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Review
A=C? B=CP, C=CConthispageca=b=c=m
T € A®RB®C has border rank at most r, R(T) < r if 3
T1(€), ..., Tr(€), Tj(e) rank one Ve > 0, T = lime0>_; T;(e).
Goal: lower bounds on R(T), especially T = M.
Classical R(T) > m via minors of flattening T : A* — B®C.
Strassen 1983: R(T) > %m via minors of commutators in space of
endomorphisms T(A*) T (a)™L.

L-Ottaviani 2015: R(T) > 2m — 3, for “good” T
R(M)) > 2m —/m, m = n? via minors of Koszul flattening
NA®B* — NPTTAQC.

L-Michalek 2019: R(T) > (2.02)m, R(Mz)) > 2m — log(m) + 1,

m = n?. via Koszul flattenings of B7-fixed degenerations of T

Complexity Theorists and algebraic geometers: Game essentially

over for these techniques.
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Buczynska-Bucynski idea
T =limes0 > [y Tj(e), consider . C Sym(A* @ B* & C¥)
le={P e Sym(A* @ B*® C*) | P(Tj(¢e)) =0,V1 <j <r}.
Zero set of |, considered as subvariety of Segre.
le Z3-graded (Ic)(s,¢.u) C SCA*®S'B*®S5C*

Taylor series for Tj(€), only low order terms relevant free to alter
higher order terms

Ex. a10b1®c + a1®@ba®c1 + ax®@b1®c1 =
lime_0 %[(31 + 632)®(b1 + 6b2)®(C1 + 6C2) — 31®b1®C1]
= “ms—)O €

[(a1 + €ar + €?a3 + ..)®(b1 + eby + 2b3 + ..)2(c1 + €cr + ...) —
a1®b1®a]

~» WLOG € > 0 points in general position =
codim((l¢)stu, SSA*®@STB*®@S5“C*) = r whenever s + t + u > 1.
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Buczynska-Bucynski idea

~> curves in Grassmannians of codim r-planes with limits defined V
s,t,uas € — 0.

Good News: Limit will be an ideal (Haiman-Sturmfels) but not
necessarily saturated

Limit as € — 0 in Haiman-Sturmfels multi-graded Hilbert scheme.
Good News: Only need finite number of Grassmannians.

Bonus: If T has symmetry, can insist limiting ideal / is Borel fixed.
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BB Border Apolarity

If R(T) < r, there exists a multi-graded ideal / satisfying:

1.

| is contained in the annihilator of T. This condition says
hio C T(C*)*, hor C T(B*)*, o1 C T(A*)* and
hi1 C T+ C A*@B*®C*.

le., T € /ﬁl, i.e., T in limiting r-plane in AQ B®C, and
T(A*) in limiting r-plane Ij;; C B®C etc...

For all (stu) with s+t + u > 1, codimlsy, = r.

By general position € > 0 assumption.

3. each s, is Borel-fixed.

4.

I is an ideal, so the multiplication maps
ls—1 ey @A B s t—1,u@B* @ s 4 y-10C* — STA*RS'B*®SY C*
have image contained in /g,.
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Border Apolarity in practice

4. | is an ideal, so the multiplication maps
ls—1,6 y@A* & s t—1,y@B* ® Is + ,_1QC* — STA*®@S'B*® 5" C*
have image contained in /g;.

In particular codim of image of
ls—1,tu®A* @ lst-1.u@B* @ Is ¢ y—10C* — SSA*QS'B*®S5YC* is
at least r. Rank condition!

After fixing choice of Borel fixed subspaces, have polynomial
necessary conditions!
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Border Apolarity in practice

Given T, to prove R(T) > r, prove can't have | satisfying above.

1. determine all codimension r Borel fixed subspaces of A*®@B*
annihilating T(C*) C A®B. get all candidates for /119. Do same
for candidate hg1 C A*®C* and Ip11 C B*®C*.

2. Compute the rank of h19®A* — S2A*®B*. If too large (image
has codim < r) REJECT! “(210)-test" ditto rank of
h10®B* — A*®S52B* Do same for all candidates and other spaces.

3. For each so far ok triple, compute rank of
h10@C* & ho1®B* & lp11@A* — A*@B*®C*. If too large (image
has codim < r) REJECT! “(111)-test”

continue all cases so far win already with 1-3.
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Matrix multiplication and border apolarity

Here A= U*®V, B=V*oW, C = W*®U,
My reordering of Idy ® Idy ®ldw, ldy € U*®U.

M(,,)(C*) =U'®Ildy oW
C AZB = (U @V)a(V*@aW) = My (C*) @ [Uasi(V)2 W]

Need to understand Borel fixed subspaces in U*®s[(V)@W.

Borel: upper triangular invertible matrices in
SL(U) x SL(V) x SL(W) = SL, x SL, x SL,.
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Borel fixed subspaces for U*®sl(V )@ W

Candidate h1o codim= r Equivalently, /{;,, dim= r containing
T(C*) = U*®Idy @ W need to add r — n? dimensional Borel fixed

subspace Case My: r =6, n> =4, r —n* =2

X ®yf
|
F Oy — x50y

X ®y3 %éﬁ Xt @y

2 1

| |
X Oy —x30y3 X Oyl —x3@y7
ey .y
X5 @ ¥o l X3 ® yi
\\\\\\\\\fi:f;yg x%(%ifé/////////
3 ®ys

xJ! = u'®y; etc.. three choices
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Matrix multiplication

To show B(M<2>) > 6: none of three choices of /19 passes both
(210) and (120) tests. Explicitly, just had to compute ranks of
sparse 24 x 40 matrices with entries {0,+1} and show over

18 = 24 — 6. In homework, shortcuts to make calculation easier,
even hand checkable.

Recall: Strassen R(M(3y) > 14, L-Ottaviani R(M3y) > 15,
L-Michalek R(M;3)) > 16.

Conner-Harper-L 2019: R(M(3y) > 17

Known upper bound is 20 (Smirnov). Why didn't we solve? Have
r = 17 ideal that passes all tests, in all multi-degrees. But tests are
just necess. conditions. Could be ideal from cactus border rank
decomp. or could just be garbage, not limit of anything. Work in
progress with Warsaw group (BB+ Jelisiejew): winner or not?
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Matrix multiplication results cont'd

Recall: so far only R(M2y) known among nontrivial matrix
multiplication tensors.

Conner-Harper-L 2019: R(M23y) = 10
Conner-Harper-L 2019: R(M233y) = 14

For tensors where one factor is of much larger dimension than
other two, no eqns. beyond flattenings

Conner-Harper-L 2019: For all n > 25,
R(Mpnny) > n* +1.32n + 1.

Previously, only R(Moan)) > n? + 1 (Lickteig).
Conner-Harper-L 2019: For all n > 14, R(M(3,n)) > n° + 2n.
Previously, only R(M(3nn)) > n? + 2 (Lickteig).
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Other results

Strassen laser method: bound w indirectly via other tensors.

Prop. (Conner-Gesmundo-L-Ventura) dets, perms potentially
could be used to prove w = 2.

R(det3) = 17 (Conner-Harper-L 2019)
R(perms) = 16 (Conner-Huang-L 2020)

CGLV Prop. more precisely: perm; = T?WQQ Known since 1988

T?Miz could potentially be used to prove w = 2 ~» solves Q open
since 1988.

If interested in other tensors for laser method, beam into Berlin on
Wed. 6am IPAM time (3pm Berlin time)
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Idea of proof for asymptotic results

How to prove lower bounds for all n?

Candidate I3,

U@ ldy @W C Ifjy C BeC = U*sl(V)oW & U*®Idy @W
To prove R(M(mpn)) > n? + p, we show:

Y E € G(p, U®sl(V)2W)B, (210) or (120) test fails.
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Idea of proof for asymptotic results

Set of U*®@W weights of I{j, “outer structure”

Given U*®@W weight (s, t), set of sl(V)-weights appearing with it
“inner structure” sl(V) = sl or sl3

~> n X n grid, attach to each vertex a B-closed subspace of s((V).
Split calculation of the kernel into a local and global computation.
Bound local (grid point) contribution to kernel by function of s, t

and dimension of subspace of s[(V).
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Idea of proof for asymptotic results

Solve a nearly convex optimization problem over all possible outer
structures.

“Worst case” on boundary.

Show extremal values fail test ~ all choices fail test.
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Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. recent developments:

Tensors: Geometry
and Applications

J-M. Landsberg

Corfrrrese uacd of b Mathwmutiod Scteres.

Geometry and C B MS
Complexity Theory ey —
Humbor 112

Tensors: Asymptotic
Geometry and
Developments

2016-2018

J.M. Landsberg

CRMS e | 2 @

16/16



