41. Let S(t) =

[a11+ta
1
2+t

2(xa11+λa
1
2+a

1
3)]⊗[a21+ta

2
2+t

2(y+λ)a22]⊗(a31+ta
3
2)⊗[b41+tb

3
3(α

3
2)+t

2b33(α
3
1)],

then T = S ′′(0).

For case 2, if b42 = λb41 for some λ ∈ C, then b32 = λb31, T = [(y+ λ)a11 + a12]⊗ a22⊗

b31 + (xa11 + λa12 + a13)⊗ a21⊗ b31 + a11⊗ a21⊗ b33, which is discussed in Case 2 Type 1.

Thus we assume b41 and b42 are independent. dimT (A∗1 ⊗A∗3) ≤ 3 implies b33(α
3
2) = b41

up to a scalar, so T = a11⊗ a22⊗ a31⊗ b42 + a12⊗ a21⊗ a31⊗ b42 + a12⊗ a22⊗ a31⊗ b41 + a11⊗

a21⊗a31⊗ b33(α3
1) +a11⊗a21⊗a32⊗ b41 +a11⊗ (xa21 + ya22)⊗a31⊗ b41 +a13⊗a21⊗a31⊗ b41. Let

S(t) = [a11 + ta12 + t2a13]⊗ [a21 + ta22 + t2(xa21 + ya22)]⊗ (a31 + t2a32)⊗ [b41 + tb42 + t2b33(α
3
1)],

then T = S ′′(0).

Now we assume T =
∑
i<j

b11⊗ · · · ⊗ bi−11 ⊗ bi2⊗ bi+1
1 ⊗ · · · ⊗ bj−11 ⊗ bj2⊗ b

j+1
1 ⊗ · · · ⊗

bk1 +
k∑
i=1

b11 ⊗ · · · ⊗ bi−11 ⊗ bi3 ⊗ bi+1
1 ⊗ · · · ⊗ bk1, and use induction to show T ∈ σ3(X).

The induction argument is similar to the case k = 3.

Type 4: T = a12⊗ b21⊗ b32 + a12⊗ b22⊗ b31 + a11⊗ b21⊗ b33 + a11⊗ b23⊗ b31 + a13⊗ b21⊗ b31.

If b22 = b21, T = a12⊗ b21⊗ b32 + a11⊗ b21⊗ b33 + a11⊗ b23⊗ b31 + (a12 + a13)⊗ b21⊗ b31, which is

discussed in Case 2 Type 2. Hence we can assume b2i = a2i for 1 ≤ i ≤ 2. Assume

b23 = xa21 + ya22, then T = (ya11 + a12) ⊗ a21 ⊗ b32 + (ya11 + a12) ⊗ a22 ⊗ b31 + a11 ⊗ a21 ⊗

(b33 − yb32) + (xa11 + a13) ⊗ a21 ⊗ b31. Therefore after a change of basis, we only need
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to consider the case T = a12 ⊗ a21 ⊗ b32 + a12 ⊗ a22 ⊗ b31 + a11 ⊗ a21 ⊗ b33 + a13 ⊗ a21 ⊗ b31.

dimT (A∗2 ⊗A∗3) ≤ 3 implies b31 : A∗3 → A4 ⊗ · · · ⊗An has rank 1, say b31 = a31 ⊗ b41 for

some b41 ∈ A4 ⊗ · · · ⊗ An.

If b33(α
3
1) and b33(α

3
2) are linearly independent, dimT (A∗1⊗A∗3) ≤ 3 implies b41, b

3
2(α

3
2)

are in V4, where V4 is spanned by b33(α
3
1) and b33(α

3
2). For the subspace A3⊗ V4, after

a change of basis, we can assume a31 and a31⊗ b33(α3
1) + a32⊗ b33(α3

2) are preserved, and

b41 = b33(α
3
1), or b41 = b33(α

3
2). So we have two cases:

Case 1: If b41 = b33(α
3
1), assume b32(α

3
2) = xb33(α

3
1) + yb33(α

3
2), then T = T ′ + (ya12 +

a11)⊗ a21⊗ a32⊗ b33(α3
2), where T ′ = a12⊗ a21⊗ a31⊗ b32(α3

1) + a12⊗ a21⊗ (xa32)⊗ b33(α3
1) +

a12 ⊗ a22 ⊗ a31 ⊗ b33(α3
1) + (a11 + a13)⊗ a21 ⊗ a31 ⊗ b33(α3

1) ∈ T̂a12⊗a21⊗a31⊗b33(α3
1)
X3.

Case 2: If b41 = b33(α
3
2), we can assume b32(α

3
2) = b33(α

3
1) + λb33(α

3
2) for some λ ∈ C,

or b32(α
3
2) = λb33(α

3
2). If b32(α

3
2) = b33(α

3
1) + λb33(α

3
2), T = a12 ⊗ a21 ⊗ a31 ⊗ b32(α3

1) + a12 ⊗

a21 ⊗ (λa32)⊗ b33(α3
2) + a12 ⊗ a22 ⊗ a31 ⊗ b33(α3

2) + a13 ⊗ a21 ⊗ a31 ⊗ b33(α3
2) + a12 ⊗ a21 ⊗ a32 ⊗

b33(α
3
1) + a11⊗ a21⊗ a31⊗ b33(α3

1) + a11⊗ a21⊗ a32⊗ b33(α3
2). Let S(t) = (a12 + ta11 + t2a13)⊗

(a21 + t2a22) ⊗ (a31 + ta32 + t2λa32) ⊗ (b33(α
3
2) + tb33(α

3
1) + t2b32(α

3
1)), then T = S ′′(0). If

b32(α
3
2) = λb33(α

3
2), T = T ′ + T ′′, where T ′ = a12 ⊗ a21 ⊗ a31 ⊗ b32(α3

1) + a12 ⊗ a21 ⊗ λa32 ⊗

b33(α
3
2) + a12 ⊗ a22 ⊗ a31 ⊗ b33(α

3
2) + a13 ⊗ a21 ⊗ a31 ⊗ b33(α

3
2) ∈ T̂a12⊗a21⊗a31⊗b33(α3

2)
X3, and

T ′′ = a11 ⊗ a21 ⊗ a31 ⊗ b33(α3
1) + a11 ⊗ a21 ⊗ a32 ⊗ b33(α3

2) ∈ T̂a11⊗a21⊗a31⊗b33(α3
2)
X3.

If b33(α
3
2) = λb33(α

3
1) for some λ ∈ C, then we can assume b33 = a31 ⊗ b33(α

3
1) or

b33 = a32 ⊗ b33(α3
1). Thus we have four cases:

Case 1: If b33 = a31⊗b33(α3
1), b

3
3(α

3
1) and b41 are linearly independent, we can assume

b32(α
3
2) = xb41 + yb33(α

3
1) for some x, y ∈ C due to dimT (A∗1 ⊗A∗3), then T = T ′ + T ′′,

where T ′ = a12⊗ a21⊗ a31⊗ b32(α3
1) + a12⊗ a21⊗ xa32⊗ b41 + a12⊗ a22⊗ a31⊗ b41 + a13⊗ a21⊗

a31 ⊗ b41 ∈ T̂a12⊗a21⊗a31⊗b41X3, and T ′′ = a12 ⊗ a21 ⊗ ya32 ⊗ b33(α3
1) + a11 ⊗ a21 ⊗ a31 ⊗ b33(α3

1) ∈

T̂a12⊗a21⊗a31⊗b33(α3
1)
X3.

Case 2: If b33 = a31 ⊗ b33(α3
1) and b33(α

3
1) = µb41 for some µ ∈ C, T = T ′ + a12 ⊗ a21 ⊗
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a32⊗b32(α3
2), where T ′ = a12⊗a21⊗a31⊗b32(α3

1)+a12⊗a22⊗a31⊗b41+(µa11+a13)⊗a21⊗a31⊗b41 ∈

T̂a12⊗a21⊗a31⊗b41X3.

Case 3: If b33 = a32⊗b33(α3
1), b

3
3(α

3
1) and b41 are linearly independent, we can assume

b32(α
3
2) = xb41+yb

3
3(α

3
1) due to dimT (A∗1⊗A∗3), then T = T ′+(ya12+a

1
1)⊗a21⊗a32⊗b33(α3

1),

where T ′ = a12⊗a21⊗a31⊗b32(α3
1)+a12⊗a21⊗xa32⊗b41+a12⊗a22⊗a31⊗b41+a13⊗a21⊗a31⊗b41 ∈

T̂a12⊗a21⊗a31⊗b41X3.

Case 4: If b33 = a32⊗ b33(α3
1) and b33(α

3
1) = µb41 for some µ ∈ C, T = T ′+ T ′′, where

T ′ = a12 ⊗ a21 ⊗ a31 ⊗ b32(α3
1) + a12 ⊗ a22 ⊗ a31 ⊗ b41 + a13 ⊗ a21 ⊗ a31 ⊗ b41 ∈ T̂a12⊗a21⊗a31⊗b41X3,

and T ′′ = a11 ⊗ a21 ⊗ a32 ⊗ µb41 + a12 ⊗ a21 ⊗ a32 ⊗ b32(α3
2) ∈ T̂a12⊗a21⊗a32⊗b41X3.

Now assume T =
k∑
i=2

b12⊗ b21⊗· · ·⊗ bi−11 ⊗ bi2⊗ bi+1
1 ⊗· · ·⊗ bk1 +

k∑
i=1

b11⊗· · ·⊗ bi−11 ⊗

bi3 ⊗ bi+1
1 ⊗ · · · ⊗ bk1, and use induction to show T ∈ σ3(X). The induction argument

is similar to the case k = 3.

3.2.3 Case 3: T ∈ σ3(X2) \ σ2(X2), T ∈ Sub2,2,...,2(A1 ⊗ · · · ⊗ An)

Since dimT (A∗3 ⊗ · · · ⊗ A∗n) ≤ 3, then after a change of basis we can assume

T (A∗3 ⊗ · · · ⊗ A∗n) ⊂ V , where V is spanned by {a11 ⊗ a21 + a12 ⊗ a22, a11 ⊗ a22, a12 ⊗ a21}

or {a11 ⊗ a21, a11 ⊗ a22, a12 ⊗ a21}. So T has 2 types of normal forms.

Type 1: T = (a11⊗ a21 + a12⊗ a22)⊗ b31 + a11⊗ a22⊗ b32 + a12⊗ a21⊗ b33, we reduce the

problem to finding equations for σ3(νn(P1)), which has been settled.

Lemma 2. Let T ∈ A ⊗ B ⊗ C, where dimA = dimB. If there is an element

φ ∈ Ker(T∧BA) with full rank, then φ(T ) ∈ S2A⊗ C.

Proof of the lemma. Let {ai}, {bj}, {ck} be bases for A, B, C respectively, and

{ai}, {bj}, {ck} their dual bases. Let T =
∑
αijkai ⊗ bj ⊗ ck, then T∧BA : al ⊗ bj 7→∑

i,k α
ijk(al∧ai)⊗ck. Let φ =

∑
βljal⊗bj ∈ Ker(T∧BA), then

∑
βljα

ijk(al∧ai)⊗ck = 0,

which means
∑

j β
l
jα

ijk =
∑

j β
i
jα

ljk. Since φ(T ) =
∑
βljα

ijkai ⊗ al ⊗ ck, then

φ(T ) ∈ S2A⊗ C.
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Let V be a complex vector space. Given φ ∈ SdV , let φa,d−a ∈ SaV ⊗ Sd−aV de-

note the (a, d−a)-polarization of φ. As a linear map SaV ∗ → Sd−aV , rank(φa,d−a) ≤

r if [φ] ∈ σr(νd(PV )) [33].

Theorem 9 ( [33]). σ3(ν3(Pn)) is ideal theoretically defined by Aronhold invariant

and size 4 minors of φ1,2. σ3(νd(Pn)) is scheme theoretically defined by size 4 minors

of φ2,2 and φ1,3 when d ≥ 4.

Now given any T ∈ A1 ⊗ · · · ⊗ An, if there is some 1 ≤ i ≤ n, and for any j 6= i,

there is a φji ∈ Ker(T∧AjAi
) with full rank, then T̃ = φni ◦ · · · ◦φ1i(T ) ∈ SnAi has the

same rank with T . If T satisfies 4× 4 minors of flattenings, T̃ satisfies size 4 minors

of symmetric flattenings, by Theorem 9 T̃ ∈ σ3(νn(P1)), then T ∈ σ3(X). If T is of

Type 1, we always have a11 ⊗ a22 + a12 ⊗ a21 ∈ Ker(T∧A2A1
) with full rank, hence if for

any 2 ≤ i ≤ n, T is of Type 1 when viewed as a tensor in A1 ⊗ Ai ⊗ (A2 ⊗ · · · ⊗

Ai−1 ⊗ Âi ⊗ Ai+1 ⊗ · · · ⊗ An), then T ∈ σ3(X). If T ∈ A1 ⊗ A2 ⊗ (A3 ⊗ · · · ⊗ An)

is not of Type 1, then it must be of Type 2, and we will use induction to show that

T ∈ σ3(X) in this situation.

Type 2: T = a11⊗a21⊗b31+a11⊗a22⊗b32+a12⊗a21⊗b33, the dimension of T (A∗2⊗A∗3)

implies b33 : A∗3 → A4 ⊗ · · · ⊗ An has rank 1, or b32 : A∗3 → A4 ⊗ · · · ⊗ An has rank 1.

If b33 : A∗3 → A4 ⊗ · · · ⊗ An has rank 1, say b33 = a31 ⊗ b43, and b32 : A∗3 →

A4⊗· · ·⊗An has rank 2, say b32 = a31⊗ b41 +a32⊗ b42, then dimT (A∗2⊗A∗3) ≤ 3 implies

b31(α
3
2) = λb41 + µb42 for some λ, µ ∈ C. If b43, b

4
1 and b42 are linearly independent, then

dimT (A∗1 ⊗ A∗2 ⊗ A∗3) ≤ 3 forces b31(α
3
1) = xb43 + yb41 + zb42 for some x, y, z ∈ C, thus

T = a11⊗a21⊗ (ya31⊗b41 +za31⊗b42 +λa32⊗b41 +µa32⊗b42)+a11⊗a22⊗ (a31⊗b41 +a32⊗b42)+

(xa11+a12)⊗a21⊗a31⊗b43. For the subspace A3⊗V4, where V4 ⊂ A4⊗· · ·⊗An is spanned

by b41 and b42, after a change of basis we can assume a31⊗ b41 + a32⊗ b42 is preserved, a31
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is mapped to ua31 +va32 for some u, v ∈ C, and ya31⊗b41 +za31⊗b42 +λa32⊗b41 +µa32⊗b42

is of the Jordan canonical form, i.e. a31 ⊗ b41 + a32 ⊗ b42, or a31 ⊗ b41, or a31 ⊗ b42, or

βa31 ⊗ b41 + a31 ⊗ b42 + βa32 ⊗ b42 for some 0 6= β ∈ C. Hence we have:

Subcase 1: T = a11 ⊗ (a21 + a22)⊗ a31 ⊗ b41 + a11 ⊗ (a21 + a22)⊗ a32 ⊗ b42 + (xa11 + a12)⊗

a21 ⊗ (ua31 + va32)⊗ b43.

Subcase 2: T = a11 ⊗ (a21 + a22)⊗ a31 ⊗ b41 + a11 ⊗ a22 ⊗ a32 ⊗ b42 + (xa11 + a12)⊗ a21 ⊗

(ua31 + va32)⊗ b43.

Subcase 3: T = T ′+ (xa11 + a12)⊗ a21⊗ (ua31 + va32)⊗ b43, where T ′ = a11⊗ a21⊗ a31⊗

b42 + a11 ⊗ a22 ⊗ a31 ⊗ b41 + a11 ⊗ a22 ⊗ a32 ⊗ b42 ∈ T̂a11⊗a22⊗a31⊗b42X3.

Subcase 4: T = T ′ + (xa11 + a12)⊗ a21 ⊗ (ua31 + va32)⊗ b43, where T ′ = a11 ⊗ (βa21 +

a22)⊗ a31 ⊗ b41 + a11 ⊗ (βa21 + a22)⊗ a32 ⊗ b42 + a11 ⊗ a21 ⊗ a31 ⊗ b42 ∈ T̂a11⊗(βa21+a22)⊗a31⊗b42X3.

If b43 = pb41 + qb42 for some p, q ∈ C, for A3 ⊗ V4, after a change of basis we can

assume a31 and a31⊗ b41 + a32⊗ b42 are preserved, b43 = b41 or b42, and a32⊗ b31(α3
2) is of the

form x11a
3
1 ⊗ b41 + x12a

3
1 ⊗ b42 + x21a

3
2 ⊗ b41 + x22a

3
2 ⊗ b42. If b43 = b41 we have:

Subcase 5: T = T ′+a11⊗ (x22a
2
1 +a22)⊗a32⊗ b42, where T ′ = a11⊗a21⊗a31⊗ [b31(α

3
1)+

x11b
4
1+x12b

4
2]+a

1
1⊗a21⊗(x21a

3
2)⊗b41+a11⊗a22⊗a31⊗b41+a12⊗a21⊗a31⊗b41 ∈ T̂a11⊗a21⊗a31⊗b41X3.

If b43 = b42, by changing a32, b
4
2 and a21, we can assume x21 = 1 or 0. So we have:

Subcase 6: T = a11 ⊗ a21 ⊗ a31 ⊗ [b31(α
3
1) + x11b

4
1 + x12b

4
2] + a11 ⊗ a21 ⊗ (x22a

3
2) ⊗ b42 +

a12 ⊗ a21 ⊗ a31 ⊗ b42 + a11 ⊗ a21 ⊗ a32 ⊗ b41 + a11 ⊗ a22 ⊗ a31 ⊗ b41 + a11 ⊗ a22 ⊗ a32 ⊗ b42. Let

S(t) = (a11+t2a12)⊗(a21+ta22)⊗(a31+ta32+t2x22a
3
2)⊗ [b42+tb41+t2(b31(α

3
1)+x11b

4
1+x12b

4
2)],

so T = S ′′(0).

Subcase 7: T = T ′ + T ′′, where T ′ = a11 ⊗ a21 ⊗ a31 ⊗ [b31(α
3
1) + x11b

4
1 + x12b

4
2] + a11 ⊗

a21 ⊗ (x22a
3
2)⊗ b42 + a12 ⊗ a21 ⊗ a31 ⊗ b42 ∈ T̂a11⊗a21⊗a31⊗b42X3, and T ′′ = a11 ⊗ a22 ⊗ a31 ⊗ b41 +

a11 ⊗ a22 ⊗ a32 ⊗ b42 ∈ T̂a11⊗a22⊗a31⊗b42X3.

If b32 : A∗3 → A4⊗· · ·⊗An has rank 1, say b32 = a31⊗b42 for some b42 ∈ A4⊗· · ·⊗An,

and b33 : A∗3 → A4 ⊗ · · · ⊗ An has rank 2, say b33 = a31 ⊗ b41 + a32 ⊗ b43 for some
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b41, b
4
3 ∈ A4 ⊗ · · · ⊗An, then dimT (A∗1 ⊗A∗3) ≤ 3 implies b31(α

3
2) = λb41 + µb43 for some

λ, µ ∈ C. If b43, b
4
1 and b42 are linearly independent, then dimT (A∗1 ⊗ A∗2 ⊗ A∗3) ≤ 3

forces b31(α
3
1) = xb41 + yb42 + zb43 for some x, y, z ∈ C. For the subspace A3⊗V4, where

V4 ⊂ A4 ⊗ · · · ⊗ An is spanned by b41 and b43, after a change of basis we can assume

a31⊗ b41 + a32⊗ b43 is preserved, a31 is mapped to ua31 + va32 for some u, v ∈ C under the

new basis, and xa31 ⊗ b41 + za31 ⊗ b43 + λa32 ⊗ b41 + µa32 ⊗ b43 is of the Jordan canonical

form, i.e. a31⊗ b41 + a32⊗ b43, or a31⊗ b41, or a31⊗ b43, or βa31⊗ b41 + a31⊗ b43 + βa32⊗ b43 for

some 0 6= β ∈ C. Hence we have:

Subcase 8: T = (a11 + a12)⊗ a21 ⊗ a31 ⊗ b41 + (a11 + a12)⊗ a21 ⊗ a32 ⊗ b43 + a11 ⊗ (ya21 +

a22)⊗ (ua31 + va32)⊗ b42.

Subcase 9: T = (a11 + a12)⊗ a21 ⊗ a31 ⊗ b41 + a12 ⊗ a21 ⊗ a32 ⊗ b43 + a11 ⊗ (ya21 + a22)⊗

(ua31 + va32)⊗ b42.

Subcase 10: T = T ′ + a11 ⊗ (ya21 + a22) ⊗ (ua31 + va32) ⊗ b42, where T ′ = a11 ⊗ a21 ⊗

a31 ⊗ b43 + a12 ⊗ a21 ⊗ a31 ⊗ b41 + a12 ⊗ a21 ⊗ a32 ⊗ b43 ∈ T̂a12⊗a21⊗a31⊗b43X3.

Subcase 11: T = T ′+ a11⊗ (ya21 + a22)⊗ (ua31 + va32)⊗ b42, where T ′ = (βa11 + a12)⊗

a21 ⊗ a31 ⊗ b41 + (βa11 + a12)⊗ a21 ⊗ a32 ⊗ b43 + a11 ⊗ a21 ⊗ a31 ⊗ b43 ∈ T̂(βa11+a12)⊗a21⊗a31⊗b43X3.

If b42 = pb41 + qb43 for some p, q ∈ C, for A3 ⊗ V4, after a change of basis we can

assume a31 and a31⊗ b41 + a32⊗ b43 are preserved, b42 = b41 or b43, and a32⊗ b31(α3
2) is of the

form x11a
3
1 ⊗ b41 + x12a

3
1 ⊗ b43 + x21a

3
2 ⊗ b41 + x22a

3
2 ⊗ b43. If b42 = b41 we have:

Subcase 12: T = T ′+(x22a
1
1+a12)⊗a21⊗a32⊗b43, where T ′ = a11⊗a21⊗a31⊗ [b31(α

3
1)+

x11b
4
1+x12b

4
3]+a

1
1⊗a21⊗x21a32⊗b41+a11⊗a22⊗a31⊗b41+a12⊗a21⊗a31⊗b41 ∈ T̂a11⊗a21⊗a31⊗b41X3.

If b42 = b43, by changing a32, b
4
3 and a22, we can assume x21 = 1 or 0. So we have:

Subcase 13: T = a11 ⊗ a21 ⊗ a31 ⊗ [b31(α
3
1) + x11b

4
1 + x12b

4
3] + a11 ⊗ a21 ⊗ (x22a

3
2) ⊗ b43 +

a11 ⊗ a22 ⊗ a31 ⊗ b43 + a12 ⊗ a21 ⊗ a31 ⊗ b41 + a11 ⊗ a21 ⊗ a32 ⊗ b41 + a12 ⊗ a21 ⊗ a32 ⊗ b43. Let

S(t) = (a11+ta12)⊗(a21+t2a22)⊗(a31+ta32+t2x22a
3
2)⊗ [b43+tb41+t2(b31(α

3
1)+x11b

4
1+x12b

4
3)],

so T = S ′′(0).
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Subcase 14: T = T ′+ T ′′, where T ′ = a11⊗ a21⊗ a31⊗ [b31(α
3
1) + x11b

4
1 + x12b

4
3] + a11⊗

a21 ⊗ (x22a
3
2)⊗ b43 + a11 ⊗ a22 ⊗ a31 ⊗ b43 ∈ T̂a11⊗a21⊗a31⊗b43X3, and T ′′ = a12 ⊗ a21 ⊗ a31 ⊗ b41 +

a12 ⊗ a21 ⊗ a32 ⊗ b43 ∈ T̂a12⊗a21⊗a31⊗b43X3.

If both b32 and b33 : A∗3 → A4⊗· · ·⊗An have rank 1, say b32 = a31⊗b42 and b33 = u33⊗b43

for some u33 ∈ A3 and b42, b
4
3 ∈ A4⊗ · · ·⊗An, and b31 : A∗3 → A4⊗ · · ·⊗An has rank 2,

say b31 = a31 ⊗ u41 + a32 ⊗ u42 for some u41, u
4
2 ∈ A4 ⊗ · · · ⊗An, b42, u

4
1 and u42 are linearly

independent, then b43 = xb42 + yu41 + zu42 for some x, y, z ∈ C. After a change of basis,

we can assume x = 0 or 1, u33 = a31 or a32. For the subspace A3 ⊗ V4, where V4 is

spanned by u41 and u42, after a change of basis we can assume a31 ⊗ u41 + a32 ⊗ u42 and

a31 are preserved, and yu41 + zu42 = u41 or u42. Then we have:

Subcase 15: If u33 = a31, x = 0, yu41 + zu42 = u41, then T = (a11 + a12) ⊗ a21 ⊗ a31 ⊗

u41 + a11 ⊗ a21 ⊗ a32 ⊗ u42 + a11 ⊗ a22 ⊗ a31 ⊗ b42.

Subcase 16: If u33 = a31, x = 0, yu41 + zu42 = u42, then T = T ′ + a11 ⊗ a22 ⊗ a31 ⊗ b42,

where T ′ = a11⊗a21⊗a31⊗u41 +a11⊗a21⊗a32⊗u42 +a12⊗a21⊗a31⊗u42 ∈ T̂a11⊗a21⊗a31⊗u42X3.

Subcase 17: If u33 = a31, x = 1, yu41 + zu42 = u41, then T = (a11 + a12) ⊗ a21 ⊗ a31 ⊗

(u41 + b42) + a11 ⊗ a21 ⊗ a32 ⊗ u42 + a11 ⊗ (a22 − a21)⊗ a31 ⊗ b42.

Subcase 18: If u33 = a31, x = 1, yu41 + zu42 = u42, then T = T ′ + T ′′, where

T ′ = a11 ⊗ a21 ⊗ a31 ⊗ u41 + a11 ⊗ a22 ⊗ a31 ⊗ b42 + a12 ⊗ a21 ⊗ a31 ⊗ b42 ∈ T̂a11⊗a21⊗a31⊗b42X3, and

T ′′ = a11 ⊗ a21 ⊗ a32 ⊗ u42 + a12 ⊗ a21 ⊗ a31 ⊗ u42 ∈ T̂a11⊗a21⊗a31⊗u42X3.

If u33 = a32, for the subspace A3 ⊗ V4, after a change of basis we can assume

a31 ⊗ u41 + a32 ⊗ u42 and a32 are preserved, yu41 + zu42 = u41 or u42, and a31 is mapped to

λa31 + µa32 for some λ, µ ∈ C under the new basis. Then we have:

Subcase 19: If x = 0, yu41 + zu42 = u41, then T = T ′ + a11 ⊗ a22 ⊗ (λa31 + µa32)⊗ b42,

where T ′ = a11⊗a21⊗a31⊗u41 +a11⊗a21⊗a32⊗u42 +a12⊗a21⊗a32⊗u41 ∈ T̂a11⊗a21⊗a32⊗u41X3.

Subcase 20: If x = 0, yu41 + zu42 = u42, then T = a11 ⊗ a21 ⊗ a31 ⊗ u41 + (a11 + a12)⊗

a21 ⊗ a32 ⊗ u42 + a11 ⊗ a22 ⊗ (λa31 + µa32)⊗ b42.
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By adjusting a22, we can assume λa31 + µa32 = a32 or a31 + µa32. So we have:

Subcase 21: If λa31 + µa32 = a32, x = 1, yu41 + zu42 = u41, T = T ′ + T ′′, where

T ′ = a11 ⊗ a21 ⊗ a32 ⊗ u42 + a11 ⊗ a22 ⊗ a32 ⊗ b42 + a12 ⊗ a21 ⊗ a32 ⊗ b42 ∈ T̂a11⊗a21⊗a32⊗b42X3, and

T ′′ = a11 ⊗ a21 ⊗ a31 ⊗ u41 + a12 ⊗ a21 ⊗ a32 ⊗ u41 ∈ T̂a11⊗a21⊗a32⊗u41X3.

Subcase 22: If λa31 + µa32 = a32, x = 1, yu41 + zu42 = u42, T = (a11 + a12)⊗ a21 ⊗ a32 ⊗

(u42 + b42) + a11 ⊗ (a22 − a21)⊗ a32 ⊗ b42 + a11 ⊗ a21 ⊗ a31 ⊗ u41.

Subcase 23: If λa31+µa
3
2 = a31+µa

3
2, x = 1, yu41+zu

4
2 = u41, let c21 = a21, c

2
2 = a22−a21,

v41 = u41 + b42 and v42 = b42, then T = a11 ⊗ a31 ⊗ (c21 ⊗ v41 + c22 ⊗ v42) + a11 ⊗ a32 ⊗ (c21 ⊗

u42 + µc21 ⊗ v42 + µc22 ⊗ v42) + a12 ⊗ a32 ⊗ c21 ⊗ v41 = T ′ + a11 ⊗ c22 ⊗ (a31 + µa32)⊗ v42, where

T ′ = a11⊗ c21⊗a31⊗ v41 +a11⊗ c21⊗a32⊗ (µv42 +u42) +a12⊗ c21⊗a32⊗ v41 ∈ T̂a11⊗c21⊗a32⊗v41X3.

Subcase 24: If λa31 + µa32 = a31 + µa32, µ 6= 0, x = 1, yu41 + zu42 = u42, let c21 = a21,

c22 = µa22 − a21, v41 = u42 + b42 and v42 = b42, then T = (a11 + a12) ⊗ c21 ⊗ a32 ⊗ v41 + a11 ⊗

c22 ⊗ (
1

µ
a31 + a32)⊗ v42 + a11 ⊗ c21 ⊗ a31 ⊗ (u41 +

1− µ
µ

v42).

Subcase 25: If λa31+µa32 = a31, x = 1, yu41+zu42 = u42, then T = T ′+(a11+a12)⊗a21⊗

a32⊗(u42+b
4
2), where T ′ = a11⊗a21⊗a31⊗u41+a11⊗(a22−a21)⊗a31⊗b42+a11⊗a21⊗(a31−a32)⊗b42 ∈

T̂a11⊗a21⊗a31⊗b42X3.

If b42 is in the subspace V4 spanned by u41 and u42, after a change of basis of A3⊗V4

we can assume b31 is preserved, and b42 = u41 or u42. So we have:

Subcase 26: If b42 = u41, T = a11⊗(a21+a
2
2)⊗a31⊗u41+a11⊗a21⊗a32⊗u42+a12⊗a21⊗u33⊗b43.

Subcase 27: If b42 = u42, T = T ′ + a12 ⊗ a21 ⊗ u33 ⊗ b43, where T ′ = a11 ⊗ a21 ⊗ a31 ⊗

u41 + a11 ⊗ a21 ⊗ a32 ⊗ u42 + a11 ⊗ a22 ⊗ a31 ⊗ u42 ∈ T̂a11⊗a21⊗a31⊗u42X3.

Subcase 28: If b31 : A∗3 → A4⊗· · ·⊗An has rank 1, say b31 = u31⊗b41 for some u31 ∈ A3

and b41 ∈ A4⊗· · ·⊗An, then T = a11⊗a21⊗u31⊗b41+a11⊗a22⊗a31⊗b42+a12⊗a21⊗u33⊗b43.

Now we assume T ∈ σ3(Xk−1), and T is of Type 2, but is not of Type 1 when

viewed as a tensor in A1 ⊗A2 ⊗ (A3 ⊗ · · · ⊗An). For each normal form, we show by

induction that T ∈ σ3(X).
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Subtype 1: T = b11 ⊗ · · · ⊗ bk1 + b12 ⊗ · · · ⊗ bk2 + b13 ⊗ · · · ⊗ bk3. Since we assume

T (A∗3⊗· · ·⊗A∗n) ⊂ V , where V is spanned by a11⊗a21, a11⊗a22, and a12⊗a21, then b1j⊗b2j ∈

A1⊗A2 has rank 1 for any 1 ≤ j ≤ 3 implies b1j = a11 or b2j = a21. Hence we have two

subcase: T = a12⊗a21⊗b31⊗· · ·⊗bk1+a11⊗a22⊗b32⊗· · ·⊗bk2+(λa11+µa12)⊗a21⊗b33⊗· · ·⊗bk3

or T = a11⊗a22⊗ b31⊗· · ·⊗ bk1 +a12⊗a21⊗ b32⊗· · ·⊗ bk2 +a11⊗ (λa21 +µa22)⊗ b33⊗· · ·⊗ bk3.

Here we only show the first case since the argument for the second case is similar.

For the first subcase, if λ = 0, T has been discussed in Case 3 Type 1, so we

assume λ 6= 0. Now let c11 = a12 ⊗ a21, c12 = a11 ⊗ a22, and c13 = (λa11 + µa12)⊗ a21. From

the argument of Case 2 Type 1, we can deduce directly that T ∈ σ3(Xk) except

for the following several subcases.

Exceptional Subcase 1: b3j = a3j for 1 ≤ j ≤ 2, b33 = a31 + a32, b
k
2 = ak1 ⊗uk+1

1 + ak2 ⊗

uk+1
2 for some uk+1

1 , uk+1
2 ∈ Ak+1⊗ · · · ⊗An, bk1 = bk3 = ak1 ⊗ uk+1

1 , bi1 = bi2 = bi3 for all

4 ≤ i ≤ k−1, then there is no harm to assume k = 4. So T = (c11+c13)⊗a31⊗a41⊗u52+

c12⊗a32⊗a41⊗u51 +c12⊗a32⊗a42⊗u52 +c13⊗a32⊗a41⊗u52. When µ 6= −1, T = [λa11 +(µ+

1)a12]⊗a21⊗(a31+
µ

µ+ 1
a32)⊗a41⊗u52+T ′, where T ′ = a11⊗a22⊗a32⊗a41⊗u51+a11⊗a22⊗a32⊗

a42⊗u52+a11⊗
λ

µ+ 1
a21⊗a32⊗a41⊗u52 ∈ T̂a11⊗a22⊗a32⊗a41⊗u52X4. When µ = −1, T = T ′+T ′′,

where T ′ = a11⊗a21⊗λa31⊗a41⊗u52+(λa11−a12)⊗a21⊗a32⊗a41⊗u52 ∈ T̂a11⊗a21⊗a32⊗a41⊗u52X4,

and T ′′ = a11 ⊗ a22 ⊗ a32 ⊗ a41 ⊗ u51 + a11 ⊗ a22 ⊗ a32 ⊗ a42 ⊗ u52 ∈ T̂a11⊗a22⊗a32⊗a41⊗u52X4.

Exceptional Subcase 2: T = (c11 +c13)⊗a31⊗b41⊗· · ·⊗bk−11 ⊗ak1⊗uk+1
1 +(c12 +c13)⊗

a32⊗ b41⊗ · · · ⊗ bk−11 ⊗ ak1 ⊗ uk+1
1 + c12⊗ a32⊗ b41⊗ · · · ⊗ bk−11 ⊗ ak2 ⊗ uk+1

2 . It is harmless

to assume k = 4. When µ 6= −1, T = [λa11 + (µ+ 1)a12]⊗ a21 ⊗ (a31 +
µ

µ+ 1
a32)⊗ a41 ⊗

u51 +
1

µ+ 1
a11⊗ [(µ+1)a22 +λa21]⊗a32⊗a41⊗u51 +a11⊗a22⊗a32⊗a42⊗u52. When µ = −1,

T = T ′+ a11⊗ a22⊗ a32⊗ a42⊗ u52, where T ′ = a11⊗ a21⊗ λa31⊗ a41⊗ u51 + a11⊗ a22⊗ a32⊗

a41 ⊗ u51 + (λa11 − a12)⊗ a21 ⊗ a32 ⊗ a41 ⊗ u51 ∈ T̂a11⊗a21⊗a32⊗a41⊗u51X4.

Exceptional Subcase 3: T = (c11+yc13)⊗a31⊗b41⊗· · ·⊗bk−11 ⊗ak1⊗uk+1
1 +(c12+yc13)⊗
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a32⊗ b41⊗ · · ·⊗ bk−11 ⊗ ak1 ⊗uk+1
1 + c13⊗ (a31 + a32)⊗ b41⊗ · · ·⊗ bk−11 ⊗ (xak1 + ak2)⊗ bk3(αk2)

for some x, y ∈ C. It is harmless to assume k = 4. When yµ + 1 6= 0, T =

[yλa11 + (yµ+ 1)a12]⊗ a21 ⊗ (a31 +
yµ

yµ+ 1
a32)⊗ a41 ⊗ u51 + a11 ⊗ (

yλ

yµ+ 1
a21 + a22)⊗ a32 ⊗

a41 ⊗ u51 + (λa11 + µa12) ⊗ a21 ⊗ (a31 + a32) ⊗ (xa41 + a42) ⊗ b43(α
4
2). When yµ + 1 = 0,

T = T ′+(λa11+µa12)⊗a21⊗(a31+a32)⊗(xa41+a42)⊗b43(α4
2), where T ′ = a11⊗a21⊗yλa31⊗

a41⊗u51 +y(λa11 +µa12)⊗a21⊗a32⊗a41⊗u51 +a11⊗a22⊗a32⊗a41⊗u51 ∈ T̂a11⊗a21⊗a32⊗a41⊗u51X4.

Subtype 2: T =
k∑
i=1

b11 ⊗ · · · ⊗ bi−11 ⊗ bi2 ⊗ bi+1
1 ⊗ · · · ⊗ bk1 + b13 ⊗ · · · ⊗ bk3. Since

T (A∗3 ⊗ · · · ⊗ A∗n) ⊂ V , where V is spanned by a11 ⊗ a21, a
1
1 ⊗ a22 and a12 ⊗ a21, and

b11 ⊗ b21 ∈ V has rank 1, we can assume b11 = a11, b
2
1 = a21. If b12 and b11 are linearly

independent, then assume b12 = a12, otherwise assume b13 = a12. If b22 and b21 are linearly

independent, then assume b22 = a22, otherwise assume b23 = a22. Since b13 ⊗ b23 is a rank

1 matrix in V , then b13 ⊗ b23 = (xa11 + ya12)⊗ a21 or b13 ⊗ b23 = a11 ⊗ (xa21 + ya22). Hence

we have three subcases:

Subcase 1: T =
k∑
i=3

a11 ⊗ a21 ⊗ b31 ⊗ · · · ⊗ bi−11 ⊗ (bi2 +
2

k − 2
bi1)⊗ bi+1

1 ⊗ · · · ⊗ bk1 +

a12 ⊗ a22 ⊗ b33 ⊗ · · · ⊗ bk3, which is discussed in Case 3 Type 1.

Subcase 2: T = (a12⊗ a21 + a11⊗ a22)⊗ b31⊗ · · · ⊗ bk1 +
k∑
i=3

a11⊗ a21⊗ b31⊗ · · · ⊗ bi−11 ⊗

bi2 ⊗ bi+1
1 ⊗ · · · ⊗ bk1 + a11 ⊗ a21 ⊗ b33 ⊗ · · · ⊗ bk3, which has been discussed in Case 3

Type 1 after a change of basis.

Subcase 3: T = (a12⊗a21+a11⊗a22)⊗b31⊗· · ·⊗bk3 +
k∑
i=3

a11⊗a21⊗b31⊗· · ·⊗bi−11 ⊗bi2⊗

bi+1
1 ⊗ · · ·⊗ bk1 + b13⊗ b23⊗ b33⊗ · · ·⊗ bk3, where b13 and a11 are independent, or b23 and a21

are independent. Let c11 = a11⊗ a21, c12 = a12⊗ a21 + a11⊗ a22, c13 = b13⊗ b23, and V1 denote

the subspace of A1⊗A2 spanned by c11, c
1
2 and c13, since b13⊗ b23 = (xa11 + ya12)⊗ a21 or

b13⊗ b23 = a11⊗ (xa21 + ya22), by the argument of Case 2 Type 2, we have T ∈ σ3(Xk)

directly except for a few subcases. From the argument of Case 2 Type 2, we can

see it is harmless to assume k = 4 when considering these exceptional subcases.
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Exceptional Case 1: b3j = a3j for j = 1, 2, b4j = a41⊗ b51 for some b51 ∈ A5⊗· · ·⊗An,

b33 = a32 + λa31 for some λ ∈ C, b43 : A∗4 → A5 ⊗ · · · ⊗ An has rank 2, say b43 =

a41 ⊗ u51 + a42 ⊗ u52, and b51 is a linear combination of u51 and u52, then by redefining a12

and a22, we can assume c13 = a12 ⊗ a21 or a11 ⊗ a22, u51 = b51 − µu52 for some µ ∈ C or

u52 = b51. If c13 = a12 ⊗ a21, u51 = b51 − µu52, then T = a11 ⊗ [a22 − (1 + λ)a21] ⊗ a31 ⊗ a41 ⊗

b51 + (a11 + a12)⊗ a21⊗ [(1 +λ)a31 + a32]⊗ a41⊗ b51 + a12⊗ a21⊗ (a32 +λa31)⊗ (a42−µa41)⊗u52.

If c13 = a12 ⊗ a21, u
5
2 = b51, T = T ′ + a11 ⊗ (a22 − λa21) ⊗ a31 ⊗ a41 ⊗ b51, where T ′ =

a12⊗a21⊗a31⊗a41⊗ b51 +a11⊗a21⊗ (a32 +λa31)⊗a41⊗ b51 +a12⊗a21⊗ (a32 +λa31)⊗a41⊗u51 +

a12⊗a21⊗(a32+λa31)⊗a42⊗b51 ∈ T̂a12⊗a21⊗(a32+λa31)⊗a41⊗b51X4. If c13 = a11⊗a22, u51 = xb51+yu52

for some 0 6= x, y ∈ C, T = a11 ⊗ (a21 + a22) ⊗ [xa32 + (xλ + 1)a31] ⊗ a41 ⊗ b51 + (a12 −
xλ+ 1

x
a11)⊗ a21⊗ a31⊗ a41⊗ b51 + a11⊗ a22⊗ (a32 +λa31)⊗ (ya41 + a42)⊗u52. If c13 = a11⊗ a22,

u52 = b51, T = T ′+(a12−λa11)⊗a21⊗a31⊗a41⊗b51, where T ′ = a11⊗a22⊗a31⊗a41⊗b51+a11⊗

a21⊗(a32+λa31)⊗a41⊗b51+a11⊗a22⊗(a32+λa31)⊗a41⊗u51+a11⊗a22⊗(a32+λa31)⊗a42⊗b51 ∈

T̂a11⊗a22⊗(a32+λa31)⊗a41⊗b51X4. If x = 0, b41 = b42 and b43 : A∗4 → A5 ⊗ · · · ⊗ An all have rank

1.

Exceptional Case 2: If c13 = a12⊗a21, b41 = b43 = a41⊗ b51 for some b51 ∈ A5⊗· · ·⊗An,

b42 = a41 ⊗ u51 + a42 ⊗ u52 for some u51, u
5
2 ∈ A5 ⊗ · · · ⊗ An, and u51 = xu52 + yb51 for

some x, y ∈ C, then T = a11 ⊗ [(y − λ− 1)a21 + a22]⊗ a31 ⊗ a41 ⊗ b51 + (a11 + a12)⊗ a21 ⊗

[a32 + (λ + 1)a31] ⊗ a41 ⊗ b51 + a11 ⊗ a21 ⊗ a31 ⊗ [xa41 + a42] ⊗ u52. If c13 = a11 ⊗ a22, then

T = a11⊗ (a21 + a22)⊗ [a32 + (λ+ 1)a31]⊗ a41⊗ b51 + [a12 + (y− λ− 1)a11]⊗ a21⊗ a31⊗ a41⊗

b51 + a11 ⊗ a21 ⊗ a31 ⊗ (xa41 + a42)⊗ u52.

Subtype 3: T =
∑
i<j

b11 ⊗ · · · ⊗ bi−11 ⊗ bi2 ⊗ bi+1
1 ⊗ · · · ⊗ bj−11 ⊗ bj2 ⊗ b

j+1
1 ⊗ · · · ⊗

bk1 +
k∑
i=1

b11 ⊗ · · · ⊗ bi−11 ⊗ bi3 ⊗ bi+1
1 ⊗ · · · ⊗ bk1. If b12 = b11, b

2
2 = b21 up to a scalar, then

we can assume b12 = b11 = a11, b
2
2 = b21 = a22, b

1
3 = a12, and b23 = a21. This has been

discussed in Case 3 Type 1. Otherwise, Let c11 = b11 ⊗ b21, c12 = b12 ⊗ b21 + b11 ⊗ b22,
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and c13 = b12 ⊗ b22 + b13 ⊗ b21 + b11 ⊗ b23. By the argument of Case 2 Type 3, we can

see T ∈ σ3(Xk) except only one subcase, and by the argument of Case 2 Type

3 it is harmless to assume k = 4 for the exceptional subcase, b3j = a3j for j = 1, 2,

b33 = xa31 + ya32 for some x, y ∈ C, b41 = b42 = a41 ⊗ b51 for some b51 ∈ A5 ⊗ · · · ⊗An, b43 :

A∗4 → A5⊗· · ·⊗An has rank 2, say b43 = a41⊗u51+a42⊗u52 for some u51, u
5
2 ∈ A5⊗· · ·⊗An,

u52 and b51 are linearly independent, and u51 = λu52 + µb51 for some λ, µ ∈ C. So T =

[(x+µ−5)c11+2c12+c
1
3]⊗a31⊗a41⊗b51+[(y+2)c11+c

1
2]⊗a32⊗a41⊗b51+c11⊗a31⊗(λa41+a

4
2)⊗u52,

which has been discussed in Case 3 Type 1.

Subtype 4: T =
k∑
i=2

b12 ⊗ b21 ⊗ · · · ⊗ bi−11 ⊗ bi2 ⊗ bi+1
1 ⊗ · · · ⊗ bk1 +

k∑
i=1

b11 ⊗ · · · ⊗

bi−11 ⊗ bi3 ⊗ bi+1
1 ⊗ · · · ⊗ bk1. If b12 = b11 up to a scalar, T has been discussed in Case 3

Type 1. Otherwise, let c11 = b11 ⊗ b21, c12 = b12 ⊗ b21, c13 = b12 ⊗ b22 + b13 ⊗ b21. From the

argument of Case 2 Type 4, we can see T ∈ σ3(Xk).

3.2.4 Case 4: T ∈ σ2(X2)

We assume T ∈ σ2(Xk−1), and show T ∈ σ3(Xk) by checking each type of the

normal forms in Proposition 6.

Type 1: T = b11 ⊗ · · · ⊗ bk1. Then T = b11 ⊗ · · · ⊗ bk−11 ⊗ ak1 ⊗ bk1(αk1) + b11 ⊗ · · · ⊗

bk−11 ⊗ ak2 ⊗ bk1(αk2) + b11 ⊗ · · · ⊗ bk−11 ⊗ ak3 ⊗ bk1(αk3).

Type 2: T = b11⊗· · ·⊗bk1+b12⊗· · ·⊗bk2. Since there is some 1 ≤ i ≤ k−1 such that

bi1 and bi2 are linearly independent, then dimT (A∗i ⊗A∗k) ≤ 3 implies at least one of bk1

and bk2 : A∗k → Ak+1⊗· · ·⊗An has rank 1, and the other one has rank at most 2, say

bk1 = ak1⊗bk+1
1 and bk2 = ak1⊗bk+1

2 +ak2⊗bk+1
3 for some bk+1

1 , bk+1
2 , bk+1

3 ∈ Ak+1⊗· · ·⊗An.

Hence, T = b11⊗· · ·⊗bk−11 ⊗ak1⊗bk+1
1 +b12⊗· · ·⊗bk−12 ⊗ak1⊗bk+1

2 +b12⊗· · ·⊗bk−12 ⊗ak2⊗bk+1
3 .

Type 3: T =
k∑
i=1

b11⊗· · ·⊗bi−11 ⊗bi2⊗bk+1
1 ⊗· · ·⊗bk1. Without loss of generality, we

can assume b11 and b12 are linearly independent, and b21 and b22 are linearly independent,

then dimT (A∗1 ⊗ A∗k) ≤ 3 implies bk1 : A∗k → Ak+1 ⊗ · · · ⊗ An has rank 1, say
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bk1 = ak1 ⊗ bk+1
1 for some bk+1

1 ∈ Ak+1 ⊗ · · · ⊗ An, and {bk+1
1 , bk2(αk2), bk2(αk3)} spans

an at most 2 dimensional subspace. Thus we can assume bk2(αk3) = xbk+1
1 + ybk2(αk2)

for some x, y ∈ C, then T = T ′ + a11 ⊗ · · · ⊗ bk−11 ⊗ (ak2 + yak3) ⊗ bk2(αk2), where

T ′ =
k−2∑
i=1

b11 ⊗ · · · ⊗ bi−11 ⊗ bi2 ⊗ bi+1
1 ⊗ · · · ⊗ bk−11 ⊗ ak1 ⊗ bk+1

1 + b11 ⊗ · · · ⊗ bk−11 ⊗ ak1 ⊗

bk2(αk1) + a11 ⊗ · · · ⊗ bk−11 ⊗ xak3 ⊗ bk+1
1 ∈ T̂b11⊗···⊗bk−1

1 ⊗ak1⊗b
k+1
1
Xk.
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4. ON THE GEOMETRY OF TENSOR NETWORK STATES

In this chapter we study tensor network states, and answer a question of L.

Grasedyck that arose in quantum information theory, showing that the limit of ten-

sors in a space of tensor network states need not be a tensor network state.

4.1 Definitions

Let V1, . . . , Vn be complex vector spaces, let vi = dimVi. Let Γ be a graph with

n vertices vj, 1 ≤ j ≤ n, and m edges es, 1 ≤ s ≤ m, and let ~e = (e1, . . . , em) ∈ Nm.

Associate Vj to the vertex vj and an auxiliary vector space Es of dimension es to

the edge es. Make Γ into a directed graph. (The choice of directions will not effect

the end result.) Let V = V1 ⊗ · · · ⊗ Vn. For Γ, s ∈ e(j) means es is incident to vj,

s ∈ in(j) are the incoming edges and s ∈ out(j) the outgoing edges.

Define a tensor network state TNS(Γ, ~e,V) to be:

TNS(Γ, ~e,V) := (4.1)

{T ∈ V | ∃Tj ∈ Vj ⊗ (⊗s∈in(j)Es)⊗ (⊗t∈out(j)E∗t ), T = Con(T1 ⊗ · · · ⊗ Tn)},

where Con is the contraction of all the Es’s with all the E∗s ’s.

Example 1. Let Γ be a graph with two vertices and one edge connecting them, then

TNS(Γ, e1, V1⊗V2) is just σ̂e1(Seg(PV1×PV2)), the cone over the e1-st secant variety

of the Segre variety. To see this, let ε1, . . . , εe1 be a basis of E1 and ε1, . . . , εe1 the

dual basis of E∗. Assume, to avoid trivialities, that v1, v2 ≥ e1. Given T1 ∈ V1 ⊗ E1

we may write T1 = u1 ⊗ ε1 + · · · + ue1 ⊗ εe1 for some uα ∈ V1. Similarly, given

T2 ∈ V2 ⊗ E∗1 we may write T1 = w1 ⊗ ε1 + · · · + we1 ⊗ εe1 for some wα ∈ V2. Then

Con(T1 ⊗ T2) = u1 ⊗ w1 + · · ·+ ue1 ⊗ we1.
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The graph used to define a set of tensor network states is often modeled to mimic

the physical arrangement of the particles, with edges connecting nearby particles, as

nearby particles are the ones likely to be entangled.

Remark 4. The construction of tensor network states in the physics literature does

not use a directed graph, because all vector spaces are Hilbert spaces, and thus self-

dual. However the sets of tensors themselves do not depend on the Hilbert space

structure of the vector space, which is why we omit this structure. The small price to

pay is the edges of the graph must be oriented, but all orientations lead to the same

set of tensor network states.

4.2 Grasedyck’s question

Lars Grasedyck asked:

I s TNS(Γ, ~e,V) Zariski closed? That is, given a sequence of tensors Tε ∈ V

that converges to a tensor T0, if Tε ∈ TNS(Γ, ~e,V) for all ε 6= 0, can we conclude

T0 ∈ TNS(Γ, ~e,V)?

He mentioned that he could show this to be true when Γ was a tree, but did not

know the answer when Γ is a triangle. In the physics literature they were implicitly

assuming tensor network states were closed, so he asked this question.

Definition 9. A dimension vj is critical, resp. subcritical, resp. supercritical, if

vj = Πs∈e(j)es, resp. vj ≤ Πs∈e(j)es, resp. vj ≥ Πs∈e(j)es. If TNS(Γ, ~e,V) is critical

for all j, we say TNS(Γ, ~e,V) is critical, and similarly for sub- and super-critical.

Theorem 10. TNS(Γ, ~e,V) is not Zariski closed for any Γ containing a cycle whose

vertices have non-subcritical dimensions.

Notation 1. GL(V ) denotes the group of invertible linear maps V → V . GL(V1)×

· · ·×GL(Vn) acts on V1⊗· · ·⊗Vn by (g1, . . . , gn) ·v1⊗· · ·⊗vn = (g1v1)⊗· · ·⊗(gnvn).
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(Here vj ∈ Vj and the action on a tensor that is a sum of rank one tensors is the sum

of the actions on the rank one tensors.) Let End(V ) denote the set of all linear maps

V → V . We adopt the convention that End(V1)×· · ·×End(Vn) acts on V1⊗· · ·⊗Vn

by (Z1, . . . Zn) ·v1⊗· · ·⊗vn = (Z1v1)⊗· · ·⊗ (Znvn). Let gl(V ) denote the Lie algebra

of GL(V ). It is naturally isomorphic to End(V ) but it acts on V1 ⊗ · · · ⊗ Vn via the

Leibnitz rule: (X1, . . . , Xn) ·v1⊗· · ·⊗vn = (X1v1)⊗v2⊗· · ·⊗vn+v1⊗ (X2v2)⊗v3⊗

· · ·⊗ vn + · · ·+ v1⊗ · · ·⊗ vn−1⊗ (Xnvn). (This is because elements of the Lie algebra

should be thought of as derivatives of curves in the Lie group at the identity.) If

X ⊂ V is a subset, X ⊂ V denotes its closure. This closure is the same whether one

uses the Zariski closure, which is the common zero set of all polynomials vanishing

on X, or the Euclidean closure, where one fixes a metric compatible with the linear

structure on V and takes the closure with respect to limits.

4.3 Connections to the GCT program

The triangle case is especially interesting because in the critical dimension case

it corresponds to

End(V1)× End(V2)× End(V3) ·Mmulte3,e2,e1 ,

whereMmulte3,e2,e1 ∈ V1⊗V2⊗V3 is the matrix multiplication operator. In Geometric

Complexity Theory (GCT) people study Mmult and its GL(V1)×GL(V2)×GL(V3)

orbit closure ( [6]) which is a toy case of the varieties introduced by Mulmuley and

Sohoni [7,38,39]. The varieties are GLn2 · detn and GLn2 · ln−m permn, where detn ∈

SnCn2
is the determinant, n > m, l ∈ S1C1, permm ∈ SmCm2

is the permanent,

and an inclusion Cm2+1 ⊂ Cn2
has been chosen. It was shown that EndCn2 · detn 6=

GLn2 · detn [32], and determining the difference between these sets is a subject of

current research.
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The critical loop case with es = 3 for all s is also related to the GCT program, as

it corresponds to the multiplication of n matrices of size three. As a tensor, it may

be thought of as a map (X1, . . . , Xn) 7→ tr(X1 · · ·Xn). This sequence of functions

indexed by n, considered as a sequence of homogeneous polynomials of degree n on

V1 ⊕ · · · ⊕ Vn, is complete for the class VPe of sequences of polynomials of small

formula size, see [40].

4.4 Critical loops

Proposition 7. Let v1 = e2e3, v2 = e3e1, v3 = e2e1. Then TNS(4, (v1, v2, v3), V1 ⊗

V2⊗V3) consists of matrix multiplication and its degenerations (and their different ex-

pressions after changes of bases), i.e. TNS(4, (v1, v2, v3), V1⊗V2⊗V3) = End(V1)×

End(V2)×End(V3) ·Me2,e3,e1. It has dimension e22e
2
3 + e22e

2
1 + e23e

2
1− (e22 + e23 + e21− 1).

More generally, if Γ is a critical loop, TNS(Γ, (ene1, e1e2, . . . , en−1en), V1⊗ · · · ⊗ Vn)

is End(V1) × · · · × End(Vn) · M~e, where M~e : V1 ⊗ · · · ⊗ Vn → C is the matrix

multiplication operator (X1, . . . , Xn) 7→ trace(X1 · · ·Xn).

Proof. For the triangle case, a generic element T1 ∈ E2⊗E∗3 ⊗V1 may be thought of

as a linear isomorphism E∗2 ⊗E3 → V1, identifying V1 as a space of e2× e3-matrices,

and similarly for V2, V3. Choosing bases euss for E∗s , with dual basis eus,s for Es,

induces bases xu2u3 for V1 etc.. Let 1 ≤ i ≤ e2, 1 ≤ α ≤ e3, 1 ≤ u ≤ e1. Then

con(T1⊗T2⊗T3) =
∑
xiα⊗yαu ⊗zui which is the matrix multiplication operator. The

general case is similar.

Proposition 8. The Lie algebra of the stabilizer of Mene1,e1e2,...,en−1en in GL(V1) ×

· · · ×GL(Vn) is the image of sl(E1)⊕ · · · ⊕ sl(En) under the map

α1 ⊕ · · · ⊕ αn 7→(IdEn ⊗ α1,−αT1 ⊗ IdE2 , 0, . . . , 0) + (0, IdE1 ⊗ α2,−αT2 ⊗ IdE3 , 0, . . . , 0)

+ · · ·+ (−αTn ⊗ IdE1 , 0, . . . , 0, IdEn−1 ⊗ αn).
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Here sl(Ej) ⊂ gl(Ej) denotes the traceless endomorphisms and T as a superscript

denotes transpose (which is really just cosmetic).

The proof is safely left to the reader.

Large loops are referred to as “1-D systems with periodic boundary conditions”

in the physics literature and are often used in simulations. By Proposition 8, for a

critical loop, dim(TNS(Γ, ~e,V) = e21e
2
2 + · · · + e2n−1e

2
n + e2ne

2
1 − (e21 + · · · + e2n − 1),

compared with the ambient space which has dimension e21 · · · e2n. For example, when

ej = 2 for all j, dim(TNS(Γ, ~e,V)) = 12n+ 1, compared with dim V = 4n.

4.5 Zariski closure

Theorem 11. Let v1 = e2e3, v2 = e3e1, v3 = e2e1. Then TNS(4, (v1, v2, v3), V1 ⊗

V2⊗ V3) is not Zariski closed. More generally any TNS(Γ, ~e,V) where Γ contains a

cycle with no subcritical vertex is not Zariski closed.

Proof. Were T (4) := TNS(4, (v1,v2,v3), V1 ⊗ V2 ⊗ V3) Zariski closed, it would

be GL(V1)×GL(V2)×GL(V3) ·Me2,e3,e1 . To see this, note that the G = GL(V1) ×

GL(V2)×GL(V3) orbit of matrix multiplication is a Zariski open subset of T (4) of

the same dimension as T (4).

We need to find a curve g(t) = (g1(t), g2(t), g3(t)) such that gj(t) ∈ GL(Vj) for

all t 6= 0 and limt→0 g(t) ·Me2,e3,e1 is both defined and not in End(V1) × End(V2) ×

End(V3) ·Me2,e3,e1 .

Note that for (X, Y, Z) ∈ GL(V1)×GL(V2)×GL(V3), we have

(X, Y, Z) ·Me2,e3,e1(P,Q,R) = trace(X(P )Y (Q)Z(R)).

Here X : E∗2 ⊗ E3 → E∗2 ⊗ E3, Y : E∗3 ⊗ E1 → E∗3 ⊗ E1, Z : E∗1 ⊗ E2 → E∗1 ⊗ E2.

Take subspaces UE2E3 ⊂ E∗2⊗E3, UE3E1 ⊂ E∗3⊗E1. Let UE1E2 := Con(UE2E3 , UE3E1)

37



⊂ E∗2 ⊗ E1 be the images of all the pq ∈ E∗2 ⊗ E1 where p ∈ UE2E3 and q ∈ UE3E1

(i.e., the matrix multiplication of all pairs of elements). Take X0, Y0, Z0 respectively

to be the projections to UE2E3 , UE3E1 and U⊥E1E2
. Let X1, Y1, Z1 be the projections

to complementary spaces (so, e.g., X0 +X1 = IdV ∗
1

). For P ∈ V ∗1 , write P0 = X0(P )

and P1 = X1(P ), and similarly for Q,R.

Take the curve (Xt, Yt, Zt) with Xt = 1√
t
(X0 + tX1), Yt = 1√

t
(Y0 + tY1), Zt =

1√
t
(Z0 + tZ1). Then the limiting tensor, as a map V ∗1 × V ∗2 × V ∗3 → C, is

(P,Q,R) 7→ trace(P0Q0R1) + trace(P0Q1R0) + trace(P1Q0R0).

Call this tensor M̃ . First observe that M̃ uses all the variables (i.e., considered as a

linear map M̃ : V ∗1 → V2⊗V3, it is injective, and similarly for its cyclic permutations).

Thus it is either in the orbit of matrix multiplication or a point in the boundary that

is not in End(V1)× End(V2)× End(V3) ·Me2,e3,e1 , because all such boundary points

have at least one such linear map non-injective.

It remains to show that there exist M̃ such that M̃ /∈ G · Me2,e3,e1 . To prove

some M̃ is a point in the boundary, we compute the Lie algebra of its stabilizer

and show it has dimension greater than the the dimension of the stabilizer of matrix

multiplication. One may take block matrices, e.g.,

X0 =

0 ∗

∗ 0

 , X1 =

∗ 0

0 ∗

 ,

and Y0, Y1 have similar shape, but Z0, Z1 have the shapes reversed. Here one takes

any splitting ej = e′j + e′′j to obtain the blocks.

For another example, if one takes ej = e for all j, X0, Y0, Z1 to be the diagonal

matrices and X1, Y1, Z0 to be the matrices with zero on the diagonal, then one
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obtains a stabilizer of dimension 4e2 − 2e > 3e2 − 1. (This example coincides with

the previous one when all ej = 2.)

To calculate the stabilizer of M̃ , first write down the tensor expression of M̃ ∈ V1⊗

V2⊗V3 with respect to fixed bases of V1, V2, V3. Then set an equation (X, Y, Z).M̃ = 0

where X ∈ gl(V1), Y ∈ gl(V2) and Z ∈ gl(V3) are unknowns. Recall that here the

action of (X, Y, Z) on M̃ is the Lie algebra action, so we obtain a system of linear

equations. Finally we solve this system of linear equations and count the dimension

of the solution space. This dimension is the dimension of the stabilizer of M̃ in

GL(V1)×GL(V2)×GL(V3).

To give an explicit example, let e1 = e2 = e3 = e and let X0 = diag(x11, . . . , x
e
e),

Y0 = diag(y11, ..., y
e
e), Z0 = diag(z11 , ..., z

e
e), X1 = (xij) − X0, Y1 = (yij) − Y0, Z1 =

(zij)− Z0. Then

M̃ =
e∑

i,j=1

(xijy
j
j + xiiy

i
j)z

j
i .

Let X =
∑
a
(i
j)

(k
l)
X

(k
l)

(i
j)

be an element of gl(V1), where {X(k
l)

(i
j)
} is a basis of gl(V1), and

define Y and Z in the same pattern with coefficients b
(i
j)

(k
l)

’s and c
(i
j)

(k
l)

’s, respectively.

Consider the equation (X, Y, Z) ·T = 0 and we want to solve this equation for a
(i
j)

(k
l)

’s,

b
(i
j)

(k
l)

’s and c
(i
j)

(k
l)

’s. For these equations to hold, the coefficients of zji ’s must be zero.

That is, for each pair (j, i) of indices we have:

e∑
k,l=1

a
(i
j)

(k
l)
xkl y

j
j + b

(j
j)

(k
l)
xijy

l
k + a

(i
i)

(k
l)
xkl y

i
j + b

(i
j)

(k
l)
xiiy

k
l + c

( l
k)

(j
i)

(xkl y
l
l + xkky

k
l ) = 0.

For these equations to hold, the coefficients of yrs ’s must be zero. For example, if

s 6= j, r 6= s then we have:

b
(j
j)

(r
s)
xij + b

(i
j)

(r
s)
xii + c

(s
r)

(j
i)
xrr = 0
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Now coefficients of x terms must be zero, for instance, if i 6= j and i 6= r, then we

have:

b
(j
j)

(r
s)

= 0, b
(i
j)

(r
s)

= 0, c
(s
r)

(j
i)

= 0.

If one writes down and solves all such linear equations, the dimension of the solution

is 4e2 − 2e.

The same construction works for larger loops and cycles in larger graphs as it

is essentially local - one just takes all other curves the constant curve equal to the

identity.

Remark 5. When e1 = e2 = e3 = 2 we obtain a codimension one component of

the boundary. In general, the dimension of the stabilizer is much larger than the

dimension of G, so the orbit closures of these points do not give rise to codimen-

sion one components of the boundary. It remains an interesting problem to find the

codimension one components of the boundary.

4.6 Algebraic geometry perspective

We recast the previous section in the language of algebraic geometry and put it

in a larger context. This section also serves to motivate the proof of the previous

section.

To make the parallel with the GCT program clearer, we describe the Zariski

closure as the cone over the “closure” of the image of the rational map (i.e., the

closure of the map defined on a Zariski open subset)

PEnd(V1)× PEnd(V2)× PEnd(V3) 99K P(V1 ⊗ V2 ⊗ V3) (4.2)

([X], [Y ], [Z]) 7→ (X, Y, Z) · [Me2,e3,e1 ].

(Compare with the map ψ in [7, §7.2].) A dashed arrow is used to indicate the map
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is not everywhere defined.

The indeterminacy locus (that is, points ([X], [Y ], [Z]) where the map is not

defined), consists of ([X], [Y ], [Z]) such that for all triples of matrices P,Q,R,

trace(X(P )Y (Q)Z(R)) = 0.

In principle one can obtain (4.5) as the image of a map from a succession of blow-ups

of PEnd(V1)× PEnd(V2)× PEnd(V3).

One way to attain a point in the indeterminacy locus is to take ([X0], [Y0], [Z0]) as

described in the proof. Taking a curve in G that limits to this point may or may not

give something new. In the proof we gave two explicit choices that do give something

new.

A more invariant way to discuss that M̃ /∈ End(V1)×End(V2)×End(V3)·Me2,e3,e1

is to consider an auxiliary variety, called a subspace variety ,

Subf1,...,fn(V) := {T ∈ V1⊗· · ·⊗Vn | ∃V ′j ⊂ Vj, dimV ′j = fj, and T ∈ V ′1⊗· · ·⊗V ′n},

and observe that if T ∈ ×j End(Vj) · M~e and T /∈ ×jGL(Vj) · M~e, then T ∈

Subf1,...,fn(V) where fj < ej for at least one j.

The statement that “M̃ uses all the variables” may be rephrased as saying that

M̃ /∈ Sube2e3−1,e2e1−1,e3e1−1(V1 ⊗ V2 ⊗ V3).

4.7 Reduction from the supercritical case to the critical case with the same graph

For a vector space W , let G(k,W ) denote the Grassmannian of k-planes through

the origin in W . Let S → G(k,W ) denote the tautological rank k vector bundle

whose fiber over E ∈ G(k,W ) is the k-plane E. Assume fj ≤ vj for all j with at

least one inequality strict. Form the vector bundle S1 ⊗ · · · ⊗ Sn over G(f1, V1) ×
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· · · × G(fn, Vn), where Sj → G(fj, Vj) are the tautological subspace bundles. Note

that the total space of S1 ⊗ · · · ⊗ Sn maps to V with image Sub~f (V). Define a

fiber sub-bundle, whose fiber over (U1 × · · · × Un) ∈ G(f1, V1) × · · · × G(fn, Vn) is

TNS(Γ, ~e, U1 ⊗ · · · ⊗ Un). Denote this bundle by TNS(Γ, ~e,S1 ⊗ · · · ⊗ Sn).

The supercritical cases may be realized, in the language of Kempf, as a “collapsing

of a bundle” over the critical cases as follows:

Proposition 9. Assume fj := Πs∈e(j)es ≤ vj. Then TNS(Γ, ~e,V) is the image of

the bundle TNS(Γ, ~e,S1 ⊗ · · · ⊗ Sn) under the map to V. In particular

dim(TNS(Γ, ~e,V)) = dim(TNS(Γ, ~e,Cf1 ⊗ · · · ⊗ Cfn)) +
n∑
j=1

fj(vj − fj).

Proof. If Πs∈e(j)es ≤ vj, then any tensor T ∈ Vj⊗(⊗s∈in(j)Es)⊗(⊗t∈out(j)E∗t ), must lie

in some V ′j ⊗ (⊗s∈in(j)Es)⊗ (⊗t∈out(j)E∗t ) with dimV ′j = fj. The space TNS(Γ, ~e,V)

is the image of this subbundle under the map to V.

This type of bundle construction is standard, see [29, 50]. Using the techniques

in [50], one may reduce questions about a supercritical case to the corresponding

critical case.

4.8 Reduction of cases with subcritical vertices of valence one

The subcritical case in general can be understood in terms of projections of critical

cases, but this is not useful for extracting information. However, if a subcritical vertex

has valence one, one may simply reduce to a smaller graph as we now describe.

Proposition 10. Let TNS(Γ, ~e,V) be a tensor network state, let v be a vertex of Γ

with valence one. Relabel the vertices such that v = v1 and so that v1 is attached by

e1 to v2. If v1 ≤ e1, then TNS(Γ, ~e, V1 ⊗ · · · ⊗ Vn) = TNS(Γ̃, ~̃e, Ṽ1 ⊗ V3 ⊗ · · · ⊗ Vn),

where Γ̃ is Γ with v1 and e1 removed, ~̃e is the vector (e2, . . . , en) and Ṽ1 = V1 ⊗ V2.
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Proof. A general element in TNS(Γ, ~e, V1⊗· · ·⊗Vn) is of the form
∑e1,e2

i,j=1 ui⊗viz⊗wz,

where wz ∈ V3 ⊗ · · · ⊗ Vn. Obviously, TNS(Γ, ~e, V1 ⊗ · · · ⊗ Vn) ⊆ TNS(Γ̃, ~̃e, Ṽ1 ⊗

V3 ⊗ · · · ⊗ Vn) =: TNS(Γ̃, ~̃e, Ṽ). Conversely, a general element in TNS(Γ̃, ~̃e, Ṽ)) is

of the form
∑

zXz ⊗ wz, Xz ∈ V1 ⊗ V2. Since v1 ≤ e1, we may express Xz in the

form
∑e1

i=1 ui ⊗ viz, where u1, . . . , uv1 is a basis of V1. Therefore, TNS(Γ, ~e,V) ⊇

TNS(Γ̃, ~̃e, Ṽ).

4.9 Trees

With trees one can apply the two reductions successively to reduce to a tower

of bundles where the fiber in the last bundle is a linear space. The point is that

a critical vertex is both sub- and supercritical, so one can reduce at valence one

vertices iteratively. Here are a few examples in the special case of chains. The result

is similar to the Allman-Rhodes reduction theorem for phylogenetic trees [2].

Example 2. Let Γ be a chain with 3 vertices. If it is supercritical, TNS(Γ, ~e,V) =

V1 ⊗ V2 ⊗ V3. Otherwise TNS(Γ, ~e,V) = Sube1,e1e2,e2(V1 ⊗ V2 ⊗ V3).

Example 3. Let Γ be a chain with 4 vertices. If v1 ≤ e1 and v4 ≤ e3, then, writing

W = V1 ⊗ V2 and U = V3 ⊗ V4, by Proposition 10, TNS(Γ, ~e,V) is the set of rank

at most e2 elements in W ⊗ U (the secant variety of the two-factor Segre). Other

chains of length four have similar complete descriptions.

Example 4. Let Γ be a chain with 5 vertices. Assume that v1 ≤ e1, v5 ≤ e4

and v1v2 ≥ e2 and v4v5 ≥ e3. Then TNS(Γ, ~e,V) is the image of a bundle over

G(e2, V1⊗V2)×G(e3, V4⊗V5) whose fiber is the set of tensor network states associated

to a chain of length three.
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5. SUMMARY

In this thesis we study two feasible spaces of tensors, the third secant variety of

the product of n projective spaces σ3(Seg(PA1 × · · · × PAn)), and tensor network

states. These spaces arise in numerous applications such as signal processing and

quantum information theory.

We determine the set theoretic defining equations of σ3(Seg(PA1 × · · · × PAn)).

For higher secant varieties of Segre varieties, it is known [17] that there is a uniform

bound d(r) such that σr(Seg(PA1 × · · · × PAn)) is defined by equations of degrees

at most d(r) for any n, and [30] when dimAi ≥ r for all 1 ≤ i ≤ n, the equations of

σr(Seg(PA1×· · ·×PAn)) can be obtained from the equations of the r-th secant variety

of the Segre product of n copies of Pr−1’s, i.e. σr

Seg(Pr−1 × · · · × Pr−1︸ ︷︷ ︸
n−copies

)

. We

conjecture that when dimAi ≥ r for all i, the equations for σr(Seg(PA1×· · ·×PAn))

can be obtained from the equations for the r-th secant variety of the Segre product

of only r copies of Pr−1’s, i.e. σr

Seg(Pr−1 × · · · × Pr−1︸ ︷︷ ︸
r−copies

)

.

We discuss under what conditions tensor network states are closed under the

Zariski topology, equivalently (in our situation) the Euclidean topology. The re-

search of the GLn2 orbit closure of the determinant detn, GLn2 · detn, in the GCT

program provides additional motivation to study the geometry of tensor network

states. In particular, when Γ is a triangle, the corresponding tensor network state is

GL(V1)×GL(V2)×GL(V3) ·Mult, where Mult is the matrix multiplication opera-

tor. Very little of the geometric properties even the triangle tensor network state are

known, for example, the number of irreducible components of it is still unknown.
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