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Preface

This book describes recent applications of algebraic geometry and represen-
tation theory to complexity theory. I focus on two central problems: the
complexity of matrix multiplication and Valiant’s algebraic variants of P v.
NP.

I have attempted to make this book accessible to both computer scien-
tists and geometers, and the exposition as self-contained as possible. Two
goals are to convince computer scientists of the utility of techniques from
algebraic geometry and representation theory, and to show geometers beau-
tiful, interesting, and important geometry questions arising in complexity
theory.

Computer scientists have made extensive use combinatorics, graph the-
ory, probability, and linear algebra. I hope to show that even elementary
techniques from algebraic geometry and representation theory can substan-
tially advance the search for lower, and even upper bounds in complexity
theory. I believe such additional mathematics will be necessary for further
advances on questions discussed in this book as well as related complex-
ity problems. Techniques are introduced as needed to deal with concrete
problems.

For geometers, I expect that complexity theory will be as good a source
for questions in algebraic geometry as has been modern physics. Recent work
has indicated that subjects such as Fulton-McPherson intersection theory,
the Hilbert scheme of points, and the Kempf-Weyman method for computing
syzygies all have something to add to complexity theory. In addition, com-
plexity theory has a way of rejuvenating old questions that had been nearly
forgotten but remain beautiful and intriguing: questions of Hadamard, Dar-
boux, Lüroth, and the classical Italian school. At the same time, complexity

ix



x Preface

theory has brought different areas of mathematics together in new ways: for
instance combinatorics, representation theory and algebraic geometry all
play a role in understanding the coordinate ring of the orbit closure of the
determinant.

This book evolved from several classes I have given on the subject: a
spring 2013 semester course at Texas A&M, summer courses at: Scuola
Matematica Inter-universitaria, Cortona (July 2012), CIRM, Trento (June
2014), U. Chicago (IMA sponsored) (July 2014), KAIST, Deajeon (Au-
gust 2015), and Obergurgul, Austria (September 2016), a fall 2016 semester
course at Texas A&M, and most importantly, a fall 2014 semester course at
UC Berkeley as part of the semester-long program, Algorithms and Com-
plexity in Algebraic Geometry, at the Simons Institute for the Theory of
Computing.

Since I began writing this book, even since the first draft was completed
in fall 2014, the research landscape has shifted considerably: the two paths
towards Valiant’s conjecture that had been considered the most viable have
been shown to be unworkable, at least as originally proposed. On the other
hand, there have been significant advances in our understanding of the ma-
trix multiplication tensor. The contents of this book are the state of the art
as of January 2017.

Prerequisites. Chapters 1-8 only require a solid background in linear alge-
bra and a willingness to accept several basic results from algebraic geometry
that are stated as needed. Nothing beyond [Sha13a] is used in these chap-
ters. Because of the text [Lan12], I am sometimes terse regarding basic
properties of tensors and multi-linear algebra. Chapters 9 and 10 contain
several sections requiring further background.

Layout. All theorems, propositions, remarks, examples, etc., are numbered
together within each section; for example, Theorem 1.3.2 is the second num-
bered item in Section 1.3. Equations are numbered sequentially within each
Chapter. I have included hints for selected exercises, those marked with the
symbol } at the end, which is meant to be suggestive of a life preserver.
Exercises are marked with (1),(2), or (3), indicating the level of difficulty.
Important exercises are also marked with an exclamation mark, sometimes
even two, e.g., (1!!) is an exercise that is easy and very important.

Acknowledgments. Numerous people have given me help with this book
over the years. These include Malek Abdesselam, Harold Boaz, Emmanuel
Briand, Michel Brion, Peter Bürgisser, Klim Efremenko, Skip Garibaldi,
Josh Grochow, Jesko Hüttenhain, Anthony Iarrobino, Suil Kang, Pascal
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Koiran, Shrawan Kumar, Laurent Manivel, Maximilliano Mella, Ketan Mul-
muley, Giorgio Ottaviani, Victor Pan, Gregory Pearlstein, Kristian Ranes-
tad, Nick Ryder, Anna Seigal, Alistair Sinclair, Anne Shiu, Jerzy Weyman,
Avi Wigderson, Ryan Williams, Virginia Vassilevaska Williams, and Les
Valient. I am especially indebted to Markus Bläser, Jarek Buczynski and
Mateusz Michalek, Michael Forbes and Amir Shpilka, and Christian Iken-
meyer, respectively for help with Chapters 5,10,7, and 9. The book was
helped tremendously by Fulvio Gesmundo, who gave a careful reading and
corrections to the entire text.

I also thank all the students in the classes I have given, the organizers
of the various summer courses, as well as my collaborators. Finally I thank
the Simons center for hosting the fall 2014 semester program Algorithms and
Complexity in Algebraic Geometry, for an inspiring semester where the first
draft of this book was completed.





Chapter 1

Introduction

A dramatic leap for signal processing occurred in the 1960s with the im-
plementation of the fast Fourier transform, an algorithm that surprised the
engineering community with its efficiency.1 Is there a way to predict the
existence of such fast unexpected algorithms? Can we prove when they do
not exist? Complexity theory addresses these questions.

This book is concerned with the use of geometry towards these goals. I
focus primarily on two central questions: the complexity of matrix multipli-
cation and algebraic variants of the famous P versus NP problem. In the
first case, a surprising algorithm exists and it is conjectured that even bet-
ter algorithms exist. In the second case, it is conjectured that no surprising
algorithm exists.

In this chapter I introduce the main open questions discussed in this
book, establish notation that will be used throughout the book, and intro-
duce fundamental geometric notions.

1.1. Matrix multiplication

Much of scientific computation amounts to linear algebra, and the basic
operation of linear algebra is matrix multiplication. All operations of linear
algebra– solving systems of linear equations, computing determinants, etc.–
use matrix multiplication.

1To this day, it is not known if there is an even more efficient algorithm than the FFT. See
[Val77, Lok08, KLPSMN09, GHIL].
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2 1. Introduction

1.1.1. The standard algorithm. The standard algorithm for multiplying
matrices is row-column multiplication: Let A,B be 2× 2 matrices

A =

(
a1

1 a1
2

a2
1 a2

2

)
, B =

(
b11 b12
b21 b22

)
.

Remark 1.1.1.1. While computer scientists generally keep all indices down
(to distinguish from powers), I use the convention from differential geometry
that in a matrix X, the entry in the i-th row and j-th column is labeled xij .

The usual algorithm to calculate the matrix product C = AB is

c1
1 = a1

1b
1
1 + a1

2b
2
1,

c1
2 = a1

1b
1
2 + a1

2b
2
2,

c2
1 = a2

1b
1
1 + a2

2b
2
1,

c2
2 = a2

1b
1
2 + a2

2b
2
2.

It requires 8 multiplications and 4 additions to execute, and applied to n×n
matrices, it uses n3 multiplications and n3 − n2 additions.

This algorithm has been around for about two centuries.

In 1968, V. Strassen set out to prove the standard algorithm was optimal
in the sense that no algorithm using fewer multiplications exists (personal
communication). Since that might be difficult to prove, he set out to show
it was true at least for 2 × 2 matrices – at least over Z2. His spectacular
failure opened up a whole new area of research:

1.1.2. Strassen’s algorithm for multiplying 2 × 2 matrices using 7
scalar multiplications [Str69]. Set

I = (a1
1 + a2

2)(b11 + b22),(1.1.1)

II = (a2
1 + a2

2)b11,

III = a1
1(b12 − b22)

IV = a2
2(−b11 + b21)

V = (a1
1 + a1

2)b22

V I = (−a1
1 + a2

1)(b11 + b12),

V II = (a1
2 − a2

2)(b21 + b22),
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Exercise 1.1.2.1: (1) Show that if C = AB, then

c1
1 = I + IV − V + V II,

c2
1 = II + IV,

c1
2 = III + V,

c2
2 = I + III − II + V I.

This raises questions:

(1) Can one find an algorithm that uses just six multiplications?

(2) Could Strassen’s algorithm have been predicted in advance?

(3) Since it uses more additions, is it actually better in practice?

(4) This algorithm was found by accident and looks ad-hoc. Is there
any way to make sense of it? E.g., is there any way to see that it
is correct other than a brute force calculation?

(5) What about algorithms for n× n matrices?

I address question (4) in §1.1.15, and the others below, with the last
question first:

1.1.3. Fast multiplication of n × n matrices. In Strassen’s algorithm,
the entries of the matrices need not be scalars - they could themselves be
matrices. Let A,B be 4× 4 matrices, and write

A =

(
a1

1 a1
2

a2
1 a2

2

)
, B =

(
b11 b12
b21 b22

)
.

where aij , b
i
j are 2 × 2 matrices. One may apply Strassen’s algorithm to

get the blocks of C = AB in terms of the blocks of A,B performing 7
multiplications of 2× 2 matrices. Since one can apply Strassen’s algorithm
to each block, one can multiply 4× 4 matrices using 72 = 49 multiplications
instead of the usual 43 = 64.

If A,B are 2k × 2k matrices, one may multiply them using 7k multi-
plications instead of the usual 8k. If n is not a power of two, enlarge the
matrices with blocks of zeros to obtain matrices whose size is a power of
two. Asymptotically, by recursion and block multiplication one can multi-
ply n× n matrices using approximately nlog2(7) ' n2.81 multiplications. To
see this, let n = 2k and write 7k = (2k)a, so a = log2 7.

1.1.4. Regarding the number of additions. The number of additions in
Strassen’s algorithm also grows like n2.81, so this algorithm is more efficient
in practice when the matrices are large. For any efficient algorithm for
matrix multiplication, the total complexity is governed by the number of
multiplications; see [BCS97, Prop. 15.1]. This is fortuitous because there
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is a geometric object, tensor rank, discussed in §1.1.11 below, that counts
the number of multiplications in an optimal algorithm (within a factor of
two), and thus provides a geometric measure of the complexity of matrix
multiplication.

Just how large a matrix must be in order to obtain a substantial sav-
ings with Strassen’s algorithm (size about two thousand suffice) and other
practical matters are addressed in [BB].

1.1.5. An even better algorithm? Regarding question (1) above, one
cannot improve upon Strassen’s algorithm for 2× 2 matrices. This was first
shown in [Win71]. I will give a proof, using geometry and representation
theory, of a stronger statement in §8.3.2. However for n > 2, very little
is known, as discussed below and in Chapters 2-5. What is known is that
better algorithms than Strassen’s exist for n× n matrices when n is large.

1.1.6. How to predict in advance? The answer to question (2) is yes!
In fact it could have been predicted 100 years ago.

Had someone asked Terracini in 1913, he would have been able to pre-
dict the existence of something like Strassen’s algorithm from geometric
considerations alone. Matrix multiplication is a bilinear map (see §1.1.9).
Terracini would have been able to tell you, thanks to a simple parameter
count (see §2.1.6), that even a general bilinear map C4 × C4 → C4 can be
executed using seven multiplications, and thus, fixing any ε > 0, one can
perform any bilinear map C4 × C4 → C4 within an error of ε using seven
multiplications.

1.1.7. Big/Little O etc. notation. For functions f, g of a real variable
(or integer) x:

f(x) = O(g(x)) if there exists a constant C > 0 and x0 such that
|f(x)| ≤ C|g(x)| for all x ≥ x0,

f(x) = o(g(x)) if limx→∞
|f(x)|
|g(x)| = 0,

f(x) = Ω(g(x)) if there exists a constant C > 0 and x0 such that
C|f(x)| ≥ |g(x)| for all x ≥ x0,

f(x) = ω(g(x)) if if limx→∞
|g(x)|
|f(x)| = 0, and

f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

1.1.8. The exponent of matrix multiplication. The following quantity
is the standard measure of the complexity of matrix multiplication:
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Definition 1.1.8.1. The exponent ω of matrix multiplication is

ω := inf{h ∈ R | n× n matrices can be multiplied using

O(nh) arithmetic operations}

where inf denotes the infimum.

By Theorem 1.1.11.3 below, Strassen’s algorithm shows ω ≤ log2(7) <
2.81, and it is easy to prove ω ≥ 2. Determining ω is a central open problem
in complexity theory. After Strassen’s work it was shown in 1978 that ω ≤
2.7962 [Pan78], then ω ≤ 2.7799 [Bin80] in 1979, then ω ≤ 2.55 [Sch81]
in 1981, then ω ≤ 2.48 [Str87] in 1987, and then ω ≤ 2.38 [CW90] in 1989,
which might have led people in 1990 to think a resolution was near. However,
then nothing happened for over twenty years, and the current “world record”
of ω < 2.373 [Wil, Gal, Sto] is not much of an improvement since 1990.
These results are the topic of Chapter 3.

If one is interested in multiplying matrices of reasonable size, only the
algorithm in [Pan78] is known to beat Strassen’s. This “practical” exponent
is discussed in Chapter 4.

The above work has led to the following astounding conjecture:

Conjecture 1.1.8.2. ω = 2.

That is, it is conjectured that asymptotically, it is nearly just as easy to
multiply matrices as it is to add them!

Although I am unaware of anyone taking responsibility for the con-
jecture, most computer scientists I have discussed it with expect it to be
true. (For example, multiplying n-bit integers is possible in near linear time
O(n log(n)), which is almost as efficient as adding them.)

I have no opinion on whether the conjecture should be true or false
and thus discuss both upper and lower bounds for the complexity of matrix
multiplication, focusing on the role of geometry. Chapters 2 and 5 are
dedicated to lower bounds and Chapters 3 and 4 to upper bounds.

1.1.9. Matrix multiplication as a bilinear map. I will use the notation

M〈n,m,l〉 : Cn×m × Cm×l → Cn×l

for matrix multiplication of an n ×m matrix with an m × l matrix, and
write M〈n〉 = M〈n,n,n〉.

Matrix multiplication is a bilinear map, that is, for all Xj , X ∈ Cn×m,

Yj , Y ∈ Cm×l, and aj , bj ∈ C,

M〈n,m,l〉(a1X1 + a2X2, Y ) = a1M〈n,m,l〉(X1, Y ) + a2M〈n,m,l〉(X2, Y ), and

M〈n,m,l〉(X, b1Y1 + b2Y2) = b1M〈n,m,l〉(X,Y1) + b2M〈n,m,l〉(X,Y2).
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The set of all bilinear maps Ca × Cb → Cc is a vector space. (In our
case a = nm, b = ml, and c = ln.) Write a1, . . . , aa for a basis of Ca and
similarly for Cb,Cc. Then T : Ca × Cb → Cc is uniquely determined by its
action on basis vectors:

(1.1.2) T (ai, bj) =
c∑

k=1

tijkck.

That is, the vector space of bilinear maps Ca × Cb → Cc, which I will
denote by Ca∗⊗Cb∗⊗Cc, has dimension abc. (The notation Ca∗⊗Cb∗⊗Cc

is motivated in §2.1.) If we represent a bilinear map by a three-dimensional
matrix, it may be thought of as taking two column vectors and returning a
third column vector.

1.1.10. Ranks of linear maps. I use the notation Ca for the column
vectors of height a and Ca∗ for the row vectors.

Definition 1.1.10.1. A linear map f : Ca → Cb has rank one if there exist
α ∈ Ca∗ and w ∈ Cb such that f(v) = α(v)w. (In other words, every rank
one matrix is the product of a row vector with a column vector.) In this
case I write f = α⊗w. The rank of a linear map h : Ca → Cb is the smallest
r such that h may be expressed as a sum of r rank one linear maps.

Given an a×b matrix X, one can always change bases, i.e., multiply X
on the left by an invertible a × a matrix and on the right by an invertible
b×b matrix to obtain a matrix with some number of 1’s along the diagonal
and zeros elsewhere. The number of 1’s appearing is called the rank of the
matrix and it is the rank of the linear map X determines. In other words,
the only property of a linear map Ca → Cb that is invariant under changes
of bases is its rank, and for each rank we have a normal form. This is not
surprising because the dimension of the space of such linear maps is ab, we
have a2 parameters of changes of bases in Ca that we can make in a matrix
representing the map, and a2 + b2 > ab.

1.1.11. Tensor rank. For bilinear maps Ca×Cb → Cc we are not so lucky
as with linear maps, as usually abc > a2 + b2 + c2, i.e., there are fewer free
parameters of changes of bases than the number of parameters needed to
describe the map. This indicates why the study of bilinear maps is vastly
more complicated than the study of linear maps.

Nonetheless, there are properties of a bilinear map that will not change
under a change of basis. The most important properties for complexity are
tensor rank and tensor border rank. Tensor border rank is defined in §1.1.12
below. Tensor rank is a generalization of the rank of a linear map. Tensor
rank is defined properly in §2.1.3. Informally, a bilinear map T has tensor
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rank one if it can be computed with one multiplication. More precisely,
T has tensor rank one if in some coordinate system the multi-dimensional
matrix representing it has exactly one nonzero entry. This may be expressed
without coordinates:

Definition 1.1.11.1. T ∈ Ca∗⊗Cb∗⊗Cc has tensor rank one if there exist
row vectors α ∈ Ca∗, β ∈ Cb∗ and a column vector w ∈ Cc such that
T (u, v) = α(u)β(v)w. T has tensor rank r if it can be written as the sum
of r rank one tensors but no fewer, in which case we write R(T ) = r. Let
σ̂0
r = σ̂0

r,a,b,c denote the set of bilinear maps in Ca∗⊗Cb∗⊗Cc of tensor rank
at most r.

Remark 1.1.11.2. The peculiar notation σ̂0
r will be explained in §4.7.1. For

now, to give an idea where it comes from: σr = σr(Seg(Pa−1×Pb−1×Pc−1))
is standard notation in algebraic geometry for the r-th secant variety of the
Segre variety, which is the object we will study. The hatted object σ̂r denotes
its cone in affine space and the 0 indicates the subset of this set consisting
of tensors of rank at most r.

The following theorem shows that tensor rank is a legitimate measure
of complexity:

Theorem 1.1.11.3. (Strassen [Str69], also see [BCS97, §15.1] )

ω = inf{τ ∈ R | R(M〈n〉) = O(nτ )}.

That is, n×n matrices may be multiplied using O(nω+ε) arithmetic opera-
tions if and only if the tensor rank of M〈n〉 is O(nω+ε).

Our goal is thus to determine, for a given r, whether or not matrix
multiplication lies in σ̂0

r .

1.1.12. How to use algebraic geometry to prove lower bounds for
the complexity of matrix multiplication? Algebraic geometry deals
with the study of zero sets of polynomials. By a polynomial on the space
of bilinear maps Ca∗⊗Cb∗⊗Cc, I mean a polynomial in the coefficients tijk,
i.e., in abc variables. In §1.1.14 I describe a plan to use algebraic geometry
to prove upper complexity bounds. A plan to use algebraic geometry for
lower bounds is:

Plan to show M〈n,m,l〉 6∈ σ̂0
r via algebraic geometry.

• Find a polynomial P on the space of bilinear maps Cnm × Cml →
Cnl, such that P (T ) = 0 for all T ∈ σ̂0

r .

• Show that P (M〈n,m,l〉) 6= 0.
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Chapters 2 and 5 discuss techniques for finding such polynomials, using
algebraic geometry and representation theory, the study of symmetry in
linear algebra.

1.1.13. Representation theory. Representation theory is the systematic
study of symmetry. We will primarily be concerned with properties of bi-
linear maps, tensors, polynomials, etc. that are invariant under changes of
bases. Representation theory will facilitate the study of these properties. It
has been essential for proving lower bounds for the complexity of M〈n〉.

Let V be a complex vector space of dimension v. (I reserve the notation
Cv for the column vectors with their standard basis.) Let GL(V ) denote the
group of invertible linear maps V → V , and I write GLv for GL(Cv). If we
have fixed a basis of V , this is the group of invertible v×v matrices. If G is
a group and µ : G→ GL(V ) is a group homomorphism, we will say G acts
on V and that V is a G-module. The image of µ is called a representation
of G.

For example, the permutation group on n elements Sn acts on Cn by

σ

v1
...
vn

 =

vσ−1(1)
...

vσ−1(n)

 ,

where σ ∈ Sn is a a permutation. That is, the image of Sn in GLn is the
set of permutation matrices. (The inverse is used so that for a vector v,
σ(τv) = (στ)v.)

A group action is irreducible if there does not exist a proper subspace
U ⊂ V such that µ(g)u ∈ U for all u ∈ U and g ∈ G.

The action of Sn on Cn is not irreducible since the line spanned by
e1 + · · · + en is preserved by Sn. Note that the subspace spanned by e1 −
e2, . . . , e1− en is also preserved by Sn. Both these subspaces are irreducible
Sn-modules.

The essential point is: the sets X, such as X = σ̂0
r ⊂ Cabc, for which we

want polynomials that vanish at the points of X, are invariant under the
action of groups:

Definition 1.1.13.1. A set X ⊂ V is invariant under a group G ⊂ GL(V )
if for all x ∈ X and all g ∈ G, g(x) ∈ X. Let GX ⊂ GL(V ) denote the group
preserving X, the largest subgroup of GL(V ) under which X is invariant.

When one says that an object has symmetry, it means the object is
invariant under the action of a group.
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In the case at hand, X = σ̂0
r ⊂ V = A⊗B⊗C. Then σ̂0

r is invariant
under the action of the group GL(A)×GL(B)×GL(C) in GL(V ), i.e., this
image lies in Gσ̂0

r
.

Recall that an ideal I in a ring R is a vector subspace such that for all
P ∈ I and Q ∈ R, PQ ∈ I.

Definition 1.1.13.2. For a set X ⊂ V , we will say a polynomial P vanishes
on X, if P (x) = 0 for all x ∈ X. The set of all polynomials vanishing on X
forms an ideal in the space of polynomials on V , called the ideal of X and
denoted I(X).

If a polynomial P is in the ideal of X, then the polynomial g(P ) will
also be in the ideal of X for all g ∈ GX . That is:

The ideal of polynomials vanishing on X is a GX-module.

The systematic exploitation of symmetry is used throughout this book:
to study the ideals of varieties such as σ̂r via their irreducible components in
Chapter 2, to find new decompositions of the matrix multiplication tensor
in Chapter 4, to find normal forms e.g., to prove the state of the art lower
bound for the complexity of matrix multiplication in Chapter 5, and to define
the only restricted model where an exponential separation of the permanent
from the determinant is known in Chapter 7. Chapter 8 is dedicated to
representation theory, and Chapters 9 and 10 approach problems in algebraic
geometry using representation theory.

1.1.14. How to use algebraic geometry to prove upper bounds for
the complexity of matrix multiplication? Based on the above discus-
sion, one could try:

Plan to show M〈n,m,l〉 ∈ σ̂0
r with algebraic geometry.

• Find a set of polynomials {Pj} on the space of bilinear maps Cnm×
Cml → Cnl such that T ∈ σ̂0

r if and only if Pj(T ) = 0 for all j.

• Show that Pj(M〈n,m,l〉) = 0 for all j.

This plan has a problem: Consider the set S = {(w, z) ∈ C2 | z = 0, w 6=
0}, whose real picture looks like the z-axis with the origin removed:

Any polynomial P ∈ I(S), i.e., any P that evaluates to zero at all points
of S, will also be zero at the origin.
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Exercise 1.1.14.1: (1!) Prove the above assertion.

Just as in this example, the zero set of the polynomials vanishing on σ̂0
r

is larger than σ̂0
r when r > 1 (see §2.1.5) so one cannot certify membership

in σ̂0
r via polynomials, but rather its Zariski closure which I now define:

Definition 1.1.14.2. The Zariski closure of a set S ⊂ V , denoted S, is the
set of u ∈ V such that P (u) = 0 for all P ∈ I(S). A set S is said to be
Zariski closed or an algebraic variety if S = S, i.e., S is the common zero
set of a collection of polynomials.

In the example above, S = {(w, z) ∈ C2 | z = 0}.
When U = Ca∗⊗Cb∗⊗Cc, let σ̂r := σ̂0

r denote the Zariski closure of the
set of bilinear maps of tensor rank at most r.

We will see that for almost all a,b, c, and r, σ̂0
r ( σ̂r. The problem with

the above plan is that it would only show M〈n〉 ∈ σ̂r.

Definition 1.1.14.3. T ∈ Ca⊗Cb⊗Cc has border rank r if T ∈ σ̂r and
T 6∈ σ̂r−1. In this case we write R(T ) = r.

For the study of the exponent of matrix multiplication, we have good
luck:

Theorem 1.1.14.4 (Bini [Bin80], see §3.2).

ω = inf{τ ∈ R | R(M〈n〉) = O(nτ )}.

That is, although we may have R(M〈n〉) < R(M〈n〉), they are not dif-
ferent enough to effect the exponent. In other words, as far as the exponent
is concerned, the plan does not have a problem.

For n = 2, we will see that R(M〈2〉) = R(M〈2〉) = 7. It is expected that
for n > 2, R(M〈n〉) < R(M〈n〉). For n = 3, we only know 15 ≤ R(M〈3〉) ≤
20 and 19 ≤ R(M〈3〉) ≤ 23. In general, we know R(M〈n〉) ≥ 3n2 − o(n), see

§2.6, and R(M〈n〉) ≥ 2n2 − dlog2(n)e − 1, see §5.4.5.

1.1.15. Symmetry and algorithms. In this subsection I mention three
uses of symmetry groups in the study of algorithms.

I first address the question raised in §1.1.2: Can we make sense of
Strassen’s algorithm (1.1.1)? Just as the set σ̂r has a symmetry group, the
point M〈l,m,n〉 also has a symmetry group that includes GLl×GLm×GLn.

(Do not confuse this with GLlm ×GLmn ×GLnl acting on Clm⊗Cmn⊗Cnl

which preserves σ̂0
r .) If we let this group act on Strassen’s algorithm for M〈2〉,

in general we get a new algorithm that also computes M〈2〉. But perhaps
the algorithm itself has symmetry.
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It does, and the first step to seeing the symmetry is to put all three
vector spaces on an equal footing. A linear map f : A → B determines a
bilinear form A × B∗ → C by (a, β) 7→ β(f(a)). Similarly, a bilinear map
A×B → C determines a trilinear form A×B × C∗ → C.

Exercise 1.1.15.1: (2!) Show that M〈n〉, considered as a trilinear form, is
(X,Y, Z) 7→ trace(XY Z) }

Since trace(XY Z) = trace(Y ZX), we see that GM〈n〉 also includes a
cyclic Z3-symmetry. In Chapter 4 we will see that Strassen’s algorithm is
invariant under this Z3-symmetry!

This hints that we might be able to use geometry to help find algorithms.
This is the topic of Chapter 4.

For tensors or polynomials with continuous symmetry, their algorithms
come in families. So to prove lower bounds, i.e., non-existence of a family
of algorithms, one can just prove non-existence of a special member of the
family. This idea is used to prove to the state of the art lower bound for
matrix multiplication presented in §5.4.5.

1.2. Separation of algebraic complexity classes

In 1955, John Nash (see [NR16, Chap. 1]) sent a letter to the NSA regard-
ing cryptography, conjecturing an exponential increase in mean key com-
putation length with respect to the length of the key. In a 1956 letter to
von Neumann (see [Sip92, Appendix]) Gödel tried to quantify the appar-
ent difference between intuition and systematic problem solving. Around
the same time, researchers in the Soviet Union were trying to determine if
“brute force search” was avoidable in solving problems such as the famous
traveling salesman problem where there seems to be no fast way to find
a solution, but any proposed solution can be easily checked, see [Tra84].
(The problem is to determine if there exists a way to visit, say, twenty cities
traveling less than a thousand miles. If I claim to have an algorithm to
do so, you just need to look at my plan and check the distances.) These
discussions eventually gave rise to the complexity classes P, which models
problems admitting a fast algorithm to produce a solution, and NP which
models problems admitting a fast algorithm to verify a proposed solution.
The famous conjecture P 6= NP of Cook, Karp, and Levin is that these
two classes are distinct. They also showed that many important problems
are complete in NP, and hence that resolving the P versus NP question
has practical importance for understanding whether these problems can be
routinely computed. See [Sip92] for a history of the problem and [NR16,
Chap. 1] for an up to date survey.
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The transformation of this conjecture to a conjecture in geometry goes
via algebra:

1.2.1. From complexity to algebra. The P v. NP conjecture is gener-
ally believed to be out of reach at the moment, so there have been weaker
conjectures proposed that might be more tractable. One such comes from a
standard counting problem discussed in §6.1.1. This variant has the advan-
tage that it admits a clean algebraic formulation that I now discuss.

L. Valiant [Val79] conjectured that a sequence of polynomials for which
there exists an “easy” recipe to write down its coefficients should not neces-
sarily admit a fast evaluation. He defined algebraic complexity classes that
are now called VP and VNP, respectively the sequences of polynomials
that are “easy” to evaluate, and the sequences whose coefficients are “easy”
to write down (see §6.1.3 for their definitions), and conjectured:

Conjecture 1.2.1.1 (Valiant [Val79]). VP 6= VNP.

For the precise relationship between this conjecture and the P 6= NP
conjecture, see [BCS97, Chap. 21]. Analogously with the original conjec-
ture, many natural polynomials are complete in VNP and hence resolving
VP versus VNP is important for understanding the computability of these
natural polynomials in practice.

Many problems from graph theory, combinatorics, and statistical physics
(partition functions) are in VNP. A good way to think of VNP is as the
class of sequences of polynomials that can be written down “explicitly”.

Most problems from linear algebra (e.g., inverting a matrix, computing
its determinant, multiplying matrices) are in VP.

Valiant also showed that a particular polynomial sequence, the perma-
nent (permn), is complete for the class VNP in the sense that VP 6= VNP if
and only if (permn) 6∈ VP. As explained in §6.1.1, the permanent is natural
for computer science. Although it is not immediately clear, the permanent
is also natural to geometry, see §6.6.2. The formula for the permanent of an
n× n matrix x = (xij) is:

(1.2.1) permn(x) :=
∑
σ∈Sn

x1
σ(1) · · ·x

n
σ(n).

Here Sn denotes the group of permutations of {1, . . . , n}.
How would one show there is no fast algorithm for the permanent? First

we need a precise class of algorithms to consider. To this end, in §6.1.3 I de-
fine algebraic circuits, which is the standard class of algorithms for comput-
ing a polynomial studied in algebraic complexity theory, and their size, which
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is a measure of the complexity of the algorithm. Let circuit-size(permn) de-
note the size of the smallest algebraic circuit computing permn. Valiant’s
hypothesis 1.2.1.1 may be rephrased as:

Conjecture 1.2.1.2 (Valiant [Val79]). circuit-size(permn) grows faster than
any polynomial in n.

1.2.2. From algebra to algebraic geometry. As with our earlier discus-
sion, to prove lower complexity bounds for the permanent, one could work
as follows:

Let SnCN denote the vector space of all homogeneous polynomials of

degree n in N variables, so permn is a point of the vector space SnCn2
. If we

write an element of SnCN as p(y1, . . . , yN ) =
∑

1≤i1≤···≤in≤N c
i1,...,inyi1 · · · yin ,

then we may view the coefficients ci1,...,in as coordinates on the vector space
SnCN . We will look for polynomials on our space of polynomials, that is,
polynomials in the coefficients ci1,...,in .

Plan to show (permn) 6∈ VP, or at least bound its circuit size by r,
with algebraic geometry.

• Find a polynomial P on the space SnCn2
such that P (p) = 0 for

all p ∈ SnCn2
with circuit-size(p) ≤ r.

• Show that P (permn) 6= 0.

By the discussion above on Zariski closure, this may be a more difficult
problem than Valiant’s original hypothesis: we are not just trying to exclude
permn from having a circuit, but we are also requiring it not be “near” to
having a small circuit. I return to this issue in §1.2.5 below.

1.2.3. Benchmarks and restricted models. Valiant’s hypothesis is ex-
pected to be extremely difficult, so it is reasonable to work towards partial
results. Two types of partial results are as follows: First, one could attempt
to prove the conjecture under additional hypotheses. In the complexity lit-
erature, a conjecture with supplementary hypotheses is called a restricted
model. For an example of a restricted model, one could restrict to circuits
that are formulas (the underlying graph is a formula, see Remark 6.1.5.2).
The definition of a formula coincides with our usual notion of a formula.
Restricted models are discussed in Chapter 7. Second, one can fix a com-
plexity measure, e.g., circuit-size(permn), and prove lower bounds for it. I
will refer to such progress as improving benchmarks.

1.2.4. Another path to algebraic geometry. The permanent resembles
one of the most, perhaps the most, studied polynomial, the determinant of
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an n× n matrix x = (xij):

(1.2.2) detn(x) :=
∑
σ∈Sn

sgn(σ)x1
σ(1) · · ·x

n
σ(n).

Here sgn(σ) denotes the sign of the permutation σ. The determinant, de-
spite its enormous formula of n! terms, can be computed very quickly, e.g.,
by Gaussian elimination. (See §6.1.3 for a division-free algorithm.) In par-
ticular (detn) ∈ VP. It is not known if detn is complete for VP, that is,
whether or not a sequence of polynomials is in VP if and only if it can be
reduced to the determinant in the sense made precise below.

Although

perm2

(
a b
c d

)
= det2

(
a −b
c d

)
,

Marcus and Minc [MM61], building on work of Pólya and Szegö (see
[Gat87]), proved that one could not express permm(y) as a size m de-
terminant of a matrix whose entries are affine linear functions of the xij
when m > 2. This raised the question that perhaps the permanent of an
m × m matrix could be expressed as a slightly larger determinant, which
would imply VP = VNP. More precisely, we say p(y1, . . . , yM ) is an
affine linear projection of q(x1, . . . , xN ), if there exist affine linear functions
xα(y) = xα(y1, . . . , yM ) such that p(y) = q(x(y)). For example,

(1.2.3) perm3(y) = det7



0 0 0 0 y3
3 y3

2 y3
1

y1
1 1
y1

2 1
y1

3 1
y2

2 y2
1 0 1

y2
3 0 y2

1 1
0 y2

3 y2
2 1


.

This formula is due to B. Grenet [Gre11], who also generalized it to express
permm as a determinant of size 2m − 1, see §6.6.3.

Valiant conjectured that one cannot do much better than this:

Definition 1.2.4.1. Let p be a polynomial. Define the determinantal com-
plexity of p, denoted dc(p), to be the smallest n such that p is an affine
linear projection of the determinant.

Valiant showed that for any polynomial p, dc(p) is finite but possibly
larger than circuit-size(p), so the following conjecture is possibly weaker
than Conjecture 1.2.1.2.

Conjecture 1.2.4.2 (Valiant [Val79]). dc(permm) grows faster than any
polynomial in m.
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The state of the art, obtained with classical differential geometry, is

dc(permm) ≥ m2

2 , due to Mignon and Ressayre [MR04]. An exposition of
their result is given in §6.4.

1.2.5. Geometric Complexity Theory. The “Zariski closed” version of
Conjecture 1.2.4.2 is the flagship conjecture of Geometric Complexity Theory
(GCT) and is discussed in Chapters 6 and 8. To state it in a useful form,
first rephrase Valiant’s hypothesis as follows:

Let End(Cn2
) denote the space of all linear maps Cn2 → Cn2

, which

acts on SnCn2
under the action L · p(x) := p(LT (x)), where x is viewed as a

column vector of size n2, L is an n2 × n2 matrix, and T denotes transpose.
(The transpose is used so that L1 · (L2 · p) = (L1L2) · p.) Let

End(Cn
2
) · p = {L · p | L ∈ End(Cn

2
)}.

Define an auxiliary variable ` ∈ C1 so `n−m permm ∈ SnCm
2+1. Consider

any linear inclusion Cm2+1 → Cn2
(e.g., with the Matm×m in the upper left

hand corner and ` in the (m+ 1)× (m+ 1) slot and zeros elsewhere in the

space of n× n matrices), so we may consider `n−m permm ∈ SnCn
2
. Then

(1.2.4) dc(permm) ≤ n ⇐⇒ `n−m permm ∈ End(Cn
2
) · detn .

This situation begins to resemble our matrix multiplication problem: we

have an ambient space SnCn2
(resp. (Cn2

)⊗3 for matrix multiplication), a

subset End(Cn2
) · detn (resp. σ̂0

r , the tensors of rank at most r), and a
point `n−m permm (resp. M〈n〉) and we want to show the point is not in
the subset. Note one difference here: the dimension of the ambient space is
exponentially large with respect to the dimension of our subset. As before,
if we want to separate the point from the subset with polynomials, we are
attempting to prove a stronger statement.

Definition 1.2.5.1. For p ∈ SdCM , let dc(p) denote the smallest n such

that `n−dp ∈ End(Cn2) · detn, the Zariski closure of End(Cn2
) · detn. Call

dc the border determinantal complexity of p.

Conjecture 1.2.5.2. [MS01] dc(permm) grows faster than any polynomial
in m.

For this problem, we do not have an analog of Bini’s theorem 1.1.14.4
that promises similar asymptotics for the two complexity measures. In this
situation Mulmuley [Mul] conjectures that there exist sequences of polyno-
mials (pm) such that dc(pm) grows like a polynomial in m but dc(pm) grows
faster than any polynomial. Moreover, he speculates that this gap explains
why Valiant’s hypothesis is so difficult.
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Representation theory indicates a path towards solving Conjecture 1.2.5.2.
To explain the path, I introduce the following terminology:

Definition 1.2.5.3. A polynomial p ∈ SnCN is characterized by its sym-
metries if, letting Gp := {g ∈ GLN | g · p = p}, for any q ∈ SnCN with
Gq ⊇ Gp, one has p = λq for some λ ∈ C.

There are two essential observations:

• End(Cn2) · detn = GLn2 · detn, that is, the variety End(Cn2) · detn
is an orbit closure.

• detn and permn are characterized by their symmetries.

In principle representation theory (more precisely, the Peter-Weyl The-
orem, see §8.6) gives a description of the polynomials vanishing on an orbit
closure modulo the effect of the boundary. (It describes the ring of reg-
ular functions on the orbit.) Unfortunately for the problem at hand, the
approach to Valiant’s conjecture via the Peter-Weyl theorem, outlined in
[MS01, MS08], was recently shown [IP15, BIP16] to be not viable as
proposed. Nevertheless, the approach suggests several alternative paths that
could be viable. For this reason, I explain the approach and the proof of its
non-viability in Chapter 8.

Unlike matrix multiplication, progress on Valiant’s hypothesis and its
variants is in its infancy. To gain insight as to what techniques might work,
it will be useful to examine “toy” versions of the problem - these questions
are of mathematical significance in their own right and lead to interesting
connections between combinatorics, representation theory, and geometry.
Chapter 9 is dedicated to one such problem, dating back to Hermite and
Hadamard, to determine the ideal of the Chow variety of polynomials that
decompose into a product of linear forms.

1.3. How to find hay in a haystack: the problem of
explicitness

A “random” bilinear map b : Cm ×Cm → Cm will have tensor rank around
m2

3 , see §4.7 for the precise rank. (In particular, the standard algorithm for
matrix multiplication already shows that it is pathological as a tensor as

n3 << (n2)2

3 .) On the other hand, how would one find an explicit tensor of

tensor rank around m2

3 ? This is the problem of finding hay in a haystack2.
Our state of the art for this question is so dismal that there is no known
explicit bilinear map of tensor rank 3m, in fact the highest rank of an explicit
tensor known (modulo the error term) is for matrix multiplication [Lan14]:

2This phrase is due to Howard Karloff
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R(M〈n〉) ≥ 3n2−o(n2). Other explicit sequences Tm : Cm×Cm → Cm with
R(Tm) ≥ 3m − o(m) were found in [Zui15] and the largest known rank
tensor, from [AFT11], has R(Tm) ≥ 3m − o(log(m)). It is a frequently
stated open problem to find explicit bilinear maps Tm : Cm × Cm → Cm

with R(Tm) ≥ (3 + ε)m. In Chapter 5, I discuss the state of the art of
this problem and the related border rank problem, where no explicit tensor
T ∈ Cm⊗Cm⊗Cm with R(T ) > 2m is known. Valiant’s hypothesis may
also be phrased in this language: exhibiting an explicit polynomial sequence
that is provably difficult to compute would be sufficient to prove Valiant’s
hypothesis (a random sequence is provably difficult).

1.4. The role of algebraic geometry

Recent research (e.g., [Gal16, BB14]) has shown that in order to prove
super-linear lower bounds on tensor rank or border rank, thanks to the cac-
tus variety, one must deal with subtle questions regarding zero dimensional
schemes. The work [GKKS13a] indicates that questions regarding the ge-
ometry of syzygies could play a role in the resolution of Valiant’s hypothesis.
Chapter 10 introduces these topics and others from algebraic geometry and
representation theory, and explains their role in complexity theory. It is
written as an invitation to algebraic geometers with expertise in these areas
to work on questions in complexity theory.





Chapter 2

The complexity of
Matrix multiplication
I: first lower bounds

In this chapter I discuss lower complexity bounds for tensors in general and
matrix multiplication in particular. The two basic measures of complexity
are rank and border rank. I begin, in §2.1, by defining tensors and their rank.
I motivate the definition of border rank with the story of the discovery by
Bini et. al. of approximate algorithms for a reduced matrix multiplica-
tion tensor and then give its definition. Next, in §2.2 I present Strassen’s
equations. In order to generalize them, I present elementary definitions and
results from mutli-linear algebra and representation theory in §2.3, includ-
ing the essential Schur’s lemma. I then, in §2.4 give Ottaviani’s derivation
of Strassen’s equations that generalizes to Koszul flattenings, which are also
derived. In §2.5, I show a 2n2−n lower bound for the border rank of M〈n〉.

This border rank lower bound is exploited to prove a 3n2−o(n2) rank lower
bound for M〈n〉 in §2.6. The current state of the art is a 2n2−dlog2(n)e− 1
lower bound for the border rank of M〈n〉, which is presented in §5.4.5, as it
requires more geometry and representation theory than what is covered in
this chapter.

2.1. Matrix multiplication and multi-linear algebra

To better understand matrix multiplication as a bilinear map, I first review
basic facts from multi-linear algebra. For more details on this topic, see
[Lan12, Chap. 2].

19
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2.1.1. Linear algebra without coordinates. In what follows it will be
essential to work without bases, so instead of writing Cv, I use V to denote
a complex vector space of dimension v.

The dual space V ∗ to a vector space V is the vector space whose elements
are linear maps from V to C:

V ∗ := {α : V → C | α is linear}.

This notation is consistent with the notation of Cv for column vectors and
Cv∗ for row vectors because if in bases elements of V are represented by
column vectors, then elements of V ∗ are naturally represented by row vectors
and the map v 7→ α(v) is just row-column matrix multiplication. Given a
basis v1, . . . , vv of V , it determines a basis α1, . . . , αv of V ∗ by αi(vj) = δij ,
called the dual basis.

Let V ∗⊗W denote the vector space of all linear maps V → W . Given
α ∈ V ∗ and w ∈W define a linear map α⊗w : V →W by α⊗w(v) := α(v)w.
In bases, if α is represented by a row vector and w by a column vector, α⊗w
will be represented by the matrix wα. Such a linear map is said to have
rank one. Define the rank of an element f ∈ V ∗⊗W to be the smallest r
such f may be expressed as a sum of r rank one linear maps.

Recall from Definition 1.1.14.2, that a variety is the common zero set of
a collection of polynomials.

Definition 2.1.1.1. A variety Z ⊂ V is reducible if it is possible to write
Z = Z1 ∪ Z2 with Z1, Z2 nonempty varieties. Otherwise it is irreducible.

Definition 2.1.1.2. A property of points of an irreducible variety Z ⊂ W
is general or holds generally if the property holds on the complement of a
proper subvariety of Z.

A general point of a variety Z ⊂ V is a point not lying on some explicit
Zariski closed subset of Z. This subset is often understood from the context
and so not mentioned.

The complement to the zero set of any polynomial over the complex
numbers has full measure, so properties that hold at general points hold
with probability one for a randomly chosen point in Z.

Theorem 2.1.1.3 (Fundamental theorem of linear algebra). Let V,W be
finite dimensional vector spaces, let f : V →W be a linear map, and let Af
be a matrix representing f . Then
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(1)

rank(f) = dim f(V )

= dim(span{columns of Af})
= dim(span{rows of Af})
= dimV − dim ker f.

In particular rank(f) ≤ min{dimV,dimW}.
(2) For general f ∈ V ∗⊗W , rank(f) = min{dimV,dimW}.
(3) If a sequence of linear maps ft of rank r has a limit f0, then

rank(f0) ≤ r.
(4) rank(f) ≤ r if and only if, in any choice of bases, the determinants

of all size r + 1 submatrices of the matrix representing f are zero.

Note that assertion 4) shows that the set of linear maps of rank at most
r forms an algebraic variety. Although we take it for granted, it is really
miraculous that the fundamental theorem of linear algebra is true. I explain
why in §2.1.5.

Exercise 2.1.1.4: (1!) Prove the theorem. }

Exercise 2.1.1.5: (1) Assuming V is finite dimensional, write down a canon-
ical isomorphism V → (V ∗)∗. }

Many standard notions from linear algebra have coordinate free defini-
tions. For example: A linear map f : V → W determines a linear map
fT : W ∗ → V ∗ defined by fT (β)(v) := β(f(v)) for all v ∈ V and β ∈ W ∗.
Note that this is consistent with the notation V ∗⊗W ' W⊗V ∗, being in-
terpreted as the space of all linear maps (W ∗)∗ → V ∗, that is, the order
we write the factors does not matter. If we work in bases and insist that
all vectors are column vectors, the matrix of fT is just the transpose of the
matrix of f .

Exercise 2.1.1.6: (1) Show that we may also consider an element f ∈
V ∗⊗W as a bilinear map bf : V ×W ∗ → C defined by bf (v, β) := β(f(v)).

2.1.2. Multi-linear maps and tensors. The space V⊗W is called the
tensor product of V with W . More generally, for vector spaces A1, . . . , An
define their tensor product A1⊗ · · ·⊗An to be the space of n-linear maps
A∗1× · · · ×A∗n → C, equivalently the space of (n− 1)-linear maps A∗1× · · · ×
A∗n−1 → An etc.. When A1 = · · · = An = V , write V ⊗n = V⊗ · · ·⊗V .

Let aj ∈ Aj and define an element a1⊗ · · ·⊗an ∈ A1⊗ · · ·⊗An to be the
n-linear map

a1⊗ · · ·⊗an(α1, . . . , αn) := α1(a1) · · ·αn(an).
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Exercise 2.1.2.1: (1) Show that if {asjj | 1 ≤ sj ≤ aj}, is a basis of Aj ,

then {as11 ⊗ · · ·⊗asnn | 1 ≤ sj ≤ aj} is a basis of A1⊗ · · ·⊗An. In particular
dim(A1⊗ · · ·⊗An) = a1 · · ·an. }

Remark 2.1.2.2. One may identifyA1⊗ · · ·⊗An with any re-ordering of the
factors. When I need to be explicit about this, I will call the identification
the re-ordering isomorphism.

Example 2.1.2.3 (Matrix multiplication). Let xiα, yαu , zui respectively be
bases of A = Cnm, B = Cml, C = Cln, then the standard expression of
matrix multiplication as a tensor is

(2.1.1) M〈l,m,n〉 =

n∑
i=1

m∑
α=1

l∑
u=1

xiα⊗yαu⊗zui .

Exercise 2.1.2.4: (2) Write Strassen’s algorithm out as a tensor. }

2.1.3. Tensor rank. An element T ∈ A1⊗ · · ·⊗An is said to have rank
one if there exist aj ∈ Aj such that T = a1⊗ · · ·⊗an.

I will use the following measure of complexity:

Definition 2.1.3.1. Let T ∈ A1⊗ · · ·⊗An. Define the rank (or tensor rank)
of T to be the smallest r such that T may be written as the sum of r rank
one tensors. Write R(T ) = r. Let σ̂0

r ⊂ A1⊗ · · ·⊗An denote the set of
tensors of rank at most r.

For bilinear maps, tensor rank is comparable to all other standard mea-
sures of complexity on the space of bilinear maps, see, e.g., [BCS97, §14.1].

By (2.1.1) we conclude R(M〈n,m,l〉) ≤ nml. Strassen’s algorithm shows
R(M〈2,2,2〉) ≤ 7. Shortly afterwards, Winograd [Win71] showed R(M〈2,2,2〉) =
7.

2.1.4. Another spectacular failure. After Strassen’s failure to prove
the standard algorithm for matrix multiplication was optimal, Bini et. al.
[BLR80] considered the reduced matrix multiplication operator

M red
〈2〉 :=x1

1⊗(y1
1⊗z1

1 + y1
2⊗z2

1) + x1
2⊗(y2

1⊗z1
1 + y2

2⊗z2
1) + x2

1⊗(y1
1⊗z1

2 + y1
2⊗z2

2)

∈ C3⊗C4⊗C4.

obtained by setting the x2
2 entry for M〈2〉 to zero. The standard presentation

shows R(M red
〈2〉 ) ≤ 6. Bini et. al. attempted to find a rank five expression

for M red
〈2〉 . They searched for such an expression by computer. Their method

was to minimize the norm of M red
〈2〉 minus a rank five tensor that varied (see

§4.6 for a description of the method), and their computer kept on producing
rank five tensors with the norm of the difference getting smaller and smaller,
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but with larger and larger coefficients. Bini (personal communication) told
me about how he lost sleep trying to understand what was wrong with his
computer code. This went on for some time, when finally he realized there
was nothing wrong with the code: the output it produced was a manifestation
of the phenomenon Bini named border rank [Bin80], which was mentioned
in the introduction in the context of finding polynomials for upper rank
bounds.

The expression for the tensor M red
〈2〉 that their computer search found

was essentially

M red
〈2〉 = lim

t→0

1

t
[(x1

2 + tx1
1)⊗(y1

2 + ty2
2)⊗z2

1(2.1.2)

+ (x2
1 + tx1

1)⊗y1
1⊗(z1

1 + tz1
2)

− x1
2⊗y1

2⊗((z1
1 + z2

1) + tz2
2)

− x2
1⊗((y1

1 + y1
2) + ty2

1)⊗z1
1

+ (x1
2 + x2

1)⊗(y1
2 + ty2

1)⊗(z1
1 + tz2

2)].

The rank five tensors found by Bini et. al. were the right hand side of
(2.1.2) (without the limit) for particular small values of t.

In what follows I first explain why border rank is needed in the study of
tensors and then properly define it.

2.1.5. The Fundamental theorem of linear algebra is false for ten-
sors. Recall the fundamental theorem of linear algebra from §2.1.1.3.

Theorem 2.1.5.1. If T ∈ Cm⊗Cm⊗Cm is general, i.e., outside the zero set
of a certain finite collection of polynomials (in particular outside a certain

set of measure zero), then R(T ) ≥ dm3−1
3m−2e.

Tensor rank can jump up (or down) under limits.

The first assertion is proved in §4.7.1. To see the second assertion, at
least when r = 2, consider

T (t) :=
1

t
[a1⊗b1⊗c1 − (a1 + ta2)⊗(b1 + tb2)⊗(c1 + tc2)]

and note that

lim
t→0

T (t) = a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1

which has rank three.

Exercise 2.1.5.2: (1) Prove R(a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1) = 3. }

Remark 2.1.5.3. Physicists call the tensor a1⊗b1⊗c2+a1⊗b2⊗c1+a2⊗b1⊗c1

the W-state so I will sometimes denote it TWState.
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To visualize why rank can jump up while taking limits, consider the
following picture, where the curve represents the points of σ̂0

1. Points of σ̂0
2

(e.g., the dots limiting to the dot labeled T ) are those on a secant line to σ̂0
1,

and the points where the rank jumps up, such at the dot labeled T , are those
that lie on a tangent line to σ̂0

1. This phenomena fails to occur for matrices
because for matrices, every point on a tangent line is also on an honest
secant line. Thus in some sense it is a miracle that rank is semi-continuous
for matrices.

a1 c1b1

T

Our situation regarding tensor rank may be summarized as follows:

• The set σ̂0
r is not closed under taking limits. I will say a set that is

closed under taking limits is Euclidean closed.

• It is also not Zariski closed, i.e., the zero set of all polynomials
vanishing on σ̂0

r includes tensors that are of rank greater than r.

Exercise 2.1.5.4: (2) Show that the Euclidean closure (i.e., closure under
taking limits) of a set is always contained in its Zariski closure. }

The tensors that are honestly “close” to tensors of rank r would be
the Euclidean closure, but to deal with polynomials as proposed in §1.1.12-
1.1.14, we need to work with the potentially larger Zariski closure.

Often the Zariski closure is much larger than the Euclidean closure. For
example, the Zariski closure of Z ⊂ C is C, while Z is already closed in the
Euclidean topology.

For the purposes of proving lower bounds, none of this is an issue, but
when we discuss upper bounds, we will need to deal with these problems. For
now, I mention that with σ̂0

r we have good luck: the Zariski and Euclidean
closures of σ̂0

r coincide, so our apparently different informal uses of the term
border rank coincide. I present the proof in §3.1.6.



2.1. Matrix multiplication and multi-linear algebra 25

Remark 2.1.5.5. This coincidence is a consequence of a standard result in
algebraic geometry that the computer science community was unaware of.
As a result, it ended up being re-proven in special cases, e.g., in [Lic84, ?].

2.1.6. Border rank. Generalizing the discussion in §1.1.11, σ̂r = σ̂r,A1⊗···⊗An
denotes the Zariski (and by the above discussion Euclidean) closure of σ̂0

r ,
and the border rank of T ∈ A1⊗ · · ·⊗An, denoted R(T ), is the smallest r
such that T ∈ σ̂r. By the above discussion, border rank is semi-continuous.

Exercise 2.1.6.1: (1) Write down an explicit tensor of border rank r in
Cr⊗Cr⊗Cr with rank greater than r. }

Border rank is easier to work with than rank for several reasons. For
example, the maximal rank of a tensor in Cm⊗Cm⊗Cm is not known in

general. In contrast, the maximal border rank is known to be dm3−1
3m−2e for

all m 6= 3, and is 5 when m = 3 [Lic85]. In particular Strassen’s algorithm
could have been predicted in advance with this knowledge. The method of
proof is a differential-geometric calculation that dates back to Terracini in
the 1900’s [Ter11], see §4.7.1 for a discussion.

Exercise 2.1.6.2: (1) Prove that if T ∈ A⊗B⊗C and T ′ := T |A′×B′×C′
(here T is being considered as a trilinear form) for some A′ ⊆ A∗, B′ ⊆ B∗,
C ′ ⊆ C∗, then R(T ) ≥ R(T ′) and R(T ) ≥ R(T ′). }

Exercise 2.1.6.3: (1) Let Tj ∈ Aj⊗Bj⊗Cj , 1 ≤ j, k, l ≤ s. Consider
T1 ⊕ · · · ⊕ Ts ∈ (⊕jAj)⊗(⊕kBk)⊗(⊕lCl) Show that R(⊕jTj) ≤

∑s
i=1 R(Ti)

and R(⊕jTj) ≤
∑s

i=1 R(Ti).

Exercise 2.1.6.4: (1) Let Tj ∈ Aj⊗Bj⊗Cj , 1 ≤ j, k, l ≤ s. Let A = ⊗jAj ,
B = ⊗kBk, and C = ⊗lCl, consider T1⊗ · · ·⊗Ts ∈ A⊗B⊗C. Show that
R(⊗si=1Ti) ≤ Πs

i=1R(Ti), and R(⊗si=1Ti) ≤ Πs
i=1R(Ti)

2.1.7. Our first lower bound. Given T ∈ A⊗B⊗C, write T ∈ A⊗(B⊗C)
and think of T as a linear map TA : A∗ → B⊗C. I will write T (A∗) ⊂ B⊗C
for the image.

Proposition 2.1.7.1. R(T ) ≥ rank(TA).

Exercise 2.1.7.2: (1!) Prove Proposition 2.1.7.1. }

Say dimensions a,b, c are unbalanced if any of the inequalities a > bc,
b > ac, c > ab hold, and otherwise that they are balanced.

Permuting the three factors, and assuming the dimensions are balanced,
we have equations for σ̂r,A⊗B⊗C for r ≤ max{a − 1,b − 1, c − 1}, namely
the size r + 1 minors of the linear maps TA, TB, TC .

Definition 2.1.7.3. A tensor T ∈ A⊗B⊗C is concise if the maps TA, TB
and TC are all injective.
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Exercise 2.1.7.4: (2!) Find a choice of bases such that

M〈n〉A(A∗) =

x . . .

x


where x = (xij) is n× n, i.e., the image in the space of n2 × n2 matrices is
block diagonal with all blocks the same.

Exercise 2.1.7.5: (1) Show that R(M〈n〉) ≥ n2.

Exercise 2.1.7.6: (1) Show R(M〈m,n,1〉) = R(M〈m,n,1〉) = mn and R(M〈m,1,1〉) =
R(M〈m,1,1〉) = m.

Exercise 2.1.7.7: (1!) Let b = c and assume TA is injective. Show that if
T (A∗) is simultaneously diagonalizable under the action of GL(B)×GL(C)
(i.e., there exists g ∈ GL(B)×GL(C) such that for any basis α1, . . . , αa of
A∗, the elements g · T (α1), . . . , g · T (αa) are all diagonal) then R(T ) ≤ b,
and therefore if T (A∗) is the limit of simultaneously diagonalizable subspaces
then R(T ) ≤ b.

2.2. Strassen’s equations

It wasn’t until 1983 [Str83] that the first non-classical equations were found
for tensor border rank. These equations had been found in the related
settings of partially symmetric tensors in 1877 by Fram-Toeplitz and 1977
by Barth [Toe77, Bar77], and in the completely symmetric case in 1858
by Aronhold [Aro58]. See [Ott07] for a history. Here they are:

2.2.1. A test beyond the classical equations. The classical equations
just used that B⊗C is a vector space. To extract more information from
TA, we examine its image in B⊗C, which we will view as a space of linear
maps C∗ → B. If dimensions are balanced, T is concise and has minimal
border rank max{a,b, c}, the image should be special in some way - how?
Assume b = c so the image is a space of linear maps between two vector
spaces of the same dimension. (If b < c, just restrict to some Cb ⊂ C∗.) If
R(T ) = b, then T (A∗) will be spanned by b rank one linear maps.

Lemma 2.2.1.1. If a = b = c and TA is injective, then R(T ) = a if and
only if T (A∗) is spanned by a rank one linear maps.

Exercise 2.2.1.2: (2!) Prove Lemma 2.2.1.1. }
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How can we test if the image is spanned by b rank one linear maps? If
T = a1⊗b1⊗c1 + · · ·+ aa⊗ba⊗ca with each set of vectors a basis, then

T (A∗) =



x1

x2

. . .

xa

 | xj ∈ C

 ,

and this is the case for a general rank a tensor in Ca⊗Ca⊗Ca. That is, the
space T (A∗) ⊂ B⊗C, when T has border rank a, lies in the Zariski closure of
the subspaces that, under the action of GL(B)×GL(C) are simultaneously
diagonalizable in the sense of Exercise 2.1.7.7. From this perspective our
problem becomes: determine polynomials on A⊗B⊗C that vanish of the
set of T such that T (A∗) is diagonalizable. (The problem is more naturally
defined using the Grassmanian of Definition 2.3.3.1 below.)

A set of equations whose zero set is exactly the Zariski closure of the
set of tensors giving rise to diagonalizable spaces of matrices is not known!
What follows are some equations. (More are given in Chapter 5.) Recall
that B⊗C = Hom(C∗, B), the space of linear maps from C∗ to B. If instead
we had Hom(B,B) = End(B), the space of linear maps from B to itself, a
necessary condition for endomorphisms to be simultaneously diagonalizable
is that they must commute, and the algebraic test for a subspace U ⊂
End(B) to be abelian is simple: the commutators [Xi, Xj ] := XiXj −XjXi

must vanish on a basis X1, . . . , Xu of U . (I emphasize that commutators
only make sense for maps from a vector space to itself.) These degree two
equations exactly characterize abelian subspaces. We do not have maps
from a vector space to itself, but we can fix the situation if there exists
α ∈ A∗ such that T (α) : C∗ → B is invertible, as then we could test if the
commutators [T (α1)T (α)−1, T (α2)T (α)−1] are zero. So we now have a test,
but it is not expressed in terms of polynomials on A⊗B⊗C, and we cannot
apply it to all tensors. These problems are fixed in §2.4.1. For now I record
what we have so far:

Proposition 2.2.1.3. Let b = c and let T ∈ A⊗B⊗C be such that there
exists α ∈ A∗ with rank(T (α)) = b, so R(T ) ≥ b. If R(T ) = b, then for all
X1, X2 ∈ T (A∗)T (α)−1 ⊂ End(B), [X1, X2] = 0.

2.2.2. Strassen’s equations: original formulation. If T ∈ A⊗B⊗C is
“close to” having rank a = b = c, one expects, using α with T (α) invertible,
that T (A∗)T (α)−1 ⊂ End(B) will be “close to” being abelian. The following
theorem makes this precise:

Theorem 2.2.2.1 (Strassen). [Str83] Let T ∈ A⊗B⊗C and assume b = c.
Assume that there exists α ∈ A∗ such that rank(T (α)) = b. Then for all
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X1, X2 ∈ T (A∗)T (α)−1 ⊂ End(B),

R(T ) ≥ 1

2
rank([X1, X2]) + b.

I prove Theorem 2.2.2.1 for the case of the determinant of [X1, X2] in
§2.4.1 below and in general in §5.2.2.

We now have potential tests for border rank for tensors in Cm⊗Cm⊗Cm

up to r = 3
2m, in fact tests for border rank for tensors in C3⊗Cm⊗Cm up to

r = 3
2m, since our test only used three vectors from A∗. (I write “potential

tests” rather than “polynomial tests” because to write down the commutator
we must be able to find an invertible element in T (A∗).)

Strassen uses Theorem 2.2.2.1 to show that R(M〈n〉) ≥ 3
2n2:

Exercise 2.2.2.2: (2!) Prove R(M〈n〉) ≥ 3
2n2. }

Exercise 2.2.2.3: (2) Show that R(M red
〈2〉 ) = 5 and for m > 2 that R(M red

〈m,2,2〉) ≥
3m− 1, where M red

〈m,2,2〉 is M〈m,2,2〉 with x1
1 set to zero.

A natural question arises: exchanging the roles of A,B,C we obtain
three sets of such equations - are the three sets of equations the same
or different? We should have already asked this question for the three
types of usual flattenings: are the equations coming from the minors of
TA, TB, TC the same or different? It is easy to write down tensors where
rank(TA), rank(TB), rank(TC) are distinct, however for 2 × 2 minors, two
sets of them vanishing implies the third does as well, see, §8.3.1, where
these questions are answered with the help of representation theory.

One can generalize Strassen’s equations by taking higher order commu-
tators, see [LM08b]. These generalizations do give new equations, but they
do not give equations for border rank beyond the 3

2b of Strassen’s equations.

An extensive discussion of Strassen’s equations and generalizations ap-
pears in [Lan12, §7.6].

2.2.3. Coming attractions: border rank bounds beyond Strassen’s
equations. The following more complicated expression gives equations for
σ̂r for r > 3

2b:

Let T ∈ C5⊗Cb⊗Cb, write T = a0⊗X0 + · · · a4⊗X4 with Xj ∈ B⊗C.
Assume that rank(X0) = b and choose bases such that X0 = Id. Consider
the following 5b× 5b matrix:
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(2.2.1) T∧2
A =


0 [X1, X2] [X1, X3] [X1, X4]

[X2, X1] 0 [X2, X3] [X2, X4]
[X3, X1] [X3, X2] 0 [X3, X4]
[X4, X1] [X4, X2] [X4, X3] 0

 .

The name T∧2
A is explained in §2.4.2 where the proof of the following propo-

sition also appears.

Proposition 2.2.3.1. [LO15] Let T ∈ C5⊗Cb⊗Cb be as written above.

Then R(T ) ≥ rankT∧2
A

3 . If T ∈ A⊗Cb⊗Cb with a > 5, one obtains the same

result for all restrictions of T to C5⊗Cb⊗Cb for any C5 ⊂ A∗.
In particular the minors of (2.2.1) give equations up to border rank 5

3b

for tensors in Ca⊗Cb⊗Cc for a ≥ 5 and b ≤ c.

I do not know how anyone would have found (2.2.1) without using the
theory discussed in the next section. Hopefully this will motivate the theory-
adverse reader to persevere through it.

2.3. Theory needed for the generalization of Strassen’s
equations

The matrices [X1, X2] and the right hand side of (2.2.1) are part of a se-
quence of constructions giving better lower bounds for border rank for ten-
sors. The limits of this method are lower bounds of 2b − 3. To describe
them, we will need more language from multi-linear algebra. Our first task
will be to generalize the space of skew-symmetric matrices. It will be con-
venient to generalize symmetric matrices at the same time. Before that I
present a fundamental result in representation theory.

2.3.1. Schur’s lemma. I take a short detour into elementary representa-
tion theory to prove a lemma everyone should know. Recall the definition
of a G-module from §1.1.13.

Definition 2.3.1.1. Let W1,W2 be vector spaces, let G be a group, and let
ρj : G→ GL(Wj), j = 1, 2 be representations. A G-module homomorphism,
or G-module map, is a linear map f : W1 → W2 such that f(ρ1(g) · v) =
ρ2(g) · f(v) for all v ∈W1 and g ∈ G. One also says that f is G-equivariant.
For a group G and G-modules V and W , let HomG(V,W ) ⊂ V ∗⊗W denote
the vector space of G-module homomorphisms V →W .

One says W1 and W2 are isomorphic G-modules if there exists a G-
module homomorphism W1 →W2 that is a linear isomorphism.

Exercise 2.3.1.2: (1!!) Show that the image and kernel of a G-module
homomorphism are G-modules.
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The following easy lemma is central to representation theory:

Lemma 2.3.1.3 (Schur’s Lemma). Let G be a group, let V and W be
irreducible G-modules and let f : V → W be a G-module homomorphism.
Then either f = 0 or f is an isomorphism. If further V = W , then f = λ IdV
for some constant λ.

Exercise 2.3.1.4: (1!!) Prove Schur’s Lemma.

We will see numerous examples illustrating the utility of Schur’s Lemma.
I cannot over-emphasize the importance of this simple Lemma. I use it every
day of my mathematical life.

For any group G, G-module M , and irreducible G-module V , the isotypic
component of V in M is the largest subspace of M isomorphic to V ⊕mV for
some mV . The integer mV is called the multiplicity of V in M .

2.3.2. Symmetric and skew-symmetric tensors.

Exercise 2.3.2.1: (1) Let X be a matrix representing a bilinear form on
Cm, by X(v, w) = vTXw. Show that if X is a symmetric matrix, then
X(v, w) = X(w, v) and if X is a skew-symmetric matrix, then X(v, w) =
−X(w, v).

Recall that Sd denotes the permutation group on d elements.

Definition 2.3.2.2. A tensor T ∈ V ⊗d is said to be symmetric if T (α1, . . . , αd) =
T (ασ(1), . . . , ασ(d)) for all α1, . . . , αd ∈ V ∗ and all permutations σ ∈ Sd, and
skew-symmetric if T (α1, . . . , αd) = sgn(σ)T (ασ(1), . . . , ασ(d)) for all α1, . . . , αd ∈
V ∗ and all σ ∈ Sd. Let SdV ⊂ V ⊗d (resp. ΛdV ⊂ V ⊗d) denote the space of
symmetric (resp. skew-symmetric) tensors.

The spaces ΛdV and SdV are independent of a choice of basis in V . In
particular, the splitting

(2.3.1) V ⊗2 = S2V ⊕ Λ2V

of the space of matrices into the direct sum of symmetric and skew symmetric
matrices is invariant under the action of GL(V ) given by: for g ∈ GL(V )
and v⊗w ∈ V⊗V , v⊗w 7→ gv⊗gw.

Introduce the notations:

x1x2 · · ·xk :=
∑
σ∈Sk

xσ(1)⊗xσ(2)⊗ · · ·⊗xσ(k) ∈ SkV,

and

x1 ∧ x2 ∧ · · · ∧ xk :=
∑
σ∈Sk

sgn(σ)xσ(1)⊗xσ(2)⊗ · · ·⊗xσ(k) ∈ ΛkV,
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respectively called the symmetric product (or simply product) of x1, . . . , xk
and the wedge product of x1, . . . , xk.

The space SkV ∗ may be thought of as the space of homogeneous poly-
nomials of degree k on V (to a symmetric tensor T associate the polynomial
PT where PT (v) := T (v, . . . , v)). Thus x1 · · ·xk may also be read as the
multiplication of x1, . . . , xk.

If v1, . . . , vv is a basis of V , then vi1⊗ · · ·⊗vid with ij ∈ [v] := {1, . . . ,v}
is a basis of V ⊗d, vi1 · · · vid with 1 ≤ i1 ≤ · · · ≤ id ≤ v is a basis of SdV
and vi1 ∧ · · · ∧ vid with 1 ≤ i1 < · · · < id ≤ v is a basis of ΛdV . Call these
bases induced bases. If xj = (x1

j , . . . , x
v
j )T in the basis v1, . . . , vv, then the

expression of x1 ∧ · · · ∧xk in the induced basis is such that the coefficient of
vi1 ∧ · · · ∧ vik is

det

x
i1
1 · · · xik1

...

xi1k · · · xikk

 .

For example, if V = C4 with basis e1, . . . , e4, then Λ2V inherits a basis
e1 ∧ e2, . . . , e3 ∧ e4. If

v =


v1

v2

v3

v4

 , w =


w1

w2

w3

w4

 , then v ∧ w =



v1w2 − v2w1

v1w3 − v3w1

v1w4 − v4w1

v2w3 − v3w2

v2w4 − v4w2

v3w4 − v4w3

 .

Exercise 2.3.2.3: (1) Show that there is a GL(V )-module map ΛkV⊗V →
Λk+1V , and more generally there are GL(V )-module maps ΛkV⊗ΛtV →
Λk+tV and SkV⊗StV → Sk+tV , the latter of which may be interpreted as
multiplication of polynomials.

Exercise 2.3.2.4: (1) Let k ≥ t and show that there is a GL(V )-module
map SkV ∗⊗StV → Sk−tV ∗. This map has the following interpretation:
StV may be interpreted as the homogeneous linear differential operators of
order t on the space of polynomials SkV ∗. The map is then P⊗D 7→ D(P ).
Sometimes D(P ) is denoted D P .

Exercise 2.3.2.5: (1) Show that for k < l there is a GL(V )-module map,
ΛkV ∗⊗ΛlV → Λl−kV that commutes with the action of GL(V ). This map
is often denoted β⊗Y 7→ β Y

Exercise 2.3.2.6: (1) Let Sym(V ) = ⊕∞j=0S
jV , Λ•V = ⊕v

j=0ΛjV and

V ⊗• = ⊕∞j=0V
⊗j . Show that these spaces are all naturally algebras with
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the above defined products, respectively called the symmetric, exterior and
tensor algebras.

2.3.3. The Grassmannian. Before returning to border rank, I define an
important algebraic variety that we will need for the proof of tensor rank
lower bounds:

Definition 2.3.3.1. The Grassmannian of k-planes through the origin in
V is
(2.3.2)

G(k, V ) := P{T ∈ ΛkV | ∃v1, . . . , vk ∈ V such that T = v1∧· · ·∧vk} ⊂ PΛkV.

The most important special case of a Grassmannian is projective space
PV = G(1, V ). PV := (V \0)/ ∼ where v ∼ w if and only if v = λw for

some λ ∈ C\0.

The interpretation of the Grassmannian as the space parameterizing the
k-planes through the origin in V is via the correspondence [v1 ∧ · · · ∧ vk]↔
span{v1, . . . , vk}.

The following exercise shows that the Grassmannian is indeed an alge-
braic variety. It can be safely skipped on a first reading.

Exercise 2.3.3.2: (3) The Grassmannian is the zero set of equations parametrized
by Λk−2jV ∗⊗Λk+2jV ∗ for 1 ≤ j ≤ min{bv−k2 c, b

k
2c} as follows: for µ ∈

Λk−2jV ∗ and ζ ∈ Λk+2jV ∗, recall Exercise 2.3.2.5, and consider T ζ ∈ Λ2jV ∗

and µ T ∈ Λ2jV . Define Pµ⊗ζ(T ) := 〈T ζ, µ T 〉, the evaluation of an element
of Λ2jV ∗ on an element of Λ2jV . Note that these are quadratic equations
in the coefficients of T . Show that the zero set of these equations is the
Grassmannian. }

2.4. Koszul flattenings

2.4.1. Reformulation and proof of Strassen’s equations. Augment
the linear map TB : B∗ → A⊗C by tensoring it with IdA, to obtain a linear
map

IdA⊗TB : A⊗B∗ → A⊗A⊗C.
So far this is not interesting, but by (2.3.1) the target of this map decomposes
as a GL(A)×GL(C)-module as (Λ2A⊗C)⊕ (S2A⊗C), and we may project
onto these factors. Write the projections as:

(2.4.1) T∧BA = T∧A : A⊗B∗ → Λ2A⊗C and T ◦BA : A⊗B∗ → S2A⊗C.

Exercise 2.4.1.1: (1) Show that if T = a⊗b⊗c is a rank one tensor, then
rank(T∧A ) = a− 1 and rank(T ◦BA) = a.

Exercise 2.4.1.1 implies:
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Proposition 2.4.1.2. If R(T ) ≤ r, than rank(T∧A ) ≤ r(a−1) and rank(T ◦BA) ≤
ra.

The second map will not give border rank lower bounds better than
the classical equations, but the first, e.g., when a = 3, is a map from a 2b
dimensional vector space to a 2c dimensional vector space, so if b ≤ c we
can get border rank bounds up to 3

2b.

The first set is equivalent to Strassen’s equations, as I now show. If
a > 3, one can choose a three dimensional subspace A′ ⊂ A∗ and consider
T restricted to A′ × B∗ × C∗ to obtain equations. (This is what we did in
the case of Strassen’s equations where A′ was spanned by α, α′, α′′.)

Let a1, a2, a3 be a basis of A, with dual basis α1, α2, α3 of A∗ so T ∈
A⊗B⊗C may be written as T = a1⊗X1 + a2⊗X2 + a3⊗X3, where Xj =
T (αj). Then T∧A will be expressed by a 3b× 3b matrix. Ordering the basis

of A⊗B∗ by a3⊗β1, . . . , a3⊗βb, a2⊗β1, . . . , a2⊗βb, a1⊗β1, . . . , a1⊗βb, and
that of Λ2A⊗C by (a1 ∧ a2)⊗c1, . . . , (a1 ∧ a2)⊗cb, (a1 ∧ a3)⊗c1, . . . , (a1 ∧
a3)⊗cb, (a2 ∧ a3)⊗c1, . . . , (a2 ∧ a3)⊗cb, we obtain the block matrix

(2.4.2) T∧A =

 0 X1 −X2

X2 X3 0
X1 0 X3

 .

Recall the following basic identity about determinants of blocked matri-
ces (see, e.g., [Pra94, Thm. 3.1.1]), assuming the block W is invertible:

(2.4.3) det

(
X Y
Z W

)
= det(W ) det(X − YW−1Z).

Block (2.4.2) X = 0, Y = (X1,−X2), Z =

(
X2

X1

)
, W =

(
X3 0
0 X3

)
.

Assume X3 = T (α3) is invertible to obtain

(2.4.4) detT∧A = det(X3)2 det(X1X3
−1X2 −X2X3

−1X1)

Equation (2.4.4) shows the new formulation is equivalent to the old, at least
in the case of maximal rank. (We are only interested in the non-vanishing
of the polynomial, not its values, so we can multiply the inner matrix on the
right by X3

−1.) Equation (2.4.4) combined with Proposition 2.4.1.2 proves
Theorem 2.2.2.1 in this case.

Note that here we have actual polynomials on A⊗B⊗C (the minors of
(2.4.2)), whereas in our original formulation of Strassen’s equations we did
not. To obtain polynomials in the original formulation one uses the adjugate
matrix instead of the inverse, see [Lan12, §3.8].
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Remark 2.4.1.3. Both the classical equations and Strassen’s equations are
obtained by taking minors of a matrix whose entries are linear combina-
tions of the coefficients of our tensor. Such constructions are part of a long
tradition of finding determinantal equations for algebraic varieties discussed
further in Chapters 8 and 10. For the experts, given a variety X and a
subvariety Y ⊂ X, one way to find defining equations for Y is to find vector
bundles E,F over X and a vector bundle map φ : E → F such that Y is
realized as the degeneracy locus of φ, that is, the set of points x ∈ X such
that φx drops rank. Strassen’s equations in the partially symmetric case
had been discovered by Barth [Bar77] in this context.

Remark 2.4.1.4. In §8.2 and §8.3.1, we will see two different ways of de-
riving Strassen’s equations via representation theory.

2.4.2. Definition of Koszul flattenings. The reformulation of Strassen’s
equations suggests the following generalization: let dimA = 2p + 1 and
consider

(2.4.5) T∧pA : B∗⊗ΛpA→ Λp+1A⊗C
obtained by first taking TB⊗ IdΛp A : B∗⊗ΛpA → ΛpA⊗A⊗C, and then
projecting to Λp+1A⊗C as in Exercise 2.3.2.3.

If {ai}, {bj}, {ck} are bases of A,B,C and T =
∑

i,j,k t
ijkai⊗bj⊗ck, then

(2.4.6) T∧pA (β⊗f1 ∧ · · · ∧ fp) =
∑
i,j,k

tijkβ(bj)ai ∧ f1 ∧ · · · ∧ fp⊗ck.

The map T∧pA is called a Koszul flattening. Note that if T = a⊗b⊗c has

rank one, then rank(T∧pA ) =
(

2p
p

)
as the image is a∧ΛpA⊗c. By linearity of

the map T 7→ T∧pA we conclude:

Proposition 2.4.2.1. [LO15] Let T ∈ A⊗B⊗C with dimA = 2p+1. Then

R(T ) ≥
rank(T∧pA )(

2p
p

) .

Since the source (resp. target) has dimension
(

2p+1
p

)
b (resp.

(
2p+1
p+1

)
c),

assuming b ≤ c, we potentially obtain equations for σ̂r up to

r =

(
2p+1
p

)
b(

2p
p

) − 1 =
2p+ 1

p+ 1
b− 1.

Just as with Strassen’s equations (case p = 1), if dimA > 2p + 1, one
obtains the best bound for these equations by restricting to subspaces of A∗

of dimension 2p+ 1.

Exercise 2.4.2.2: (2) Show that if T∧pA : ΛpA⊗B∗ → Λp+1A⊗C is injective,

then T∧qA : ΛqA⊗B∗ → Λq+1A⊗C is injective for all q < p. }
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2.4.3. Koszul flattenings in coordinates. To prove lower bounds on the
rank of matrix multiplication, and to facilitate a comparison with Griesser’s
equations discussed in §5.2.2, it will be useful to view T∧pA in coordinates.
Let dimA = 2p+ 1. Write T = a0⊗X0 + · · ·+ a2p⊗X2p where aj is a basis

of A with dual basis αj and Xj = T (αj). An expression of T∧pA in bases
is as follows: write aI := ai1 ∧ · · · ∧ aip for the induced basis elements of

ΛpA, require that the first
(

2p
p−1

)
basis vectors of ΛpA have i1 = 0, that

the second
(

2p
p

)
do not, and call these multi-indices 0J and K. Order the

bases of Λp+1A such that the first
(

2p
p+1

)
multi-indices do not have 0, and the

second
(

2p
p

)
do, and furthermore that the second set of indices is ordered the

same way as K is ordered, only we write 0K since a zero index is included.
The resulting matrix is of the form

(2.4.7)

(
0 Q

Q̃ R

)
where this matrix is blocked (

(
2p
p+1

)
b,
(

2p
p

)
b)× (

(
2p
p+1

)
b,
(

2p
p

)
b),

R =

X0

. . .

X0

 ,

and Q, Q̃ have entries in blocks consisting of X1, . . . , X2p and zero. Thus
if X0 is of full rank and we change coordinates such that it is the identity
matrix, so is R and the determinant equals the determinant of QQ̃ by (2.4.3).
If we order the appearances of the K multi-indices such that the j-th K is
the complement of the j-th J in [2p], then QQ̃ will be block skew-symmetric.

When p = 1, QQ̃ = [X1, X2], and when p = 2 we recover the matrix (2.2.1).

In general QQ̃ is a block skew-symmetric
(

2p
p−1

)
b×

(
2p
p−1

)
b matrix whose

block entries are either zero or commutators [Xi, Xj ]. Each [Xi, Xj ] appears

(up to sign)
(

2p−1
2

)
times, and each block row and column contain exactly(

2p−1
2

)
nonzero blocks, so the resulting matrix is very sparse.

2.5. Matrix multiplication and Koszul flattenings

We would like to apply our new equations to matrix multiplication. In order
to do so, we first must understand the matrix multiplication tensor better
from a geometric perspective.

2.5.1. The matrix multiplication tensor from an invariant perspec-
tive. In the vector space V ∗⊗V there is a unique line such that every vector
on the line has the same matrix representative for any choice of basis (and
corresponding choice of dual basis). This line is of course C{IdV }, the scalar
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multiples of the identity map. We say C{IdV } is the unique line in V ∗⊗V
invariant under the action of GL(V ).

We have

M〈U,V,W 〉 ∈ (U∗⊗V )⊗(V ∗⊗W )⊗(W ∗⊗U) ' U∗⊗U⊗V ∗⊗V⊗W ∗⊗W.

Moreover, we know M〈U,V,W 〉 is invariant under the action of GL(U) ×
GL(V ) × GL(W ). The only element of U∗⊗U⊗V ∗⊗V⊗W ∗⊗W that is in-
variant under GL(U) × GL(V ) × GL(W ) is up to scale IdU ⊗ IdV ⊗ IdW .
Checking the scale, we conclude:

Proposition 2.5.1.1. M〈U,V,W 〉, after applying the re-ordering isomorphism,
is IdU ⊗ IdV ⊗ IdW .

Exercise 2.5.1.2: (1) If v1, . . . , vv is a basis of V and α1, . . . , αv is the dual
basis of V ∗, show that the identity map on V is IdV =

∑
j α

j⊗vj .

Exercise 2.5.1.3: (1) Use Exercise 2.5.1.2 and the coordinate presentation
of matrix multiplication to get a second proof of Proposition 2.5.1.1. This
proof also shows that M〈U,V,W 〉 is invariant under the action of the image of
GL(U)×GL(V )×GL(W ) in GL(A)×GL(B)×GL(C).

Exercise 2.5.1.4: (1) Show that there is a canonical isomorphism (V ∗⊗W )∗ →
V⊗W ∗ where α⊗w(v⊗β) := α(v)β(w). Now let V = W and let IdV ∈
V ∗⊗V ' (V ∗⊗V )∗ denote the identity map. What is IdV (f) for f ∈ V ∗⊗V ?
}

Exercise 2.5.1.5: (1!) Show that M〈U,V,W 〉 when viewed as a trilinear map

M〈U,V,W 〉 : (U∗⊗V )∗ × (V ∗⊗W )∗ × (W ∗⊗U)∗ → C.

is (X,Y, Z) 7→ trace(XY Z). }

Exercise 2.5.1.6: (1!) Using Exercise 2.5.1.5, show thatM〈n〉 ∈ Cn2⊗Cn2⊗Cn2

is preserved by the cyclic permutation of the factors.

Exercise 2.5.1.7: (1!) Using Exercise 2.5.1.5, show thatM〈n〉 ∈ Cn2⊗Cn2⊗Cn2

is preserved by action x⊗y⊗z 7→ xT⊗zT⊗yT , where xT is the transpose of
the n× n matrix x.

Exercise 2.5.1.8: (1) Show that IdV ⊗ IdW ∈ V⊗V ∗⊗W⊗W ∗ = (V⊗W )⊗(V⊗W )∗,
after re-ordering, equals IdV⊗W .

Exercise 2.5.1.9: (1!) Using Exercise 2.5.1.8, show thatM〈n,m,l〉⊗M〈n′,m′,l′〉 =
M〈nn′,mm′,ll′〉.

A fancy proof that R(M〈n〉) ≥ n2, which will be useful for proving
further lower bounds, is as follows: Write A = U∗⊗V , B = V ∗⊗W , C =
W ∗⊗U , so (M〈n〉)A : A∗ → B⊗C is a map U⊗V ∗ → V ∗⊗W⊗W ∗⊗U . This
map is, for f ∈ A∗, f 7→ f⊗ IdW , and thus is clearly injective. In other
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words, the map is u⊗ν 7→
∑

k(ν⊗wk)⊗(wk⊗u), where w1, . . . , ww is a basis
of W with dual basis w1, . . . , ww.

2.5.2. Koszul flattenings and matrix multiplication. When T = M〈U,V,W 〉,
the Koszul flattening map is

(M〈U,V,W 〉)
∧p
A : V⊗W ∗⊗Λp(U∗⊗V )→ Λp+1(U∗⊗V )⊗(W ∗⊗U).

The presence of IdW = IdW ∗ implies the map factors as (M〈U,V,W 〉)
∧p
A =

(M〈u,v,1〉)
∧p
A ⊗ IdW ∗ , where

(M〈u,v,1〉)
∧p
A : V⊗Λp(U∗⊗V )→ Λp+1(U∗⊗V )⊗U.

(2.5.1)

v⊗(ξ1⊗e1) ∧ · · · ∧ (ξp⊗ep) 7→
u∑
s=1

us⊗(us⊗v) ∧ (ξ1⊗e1) ∧ · · · ∧ (ξp⊗ep).

where u1, . . . , uu is a basis of U with dual basis u1, . . . , uu of U∗, so IdU =∑u
s=1 u

s⊗us.

As discussed above, Koszul flattenings could potentially prove a border
rank lower bound of 2n2 − 3 for M〈n〉. However this does not happen, as

there is a large kernel for the maps M∧p〈n〉 when p ≥ n: Let u = v = n. and

let p = n. Then

v⊗(u1⊗v)⊗ · · ·⊗(un⊗v) 7→
∑
j

(uj⊗v) ∧ (u1⊗v)⊗ · · ·⊗(un⊗v)⊗uj = 0,

so M∧n〈n〉 is not injective. Since M〈u,v,1〉)
∧p
A is a GL(U)×GL(V )-module map,

by Schur’s lemma 2.3.1.3, ker(M∧n〈n〉) ⊂ V⊗Λn(U∗⊗V ) ⊂ V ⊗n+1⊗U∗⊗n must

be a submodule. It is clearly symmetric in V and skew in U∗, so the kernel
must contain the irreducible submodule ΛnU∗⊗Sn+1V .

Now consider the case p = n − 1. I claim (M〈n,n,1〉)
∧n−1
A is injective.

The following argument is due to L. Manivel. Say X1⊗v1 + · · ·+Xn⊗vn ∈
ker(M〈n,n,1〉)

∧n−1
A , i.e.,∑
s

[X1 ∧ (us⊗v1) + · · ·+Xn ∧ (us⊗vn)]⊗us = 0.

Then for each s, each term in the brackets must be zero.

Lemma 2.5.2.1. Let A be a vector space, let X1, . . . , Xk ∈ ΛqA, and let
a1, . . . , ak ∈ A be linearly independent. Then if X1 ∧ a1 + · · ·+Xk ∧ ak = 0,

we may write each Xj =
∑k

i=1 Yij ∧ ai for some Yij ∈ Λq−1A.

Exercise 2.5.2.2: (2) Prove Lemma 2.5.2.1.}

Exercise 2.5.2.3: (2) Show that ker(M〈n,n,1〉)
∧n
A = ΛnU∗⊗Sn+1V . }
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Remark 2.5.2.4. This is a special case of the generalized Cartan Lemma,
see [IL16b, §A.1]. With the aid of representation theory one can more
precisely describe the Yji. (For those familiar with the notation, use the
sequence 0→ S2,1q−1A→ ΛqA⊗A→ Λq+1A→ 0.)

Returning to the proof of injectivity when p = n − 1, taking s = 1, we
have Xj =

∑
Yj,(1,i) ∧ (u1⊗ai), so each term in Xj is divisible by (u1⊗ai)

for some i, but then taking s = 2, each term in Xj is divisible by (u2⊗al)
for some l. Continuing, if p < n we run out of factors, so there cannot be a
kernel. In summary:

Proposition 2.5.2.5. When p < n, the map (M〈n,n,1〉)
∧p
A is injective.

At this point one would like to say that if some T∧p is injective, then
restricting to a generic A′ ⊂ A∗, the map T∧p|ΛpA′⊗B∗ : ΛpA′⊗B∗ →
Λp+1A′⊗C would still be injective. Unfortunately I do not know how to
prove this, because a priori T∧p|ΛpA′⊗B∗ injects into [Λp+1A′⊗C]⊕[ΛpA′⊗(A/A′)⊗C],
and it is not clear to me whether for generic A′ it must remain injective when
one projects to the first factor. What follows are two proofs that this is
indeed the case for (M〈n,n,1〉)

∧n−1
A . The first is combinatorial. It has the ad-

vantages that it is elementary and will be used to prove the 2n2−dlog2 ne−1
lower bound of §5.4.5. The second is geometrical. It has the advantage of
being shorter and more elegant.

Theorem 2.5.2.6. [LO15] Let n ≤m. Then

R(M〈m,n,l〉) ≥
nl(n + m− 1)

m
.

In particular R(M〈n〉) ≥ 2n2 − n.

I prove the case n = m and leave the general case to the reader. We need
to find A′ ⊂ A∗ of dimension 2n − 1 such that, setting Ã = A/A′⊥ ' A′∗,
(M〈n,n,1〉|A′⊗B∗⊗C∗)∧n−1

Ã
is injective.

First proof. Define the projection

φ : A→ C2n−1(2.5.2)

xij 7→ ei+j−1.(2.5.3)

Let eS := es1 ∧ · · · ∧ esn−1 , where S = {s1, . . . , sn−1} ⊂ [2n − 1]. The

map (M〈n,n,1〉|A′⊗B∗⊗C∗)∧n−1
Ã

is

eS⊗vk 7→
∑
j

φ(uj⊗vk) ∧ eS⊗uj =
∑
j

ej+k−1 ∧ eS⊗uj .

Index a basis of the source by pairs (S, k), with k ∈ [n], and the target by
(P, l) where P ⊂ [2n− 1] has cardinality n and l ∈ [n].
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What follows is an ordering of the basis vectors in the target such that
the resulting matrix is upper-triangular. Then we just need to show that
each diagonal element of the matrix is nonzero to conclude. Unfortunately
the order on (P, l) is a little complicated because e.g., if the l’s are ordered
sequentially, then to get a diagonal matrix, the P ’s must be given an order
in the opposite direction.

Define an order relation on the target basis vectors as follows: For (P1, l1)
and (P2, l2), set l = min{l1, l2}, and declare (P1, l1) < (P2, l2) if and only if

(1) In lexicographic order, the set of l minimal elements of P1 is strictly
after the set of l minimal elements of P2 (i.e. the smallest element
of P2 is smaller than the smallest of P1 or they are equal and the
second smallest of P2 is smaller or equal etc. up to l-th), or

(2) the l minimal elements in P1 and P2 are the same, and l1 < l2.

(3) the l minimal elements in P1 and P2 are the same, l1 = l2, and the
set of n− l tail elements of P1 are after the set of n− l tail elements
of P2.

The third condition is irrelevant - any breaking of a tie for the first two will
lead to an upper-triangular matrix. Note that ({n, . . . , 2n − 1}, 1) is the
minimal element for this order and ([n],n) is the maximal element. Note
further that

en+1 ∧ · · · ∧ e2n−1⊗un 7→ en ∧ · · · ∧ e2n−1⊗v1

i.e., that

({n + 1, . . . , 2n− 1},n) 7→ ({n, . . . , 2n− 1}, 1),

so ({n + 1, . . . , 2n−1},n) will be our first basis element for the source. The
order for the source is implicitly described in the proof.

Work by induction: the base case that ({n, . . . , 2n − 1}, 1) is in the
image has been established. Let (P, l) be any basis element, and assume
all (P ′, l′) with (P ′, l′) < (P, l) have been shown to be in the image. Write
P = (p1, . . . , pn) with pi < pi+1. Consider the image of (P\{pl}, 1 + pl − l)
which is∑

j

φ(uj⊗v1+pl−l) ∧ eP\{pl}⊗uj =
∑

{j|j−l+pl /∈P\{pl}}

epl−l+j ∧ eP\{pl}⊗uj .

Taking j = l we see (P, l) is among the summands. If j < l, the contribution
to the summand is a (P ′, j) where the first j terms of P ′ equal the first of P ,
so by condition (2), (P ′, j) < (P, l). If j > l, the summand is a (P ′′, j) where
the first l − 1 terms of P and P ′′ agree, and the l-th terms are respectively
pl and pl − l + j so by condition (1) (P ′′, j) < (P, l). �
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To illustrate, consider the first seven terms when n = 3:

(345, 1), (345, 2), (345, 3), (245, 1), (235, 1), (234, 1), (245, 2),

where the order did not matter for the triple (245, 1), (235, 1), (234, 1). We
have

(45, 3) 7→ (345, 1)

(35, 2) 7→ (345, 2)

(34, 3) 7→ (345, 3)

(45, 2) 7→ (245, 1) + (345, 2)

(35, 2) 7→ (235, 1) + (345, 3)

(34, 2) 7→ (234, 1)

(25, 3) 7→ (245, 2).

Second proof. For this proof take u = n ≤ v = m. Take a vector space
E of dimension 2, and fix isomorphisms U ' Sn−1E, V ' Sm−1E∗. Let
A′ = Sm+n−2E∗ ⊂ Sn−1E∗⊗Sm−1E∗ = U⊗V ∗, and set Ã = A/A′⊥. This
turns out to be the same projection operator as in the previous proof.

Our map is

Λn−1(Sm+n−2E)⊗Sn−1E → Λn(Sm+n−2E)⊗Sm−1E∗

Q1 ∧ · · · ∧Qn−1⊗f 7→
m−1∑
j=0

(fhj) ∧Q1 ∧ · · · ∧Qn−1⊗hj

where hj = xjym−j−1 and hj is the dual basis vector.

Recall the contraction map from Exercise 2.3.2.4, for α ≥ β:

SαE × SβE∗ → Sα−βE

(f, g) 7→ g f.

In the case f = lα for some l ∈ E, then g lα = g(l)lα−β (here g(l)
denotes g, considered as a polynomial, evaluated at the point l), so that
g lα = 0 if and only if l is a root of g.

Consider the transposed map, and relabeling E as E∗ (they are isomor-
phic as SL(E) ' SL2 modules):

((M〈1,m,n〉|A′⊗U∗⊗V ∗)
∧p
Ã

)T :

Sm−1E∗⊗ΛnSm+n−2E → Sn−1E⊗Λn−1Sm+n−2E

g⊗(f1 ∧ · · · ∧ fn) 7→
n∑
i=1

(−1)i−1(g fi)⊗f1 ∧ · · · f̂i · · · ∧ fn.
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The map ((M〈1,m,n〉|A′⊗U∗⊗V ∗)
∧p
Ã

)T is surjective: Let ln−1⊗(lm+n−2
1 ∧

· · · ∧ lm+n−2
n−1 ) ∈ Sn−1E⊗Λn−1Sm+n−2E with l, li ∈ E. Such elements span

the target so it will be sufficient to show any such element is in the image.
Assume first that l is distinct from the li. Since n ≤m, there is a polynomial
g ∈ Sm−1E∗ which vanishes on l1, . . . , ln−1 and is nonzero on l. Then, up to
a nonzero scalar, g⊗(lm+n−2

1 ∧ · · · ∧ lm+n−2
n−1 ∧ lm+n−2) maps to our element.

The condition that l is distinct from the li may be removed by taking
limits, as the image of a linear map is closed. �

In §2.6.2 we will need the following extension:

Proposition 2.5.2.7. For 2p < n− 1 there exist A′ ⊂ U⊗V ∗ of dimension
2p+ 1 such that, setting Ã = A/(A′)⊥,

(M〈n,n,1〉|A′⊗V⊗U∗)
∧p
Ã

: V⊗ΛpÃ→ Λp+1Ã⊗U

is injective. A general choice of A′ will have this property.

Proof. Consider A′ as a subspace of S2n−2E ⊂ A∗ as in the proof above.
Take A′ spanned by `2n−2−α

1 mα
1 , . . . , `

2n−2−α
2p+1 mα

2p+1, where all the 4p + 2
points `k,mj are in general position, and α < n − 1 will be chosen below.
I show the transposed map is surjective. The target of the transposed map
is spanned by vectors of the form h⊗`2n−2−α

s1 mα
s1 ∧ · · · ∧ `

2n−2−α
sp mα

sp where

{s1, . . . , sp} = S ⊂ [2p + 1]. The kernel of the map (`2n−2−α
si mα

si)n−1,n−1 :

Sn−1E∗ → Sn−1E has dimension n−α−1. Since the points were chosen in
general linear position, the intersection of the p kernels will have codimension
p(α+1). In order to imitate the proof above, we need this intersection to be
non-empty, so require p(α+1) < n. Now consider some (`2n−2−α

j mα
j )n−1,n−1

for j 6∈ S restricted to the intersection of the kernels. Again since the points
were chosen in general linear position, it will be injective, so its image will
have dimension n − p(α + 1). We have p + 1 such maps, and again by
general position arguments, the images will be transverse. Thus as long as
(p+ 1)(n− p(α+ 1)) ≥ n, the span of these p+ 1 images will be all of SnE.
Thanks to the hypothesis on p, the three inequalities on α are compatible,
and we can select any α in the admissible range. Thus every h⊗`2n−2−α

s1 mα
s1∧

· · · ∧ `2n−2−α
s1 mα

s1 will be the image under (M〈n,n,1〉|A′⊗V⊗U∗)
∧p
Ã

of

∑
j 6∈S

gj⊗`2n−2−α
j mα

j ∧ `2n−2−α
s1 mα

s1 ∧ · · · ∧ `
2n−2−α
s1 mα

s1

for some gj ∈ Sn−1E∗.
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Write Ã = A/A′⊥. Define

P2p+1 : G(2p+ 1, A∗)→ C
(2.5.4)

A′ 7→ det((M〈n,n,m〉|A′⊗B∗⊗C∗)
∧p
Ã

: ΛpÃ⊗B∗ → Λp+1Ã⊗C).

The above argument shows that P2p+1 is not identically zero for all 2p ≤
n− 1, but since it is a polynomial, it is not zero on a general A′. �

2.5.3. Why didn’t we get a better bound? The above result begs the
question: did we fail to get a better bound because this is the best bound
Koszul flattenings can give, or is there something pathological about matrix
multiplication that prevented the full power of Koszul flattenings? That
is, perhaps the Koszul flattenings for Cm⊗Cm⊗Cm could be trivial beyond
border rank 2m−

√
m. This is not the case:

Theorem 2.5.3.1. [Lan15b] The maximal minors of the Koszul flattening
T∧pA : ΛpC2p+1⊗(C2p+2)∗ → Λp+1C2p+1⊗C2p+2 give nontrivial equations
for σ̂r ⊂ C2p+1⊗C2p+2⊗C2p+2, the tensors of border rank at most r in
C2p+1⊗C2p+2⊗C2p+2, up to r = 4p+ 1.

For Cm⊗Cm⊗Cm, this implies that when m is even (resp. odd), the
equations are nontrivial up to r = 2m− 3 (resp. r = 2m− 5).

Exercise 2.5.3.2: (2!) Prove the theorem. }

2.6. Lower bounds for the rank of matrix multiplication

2.6.1. The results. Most tensors have rank equal to border rank, in the
sense that the set of tensors of rank greater than r in σ̂r is a proper subvari-
ety, in particular, a set of measure zero in σ̂r. I expect matrix multiplication
to have larger rank than border rank when n > 2 because of its enormous
symmetry group, as explained in Chapter 4.

The key to the rank lower bound is that our proof of the border rank
lower bound used equations of relatively low degree because of the factor-
ization (M〈n〉)

∧p
A = (M〈n,n,1〉)

∧p
A ⊗ IdW , so we were considering minors of a

size
(

2n−1
n

)
n matrix instead of a size

(
2n−1
n

)
n2 matrix. I will show that if a

low degree polynomial is nonzero on M〈n〉, and M〈n〉 has an optimal rank

decomposition M〈n〉 =
∑r

j=1 aj⊗bj⊗cj , then the polynomial is already zero
on a subset of the summands. This is a variant of the substitution method
discussed in §5.3.

Theorem 2.6.1.1. [MR13] Let p ≤ n be a natural number. Then

(2.6.1) R(Mn,n,m) ≥ (1 +
p

p+ 1
)nm + n2−

(
2

(
2p

p+ 1

)
−
(

2p− 2

p− 1

)
+ 2
)
n.
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When n = m,

(2.6.2) R(M〈n〉) ≥ (3− 1

p+ 1
)n2 −

(
2

(
2p

p+ 1

)
−
(

2p− 2

p− 1

)
+ 2
)
n.

For example, when p = 1 one recovers Bläser’s bound of 5
2n2−3n. When

p = 3, the bound (2.6.2) becomes 11
4 n2 − 26n, which improves Bläser’s for

n ≥ 132. A modification of the method also yields R(M〈n〉) ≥ 8
3n2 − 7n.

See [MR13, Lan14] for proofs of the modifications of the error terms.

I give a proof of a 3n2 − o(n2) lower bound for R(M〈n〉):

Theorem 2.6.1.2. [Lan14] Let 2p < n− 1. Then

R(M〈n,n,m〉) ≥
2p+ 1

p+ 1
nm + n2 − (2p+ 1)

(
2p+ 1

p

)
n.

To see this implies R(M〈n〉) ≥ 3n2 − o(n2), take p = log(log(n)).

2.6.2. Proof of Theorem 2.6.1.2. We will need a few facts from algebraic
geometry before the proof.

The following standard Lemma, also used in [Blä03], appears in this
form in [Lan12, Lemma 11.5.0.2]:

Lemma 2.6.2.1. Given a polynomial P of degree d on Ca, there exists a
subset of basis vectors {ei1 , . . . , eid} such that P |〈ei1 ,...,eid 〉 is not identically
zero.

In other words, there exists a coordinate subspace Cd ⊂ Ca such that
Cd 6⊂ Zeros(P ).

The lemma follows by simply choosing the basis vectors from a degree
d monomial that appears in P . For example, Lemma 2.6.2.1 implies that
a surface in P3 defined by a degree two equation cannot contain six lines
whose pairwise intersections span P3.

Recall the Grassmannian G(k,A) from Definition 2.3.3.1.

Lemma 2.6.2.2. Let A be given a basis. For k, d satisfying dk < dimA
and a nonzero homogeneous polynomial P of degree d on ΛkA that is not
in I(G(k,A)), there exist dk basis vectors of A such that, denoting their

dk-dimensional span by Ã, P restricted to G(k, Ã) is not identically zero.

Proof. Consider the map f : A×k → Ĝ(k,A) given by (a1, . . . , ak) 7→ a1 ∧
· · · ∧ ak. Then f is surjective. Take the polynomial P and pull it back by f .
Here the pullback f∗(P ) is defined by f∗(P )(a1, . . . , ak) := P (f(a1, . . . , ak)).
The pullback is of degree d in each copy of A. (I.e., fixing k − 1 of the aj ,
it becomes a degree d polynomial in the k-th.) Now apply Lemma 2.6.2.1 k
times to obtain dk basis vectors such that the pulled back polynomial is not
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identically zero restricted to their span Ã, and thus P restricted to Ĝ(k, Ã)
is not identically zero. �

Remark 2.6.2.3. The bound in Lemma 2.6.2.2 is sharp, as give A a ba-
sis a1, . . . , aa and consider the polynomial on ΛkA with coordinates xI =
xi1 · · ·xik corresponding to the vector

∑
I x

Iai1 ∧ · · · ∧ aik :

P = x1,...,kxk+1,...,2k · · ·x(d−1)k+1,...,dk.

Then P restricted to G(k, 〈a1, . . . , adk〉) is non-vanishing but there is no
smaller subspace spanned by basis vectors on which it is non-vanishing.

Proof of Theorem 2.6.1.2. Say R(M〈n,n,m〉) = r and write an optimal
expression

(2.6.3) M〈n,n,m〉 =

r∑
j=1

aj⊗bj⊗cj .

I will show that the Koszul-flattening equation is already nonzero restricted
to a subset of this expression for a judicious choice of Ã ⊂ A of dimension
2p+ 1 with p < n−1. Then the rank will be at least the border rank bound
plus the number of terms not in the subset. Here are the details:

Recall the polynomial P2p+1 from (2.5.4). It is a polynomial of degree(
2p+1
p

)
nm > nm, so at first sight, e.g., when m ∼ n, Lemma 2.6.2.2 will be

of no help because dk > dimA = n2, but since

(M〈n,n,m〉|A′⊗B∗⊗C∗)
∧p
Ã

= (M〈n,n,1〉|A′⊗V⊗U∗)
∧p
Ã
⊗ IdW ∗ ,

we actually have P = P̃m, where

P̃ : G(2p+ 1, A)→ C

Ã 7→ det((M〈n,n,1〉|A′⊗V⊗U∗)
∧p
Ã

: ΛpÃ⊗V → Λp+1Ã⊗U).

Hence we may work with P̃ which is of degree
(

2p+1
p

)
n which will be less

than n2 if p is sufficiently small. Since (M〈n,n,m〉)A : A∗ → B⊗C is injective,
some subset of the aj forms a basis of A. Lemma 2.6.2.2. implies that there

exists a subset of those basis vectors of size dk =
(

2p+1
p

)
n(2p + 1), such

that if we restrict to terms of the expression (2.6.3) that use only aj whose
expansion in the fixed basis has nonzero terms from that subset of dk basis
vectors, calling the sum of these terms M ′, we have R(M ′) ≥ 2p+1

p+1 nm. Let

M ′′ be the sum of the remaining terms in the expression. There are at
least a − dk = n2 −

(
2p+1
p

)
n(2p + 1) of the aj appearing in M ′′ (the terms

corresponding to the complementary basis vectors). Since we assumed we
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had an optimal expression for M〈n,n,m〉, we have

R(M〈n,n,m〉) = R(M ′) + R(M ′′)

≥ 2p+ 1

p+ 1
nm + [n2 − (2p+ 1)

(
2p+ 1

p

)
n].

�

The further lower bounds are obtained by lowering the degree of the
polynomial by localizing the equations. An easy such localization is to set
X0 = Id which reduces the determinant of (2.4.7) to that of (2.2.1) when p =
2 and yields a similar reduction of degree in general. Further localizations
both reduce the degree and the size of the Grassmannian, both of which
improve the error term.





Chapter 3

The complexity of
Matrix Multiplication
II: asymptotic upper
bounds

This chapter discusses progress towards the astounding conjecture that asymp-
totically, the complexity of multiplying two n × n matrices is nearly the
same as the complexity of adding them. I cover the main advances in upper
bounds for the exponent of matrix multiplication beyond Strassen’s original
discovery in 1969: the 1979 upper bound ω < 2.78 of Bini et. al., the 1981
bound ω ≤ 2.55 of Schönhage, the 1987 bound ω < 2.48 of Strassen, and
the Coppersmith-Winograd 1990 bound ω < 2.38, emphasizing a geometric
perspective. I mention recent “explanations” as to why progress essentially
stopped in 1990 from [AFLG15]. In Chapter 4, I discuss other potential
paths for upper bounds, and present Pan’s 1978 ω < 2.79 [Pan78], which
was the first bound to beat Strassen’s and is still (along with its slight modi-
fications) the only decomposition other than Strassen’s to be implementable
in practice.

The exponent ω of matrix multiplication is naturally defined in terms of
tensor rank:

ω := inf{τ ∈ R | R(M〈n〉) = O(nτ )}.

See [BCS97, §15.1] for a the proof that tensor rank yields the same exponent
as other complexity measures.

47
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The above-mentioned conjecture is that ω = 2. One does not need to
work asymptotically to get upper bounds on ω: Proposition 3.2.1.1 states
that for all n, R(M〈n〉) ≥ nω. The only methods for proving upper bounds
on R(M〈n〉) for any fixed n that have been used effectively are to find explicit
rank decompositions, and very few of these are known.

As I explain in §3.2, Bini et. al. showed that one may also define the
exponent in terms of border rank, namely (see Proposition 3.2.1.10)

ω = inf{τ ∈ R | R(M〈n〉) = O(nτ )}.

Again, we do not need to work asymptotically to get upper bounds on ω
using border rank. Theorem 3.2.1.10 states that for all n, R(M〈n〉) ≥ nω.
In order to make the transition from rank to border rank, we will need a
basic result in algebraic geometry. Because of this, I begin, in §3.1 with
some basic facts from the subject. However, the only methods for proving
upper bounds on R(M〈n〉) for any fixed n that have been used effectively
are to find explicit border rank decompositions, and very few of these are
known.

A small help is that we may also use rectangular matrix multiplication
to prove upper bounds on ω: Proposition 3.2.1.10 states that for all l,m,n,

R(M〈m,n,l〉) ≥ (lmn)
ω
3 .

But again, our knowledge of border rank is scant.

To improve the situation, one needs techniques that enable one to avoid
dealing with tensors beyond the small range we have results in. After the
work of Bini et. al., all upper bounds on ω are obtained via tensors other
than M〈l,m,n〉.

The next advance in upper bounds, due to Schönhage (Theorem 3.3.3.1)
and described in §3.3, is more involved: it says it is sufficient to prove upper
bounds on sums of disjoint matrix multiplications.

To go beyond this, Strassen had the idea to looks for a tensor T ∈
A⊗B⊗C, that has special combinatorial structure rendering it easy to study,
that can be degenerated into a collection of disjoint matrix multiplications.

The inequalities regarding ω above are strict, e.g., there does not exist
n with R(M〈n〉) equal to nω. (This does not rule out R(M〈n〉) equal to 2nω

for all n.) Strassen looked for sequences TN ∈ AN⊗BN⊗CN that could be

degenerated into sums
⊕s(N)

i=1 M〈li(N),mi(N)ni(N)〉 with the border rank of the
sums giving upper bounds on ω. This is Strassen’s “laser method” described
in §3.4.

More precisely, to obtain a sequence of disjoint matrix multiplication
tensors, one takes a base tensor T and degenerates the tensor powers T⊗N ∈
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(A⊗N )⊗(B⊗N )⊗(C⊗N ). Strassen’s degeneration is in the sense of points in
the GL(A⊗N )×GL(B⊗N )×GL(C⊗N )-orbit closure of T⊗N .

After Strassen, all other subsequent upper bounds on ω use what I will
call combinatorial restrictions of T⊗N for some “simple” tensor T , where
entries of a coordinate presentation of T⊗N are just set equal to zero. The
choice of entries to zero out is subtle. I describe these developments in §3.4.

In addition to combinatorial restrictions, Cohn et. al. exploit a geomet-
ric change of basis when a tensor is the multiplication tensor of an algebra
(or even more general structures). They use the discrete Fourier transform
for finite groups (and more general structures) to show that the multipli-
cation tensor in the Fourier basis (and thus in any basis) has “low” rank,
but nevertheless in the standard basis admits a combinatorial restriction to
a “large” sum of matrix multiplication tensors. I discuss this approach in
§3.5.

The proofs in this chapter make essential use of the property from Ex-
ercise 2.5.1.9:

(3.0.1) M〈l,m,n〉⊗M〈l′,m′,n′〉 = M〈ll′,mm′,nn′〉

where for tensors T ∈ A⊗B⊗C and T ′ ∈ A′⊗B′⊗C ′, T⊗T ′ is considered as
a tensor in the triple tensor product (A⊗A′)⊗(B⊗B′)⊗(C⊗C ′).

3.1. Facts and definitions from algebraic geometry

Standard references for this material are [Har95, Mum95, Sha13a]. The
first is very good for examples, the second and third have clean proofs, with
the proofs in the second more concise.

Several results from this section will be used repeatedly in this book:
that the linear projection of a projective variety is a projective variety (The-
orem 3.1.4.1), that projective varieties of complementary dimension must
intersect (Theorem 3.1.5.1), and that the Zariski and Euclidean closures of
certain sets agree (Theorem 3.1.6.1).

3.1.1. Projective varieties. Varieties in a vector space V defined by ho-
mogeneous polynomials are invariant under rescaling. For this, and other
reasons, it will be convenient to work in projective space (Definition 2.3.3.1).
Write π : V \0→ PV for the projection map. For X ⊂ PV , write π−1(X) ∪
{0} =: X̂ ⊂ V , and π(y) = [y]. If X̂ ⊂ V is a variety, I will also refer
to X ⊂ PV as a variety. The zero set in V of a collection of polynomials
on V is called an affine variety and the image in PV of the zero set of a
collection of homogeneous polynomials on V is called a projective variety.
For subsets Z ⊂ V , PZ ⊂ PV denotes its image under π. If P ∈ SdV ∗
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is an irreducible polynomial, then its zero set Zeros(P ) ⊂ PV is an irre-
ducible variety, called a hypersurface of degree d. For a variety X ⊂ PV ,
Id(X) := {P ∈ SdV ∗ | X ⊂ Zeros(P )} denotes the ideal of X in degree d,
and I(X) = ⊕dId(X) ⊂ Sym(V ∗) is the ideal of X.

We will be mostly concerned with varieties in spaces of tensors (for the
study of matrix multiplication) and spaces of polynomials (for geometric
complexity theory).

3.1.2. Examples of varieties.

(1) Projective space PV ⊆ PV .

(2) The Segre variety of rank one tensors

σ1 = Seg(PA1 × · · · × PAn)

:= P{T ∈ A1⊗ · · ·⊗An | ∃aj ∈ Aj such that T = a1⊗ · · ·⊗an} ⊂ P(A1⊗ · · ·⊗An).

(3) The Veronese variety

vd(PV ) = P{P ∈ SdV | P = xd for some x ∈ V } ⊂ PSdV.

(4) The Grassmannian

G(k, V ) := P{T ∈ ΛkV | ∃v1, . . . , vk ∈ V such that T = v1∧· · ·∧vk} ⊂ PΛkV.

(5) The Chow variety

Chd(V ) := P{P ∈ SdV | ∃v1, . . . , vd ∈ V such that P = v1 · · · vd} ⊂ PSdV.

By definition, projective space is a variety (the zero set of no equations).

Exercise 3.1.2.1: (2) Show that Seg(PA1 × · · · × PAn) is the zero set of

the size two minors of the flattenings A∗j → A1⊗ · · ·⊗Âj⊗ · · ·⊗An, for 1 ≤
j ≤ n.

To get equations for vd(PV ), given P ∈ SdV , consider the flattening
P1,d−1 : V ∗ → Sd−1V defined by ∂

∂v 7→
∂P
∂v . For example when d = 4, v = 2

and P =
∑4

i=0 pix
iy4−i, the matrix representing P1,3 is

(3.1.1)

(
p4 p3 p2 p1

p3 p2 p1 p0

)
and v4(P1) is the zero set of the 6 size two minors of this matrix.

Exercise 3.1.2.2: (1) Show that vd(PV ) is the zero set of the size two
minors of the flattening V ∗ → Sd−1V .

We saw equations for the Grassmannian in §2.6.2.

Exercise 3.1.4.2 will show that it is not necessary to take the Zariski
closure when defining the Chow variety. Equations for the Chow variety are
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known, see §9.6. However generators of the ideal of the Chow variety are
not known explicitly- what is known is presented in Chapter 9.

3.1.3. Dimension via tangent spaces. Informally, the dimension of a va-
riety is the number of parameters needed to describe it locally. For example,
the dimension of PV is v − 1 because in coordinates on the open neighbor-
hood where x1 6= 0, points of PV have a unique expression as [1, x2, . . . , xv],
where x2, . . . , xv are free parameters.

I first define dimension of a variety via dimensions of vector spaces.
Define the affine tangent space to X ⊂ PV at [x] ∈ X, T̂xX̂ = T̂[x]X ⊂ V ,

to be the span of the tangent vectors x′(0) to analytic curves x(t) on X̂
with x(0) = x, and note that this is independent of the choice of (nonzero)

x ∈ [x]. A point x ∈ X̂ is defined to be a smooth point if dim T̂yX̂ is constant
for all y in some neighborhood of x.

The dimension of an irreducible variety X̂ ⊂ V is the dimension of the
tangent space at a smooth point of X̂. If x is a smooth point, dimX =
dim X̂ − 1 = dim T̂xX̂ − 1. If x is not a smooth point, it is called a singular
point and we let Xsing ⊂ X denote the singular points of X. A variety of
dimension one is called a curve.

Remark 3.1.3.1. The above definitions of smooth points and dimension
implicitly assumes that X is a reduced variety. A hypersurface {P = 0} is
reduced if when one decomposes P into irreducible factors P = pa1

1 · · · parr ,
that all aj = 1. For example {`n−m permm = 0} is not reduced when
n−m > 1. The definition of dimension in §3.1.5 below avoids this problem.
For a definition of singular points that avoids this problem, see §6.3.1.

Exercise 3.1.3.2: (2) Show that dim{detn = 0}sing = n2 − 4.

If a Zariski open subset of a variety is given parametrically, then one
can calculate the tangent space to the variety via the parameter space. For
example Ŝeg(PA× PB × PC) may be thought of as the image of the map

A×B × C → A⊗B⊗C
(a, b, c) 7→ a⊗b⊗c,

so to compute T̂[a⊗b⊗c]Seg(PA × PB × PC), take curves a(t) ⊂ A with

a(0) = a and similarly for B,C, then d
dt |t=0a(t)⊗b(t)⊗c(t) = a′⊗b⊗c +

a⊗b′⊗c+ a⊗b⊗c′ by the Leibnitz rule. Since a′ can be any vector in A and
similarly for b′, c′ we conclude

T̂[a⊗b⊗c]Seg(PA× PB × PC) = A⊗b⊗c+ a⊗B⊗c+ a⊗b⊗C.

The right hand side spans a space of dimension a+b+c−2, so dim(Seg(PA×
PB × PC)) = a + b + c− 3.
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I can now pay off two debts: in §2.1.1, I asserted that the fundamental
Theorem of linear algebra is something of a miracle, and in Theorem 2.1.5.1

I asserted that a general tensor in Cm⊗Cm⊗Cm has tensor rank around m2

3 .

A general point of σ2 is of the form [a1⊗b1⊗c1 + a2⊗b2⊗c2], and a
general tangent vector at that point is of the form a1⊗b1⊗c′1 + a1⊗b′1⊗c1 +
a′1⊗b1⊗c1 + a2⊗b2⊗c′2 + a2⊗b′2⊗c2 + a′2⊗b2⊗c2, hence

T̂[a1⊗b1⊗c1+a2⊗b2⊗c2]σ2 =

a1⊗b1⊗C + a1⊗B⊗c1 +A⊗b1⊗c1 + a2⊗b2⊗C + a2⊗B⊗c2 +A⊗b2⊗c2

so that dimσ2 ≤ 2(dim(Seg(PA× PB × PC)) + 2− 1 (and equality clearly
holds if a,b, c ≥ 3) and similarly dimσr ≤ r(dim(Seg(PA×PB×PC))+r−1.
The first chance this has to be the entire ambient space is when this number

is abc− 1. When a = b = c = m, this means r ≥ m3

3m−2 , paying the second
debt.

For the first,

T̂[a1⊗b1+a2⊗b2]σ2,A⊗B = span{a1⊗b′1 + a′1⊗b1 + a2⊗b′2 + a′2⊗b2}
= A⊗span{b1, b2}+ span{a1, a2}⊗B

and this space has dimension 2 dimSeg(PA× PB), instead of the expected
2 dimSeg(PA × PB) + 1. This accounts for the upper semi-continuity of
matrix rank which fails for tensor rank: any point on a tangent line, i.e., a
point of the form a′⊗b+ a⊗b′ is also transparently on a secant line, i.e., the
sum of two rank one matrices.

Exercise 3.1.3.3: (1) Compute T̂[xd]vd(PV ).

3.1.4. Noether normalization. Consider the curve {xy = 1} ⊂ C2:

If we project the curve onto the x-axis, we get the set {x ∈ C | x 6= 0},
which, as was discussed in §1.1.14, is not Zariski closed.

One of the many wonderful things about projective space is that the
projection of an algebraic variety to a hyperplane is still an algebraic variety.
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I remind the reader that unless mentioned otherwise, I work exclusively over
the complex numbers, because the next theorem is false over R:

Theorem 3.1.4.1. If X ⊂ PW is a variety, L ⊂ W is a subspace with
PL ∩ X = ∅, and one considers the projection map p : W → W/L, then

Pp(X̂) ⊂ P(W/L) is also a variety.

Theorem 3.1.4.1 is part of the Noether normalization theorem (see, e.g.,
[Sha13a, §1.5.4] or [Mum95, §2C]). It is proved via elimination theory. In
addition to failing in affine space, this projection property fails over R: the
curve in RP2 given by x2 + z2 − y2 = 0 when projected from [1, 0, 0] is not
a real algebraic variety. (It consists of RP1\{[0, 1]}.)
Exercise 3.1.4.2: (1) Show that ifW = V ⊗d and L is theGL(V )-complement
to SdV in V ⊗d, taking p : V ⊗d → V ⊗d/L ' SdV , then p(Seg(PV × · · · ×
PV )) = Chd(V ). Conclude the closure is not needed in the definition of the
Chow variety. }

The ideal of the projection of a variety from a coordinate point is ob-
tained by eliminating that coordinate from the equations in the ideal. For
example, give S4C2 coordinates (p4, p3, p2, p1, p0) as above and project from
p2. Eliminating p2 from the equations

p4p2 − p2
3, p4p1 − p2p3, p4p0 − p1p3, p3p1 − p2

2, p2p0 − p2
1

gives the ideal generated by

p4p0 − p1p3, p
3
3 − p2

4p1, p
3
1 − p2

0p3.

Exercise 3.1.4.3: (2) What equations does one get when projecting from
p3? Give a geometric explanation why the answer is different. (A complete
answer to this question is beyond what we have covered, I am just asking
for some equations.) }

Remark 3.1.4.4. Since elimination theory doesn’t care which point one
projects from, one can even project from a point on a variety. The resulting
“map” is not defined at the point one projects from, but the Zariski closure
of the image of the points where it is defined at is well defined. This is an
example of a rational map.

Exercise 3.1.4.5: (2) What ideal does one get when projecting v4(P1) from
p4? (A complete answer to this question is beyond what we have covered, I
am just asking for some equations.) }

As long as X does not surject onto PV/L, we can continue projecting it
to smaller and smaller projective spaces.
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If X ⊂ PV is a projective variety and f : X → Y ⊂ PN is given by N+1
homogeneous polynomials on V , then f is an example of a regular map. If
X ⊂ CM and Y ⊂ CN are affine varieties, a regular map f : X → Y is one
given by N polynomials p1, . . . , pN on CM , such that (p1(x), . . . , pN (x)) ∈ Y
for all x ∈ X. For the definition of a regular map, see see, e.g. [Sha13a,
§1.2.3]. If X ⊂ CN is an affine variety, C[X] := C[x1, . . . , xN ]/I(X) denotes
the space of regular functions on X.

Exercise 3.1.4.6: (1) If X,Y are affine varieties and f : X → Y is a regular
map, show that one gets a map f∗ : C[Y ] → C[X], called the induced
pullback map, and that f∗ is injective if f is surjective.

Theorem 3.1.4.1 generalizes to:

Theorem 3.1.4.7. (see, e.g., [Sha13a, §5.2, Thm. 1.10]) If X is a projec-
tive variety and f : X → Y is a regular map, then f(X) is Zariski closed.

Exercise 3.1.4.8: (1) Show that if X is irreducible and f : X → Y is
regular, then f(X) is irreducible. }

3.1.5. Dimension via projection. The dimension of X ⊂ PV is also the
largest integer n such that there exists a surjective linear projection onto a
Pn. In this case the surjective projection X → P(V/Cc) may be chosen to
be finite to one. The integer c = v − 1 − n is called the codimension of X
in PV . Noether normalization implies that a general linear space PL will
satisfy dim(X ∩ PL) = v − 1 − n − dimPL. In particular, the intersection
of X with a general linear space of dimension c+ 1 will be a finite number
of points. This number of points is called the degree of X.

A consequence of this more algebraic definition of dimension is the fol-
lowing result:

Theorem 3.1.5.1. Let X,Y ⊂ PN (resp. X,Y ⊂ CN ) be irreducible pro-
jective (resp. affine) varieties.

Then any non-empty component Z of X ∩ Y has dimZ ≥ dimX +
dimY −N .

Moreover, in the projective case, if dimX+dimY −N > 0, then X∩Y 6=
∅.

For the proof, see, e.g., [Sha13a, §1.6.4].

3.1.6. Zariski and Euclidean closure. Recall from §1.1.14.2 that the
Zariski closure of a set can be larger than the Euclidean closure. Neverthe-
less, the following theorem, proved using Noether normalization, shows that
in our situation, the two closures agree:

Theorem 3.1.6.1. Let Z ⊂ PV be a subset. Then the Euclidean closure of
Z is contained in the Zariski closure of Z. If Z contains a Zariski open subset
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of its Zariski closure, then the two closures coincide. The same assertions
hold for subsets Z ⊂ V .

A proof that uses nothing but Noether normalization is given in [Mum95,
Thm. 2.33]. I present a proof using the following basic fact: for every irre-

ducible algebraic curve C ⊂ PV there exists a smooth algebraic curve C̃ and
a surjective algebraic map π : C̃ → C that is one-to-one over the smooth
points of C. (More precisely, π is a finite map as defined in §9.5.1.) See,

e.g., [Sha13a, §1.2.5.3] for a proof. The curve C̃ is called the normalization
of C.

The theorem will follow immediately from the following Lemma:

Lemma 3.1.6.2. Let Z ⊂ PV be an irreducible variety and let Z0 ⊂ Z be
a Zariski open subset. Let p ∈ Z\Z0. Then there exists an analytic curve
C(t) such that C(t) ∈ Z0 for all t 6= 0 and limt→0C(t) = p.

Proof. Let c be the codimension of Z and take a general linear space PL ⊂
PV of dimension c + 1 that contains p. Then PL ∩ Z will be a possibly
reducible algebraic curve containing p. Take a component C of the curve
that contains p. If p is a smooth point of the curve we are done, as we
can expand a Taylor series about p. Otherwise take the the normalization
π : C̃ → C and a point of π−1(p), expand a Taylor series about that point
and compose with π to obtain the desired analytic curve. �

3.2. The upper bounds of Bini, Capovani, Lotti, and Romani

3.2.1. Rank, border rank, and the exponent of matrix multiplica-
tion.

Proposition 3.2.1.1. [Bin80] For all n, R(M〈n〉) ≥ nω, i.e., ω ≤ logR(M〈n〉)

log(n) .
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Proof. By the definitions of the exponent and O, there exists a constant
C, such that CR(M〈n〉) ≥ nω for all n. By (3.0.1) and Exercise 2.1.6.3,

R(M〈nk〉) ≤ R(M〈n〉)
k. Say R(M〈n〉) = r. Then Crk ≥ (nk)ω, i.e., C

1
k r ≥

nω. Now let k go to infinity, we get r ≥ nω. �

Remark 3.2.1.2. The calculation in the proof of Proposition 3.2.1.1 is
typical in the upper bound literature and will show up several times in this
chapter: one has an initially hazardous constant (in this case C) that gets
washed out asymptotically by taking high tensor powers of M〈n〉.

Proposition 3.2.1.3. For all l,m,n, (lmn)
ω
3 ≤ R(M〈m,n,l〉), i.e., ω ≤

3 logR(M〈m,n,l〉)

log(mnl) .

Exercise 3.2.1.4: (2) Prove Proposition 3.2.1.3. }

Remark 3.2.1.5. The inequalities in Propositions 3.2.1.1 and 3.2.1.3 are
strict, see Theorem 3.3.3.5.

To show that ω may also be defined in terms of border rank, introduce
a sequence of ranks that interpolate between rank and border rank.

We say Rh(T ) ≤ r if there exists an expression

(3.2.1) T = lim
ε→0

1

εh
(a1(ε)⊗b1(ε)⊗c1(ε) + · · ·+ ar(ε)⊗br(ε)⊗cr(ε))

where aj(ε), bj(ε), cj(ε) are analytic functions of ε.

Proposition 3.2.1.6. R(T ) ≤ r if and only if there exists an h such that
Rh(T ) ≤ r.

Proof. We need to show R(T ) ≤ r implies there exists an h with Rh(T ) ≤ r.
Since Seg(PA × PB × PC) is just the product of three projective spaces,
every curve in Seg(PA × PB × PC) is of the form [a(t)⊗b(t)⊗c(t)] for
some curves a(t) ⊂ A etc., and if the curve is analytic, the functions
a(t), b(t), c(t) can be taken to be analytic as well. Thus every analytic curve
in σ0

r (Seg(PA× PB × PC)) may be written as [
∑r

j=1 aj(t)⊗bj(t)⊗cj(t)] for

some analytic curves aj(t) ⊂ A etc. Since the Euclidean and Zariski closures
of σ̂0

r agree by Theorem 3.1.6.1, we conclude that if T ∈ σ̂r, then Rh(T ) ≤ r
for h equal to the order of first nonzero term in the Taylor expansion of∑r

j=1 aj(t)⊗bj(t)⊗cj(t). �

Proposition 3.2.1.7. If Rh(T ) ≤ r, then R(T ) ≤ r
(
h+2

2

)
< rh2.

Proof. Write T as in (3.2.1). Then T is the coefficient of the εh term of
the expression in parentheses. For each summand, there is a contribution of∑

α+β+γ=h(εαaα)⊗(εβbβ)⊗(εγcγ) which consists of
(
h+2

2

)
terms. �

Remark 3.2.1.8. In fact R(T ) ≤ r(h+ 1), see Exercise 3.5.3.3.
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Exercise 3.2.1.9: (1) Show that for T ∈ A⊗B⊗C, if Rh(T ) ≤ r, then
RNh(T⊗N ) ≤ rN where T⊗N is considered as an element of the triple tensor
product (A⊗N )⊗(B⊗N )⊗(C⊗N ).

Theorem 3.2.1.10. [Bini, [Bin80]] For all l,m,n, ω ≤ 3 logR(M〈m,n,l〉)

log(mnl) .

Proof. Write r = R(M〈m,n,l〉). Set N = mnl. We have Rh(M〈N〉) ≤ r3 for

some h and thus R(M〈Nk〉) ≤ r3k(hk)2, which implies

(Nk)ω ≤ r3k(hk)2,

so

Nω ≤ r3(hk)
2
k .

Letting k →∞ gives the result. �

3.2.2. Bini et. al’s algorithm. Recall from §2.1.4 that R(M red
〈2〉 ) ≤ 5.

Exercise 3.2.2.1: (1) Use that R(M red
〈2〉 ) ≤ 5 to show R(M〈2,2,3〉) ≤ 10.

More generally, show that if R(M red
〈m,2,2〉) = r and R(M red

〈m′,2,2〉) = r′, then

setting n = m+m′ − 1, R(M〈n,2,2〉) ≤ r + r′.}

Using Proposition 3.2.1.10 we conclude:

Theorem 3.2.2.2. [BCRL79] ω < 2.78.

3.3. Schönhage’s upper bounds

The next contribution to upper bounds for the exponent of matrix multi-
plication was Schönhage’s discovery that the border rank of the sum of two
tensors in disjoint spaces can be smaller than the sum of the border ranks,
and that this failure could be exploited to prove further upper bounds on
the exponent. This result enables one to prove upper bounds with tensors
that are easier to analyze because of their low border rank. Before giving
Schönhage’s bounds, I begin with geometric preliminaries on orbit closures.

3.3.1. Orbit closures. Orbit closures will play a central role in our study
of GCT. They also play a role in the work of Schönhage and Strassen on
matrix multiplication.

When r ≤ ai for 1 ≤ i ≤ n, σr(Seg(PA1×· · ·×PAn)) is an orbit closure:
Let a

αj
j , 1 ≤ αj ≤ aj , be a basis of Aj , then

σr(Seg(PA1 × · · · × PAn))

= GL(A1)× · · · ×GL(An) · [a1
1⊗ · · ·⊗a1

n + · · ·+ ar1⊗ · · ·⊗arn] ⊂ P(A1⊗ · · ·⊗An).
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Write M⊕r〈1〉 =
∑r

j=1 aj⊗bj⊗cj ∈ Cr⊗Cr⊗Cr where {aj}, {bj}, {cj} are

bases. This tensor is sometimes called the unit tensor. Then

(3.3.1) σr(Seg(Pr−1 × Pr−1 × Pr−1)) = GLr ×GLr ×GLr · [M⊕r〈1〉 ].

Exercise 3.3.1.1: (2) Let V be a G-module and let v, w ∈ V . Show that
w ∈ G · v if and only if G · w ⊆ G · v.

Proposition 3.3.1.2. If T ′ ∈ GL(A)×GL(B)×GL(C) · T ⊂ A⊗B⊗C,
then R(T ′) ≤ R(T ).

Exercise 3.3.1.3: (1) Prove Proposition 3.3.1.2. }

Definition 3.3.1.4. If T ′ ∈ GL(A)×GL(B)×GL(C) · T ⊂ A⊗B⊗C, we
say T ′ is a degeneration of T .

Consider the orbit closure of the matrix multiplication tensor

GL(A)×GL(B)×GL(C) · [M〈U,V,W 〉] ⊂ P(A⊗B⊗C).

By Exercise 3.3.1.1, we may rephrase our characterization of border rank
as, taking inclusions A,B,C ⊂ Cr,

R(M〈n〉) ≤ r ⇔ [M〈n〉] ∈ σr(Seg(PA× PB × PC))

⇔ GLr ×GLr ×GLr · [M〈n〉] ⊂ σr(Seg(Pr−1 × Pr−1 × Pr−1))

⇔ GLr ×GLr ×GLr · [M〈n〉] ⊂ GLr ×GLr ×GLr · [M⊕r〈1〉 ].

3.3.2. Schönhage’s example. Recall from Exercise 2.1.7.6 that R(M〈1,m,n〉) =
mn and R(M〈N,1,1〉) = N . Recall the notation from §2.1.6 that if T1 ∈
A1⊗B1⊗C1 and T2 ∈ A2⊗B2⊗C2, we define the tensor T1 ⊕ T2 ∈ (A1 ⊕
A2)⊗(B1⊕B2)⊗(C1⊕C2). (In Exercise 5.3.1.6 you will show that R(M〈1,m,n〉⊕
M〈N,1,1〉) = mn +N .)

Theorem 3.3.2.1 (Schönhage [Sch81]). Set N = (n− 1)(m− 1). Then

R(M〈1,m,n〉 ⊕M〈N,1,1〉) = mn + 1.

Proof. By conciseness, we only need to show R(M〈1,m,n〉 ⊕ M〈N,1,1〉) ≤
mn + 1. Write

M〈1,m,n〉 =

m∑
i=1

n∑
j=1

xi⊗yj⊗zi,j ,

M〈N,1,1〉 =
m−1∑
u=1

n−1∑
v=1

xu,v⊗yu,v⊗z.
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Then

M〈1,m,n〉 ⊕M〈N,1,1〉 = lim
t→0

1

t2
[
m−1∑
u=1

n−1∑
v=1

(xu + txuv)⊗(yv + tyuv)⊗(z + t2zuv)

+
m−1∑
u=1

xu⊗(yn + t(−
∑
v

yuv))⊗(z + t2zun)

+

n−1∑
v=1

(xm + t(−
∑
u

xuv))⊗yv⊗(z + t2zmv)

+ xm⊗yn⊗(z + t2zmn)− (
∑
i

xi)⊗(
∑
s

ys)⊗z].

�

For a discussion of the geometry of this limit, see [Lan12, §11.2.2].

3.3.3. Schönhage’s asymptotic sum inequality. To develop intuition
how an upper bound on a sum of matrix multiplications could give an upper
bound on a single matrix multiplication, say we knew R(M⊕s〈n〉) ≤ r with

s ≤ n3. Then to compute M〈n2〉 we could write M〈n2〉 = M〈n〉⊗M〈n〉. At

worst this is evaluating n3 disjoint copies of M〈n〉. Now group these n3

disjoint copies in groups of s and apply the bound to obtain a savings.

Here is the precise statement:

Theorem 3.3.3.1. [Sch81] [Schönhage’s asymptotic sum inequality] For
all li,mi,ni, with 1 ≤ i ≤ s:

s∑
i=1

(minili)
ω
3 ≤ R(

s⊕
i=1

M〈mi,ni,li〉).

The main step of the proof, and an outline of the rest of the argument
is given below.

Remark 3.3.3.2. A similar result (also proven in [Sch81]) holds for the
border rank of the multiplication of matrices with some entries equal to zero,
where the product minili is replaced by the number of multiplications in
the näıve algorithm for the matrices with zeros.

Here is a special case that isolates the new ingredient (following [Blä13]):

Lemma 3.3.3.3.

nω ≤ d
R(M⊕s〈n〉)

s
e.

In particular, snω ≤ R(M⊕s〈n〉).
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Proof. Let r = R(M⊕s〈n〉). It is sufficient to show that for all N ,

(3.3.2) R(M⊕s〈nN 〉) ≤ d
r

s
eNs

as then, since trivially R(M⊕s〈nN 〉) ≥ R(M〈nN 〉) ≥ (nN )ω, we have

(nN )ω ≤ dr
s
eNs

i.e.,

nω ≤ dr
s
es

1
N

and the result follows letting N →∞.

I prove (3.3.2) by induction on N . The hypothesis is the case N = 1.
Assume (3.3.2) holds up to N and observe that

M⊕s〈nN+1〉 = M⊕s〈n〉⊗M〈nN 〉.

Now R(M⊕s〈n〉) ≤ r implies M⊕s〈n〉 ∈ GL×3
r ·M⊕r〈1〉 by Equation (3.3.1), so

M⊕s〈n〉⊗M〈nN 〉 ∈ GL
×3
r ·M⊕r〈1〉⊗M〈nN 〉. Thus R(M⊕s〈nN+1〉) ≤ R(M⊕r〈1〉⊗M〈nN 〉).

Recall that M⊕t〈1〉⊗M〈nN 〉 = M⊕t〈nN 〉. Now

R(M⊕s〈nN+1〉) ≤ R(M⊕r〈nN 〉)

≤ R(M
⊕d r

s
es

〈nN 〉 )

≤ R(M
⊕d r

s
e

〈1〉 ⊗M
⊕s
〈nN 〉)

≤ R(M
⊕d r

s
e

〈1〉 )R(M⊕s〈nN 〉)

≤ dr
s
e(dr

s
eNs)

where the last inequality follows from the induction hypothesis. �

The general case of Theorem 3.3.3.1 essentially follows from the above
lemma and arguments used previously: one first takes a high tensor power
of the sum, then switches to rank at the price of introducing an h that
washes out in the end. The new tensor is a sum of products of matrix
multiplications that one converts to a sum of matrix multiplications. One
then takes the worst term in the summation and estimates with respect to
it (multiplying by the number of terms in the summation), and applies the
lemma to conclude.

Corollary 3.3.3.4. [Sch81] ω < 2.55.

Proof. Applying Theorem 3.3.3.1 to R(M〈1,m,n〉⊕M〈(m−1)(n−1),1,1〉) = mn+
1 gives

(mn)
ω
3 + ((m− 1)(n− 1))

ω
3 ≤mn + 1



3.4. Strassen’s laser method 61

and taking m = n = 4 gives the result. �

In [CW82] they prove that for any tensor T that is a direct sum of
disjoint matrix multiplications, if R(T ) ≤ r, then there exists N such that
R(T ⊕M〈N,1,1〉) ≤ r + 1. This, combined with our earlier arguments using
Rh to bridge the gap between rank and border rank asymptotically, implies
the inequality in Theorem 3.3.3.1 is strict:

Theorem 3.3.3.5. [CW82] For all li,mi,ni, with 1 ≤ i ≤ s:
s∑
i=1

(minili)
ω
3 < R(

s⊕
i=1

M〈mi,ni,li〉).

In particular, for all n, R(M〈n〉) > nω, so one cannot determine ω from
M〈n〉 for any fixed n.

3.4. Strassen’s laser method

3.4.1. Introduction. Recall our situation: we don’t understand rank or
even border rank in the range we would need to prove upper bounds on ω via
M〈n〉, so we showed upper bounds on ω could be proved first with rectangu-
lar matrix multiplication, then with sums of disjoint matrix multiplications
which had the property that the border rank of the sum was less than the
sum of the border ranks, and the border rank in each case was determined
via an explicit decomposition.

We also saw that to determine the exponent by such methods, one
would need to deal with sequences of tensors. Strassen’s laser method is
based on taking high tensor powers of a fixed tensor, and then degenerat-
ing it to a disjoint sum of matrix multiplication tensors. Because it deals
with sequences, there is no known obstruction to determining ω exactly via
Strassen’s method.

Starting with Strassen’s method, all attempts to determine ω aim at best
for a Pyrrhic victory in the sense that even if ω were determined by these
methods, they would not give any indication as to what would be optimally
fast matrix multiplication for any given size matrix.

3.4.2. Strassen’s tensor. Consider the following tensor

(3.4.1) TSTR =

q∑
j=1

a0⊗bj⊗cj + aj⊗b0⊗cj ∈ Cq+1⊗Cq+1⊗Cq.

Exercise 5.3.1.7 will show that R(TSTR) = 2q, so (3.4.1) is an optimal rank
expression. Nevertheless, R(TSTR) = q + 1. To see why one could expect
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this, consider the q points a0⊗b0⊗cj . The tensor TSTR is a sum of tangent
vectors to these q points:

TSTR =

q∑
j=1

lim
t→0

1

t
[(a0 + taj)⊗(b0 + tbj)⊗cj − a0⊗b0⊗cj ]

Note that the sum
∑

j a0⊗b0⊗cj is also a rank one tensor, which leads one
to the expression:

lim
t→0

1

t

 q∑
j=1

(a0 + taj)⊗(b0 + tbj)⊗cj − a0⊗b0⊗(c1 + · · ·+ cq)


showing the border rank is at most q + 1, but since the tensor is concise,
we obtain equality. Geometrically, the original q points all lie on the linear
space [a0⊗b0⊗Cq] ⊂ Seg(PA× PB × PC).

Now consider T̃STR := TSTR⊗σ(TSTR)⊗σ2(TSTR) where σ is a cyclic
permutation of the three factors. Group triples of spaces together to consider

T̃STR ∈ Cq(q+1)2⊗Cq(q+1)2⊗Cq(q+1)2
. We have the upper bound R(T̃STR) ≤

(q + 1)3.

Write aαβγ := aα⊗aβ⊗aγ and similarly for b’s and c’s. Then, omitting
the ⊗’s:

T̃STR =

q∑
i,j,k=1

(aij0b0jkci0k + aijkb0jkci00 + aij0b00kcijk + aijkb00kcij0

(3.4.2)

+ a0j0bijkci0k + a0jkbijkci00 + a0j0bi0kcijk + a0jkbi0kcij0)

We may think of T̃STR as a sum of eight terms, each of which is a
M〈l,m,n〉 with lmn = q3, e.g., the first is

∑q
i,j,k=1 aij0b0jkci0k = M〈q,q,q〉,

the second M〈q2,q,1〉 etc.. (I will say terms of volume q3.) Were they all
disjoint expressions, we could use the asymptotic sum inequality to conclude
8qω ≤ (q+ 1)3 and for small q we would see ω < 2. Of course this is not the
case, but we can try to zero out some of the variables to keep as many of
these eight terms as possible. For example if we set ci00, b00k, bijk, cijk all to
zero, we are left with two disjoint matrix multiplications and we conclude
2qω ≤ (q + 1)3. This is best when q = 15, giving ω < 2.816, which is not so
interesting.

At this point enters a new idea: since we are dealing with border rank,
we have greater flexibility in degeneration than simply zero-ing out terms.
By taking limits, we will be able to keep three terms! To explain this, I need
to take another detour regarding orbit closures.
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3.4.3. All tensors of border rank b3
4n2c are degenerations M〈n〉.

Theorem 3.4.3.1 (Strassen [Str87]). Set r = b3
4n2c and choose a linear

embedding Cr ⊂ Cn2
. Then

σr(Seg(Pr−1 × Pr−1 × Pr−1)) ⊂ GLn2 ×GLn2 ×GLn2 · [M〈n〉],
i.e.,

GLr ×GLr ×GLr · [M⊕r〈1〉 ] ⊂ GLn2 ×GLn2 ×GLn2 · [M〈n〉].

Proof. The proof will be by a very simple degeneration: let TA ⊂ GL(A) =
GLn2 denote the diagonal n2 × n2 matrices. I will show

M⊕r〈1〉 ⊂ TA × TB × TC ·M〈n〉.

Write xij for a basis of A etc., so M〈n〉 =
∑

i,j,k xij⊗yjk⊗zki. We want to
kill off as few terms as possible such that in the remaining terms, each basis
vector appears in at most one monomial. That is if we have xij appearing,
then there should be a unique k0 = k(i, j), such that the only term surviving
in
∑

k xij⊗yjk⊗zki is xij⊗yjk0⊗zk0i. We should view this more symmetri-
cally, fixing some integer h and requiring that the only terms appearing are
of the form xij⊗yjk⊗zki where i+ j + k = h. To do this, look for curves

xij 7→ tα(i,j)xij

yjk 7→ tβ(j,k)yjk

zki 7→ tγ(k,i)zki

so that α+β+γ = 0 when i+j+k = h and α+β+γ > 0 when i+j+k 6= h,
as then

lim
t→0

n∑
i,j,k=1

tα(i,j)+β(j,k)+γ(k,i)xij⊗yjk⊗zki =
∑

i+j+k=h

xij⊗yjk⊗zki.

Set λ = i+ j + k. We could satisfy the requirements on α, β, γ by requiring

α+ β + γ = (h− λ)2 = h2 − 2λh+ λ2.

Take

α =
1

2
(i2 + j2) + 2ij + (

h

3
− i− j)h

β =
1

2
(k2 + j2) + 2kj + (

h

3
− k − j)h

γ =
1

2
(i2 + k2) + 2ik + (

h

3
− i− k)h.

Exercise 3.4.3.2: (1) Verify that α+ β + γ = (h− λ)2.

Exercise 3.4.3.3: (2) Show that the best value of h is h = d3n
2 e+ 1 which

yields r = b3
4n2c to finish the proof.
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�

Remark 3.4.3.4. This degeneration is more complicated than setting linear
combinations of variables to zero because there are values of i, j, k where one
of α, β, γ is negative. To avoid negative terms for the curves in A,B,C, we
could add r to each of α, β, γ and then divide the entire entire expression
by t3r.

Call degenerations that only use the diagonal matrices toric degenera-
tions.

Corollary 3.4.3.5. Every tensor in C
3
2
n⊗C

3
2
n⊗C

3
2
n arises as a toric degen-

eration of M〈n〉.

Proof. As mentioned in §2.1.6, the maximum border rank of any tensor

in C
3
2
n⊗C

3
2
n⊗C

3
2
n is at most 3

4n2, and any tensor of border rank 3
4n2 is a

degeneration of M〈n〉. �

Remark 3.4.3.6. Theorem 3.4.3.1 may be interpreted as saying that one
can degenerate M〈n〉 to a tensor that computes b3

4n2c independent scalar
multiplications. If we have any tensor realized as M〈n〉⊗T , the same degen-

eration procedure works to degenerate it to M
⊕b 3

4
n2c

〈1〉 ⊗T .

3.4.4. A better bound using the toric degeneration. Now we return
to the expression (3.4.2). There are four kinds of A-indices, ij0, ijk, 0j0
and 0jk. To emphasize this, and to suggest what kind of degeneration to
perform, label these with superscripts [11], [21], [12] and [22]. Label each of
the B and C indices (which come in four types as well) similarly to obtain:

T̃STR =

q∑
i,j,k=1

(a
[11]
ij0 b

[11]
0jkc

[11]
i0k + a

[21]
ijk b

[11]
0jkc

[12]
i00 + a

[11]
ij0 b

[12]
00kc

[21]
ijk + a

[21]
ijk b

[12]
00kc

[22]
ij0

+ a
[12]
0j0b

[21]
ijk c

[11]
i0k + a

[22]
0jkb

[21]
ijk c

[12]
i00 + a

[12]
0j0b

[22]
i0k c

[21]
ijk + a

[22]
0jkb

[22]
i0k c

[22]
ij0 ).

This expression has the structure of block 2×2 matrix multiplication. Think
of it as a sum of q3 2× 2 matrix multiplications. Now use Theorem 3.4.3.1
to degenerate each 2× 2 matrix multiplication to a sum of 3 disjoint terms.
Namely, following the recipe that the three indices must add to 4, we keep
all terms a[s,t]b[t,u]c[u,s] where s+ t+ u = 4, namely we degenerate T̃STR to

q∑
i,j,k=1

a
[21]
ijk b

[11]
0jkc

[12]
i00 + a

[11]
ij0 b

[12]
00kc

[21]
ijk + a

[12]
0j0b

[21]
ijk c

[11]
i0k .

The asymptotic sum inequality implies 3qω ≤ (q+ 1)3, which gives the best
bound on ω when q = 7, namely ω < 2.642, which is still not as good as
Schönhage’s bound.
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3.4.5. Strassen’s bound. We do better by using the standard trick of this
chapter: taking a high tensor power of T̃STR, as T̃⊗NSTR contains (2N )2 matrix

multiplications M〈l,m,n〉, all with lmn = q3N , and again by Theorem 3.4.3.1

we may keep 3
422N of them. The asymptotic sum inequality applied to the

degenerated tensor gives

3

4
22NqNω ≤ (q + 1)3N .

Taking N -th roots and letting N tend to infinity, the 3
4 goes away and we

obtain

22qω ≤ (q + 1)3.

Finally, the case q = 5 implies:

Theorem 3.4.5.1. [Str87] ω < 2.48 .

3.4.6. Asymptotic rank. The above discussion suggests the introduction
of yet another complexity measure for tensors: given T ∈ A⊗B⊗C, we can
consider T⊗N ∈ A⊗N⊗B⊗N⊗C⊗N and this construction played a central
role in Strassen’s laser method to prove upper bounds for the complexity of
matrix multiplication via auxiliary tensors.

Definition 3.4.6.1. The asymptotic rank R̃(T ) of a tensor T ∈ A⊗B⊗C,
is

R̃(T ) := infN [R(T⊗N )]
1
N .

Exercise 3.4.6.2: (1) Show that in the definition, one can replace the infi-
mum by limN→∞ by using Lemma 3.4.7.2 below.

Exercise 3.4.6.3: (2) Show that R̃(T ) ≤ R(T ). }

Since M⊗k〈2〉 = M〈2k〉, we have R̃(M〈2〉) = 2ω.

Conjecture 3.4.6.4. [Str91] Let T ∈ Cm⊗Cm⊗Cm be concise. Then

R̃(T ) = m.

Note that, If Conjecture 3.4.6.4 holds for T = M〈2〉, this would imply
ω = 2.

More subtly, if the conjecture holds for Tcw,2 introduced in §3.4.9 below,
then ω = 2, see [BCS97, Rem. 15.44].

3.4.7. Degeneracy value. I now formalize what we did to get Strassen’s
bound. The starting point is if a tensor T degenerates to

⊕s
i=1M〈li,mi,ni〉,

then
∑s

i=1(limini)
ω
3 ≤ R(T ), and more generally we worked with degener-

ations of T⊗N as well. Informally define the degeneracy value of T to be the
best upper bound on ω we can get in this manner. More precisely:
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Definition 3.4.7.1. Let T ∈ A⊗B⊗C. Fix N ≥ 1 and ρ ∈ [2, 3]. Define

V degen
ρ,N (T ) to be the maximum of

∑s
i=1(limini)

ρ
3 over all degenerations of

T⊗N to
⊕s

i=1M〈li,mi,ni〉 over all choices of s, li,mi,ni and define the degen-

eracy value of T to be V degen
ρ (T ) := supN V

degen
ρ,N (T )

1
N .

The asymptotic sum inequality implies V degen
ω (T ) ≤ R(T ), or in other

words, if V degen
ρ (T ) ≥ R(T ), then ω ≤ ρ.

The supremum in the definition can be replaced by a limit, thanks to

Fekete’s lemma, since the sequence log(V degen
ρ,N (T )) is super-additive:

Lemma 3.4.7.2 (Fekete’s Lemma). For every super-additive sequence {an}∞n=1

(i.e. an+m ≥ an + am), the limit limn→∞
an
n exists (possibly +∞) and is

equal to sup an
n .

Exercise 3.4.7.3: (3) Prove Fekete’s Lemma.

Fekete’s lemma implies 1
N log V degen

ρ,N (T ) tends to a limit. See [AFLG15]
for details.

There is also an analogue of the asymptotic sum inequality for degener-
acy value:

Theorem 3.4.7.4.
∑s

i=1 V
degen
ω (Ti) ≤ R(⊕si=1Ti).

The proof is similar to the proof of the asymptotic sum inequality. It is

clear that V degen
ω (T1⊗T2) ≥ V degen

ω (T1)⊗V degen
ω (T2). To show V degen

ω (T1 ⊕
T2) ≥ V degen

ω (T1) + V degen
ω (T2) one expands out V degen

ω,N (T1 ⊕ T2), the result
is a sum of products with coefficients, but as with the asymptotic sum
inequality, one can essentially just look at the largest term, and as N tends
to infinity, the coefficient becomes irrelevant after taking N -th roots.

Thus tensors of low border rank with high degeneracy value give upper
bounds on ω. The problem is that we have no systematic way of estimating
degeneracy value. For an extreme example, for a given r the tensor of border
rank r with the highest degeneracy value is M⊕r〈1〉 as all border rank r tensors

are degenerations of it.

In subsequent work, researchers restrict to a special type of value that
is possible to estimate.

3.4.8. The value of a tensor. Let End(A) × End(B) × End(C) act on
A⊗B⊗C by the action inherited from the GL(A)×GL(B)×GL(C) action
(not the Lie algebra action). Then for all X ∈ End(A)× End(B)× End(C)
and T ∈ A⊗B⊗C, we have R(X · T ) ≤ R(T ) and R(X · T ) ≤ R(T ) by
Exercise 2.1.6.2.

Definition 3.4.8.1. One says T restricts to T ′ if T ′ ∈ End(A)×End(B)×
End(C) · T .
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Definition 3.4.8.2. For T ∈ A⊗B⊗C, N ≥ 1 and ρ ∈ [2, 3] define V restr
ρ,N (T )

to be the maximum of
∑s

i=1(limini)
ρ
3 over all restrictions of T⊗N to⊕si=1M〈li,mi,ni〉

and define the restriction value of T to be V restr
ρ (T ) := supN V

restr
ρ,N (T )

1
N .

I emphasize that the degeneration used by Strassen is more general than
restriction.

Coppersmith-Winograd and all subsequent work, use only the following
type of restriction:

Definition 3.4.8.3. Let A,B,C be given bases, so write them as Ca,Cb,Cc.
We say T ∈ Ca⊗Cb⊗Cc combinatorially restricts to T ′ if T restricts to T ′

by setting some of the coordinates of T to zero.

The condition that T ∈ Ca⊗Cb⊗Cc admits a combinatorial restriction
to the matrix multiplication tensor M〈l,m,n〉 may be phrased as follows (fol-
lowing [CU03]): write aα, bβ, cγ for the given bases of A,B,C and write

T =
∑a

α=1

∑b
β=1

∑c
γ=1 t

α,β,γaα⊗bβ⊗cγ . Then T ∈ Ca⊗Cb⊗Cc combinato-
rially restricts to M〈l,m,n〉 means that there exist injections

α : [l]× [m]→ [a]

β : [m]× [n]→ [b]

γ : [n]× [l]→ [c]

such that

(3.4.3) tα(i,j′),β(j,k′),γ(k,i′) =

{
1 if i = i′, j = j′, k = k′

0 otherwise

}
.

One can similarly phrase combinatorial restriction to a sum of disjoint
matrix multiplication tensors.

Definition 3.4.8.4. For T ∈ Ca⊗Cb⊗Cc, N ≥ 1 and ρ ∈ [2, 3] define

Vρ,N (T ) to be the maximum of
∑s

i=1(limini)
ρ
3 over all combinatorial re-

strictions of T⊗N to ⊕si=1M〈li,mi,ni〉 and define the combinatorial value
(or value for short, since it is the value used in the literature) of T to be

Vρ(T ) := limN→∞ Vρ,N (T )
1
N . (The limit is shown to exist in [DS13].)

Note that the values satisfy V degen
ρ ≥ V restr

ρ ≥ Vρ. As with all the values
we have

• Vρ(T ) is a non-decreasing function of ρ,

• Vω(T ) ≤ R(T ).

Thus if Vρ(T ) ≥ R(T ), then ω ≤ ρ.

Combinatorial value can be estimated in principle, as for each N , there
are only a finite number of combinatorial restrictions. In practice, the tensor
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is presented in such a way that there are “obvious” combinatorial degener-
ations to disjoint matrix multiplication tensors and at first, one optimizes
just among these obvious combinatorial degenerations. However, it may be
that there are matrix multiplication tensors of the form

∑
j a0⊗bj⊗cj as

well as tensors of the form a0⊗bk⊗ck where k is not in the range of j. Then
one can merge these tensors to a0⊗(

∑
j bj⊗cj + bk⊗ck) to increase value

because although formally speaking they were not disjoint, they do not in-
terfere with each other. (The value increases as e.g., qω + rω < (q+ r)ω.) So
the actual procedure is to optimize among combinatorial restrictions with
merged tensors.

3.4.9. The Coppersmith-Winograd tensors. Coppersmith and Wino-
grad apply Strassen’s laser method, enhanced with merging, using combi-
natorial restrictions to the following two tensors:

The “easy Coppersmith-Winograd tensor”:

(3.4.4) Tq,cw :=

q∑
j=1

a0⊗bj⊗cj+aj⊗b0⊗cj+aj⊗bj⊗c0 ∈ Cq+1⊗Cq+1⊗Cq+1

Proposition 5.5.1.1 will imply R(Tq,cw) = 2q + 1 so the above expression is
not optimal. We also have

Proposition 3.4.9.1. R(Tq,cw) = q + 2.

Proof. Consider the second derivatives of a curve in the Segre: Let x(t) =
a(t)⊗b(t)⊗c(t), write x′ for x′(0) and similarly for all derivatives. Then

x′′ = (a′′⊗b⊗c+ a⊗b′′⊗c+ a⊗b⊗c′′) + 2(a′⊗b′⊗c+ a′⊗b⊗c′ + a⊗b′⊗c′)

so if we begin with the base point a0⊗b0⊗c0, each term in the summand for
Tq,cw is a term of the second kind. The terms in the first parenthesis are
ordinary tangent vectors. Thus take q curves beginning at a0⊗b0⊗c0, we
can cancel out all the terms of the first type with a single vector to obtain
the resulting border rank q + 2 expression:

Tq,cw = lim
t→0

1

t2

 q∑
j=1

(a0 + taj)⊗(b0 + tbj)⊗(c0 + tcj)


− (a0 + t

∑
j

aj)⊗(b0 + t
∑
j

bj)⊗(c0 + t
∑
j

cj)− (q − 1)a0⊗b0⊗c0.

Exercise 3.4.9.2: (2) Show that R(Tq,cw) ≥ q + 2 so that equality holds.

�
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A slightly more complicated tensor yields even better results: Let

Tq,CW :=

q∑
j=1

(a0⊗bj⊗cj + aj⊗b0⊗cj + aj⊗bj⊗c0)

(3.4.5)

+ a0⊗b0⊗cq+1 + a0⊗bq+1⊗c0 + aq+1⊗b0⊗c0 ∈ Cq+2⊗Cq+2⊗Cq+2

and call Tq,CW the Coppersmith-Winograd tensor.

Exercise 3.4.9.3: (2) Show the Coppersmith-Winograd tensor also has bor-
der rank q + 2 by modifying the curves used to obtain Tq,cw. }

Now suggestively re-label Tq,CW as we did with Strassen’s tensor:

Tq,CW :=

q∑
j=1

(a
[0]
0 ⊗b

[1]
j ⊗c

[1]
j + a

[1]
j ⊗b

[0]
0 ⊗c

[1]
j + a

[1]
j ⊗b

[1]
j ⊗c

[0]
0 )

(3.4.6)

+ a
[0]
0 ⊗b

[0]
0 ⊗c

[2]
q+1 + a

[0]
0 ⊗b

[2]
q+1⊗c

[0]
0 + a

[2]
q+1⊗b

[0]
0 ⊗c

[0]
0 ∈ Cq+2⊗Cq+2⊗Cq+2

to see that Tq,CW is the sum of 3 matrix multiplications of volume q2, and 3
of volume 1, all non-disjoint. To get more interesting matrix multiplications,
consider T⊗2

q,CW , but this time, instead of double superscripts, simply add the
superscripts.

T⊗2
q,CW =

q∑
i,j=1

[a
[0]
00⊗b

[2]
ij ⊗c

[2]
ij + a

[1]
0j⊗b

[1]
i0⊗c

[2]
ij + a

[1]
0j⊗b

[2]
ij ⊗c

[1]
i0 + a

[1]
i0⊗b

[1]
0j⊗c

[2]
ij + a

[1]
i0⊗b

[2]
ij ⊗c

[1]
0j

+ a
[2]
ij ⊗b

[1]
i0⊗c

[1]
0j + a

[2]
ij ⊗b

[0]
00⊗c

[2]
ij + a

[2]
ij ⊗b

[2]
ij ⊗c

[1]
00 + a

[2]
ij ⊗b

[1]
0j⊗c

[1]
i0 ]

+

q∑
j=1

[a
[2]
0,q+1⊗b

[1]
j0⊗c

[1]
j0 + a

[2]
q+1,0⊗b

[1]
0j⊗c

[1]
0j + a

[3]
q+1,j⊗b

[1]
0j⊗c

[0]
00 + a

[3]
j,q+1⊗b

[1]
j0⊗c

[0]
00

+ a
[3]
q+1,j⊗b

[0]
00⊗c

[1]
0j + a

[3]
j,q+1⊗b

[0]
00⊗c

[1]
j0 ]

+a
[4]
q+1,q+1⊗b

[0]
00⊗c

[0]
00 + a

[0]
00⊗b

[3]
q+1,j⊗c

[1]
0j + a

[0]
00⊗b

[1]
0j⊗c

[3]
q+1,j

+a
[0]
00⊗b

[4]
q+1,q+1⊗c

[0]
00 + a

[0]
00⊗b

[0]
00⊗c

[4]
q+1,q+1.

Now we have non-disjoint matrix multiplications of volumes q2, q and 1.
Thus when we zero-out terms to get disjoint matrix multiplications in (T⊗2

q,CW )⊗N ,

in order to optimize value, we need to weight the q2 terms more than the q
terms etc..

As mentioned above, one can obtain better upper bounds with merging.
One needs to make a choice how to merge. Coppersmith and Winogrand
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group the Ca2
-variables

A[0] = {a[0]
00}

A[1] = {a[1]
i0 , a

[1]
0j }

A[2] = {a[2]
q+1,0, a

[2]
ij , a

[2]
0,q+1}

A[3] = {a[3]
q+1,j , a

[3]
i,q+1}

A[4] = {a[4]
q+1,q+1}

and similarly for b’s and c’s. Then

T⊗2
q,CW =

∑
I+J+K=4

A[I]⊗B[J ]⊗C[K],

where e.g., A[I] is to be interpreted as the sum of all elements of A[I]. Most
of these terms are just matrix multiplications, however terms with 1 + 1 + 2
are not:

A[1]⊗B[1]⊗C[2] =

q∑
i=1

a
[1]
i0⊗b

[1]
i0⊗c

[2]
0,q+1 +

q∑
j=1

a
[1]
0j⊗b

[1]
0j⊗c

[2]
q+1,0

+

q∑
i,j=1

[a
[1]
i0⊗b

[1]
0j⊗c

[2]
ij + a

[1]
0j⊗b

[1]
i0⊗c

[2]
ij ].

To this term we estimate value using the laser method, i.e., we degenerate
tensor powers of A[1]⊗B[1]⊗C[2] to disjoint matrix multiplication tensors.

Coppersmith and Winograd show that it has value at least 2
2
3 qω(q3ω + 2)

1
3 .

Now there is an optimization problem to solve, that I briefly discuss in
§3.4.10 below.

Coppersmith and Winograd get their best result of ω < 2.3755 by merg-
ing T⊗2

q,CW and then optimizing over the various combinatorial restrictions.

In subsequent work Stothers [Sto], resp. Williams [Wil], resp. LeGall [Gal]
used merging with T⊗4

q,CW resp. T⊗8
q,CW , resp. T⊗16

q,CW and T⊗32
q,CW leading to

the current “world record”:

Theorem 3.4.9.4. [Gal] ω < 2.3728639.

Ambainis, Filmus and LeGall [AFLG15] showed that taking higher
powers of Tq,CW when q ≥ 5 cannot be used to prove ω < 2.30 by this
method alone. Their argument avoids higher powers by more sophisticated
methods to account for when potential merging in higher tensor powers can
occur.

Thus one either needs to develop new methods, or find better base ten-
sors.

I discuss the search for better base tensors in Remark 5.5.3.4.
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3.4.10. How one optimizes in practice. To get an idea of how the
optimization procedure works, start with some base tensor T that contains
a collection of matrix multiplication tensors M〈li,mi,ni〉, 1 ≤ i ≤ x that

are not disjoint. Then T⊗N will contain matrix multiplication tensors of
the form M〈lµ,mµ,nµ〉 where lµ = lµ1 · · · lµN and similarly for mµ,nµ, where
µj ∈ [x].

Each matrix multiplication tensor will occur with a certain multiplicity
and certain variables. The problem becomes to zero out variables in a way
that maximizes the value of what remains. More precisely, for large N ,

one wants to maximize the sum
∑

jKj(lµjmµjnµj )
ρ
3 where the surviving

matrix multiplication tensors are M
⊕Kj
〈lµjmµjnµj 〉

and disjoint. One then takes

the smallest ρ such that
∑

jKj(lµjmµjnµj )
ρ
3 ≥ R(T ) and concludes ω ≤ ρ.

One ingredient is the Salem-Spencer Theorem:

Theorem 3.4.10.1 (Salem and Spencer [SS42]). Given ε > 0, there exists

Mε ' 2
c
ε2 such that for all M > Mε, there is a set B of M ′ > M1−ε distinct

integers 0 < b1 < b2 < · · · < bM ′ <
M
2 with no three terms in an arithmetic

progression, i.e., for bi, bj , bk ∈ B, bi + bj = 2bk if and only if bi = bj = bk.
In fact no three terms form an arithmetic progression modM .

This theorem assures one can get away with only zero-ing out a rela-
tively small number of terms, so in some sense it plays the role of Strassen’s
degeneration theorem. I state it explicitly to emphasize that it is an exis-
tence result, not an algorithm. In the general case one assigns probability
distributions and optimizes using techniques from probability to determine
what percentage of each type gets zero-ed out. See [CW82] for the basic
idea and [AFLG15] for the state of the art regarding this optimization.

3.5. The Cohn-Umans program

A conceptually appealing approach to proving upper bounds on ω was ini-
tiated by H. Cohn and C. Umans.

Imagine a tensor that comes presented in two different bases. In one,
the cost of the tensor is clear: it may be written as a sum of small disjoint
matrix multiplication tensors. On the other hand, in the other its value (in
the sense discussed above) is high, because it may be seen to degenerate to
good matrix multiplication tensors. Such a situation does arise in practice!
It occurs for structure tensors for the group algebra of a finite group, as
defined below. In one (the “matrix coefficient basis”), one gets an upper
bound on the rank of the tensor, and in the other (the “standard basis”)
there are many potential combinatorial degenerations and one gets a lower
bound on the value.
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I state the needed representation theory now, and defer proofs of the
statements to §8.6. I then present their method.

3.5.1. Structure tensor of an algebra. Let A be a finite dimensional
algebra, i.e., a vector space with a multiplication operation, with basis
a1, . . . , aa and dual basis α1, . . . , αa. Write aiaj =

∑
k A

k
ijak for the multi-

plication in A, where the Akij are constants. The multiplication A×A → A
is bilinear and one defines the corresponding structure tensor of A

(3.5.1) TA :=
∑
i,j,k

Akijα
i⊗αj⊗ak ∈ A∗⊗A∗⊗A.

For example, M〈n〉 is the structure tensor for the algebra of n×n-matrices
with operation matrix multiplication.

The group algebra of a finite group. Let G be a finite group and let C[G]
denote the vector space of complex-valued functions on G, called the group
algebra of G. The following exercise justifies the name:

Exercise 3.5.1.1: (1) Show that if the elements of G are g1, . . . , gr, then
C[G] has a basis indexed δg1 , . . . , δgr , where δgi(gj) = δij . Show that C[G]
may be given the structure of an algebra by defining δgiδgj := δgigj and
extending linearly.

Thus if G is a finite group, then TC[G] =
∑

g,h∈G δ
∗
g⊗δ∗h⊗δgh.

Example 3.5.1.2.

TC[Zm] =
∑

0≤i,j<m
δ∗i⊗δ∗j⊗δi+jmodm.

Notice that, introducing coordinates x0, . . . , xm−1 on C[Zm], so v ∈ C[Zm]
may be written

∑
xsδs, one obtains a circulant matrix for TC[Zm](C[Zm]∗) ⊂

C[Zm]∗⊗C[Zm]∗:

(3.5.2) TC[Zm](C[Zm]∗) =




x0 x1 · · · xm−1

xm−1 x0 x1 · · ·
...

. . .

x1 x2 · · · x0

 | xj ∈ C

 .

In what follows I slightly abuse notation and write the matrix with entries xj
rather than the form above. Note that all entries of the matrix are non-zero
and filled with basis vectors. This holds in general for the presentation of
C[G] in the standard basis, which makes it useful for combinatorial restric-
tions.

What are R(TC[Zm]) and R(TC[Zm])? The space of circulant matrices
forms an abelian subspace, which indicates the rank and border rank might
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be minimal or nearly minimal among concise tensors. We will determine
the rank and border rank of TC[Zm] momentarily via the discrete Fourier
transform.

3.5.2. The structure theorem of C[G]. I give a proof of the following
theorem and an explanation of the G×G-module structure on C[G] in §8.6.5.

Theorem 3.5.2.1. Let G be a finite group, then as a G×G-module,

(3.5.3) C[G] =
⊕
i

V ∗i ⊗Vi

where the sum is over all the distinct irreducible representations of G. In
particular, if dimVi = di, then as an algebra,

(3.5.4) C[G] '
⊕
i

Matdi×di(C).

3.5.3. The (generalized) discrete Fourier transform. We have two
natural expressions for TC[G], the original presentation in terms of the algebra
multiplication in terms of delta functions, the standard basis, and the matrix
coefficient basis in terms of the entries of the matrices in (3.5.4). The change
of basis matrix from the standard basis to the matrix coefficient basis is
called the (generalized) Discrete Fourier Transform (DFT).

Example 3.5.3.1. The classical DFT is the case G = Zm. The irreducible
representations of Zm are all one dimensional: ρk : Zm → GL1. Let σ ∈ Zm
be a generator, then ρk(σ)v = e

2πik
m v for 0 ≤ k ≤ m. The DFT matrix is

(e
2πi(j+k)

m )0≤j,k≤m−1.

Proposition 3.5.3.2. R(TC[Zm]) = R(TC[Zm]) = m.

Proof. Theorem 3.5.2.1 implies TC[Zm] = M⊕m〈1〉 . �

Compared with (3.5.2), in the matrix coefficient basis the image TC[Zm](C[Zm]∗)
is the set of diagonal matrices:

TC[Zm](C[Zm]∗) =


y0

y1

. . .

ym−1

 .

Exercise 3.5.3.3: (2) Show that if T ∈ σ̂0,h
r , then R(T ) ≤ r(h+ 1). }

Exercise 3.5.3.4: (2) Obtain a fast algorithm for multiplying two polyno-
mials in one variable by the method you used to solve the previous exercise.
}
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Example 3.5.3.5. Consider S3. In the standard basis,

TC[S3](C[S3]∗) =



x0 x1 x2 x3 x4 x5

x1 x0 x4 x5 x2 x3

x2 x5 x0 x4 x3 x1

x3 x4 x5 x0 x1 x2

x4 x3 x1 x2 x5 x0

x5 x2 x3 x1 x0 x4

 .

Here I have written an element of C[S3] as x0δId+x1δ(12)+x2δ(13)+x3δ(23)+
x4δ(123) + x5δ(132). The irreducible representations of S3 are the trivial, de-
noted [3], the sign, denoted [1, 1, 1] and the two-dimensional standard repre-
sentation (the complement of the trivial in C3), which is denoted [2, 1]. (See
§8.6.5 for an explanation of the notation.) Since dim[3] = 1, dim[1, 1, 1] = 1
and dim[2, 1] = 2, by Theorem 3.5.2.1 TC[S3] = M⊕2

〈1〉 ⊕M〈2〉, and in the

matrix coefficient basis:

TC[S3](C[S3]∗) =



y0

y1

y2 y3

y4 y5

y2 y3

y4 y5


where the blank entries are zero. We conclude R(TC[S3]) ≤ 1 + 1 + 7 = 9.

3.5.4. Upper bounds via finite groups. Here is the main idea:

Use the standard basis to get a lower bound on the value of TC[G] and
the matrix coefficient basis to get an upper bound on its cost.

Say TC[G] expressed in its standard basis combinatorially restricts to
a sum of matrix multiplications, say ⊕sj=1M〈lj ,mj ,nj〉. The standard ba-
sis is particularly well suited to combinatorial restrictions because all the
coefficients of the tensor in this basis are zero or one, and all the en-
tries of the matrix TC[G](C[G]∗) are nonzero and coordinate elements. (Re-
call that all the entries of the matrix M〈l,m,n〉(A

∗) are either zero or co-
ordinate elements.) Using the matrix coefficient basis, we see TC[G] =

⊕qu=1M〈du〉, where du is the dimension of the u-th irreducible representation

of G. Thus R(⊕sj=1M〈lj ,mj ,nj〉) ≤ R(⊕qu=1M〈du〉) and R(⊕sj=1M〈lj ,mj ,nj〉) ≤
R(⊕qu=1M〈du〉).

The asymptotic sum inequality implies:

Proposition 3.5.4.1. [CU03, CU13] If TC[G] degenerates to⊕sj=1M〈lj ,mj ,nj〉
and du are the dimensions of the irreducible representations of G, then∑s

j=1(ljmjnj)
ω
3 ≤ R(⊕qu=1M〈du〉) ≤

∑
d3
u. In fact,

∑s
j=1(ljmjnj)

ω
3 ≤∑

dωu .



3.5. The Cohn-Umans program 75

In this section I will denote the standard basis for C[G] given by the
group elements (which I have been denoting δgi) simply by gi.

Basis elements of C[G] are indexed by elements of G, so our sought-after
combinatorial restriction is of the form:

α : [l]× [m]→ G

β : [m]× [n]→ G

γ : [n]× [l]→ G.

Recall the requirement that tα(i,j′),β(j,k′),γ(k,i′) is one if and only if i = i′,
j = j′, k = k′, and is otherwise zero. Here, when considering TC[G] as a
trilinear map, we have

tα,β,γ =

{
1 αβγ = Id
0 otherwise

We want that α(i, j′)β(j, k′)γ(k, i′) = Id if and only if i = i′, j = j′, k =
k′. To simplify the requirement, assume the maps factor to s1 : [l] → G,
s2 : [m] → G, s3 : [n] → G, and that α(i, j′) = s1

−1(i)s2(j′), β(j, k′) =
s2
−1(j)s3(k′) and γ(k, i′) = s3

−1(k)s1(i′). Our requirement becomes

s1
−1(i)s2(j′)s2

−1(j)s3(k′)s3
−1(k)s1(i′) = Id⇔ i = i′, j = j′, k = k′.

Let Sj denote the image of sj . Our requirement is summarized in the fol-
lowing definition:

Definition 3.5.4.2. [CU03] A triple of subsets S1, S2, S3 ⊂ G satisfies
the triple product property if for any sj , s

′
j ∈ Sj , s′1s1

−1s′2s2
−1s′3s3

−1 = Id

implies s′1 = s1, s′2 = s2, s′3 = s3.

There is a corresponding simultaneous triple product property when
there is a combinatorial restriction to a collection of disjoint matrix multi-
plication tensors.

Example 3.5.4.3. [CKSU05] Let G = (Z×3
N × Z×3

N ) o Z2 where Z2 acts
by switching the two factors, so |G| = 2N6. Write elements of G as
[(ωi, ωj , ωk)(ωl, ωs, ωt)τ ε] where 0 ≤ i, j, k, s, t, u ≤ N − 1, ω is a prim-
itive N -th root of unity, τ is a generator of Z2, and ε ∈ {0, 1}. Set
l = m = n = 2N(N − 1). Label the elements of [n] = [2N(N − 1)] by
a triple (a, b, ε) where 1 ≤ a ≤ N − 1, 0 ≤ b ≤ N − 1 and ε ∈ {0, 1}, and
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define

s1 : [l]→ G

(a, b, ε) 7→ [(ωa, 1, 1)(1, ωb, 1)τ ε]

s2 : [m]→ G

(a, b, ε) 7→ [(1, ωa, 1)(1, 1, ωb)τ ε]

s3 : [n]→ G

(a, b, ε) 7→ [(1, 1, ωa)(ωb, 1, 1)τ ε].

As explained in [CKSU05], the triple product property indeed holds
(there are several cases), so TC[G] combinatorially restricts to M〈2N(N−1)〉.

Now G has 2N3 irreducible one dimensional representations and
(
N3

2

)
irre-

ducible two dimensional representations (see [CKSU05]). Thus R(M〈2N(N−1)〉) ≤
2N3 + 8

(
N3

2

)
, which is less than n3 = [2N(N − 1)]3 for all N ≥ 5. Asymp-

totically this is about 7
16n3. If one applies Proposition 3.5.4.1 with N = 17

(which is optimal), one obtains ω < 2.9088. Note that this does not even

exploit Strassen’s algorithm, so one actually has R(M〈n〉) ≤ 2N3 + 7
(
N3

2

)
,

however this does not effect the asymptotics. If one could use the failure of
additivity for border rank one potentially could do better.

While this is worse than what one would obtain just using Strassen’s
algorithm (writing 40 = 32 + 8 and using Strassen in blocks), the algorithm
is different. In [CKSU05] they obtain a bound of ω < 2.41 by such methods,
but key lemmas in their proof are almost the same as the key lemmas used
by Coopersmith-Winograd in their optimizations.

3.5.5. Further ideas towards upper bounds. The structure tensor of
C[G] had the convenient property that in the standard basis all the coeffi-
cients of the tensor are zero or one, and all entries of the matrix TC[G](C[G]∗)
are basis vectors. In [CU13] they propose looking at combinatorial restric-
tions of more general structure tensors, where the coefficients can be more
general, but vestiges of these properties are preserved. They make the fol-
lowing definition, which is very particular to matrix multiplication:

Definition 3.5.5.1. We say T ∈ A⊗B⊗C, given in bases aα, bβ, cγ of

A,B,C, combinatorially supportsM〈l,m,n〉, if such that, writing T =
∑
tα,β,γaα⊗bβ⊗cγ ,
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there exist injections

α : [l]× [m]→ [a]

β : [m]× [n]→ [b]

γ : [n]× [l]→ [c]

such that tα(i,j′),β(j,k′)γ(k,i′) 6= 0 if and only if i = i′, j = j′ and k = k′. (Re-

call that T combinatorially restricts toM〈l,m,n〉 if moreover tα(i,j),β(j,k)γ(k,i) =
1 for all i, j, k.)

T combinatorially supports M〈m,n,l〉 if there exists a coordinate expres-
sion of T such that, upon setting some of the coefficients in the multi-
dimensional matrix representing T to zero, one obtains mnl nonzero en-
tries such that in that coordinate system, matrix multiplication is sup-
ported on exactly those mnl entries. They then proceed to define the
s-rank of a tensor T ′, which is the lowest rank of a tensor T that com-
binatorially supports it. This is a strange concept because the s-rank of
a generic tensor is one: a generic tensor is combinatorially supported by
T = (

∑
j aj)⊗(

∑
k bk)⊗(

∑
l cl) where {aj} is a basis of A etc..

Despite this, they show that ω ≤ 3
2ωs − 1 where ωs is the analog of the

exponent of matrix multiplication for s-rank. In particular, ωs = 2 would
imply ω = 2. The idea of the proof is that if T combinatorially supports
M〈n〉, then T⊗3 combinatorially degenerates to M⊕t〈n〉 with t = O(n2−o(1)).

Compare this with the situation when T combinatorially restricts to M〈n〉,

then T⊗3 combinatorially restricts toM〈n〉⊗M〈n2〉 and thus toric degenerates

to M
⊕b 3

4
n2c

〈n〉 by Theorem 3.4.3.1.





Chapter 4

The complexity of
Matrix multiplication
III: explicit
decompositions via
geometry

One might argue that the exponent of matrix multiplication is unimportant
for the world we live in, since ω might not be relevant until the sizes of the
matrices are on the order of number of atoms in the known universe. For im-
plementation, it is more important to develop explicit decompositions that
provide a savings for matrices of sizes that need to be multiplied in practice.
One purpose of this chapter is to discuss such decompositions. Another
is to gain insight into the asymptotic situation by studying the symmetry
groups that occur in the known decompositions of M〈n〉. I begin, in §4.1, by
discussing generalities about decompositions: the generalized Comon con-
jecture positing that optimal decompositions with symmetry exist, a review
of Strassen’s original decomposition of M〈2〉 that hints that this is indeed
the case, and defining symmetry groups of decompositions. In particular,
I point out that decompositions come in families essentially parametrized
by GM〈n〉 , and one gains insight studying the entire family rather than indi-
vidual members. In §4.2, I describe two decompositions of M〈n〉 that have
appeared in the literature, a recent one by Grochow-Moore, and Pan’s 1978

79
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decomposition that still holds the world record for practical matrix multi-
plication in a sense I now make precise.

Introduce ωprac,k to be the smallest τ such that there exists n ≤ k with
R(M〈n〉) ≤ nτ . In contrast to the exponent there is no hidden constant. By
definition ωprac,k ≥ ωprac,k′ for all k′ > k and for all k, ωprac,k > ω. If we
decide that we want to multiply unstructured matrices of size, say 10, 000
but no larger, then ωprac,10,000 will be a more useful quantity than ω. In
this regard, the best result is Pan’s decomposition (Theorem 4.2.1.1) which
implies ωprac,70 ≤ 2.79512. In comparison, using Schönhage’s order two
border rank 21 decomposition of M〈3〉, converted to a rank decomposition

of a M〈3k〉 (as discussed in §3.2.1), on needs matrices on the order of 1035

before one beats Strassen’s 2.81. Using Bini et. al.’s order one border rank
10 decomposition for M〈2,2,3〉 converted to a rank decomposition of M〈12k〉,

one needs matrices of size on the order of 1040. In order to make e.g.,
Coppersmith-Winograd’s method viable, one needs matrices of size larger
than the number of atoms in the known universe (larger than 1081).

Problem 4.0.0.1. Prove upper bounds on ωprac,1,000 or ωprac,10,000.

This is currently an active area of research.

In §4.3, I revisit Strassen’s decomposition and give a proof of Burichenko’s
theorem [Bur14] that its symmetry group is as large as one could näıvely
hope it to be. In order to determine symmetry groups and determine if
different decompositions are in the same family, one needs invariants of
decompositions. These are studied in §4.4. Two interesting examples of
decompositions of M〈3〉 are given in §4.5, a variant of Laderman’s decom-
position and decomposition with Z4 × Z3-symmetry from [BILR]. In §4.6
I briefly describe the alternating least squares method that has been used
to find decompositions numerically. Border rank decompositions also have
geometry associated with them. In order to describe the geometry, I give
some geometric preliminaries, including the definition of secant varieties in
§4.7. I conclude with two examples of border rank decompositions and their
geometry in §4.8 from [LR0].
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4.1. Symmetry and decompositions

4.1.1. Warm-up: Strassen’s decomposition. Strassen’s algorithm, writ-
ten as a tensor, is

M〈2〉 =

(
1 0
0 1

)⊗3

(4.1.1)

+

(
1 0
0 0

)
⊗
(

0 0
1 −1

)
⊗
(

0 1
0 1

)
+

(
0 0
1 −1

)
⊗
(

0 1
0 1

)
⊗
(

1 0
0 0

)
+

(
0 1
0 1

)
⊗
(

1 0
0 0

)
⊗
(

0 0
1 −1

)
−
(

0 0
0 1

)
⊗
(

1 −1
0 0

)
⊗
(

1 0
1 0

)
−
(

1 −1
0 0

)
⊗
(

1 0
1 0

)
⊗
(

0 0
0 1

)
−
(

1 0
1 0

)
⊗
(

0 0
0 1

)
⊗
(

1 −1
0 0

)
.

A first observation is the Z3-symmetry of M〈2〉 (see Exercise 2.5.1.6),
which I will call the standard cyclic symmetry, also occurs in Strassen’s
decomposition: the Z3 action fixes the first term, and permutes the other
two triples of terms. This motivates the study of symmetry groups of rank
decompositions.

Exercise 4.1.1.1: (2) Show that if we change bases by

gU =

(
1 −1
0 −1

)
∈ GL(U), gV =

(
−1 0
−1 1

)
∈ GL(V ), gW =

(
0 1
1 0

)
∈ GL(W ),

then the new decomposition of M〈2〉 has four terms fixed by the standard
cyclic Z3. }

4.1.2. Symmetry groups of tensors and their rank decompositions.
Consider Seg(PA1 × · · · × PAd) ⊂ P(A1⊗ · · ·⊗Ad). If all the vector spaces
have different dimensions, consider the symmetry group of the cone over the
Segre as a subgroup of GL(A1)×· · ·×GL(Ad) (more precisely of GL(A1)×
· · ·×GL(Ad)/(C∗)d−1, because if λ1 · · ·λd = 1, then (λ1 IdA1 , . . . , λd IdAd) ∈
GL(A1)× · · · ×GL(Ad) acts trivially). If all dimensions are the same, con-
sider the symmetry group as a subgroup of (GL(A1)×· · ·×GL(Ad)/(C∗)×d−1)o
Sd, where the Sd acts by permuting the factors after some isomorphism of
the Aj has been chosen. One can also consider intermediate cases. For

T ∈ (CN )⊗d, let

GT := {g ∈ (GL×dN /(C∗)×d−1) oSd | gT = T},

and for T ∈ A1⊗ · · ·⊗Ad with different dimensions, define

GT := {g ∈ GL(A1)× · · · ×GL(Ad)/(C∗)×d−1 | gT = T}.

For a polynomial P ∈ SdV , write

GP := {g ∈ GL(V ) | gP = P},
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For a rank decomposition T =
∑r

j=1 tj , define the set S := {t1, . . . , tr},
which I also call the decomposition. If T has a rank decomposition S and a
nontrivial symmetry group GT , then given g ∈ GT , g · S := {gt1, . . . , gtr} is
also a rank decomposition of T .

Definition 4.1.2.1. The symmetry group of a decomposition S is ΓS :=
{g ∈ GT | g · S = S}. Let Γ′S = ΓS ∩ (ΠjGL(Aj)).

A guiding principle of this chapter (for which there is no theoretical
justification, but holds in several situations, see §7.1.2 and §6.6.3) is that if
T has a large symmetry group, then there will exist optimal decompositions
of T with symmetry. This even extends to border rank decompositions, as
we will see in §4.7.4.

Näıvely, one might think that some decompositions in a family have
better symmetry groups than others. Strictly speaking this is not correct:

Proposition 4.1.2.2. [CILO16] For g ∈ GT , Γg·S = gΓSg
−1.

Proof. Let h ∈ ΓS , then ghg−1(gtj) = g(htj) ∈ g · S so Γg·S ⊆ gΓStg
−1,

but the construction is symmetric in Γg·S and ΓS . �

As explained below, there may be preferred decompositions in a family
where certain symmetries take a particularly transparent form.

For a polynomial P ∈ SdV and a symmetric rank decomposition P =
`d1 + · · · + `dr for some `j ∈ V (also called a Waring decomposition), and

g ∈ GP ⊂ GL(V ), the same result holds with S = {`d1, . . . , `dr}.
In summary, decompositions come in dim(GT )-dimensional families, and

each member of the family has the same abstract symmetry group.

4.1.3. Symmetries of M〈n〉. Let PGL(U) denote GL(U)/C∗, where C∗ =
{λ IdU | λ ∈ C∗}. This group acts on PU , as well as on U∗⊗U . The first
action is clear, the second because the action of GL(U) on α⊗u is αg−1⊗gu
so the scalars times the identity will act trivially.

In §2.5.1 we saw that PGL×3
n o(Z3oZ2) ⊆ GM〈n〉 . I emphasize that this

Z2 is not contained in either the S3 permuting the factors or the PGL(A)×
PGL(B)× PGL(C) acting on them.

Proposition 4.1.3.1. [dG78, Thms. 3.3,3.4] GM〈n〉 = PGL×3
n o (Z3 oZ2).

A proof is given in §8.12.4.

4.1.4. The Comon conjecture and its generalization.

Conjecture 4.1.4.1 (P. Comon [Com02]). If T ∈ SdCN ⊂ (CN )⊗d, then
there exists an optimal rank decomposition of T made from symmetric ten-
sors.
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After being initially greeted with skepticism by algebraic geometers
(Comon is an engineer), the community has now embraced this conjecture
and generalized it.

Question 4.1.4.2. [Generalized Comon Conjecture] [BILR] Let T ∈ (CN )⊗d

be invariant under some Γ ⊂ Sd. Does there exist an optimal rank decom-
position S of T satisfying Γ ⊆ ΓS?

I use the following special case as a working hypothesis:

Conjecture 4.1.4.3. [BILR] If R(M〈n〉) = r, then there exists a rank r
decomposition of M〈n〉 that has standard cyclic symmetry.

4.1.5. Decomposition of A⊗3 under Z3. In order to search for stan-
dard cyclic Z3 decompositions of M〈n〉 we need to understand the GL(A)-

decomposition of A⊗3.

Exercise 4.1.5.1: (1!) Verify that the cyclic Z3 acts trivially on both S3A
and Λ3A.

Proposition 4.1.5.2. Let Z3 ⊂ S3 act on A⊗3 by cyclically permuting
factors. Then

(A⊗3)Z3 = S3A⊕ Λ3A.

Proposition 4.1.5.2 is proved in Exercise 8.7.2.4.

Thus if we are searching for cyclic Z3-invariant decompositions for M〈n〉,

the size of our search space is cut down from n6 dimensions to n6+2n2

3 di-
mensions.

It is easy to write down the decomposition of M〈n〉 ∈ S3A ⊕ Λ3A into
its symmetric and skew-symmetric components:

trace(XY Z) =
1

2
[trace(XY Z) + trace(Y XZ)] +

1

2
[trace(XY Z)− trace(Y XZ)]

= : MS
〈n〉(X,Y, Z) +MΛ

〈n〉(X,Y, Z)

Exercise 4.1.5.3: (1) Verify that the first term in brackets lives in S3A and
second lives in Λ3A.

Remark 4.1.5.4. In [CHI+] we show that the exponent of MS
〈n〉 is the

same as that of M〈n〉. Since MS
〈n〉 is a polynomial, this suggests one can use

further tools from algebraic geometry (study of cubic hypersurfaces) in the
attempt to determine the exponent.

4.2. Two decomposition families of M〈n〉 of rank < n3

Call a subset of points {[a1], . . . , [ar]} of PA a pinning set if the stabilizer of
this set in PGL(A) is finite and no subset of the points has a finite stabilizer.
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If we choose vector representatives for the [aj ] call it a framed pinning. For
example, if the subset contains a collection of a+1 elements in general linear
position, it is a pinning set, and a+1 is the minimal cardinality of a pinning
set. Call such a pinning set a standard pinning.

A standard pinning determines
(
a
2

)
points in PA∗ obtained by intersect-

ing sets of a− 2 hyperplanes coming from the standard pinning points.

4.2.1. Pan’s decomposition family. Pan’s 1978 decomposition still holds
“world record” for practical matrix multiplication.

Let n = 2m. Let Z3 denote the standard cyclic permutation of factors.
Introduce the notation ı = i+m,  = j+m. Write xij = ui⊗vj , yij = vi⊗wj ,
zij = wi⊗uj . Let ZU2 be generated by σU which is the exchange ui ↔ uı,

(which also sends ui ↔ uı) and define ZV2 and ZW2 similarly, with generators
σV , σW . Let Zσ2 be generated by the product of the generators, so σ acts
by: xij ↔ xı

, y
i
j ↔ yı

, z
i
j ↔ zı

.

Because of the cyclic Z3 symmetry, it will be convenient to identify the
three spaces and I will use xij for all three. In what follows, indices are to
be considered mod n.

For a finite group Γ ⊂ GLN ×GLN ×GLN oS3, introduce the notation

(4.2.1) 〈x⊗y⊗z〉Γ :=
∑
g∈Γ

g · (x⊗y⊗z).

Let Zτ2 denote the standard transpose x⊗y⊗z 7→ yT⊗xT⊗zT and let Zτ ′2
denote the transpose-like symmetry obtained by composing the standard
transpose symmetry with σV .
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Theorem 4.2.1.1. [Pan78] With notations as above M〈n〉 equals

∑
(i,j,k)|0≤i≤j<k≤m−1

〈(xij + xjk + xki )
⊗3〉Zσ2

(4.2.2)

−
∑

(i,j,k)|0≤i≤j<k≤m−1

〈(xij − x

k + xkı )⊗(−xı

j + xj
k

+ xki )⊗(xi + xjk − x
k
i )〉Zσ2×Z3

(4.2.3)

+
m−1∑
i,j=0

〈xij⊗xij⊗[(m− δij)xij +
m−1∑
k=0

[(xki + xjk)− δij(x
k
i + xik)]]〉Zσ2×Z3×Zτ

′
2

(4.2.4)

+
m−1∑
i,j=0

〈xij⊗xı
j⊗[(m− δij)xi +

m−1∑
k=0

[(xki + xjk)− δij(x
k
i + xik)]]〉Zσ2×Z3×Zτ2 .

(4.2.5)

Note that the terms (4.2.2),(4.2.4),(4.2.5) areM〈n〉 plus “garbage” terms.
The second summation eliminates the garbage terms. Call the decomposi-
tion SPan.

Remark 4.2.1.2. According to Burichenko (announced in [Bur15, Thm
1.1]) ΓSPan = Sm × Z2 ×S3.

Exercise 4.2.1.3: (2) Show that the number of triples (i, j, k) with 0 ≤ i ≤
j < k ≤ m − 1 is 2

3(m3 −m) and conclude that Pan’s decomposition is of

rank 1
3n3 + 6n2 − 4

3n.

Exercise 4.2.1.4: (1) Show that when n = 70, Pan’s decomposition has
rank 143, 240 and conclude that ωprac,70 ≤ 2.79512.

4.2.2. The Grochow-Moore decompositions. The group Sn+1 acts ir-
reducibly on Cn (see §1.1.13 for the action and §8.7.2 for the proof), and
the induced action on Cn∗⊗Cn has a unique trivial representation, namely
IdCn , see Exercise 8.6.8.3.

Exercise 4.2.2.1: (1) Show any T ∈ (U∗⊗V )⊗(V ∗⊗W )⊗(W ∗⊗U) that is
acted on trivially by S×3

n+1, where the first copy acts on U,U∗ the second on
V, V ∗ and the third on W,W ∗, is up to scale M〈n〉.

Let u1, . . . , un+1 ∈ U∗ be a framed pinning normalized so that u1 +
· · ·+ un+1 = 0, with

(
n+1

2

)
induced points uij := u[n+1]\{i,j} for i < j, with

normalizations:
∑

j u
j = 0, and ui(uik) = 1, ui(uki) = −1. Adopt the

notation uji := −uij , so uii = 0.
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Given a framed pinning, define a dual framed pinning u1, . . . , un+1 of U
by requiring

ui(uj) =

{
1 i = j
− 1

n i 6= j

}
.

Exercise 4.2.2.2: (1) When n = 2 compute the dual pinning to

(
1
0

)
,

(
0
1

)
,

(
−1
−1

)
.

}

Exercise 4.2.2.3: (1) Show that with the above normalizations uij = ui −
uj .

Exercise 4.2.2.4: (1) Show that with the above normalizations IdU =
n

n+1

∑n+1
i=1 u

i⊗ui.

Proposition 4.2.2.5. [GM16] Notations as above. Then

M〈n〉 =

(
n

n + 1

)3 n+1∑
i,j,k=1

uivj⊗vjwk⊗wkui.

Proof. Note that the right hand side is invariant under S×3
n+1 so it is some

constant times M〈n〉. To check the constant is correct, evaluate the right

hand side on, e.g., Id⊗3
n . �

Proposition 4.2.2.5 gives a rank (n + 1)3 decomposition of M〈n〉, so at
first glance it does not appear interesting. However, it is used to prove the
following theorem:

Theorem 4.2.2.6. [GM16] Let u1, . . . , un+1 ∈ U∗ be a framed pinning
with induced vectors uij ∈ U as above, and choose identifications U ' V '
W to obtain inherited pinnings and induced vectors. The following is a rank
n3 − n + 1 decomposition of M〈n〉, call it SGM , with ΓSGM ⊃ Sn+1 o Z3.

M〈n〉 = Id⊗3
n −

(
n

n + 1

)3 ∑
i,j,k∈[n+1] and distinct

uivij⊗vjwjk⊗wkuki

Proof. First, notice that∑
i,j,k∈[n+1] and distinct

uivij⊗vjwjk⊗wkuki =
∑

i,j,k∈[n+1]

uivij⊗vjwjk⊗wkuki

because vii = 0. By Exercise 4.2.2.3 we may write vij = vi − vj One then
expands out, using Exercise 4.2.2.4 and Proposition 4.2.2.5 to conclude. �

Theorem 4.2.2.6 gives another perspective on Strassen’s decomposition
family for M〈2〉.
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4.3. Strassen’s decomposition revisited

Let Str denote the Strassen decomposition of M〈2〉.

4.3.1. The Strassen family. As discussed above, decompositions are best
studied in families. In the case of M〈2〉, there is a unique family:

Theorem 4.3.1.1. [dG78] The set of rank seven decompositions of M〈2〉 is
the orbit GM〈2〉 · Str.

The proof follows from a careful analysis of every possible decomposition,
taking into account that an element a⊗b⊗c is not just a triple of vectors,
but a triple of endomorphisms C2 → C2, and the analysis is via the possible
triples of ranks that can appear.

In preparation for studying the Strassen family of decompositions, write

(4.3.1) u1 =

(
1
0

)
, u2 =

(
0
1

)
, u1 = (1, 0), u2 = (0, 1)

and set vj = wj = uj and vj = wj = uj .

Strassen’s decomposition becomes

M〈2〉 =(v1u
1 + v2u

2)⊗(w1v
1 + w2v

2)⊗(u1w
1 + u2w

2)(4.3.2)

+ 〈v1u
1⊗w2(v1 − v2)⊗(u1 + u2)w2〉Z3

+ 〈v2u
2⊗w1(v2 − v1)⊗(u1 + u2)w1〉Z3 .

From this presentation we transparently recover much of the entire
Strassen family, namely by letting u1, u2, v1, v2, and w1, w2 be arbitrary
bases, with dual basis vectors denoted with superscripts. We obtain a
family parametrized by PGL(U) × PGL(V ) × PGL(W ), and since the
decomposition (4.3.2) is manifestly Z3-invariant, the only potential addi-
tional decompositions arise from applying a transpose symmetry such as
x⊗y⊗z 7→ xT⊗zT⊗yT . Call such a transpose symmetry convenient.

Exercise 4.3.1.2: (1) Show that if we set u3 =

(
−1
−1

)
and u3 = (1,−1)

and similarly for v, w, then the matrices in Exercise 4.1.1.1 respectively
correspond to the permutations (2, 3), (1, 3) and (1, 2). The matrix in the
first term of the decomposition that one obtains from Exercise 4.1.1.1 also
corresponds to a permutation. Which one?

Exercise 4.3.1.3: (2) Find a change of basis such that the first term in the

decomposition of Exercise 4.1.1.1 becomes

(
ω 0
0 ω2

)⊗3

where ω = e
2πi
3 and

write out the decomposition in this basis.
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Under x⊗y⊗z 7→ xT⊗zT⊗yT , Strassen’s decomposition is mapped to:

M〈2〉 =

(
1 0
0 1

)⊗3

(4.3.3)

+ 〈
(

1 0
0 0

)
⊗
(

0 0
1 1

)
⊗
(

0 1
0 −1

)
〉Z3

− 〈
(

0 0
0 1

)
⊗
(

1 1
0 0

)
⊗
(

1 0
−1 0

)
〉Z3 .

Notice that this is almost Strassen’s decomposition (4.1.1)- just some the
signs are wrong. We can “fix” the problem by conjugating all the matrices
with

g0 :=

(
0 −1
1 0

)
.

Exercise 4.3.1.4: (1) Verify that acting by g×3
0 ∈ PGL(U) × PGL(V ) ×

PGL(W ) takes (4.3.3) to Strassen’s decomposition.

Exercise 4.3.1.4 shows that there is a non-standard Z2 ⊂ PGL×3
2 o(Z3o

Z2) contained in ΓStr, namely the convenient transpose symmetry composed
with g×3

0 . It also implies a refinement of deGroote’s theorem:

Proposition 4.3.1.5. [Bur14, CILO16] The set of rank seven decompo-
sitions of M〈2〉 is PGL×3

2 · Str.

With the expression (4.3.2), notice that if we exchange u1 ↔ u2 and
u1 ↔ u2, the decomposition is also preserved by this Z2 ⊂ PGL×3

2 , with
orbits (4.3.2) and the exchange of the triples. So we see ΓStr ⊇ Z2o(Z3oZ2),
where the first Z2 is diagonally embedded in PGL×3

2 .

Although the above description of the Strassen family of decompositions
for M〈2〉 is satisfying, it becomes even more transparent with a projective
perspective. With the projective perspective, we will see that ΓStr is even
larger.

4.3.2. M〈2〉 viewed projectively. That all rank 7 decompositions of M〈2〉
are obtained via PGL×3

2 suggests using a projective perspective. The group
PGL2 acts simply transitively on triples of distinct points of P1. So to fix
a decomposition in the family, select a pinning (triple of points) in each
space. I focus on PU . Call the points [u1], [u2], [u3]. Then these determine
three points in PU∗, [u1⊥], [u2⊥], [u3⊥]. Choose representatives u1, u2, u3

satisfying u1 + u2 + u3 = 0. I could have taken any linear relation, it just
would introduce coefficients in the decomposition. I take the most symmetric
relation to keep all three points on an equal footing. Similarly, fix the scales
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on the uj⊥ by requiring uj⊥(uj−1) = 1 and uj⊥(uj+1) = −1, where indices
are considered mod Z3, so u3+1 = u1 and u1−1 = u3.

In comparison with what we had before, letting the old vectors be hat-
ted, û1 = u1, û2 = u2, û1 = u2⊥, and û2 = −u1⊥. The effect is to make the
symmetries of the decomposition more transparent. Our identifications of
the ordered triples {u1, u2, u3} and {v1, v2, v3} determines a linear isomor-
phism a0 : U → V , and similarly for the other pairs of vector spaces. Note
that a0 = vj⊗uj+1⊥ + vj+1⊗uj+2⊥ for any j = 1, 2, 3.

Then

M〈2〉 = a0⊗b0⊗c0(4.3.4)

+ 〈(v1u
2⊥)⊗(w3v

1⊥)⊗(u2w
3⊥)〉Z3

+ 〈(v1u
3⊥)⊗(w2v

1⊥)⊗(u3w
2⊥)〉Z3 .

Here, to make the terms shifted by Z3 live in the proper space, one must
act by a0, b0, c0 appropriately, e.g., to shift v1u

2⊥ to the second slot, one
takes b0v1u

2⊥a0
−1.

With this presentation, taking a0 = b0 = c0 = Id, the diagonally embed-
ded S3 ⊂ PGL×3

2 acting by permuting the indices transparently preserves
the decomposition, with two orbits, the fixed point a0⊗b0⊗c0 and the orbit
of (v1u

2⊥)⊗(w3v
1⊥)⊗(u2w

3⊥). The action on each of U, V,W is the standard
irreducible two dimensional representation.

We now see ΓStr ⊇ S3 o (Z3 oZ2), with S3 ⊂ Γ′Str. With a little more
work, one sees that equality holds:

Theorem 4.3.2.1. [Bur14] The symmetry group ΓStr of Strassen’s decom-
position of M〈2〉 is (S3 × Z3) o Z2 ⊂ PGL×3

2 o (Z3 o Z2) = GM〈2〉 .

Remark 4.3.2.2. One can prove Strassen’s decomposition is indeed matrix
multiplication simply by the group invariance, see [CILO16].

4.4. Invariants associated to a decomposition of M〈n〉

Given two decompositions of M〈n〉, how can we determine if they are in the
same family? Given one, how can we determine its symmetry group? These
questions are related, as a necessary condition for two decompositions to be
in the same family is that they have isomorphic symmetry groups. I first
define invariants Ss,t,u that are subsets of points in P(A⊗B⊗C). Keeping
track of the cardinalities of these sets dates at least back to [JM86]. I then
further define subsets SU ⊂ PU , SU∗ ⊂ PU∗ that give more information.
I describe further invariants associated to a decomposition via graphs. I
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then discuss the sets SU ,S∗U in more detail: it turns out that the collec-
tion of points themselves has geometry that is also useful for distinguishing
decompositions and determining symmetry groups.

4.4.1. Invariants of decompositions of M〈n〉. Let M〈n〉 =
∑r

j=1 tj be a

rank decomposition forM〈n〉 and write tj = aj⊗bj⊗cj . Let rj := (rank(aj), rank(bj), rank(cj)),
and let r̃j denote the unordered triple. The following proposition is clear:

Proposition 4.4.1.1. [BILR] Let S be a rank decomposition of M〈n〉. Par-

tition S by unordered rank triples into disjoint subsets: {S̃1,1,1, S̃1,1,2, . . . , S̃n,n,n}.
Write the corresponding ordered triplets as {S1,1,1,S1,1,2,S1,2,1, . . . ,Sn,n,n}.
Then ΓS preserves each S̃s,t,u and Γ′S preserves each Ss,t,u.

We can say more about rank one elements: If a ∈ U∗⊗V and rank(a) =
1, then there are unique points [µ] ∈ PU∗ and [v] ∈ PV such that [a] = [µ⊗v].
So given a decomposition S of M〈n〉, define SU∗ ⊂ PU∗ and SU ⊂ PU to
correspond to the U∗ and U elements appearing in S1,1,1. Then Γ′S preserves
the sets SU and SU∗ up to projective equivalence.

I will say a decomposition has a transpose-like Z2 invariance if it is in-
variant under a Z2 such as x⊗y⊗z 7→ xT⊗zT⊗yT composed with an element
of PGL(U)× PGL(V )× PGL(W ).

Exercise 4.4.1.2: (1) Show that if a decomposition of M〈n〉 is cyclic Z3-
invariant and also has a transpose-like Z2-invariance, then SU and SU∗ have
the same cardinality.

4.4.2. A graph. Define a bipartite graph IGS , the incidence graph where
the top vertex set is given by elements in SU∗ and the bottom vertex set
by elements in SU . Draw an edge between elements [µ] and [v] if they
are incident, i.e., µ(v) = 0. Geometrically, [v] belongs to the hyperplane
determined by [µ] (and vice-versa). One can weight the vertices of this
graph in several ways, the simplest (and in practice this has been enough)
is just by the number of times the element appears in the decomposition.
Let ΓIGS ⊂ GM〈n〉 denote the automorphism group of IGS , so Γ′S ⊆ ΓIGS ,
and if we take the triple of incidence graphs, we get a similar inclusion for
ΓS . See the examples in §4.5.1 and §4.5.2.

If a decomposition is Z3 invariant, the incidence graphs form V, V ∗ and
from W,W ∗ are isomorphic, and otherwise they give additional information.

Given a Z3-invariant decomposition, a necessary condition for it to also
have a transpose-like Z2 symmetry is that there is an isomorphism of the
bipartite graph swapping the sets of (weighted) vertices.

In practice (see the examples below) the incidence graph has been enough
to determine the symmetry group ΓS , in the sense that it cuts the possible
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size of the group down and it becomes straight-forward to determine ΓS
from ΓIGS .

Remark 4.4.2.1. In [BILR] a second graph, called the pairing graph is
defined that gives further information about Γ′S .

4.4.3. Configurations of points in projective space. In practice, per-
haps because of the numerical methods used, the sets SU , and SU∗ have
been relatively small. It is not surprising that they each are spanning sets.
Usually they have come from configurations in a sense I now describe. For
P1, a configuration is simply a triple of points and the triple of points they
determine in the dual vector space. For example Strassen’s decomposition
is built from a configuration. The higher dimensional analog of such pairs
of triples is more complicated.

I emphasize that the decompositions of [BILR] were found by numerical
searches, without distinguishing any configurations. However in most cases,
we were able to give a simple description of the vectors appearing in the
decomposition in terms of a configuration. This bodes well for future work.

I restrict the discussion to P2, see [BILR] for the general case. The
group PGL3 acts simply transitively on the set of 4-ples of points in general
linear position (i.e., such that any three of them span P2).

Start with any 4-ple of points in general linear position. In the decom-
position, actual vectors will appear. Even in the decomposition, since what
will appear are vectors tensored with each other, there is only a “global
scale” for each term. Take the simplest (to write down) 4-ple, choosing the
fourth vector in order to have the linear relation u1 + u1 + u3 + u4 = 0. I’ll
call this the default configuration. That is, the default configuration starts
with

u1 =

1
0
0

 , u2 =

0
1
0

 , u3 =

0
0
1

 , u4 =

−1
−1
−1

 .

The {[uj ]} determine points in the dual space by taking pairwise inter-
sections of the lines (hyperplanes) that they determine in PU∗.

v12 = (0, 0, 1), v13 = (0, 1, 0), v14 = (0, 1,−1),

v23 = (−1, 0, 0), v24 = (−1, 0, 1), v34 = (1,−1, 0).

Here [vij ] is the line in P2 (considered as a point in the dual space P2∗)
through the points [ui] and [uj ] in P2 (or dually, the point of intersection of
the two lines [ui], [uj ] in P2∗). Here choices of representatives are being made.
I have made choices that will be useful for the decomposition SBILR,Z4×Z3

of §4.5.1 below.
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The vi,j in turn determine new points of intersection:

u12,34 =

1
1
0

 , u13,24 =

1
0
1

 , u14,23 =

0
1
1

 .

which determine new points

v(12,34),(13,24) = (−1, 1, 1), v(12,34),(14,23) = (1,−1, 1), v(13,24),(14,23) = (1, 1,−1),

which determine new points in U , etc.., see [BILR] for details. In practice
only vectors from the first three sets of a configuration (7 for U , 6 for V or
vice-versa) have been useful.

4.5. Cyclic Z3-invariant rank 23 decompositions of M〈3〉

In [BILR] five new standard cyclic families of decompositions were found,
as well as a standard cyclic variant of Laderman’s decomposition. What
follows is one of the new decompositions and the standard cyclic variant of
Laderman’s decomposition.

4.5.1. A rank 23 decomposition of M〈3〉 with Z4 × Z3 symmetry.
Take a configuration and let a0 : U → V send uj to vj+1. In the default
configuration

a0 =

0 0 −1
1 0 −1
0 1 −1


corresponds to the generator of Z4 that cyclically permutes indices.

Theorem 4.5.1.1. [BILR] Let uij , vi, vij|kl be as in §4.4.3. Then

M〈3〉 =− a⊗3
0

〈(u24v12|34)⊗3〉Z2⊂Z4

〈−[u24v4 + u12v3]⊗3〉Z4

〈(u12v3)⊗3〉Z4

〈(u12v1)⊗(u23v3)⊗(u24v4)〉Z4×Z3 .

Here is the incidence graph:
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1 0 0

3

0 1 0

3

0 0 1

3

1 1 1

3

1 1 0

3

1 0 1

3

0 0 1

4

0 1 0

4

0 1 − 1

1

1 0 0

1

1 0 − 1

4

1 − 1 0

4

Given the distribution of the frequencies of the points: (4, 4, 4, 4, 1, 1) in
V , (3, 3, 3, 3, 3, 3) in U∗, a transpose-like symmetry is not possible. Moreover,
it is clear one cannot upgrade the Z4 to S4 since only two of the three vij|kl
appear in the decomposition: v12|34, v14|23 (v13|24 is omitted). So, e.g., the
transposition (2, 3) takes SBILR,Z4×Z3 to a different decomposition in the
family.

Proposition 4.5.1.2. [BILR] ΓSBILR,Z4×Z3
= Z4 × Z3

Exercise 4.5.1.3: (2) Use the incidence graph to prove Proposition 4.5.1.2.

4.5.2. Laderman’s decomposition. I now discuss a variant of Lader-
man’s rank 23 decomposition of M〈3〉, which I denote Lad. According to
Burichenko [Bur15], one has a Z2 × Z2 ⊂ PGL(U)× PGL(V )× PGL(W )
contained in ΓLad and the full cyclic permutation and a transpose-like Z3oZ2

also in ΓLad, acting in a twisted way. Thanks to the transpose-like symme-
try, it is better to label points in the dual space by their image under the
transpose-like symmetry rather than annihilators, to make the symmetry
more transparent. Here it is:

Points:

u1 =

1
0
0

 , u2 =

0
1
0

 , u3 =

0
0
1

 , u12 =

 1
−1
0

 , u23 =

 0
1
−1

 .

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1),

v12 = (1, 1, 0), v23 = (0, 1, 1).

Note that the configuration of points in PU is

Exercise 4.5.2.1: (1) Determine the subgroup of PGL3 fixing the configu-
ration of two lines in the plane. }
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010

100

110

01−1

00−1

Figure 4.5.1. Configuration from the symmetric Laderman decomposition

Exercise 4.5.2.2: (2) What is the subgroup of your answer to Exercise
4.5.2.1 that preserves the full configuration in P2 (i.e., two lines, intersecting
in a point, each with two additional marked points).

Theorem 4.5.2.3. [BILR, Lad76] Notations as above. Then

M〈3〉 =(u2v2)⊗3(4.5.1)

(u3v3)⊗3(4.5.2)

(u12v1)⊗3(4.5.3)

(u1v12)⊗3(4.5.4)

(u2v1 − u1v12)⊗3(4.5.5)

〈(u1v3)⊗(u3v1)⊗(u1v1)〉Z3(4.5.6)

〈(u23v1)⊗(u12v3)⊗(u23v3)〉Z3(4.5.7)

〈(u3v12)⊗(u1v23)⊗(u3v23)〉Z3(4.5.8)

〈(u2v3 − u23v1)⊗(u1v2 − u12v3)⊗(u3v2 − u23v3)〉Z3(4.5.9)

〈(u23v12 + u2v3 − u1v23)⊗(u2v3)⊗(u3v2)〉Z3(4.5.10)

〈(u12v12 + u2v3 − u3v2)⊗(u2v1)⊗(u1v2)〉Z3 .(4.5.11)

The transpose-like Z2 is x⊗y⊗z 7→ (ε2yε2)T⊗(ε2xε2)T⊗(ε2zε2)T , where

ε2 =

1
−1

1

. (Note the similarities with Strassen’s decomposition.)

In other words send u1 ↔ v1, u2 ↔ −v2, u3 ↔ v3 and then switch the
first two factors in A⊗B⊗C. This action performs the exchanges (4.5.3) ↔
(4.5.4) and (4.5.7)↔ (4.5.8), and fixes all other terms in the decomposition.
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Here is the incidence graph:

1 0 0

5

0 0 1

5

0 1 0

3

1 1 0

2

0 1 − 1

2

1 0 0

5

0 0 1

5

0 1 0

3

1 − 1 0

2

0 1 1

2

4.6. Alternating least squares (ALS) method for
decompositions

I now explain the method used to find decompositions numerically.

Let A,B,C respectively have bases {ei}, {fj}, {gk}. Given a tensor T =∑a
i=1

∑b
j=1

∑c
k=1 t

ijkei⊗fj⊗gk ∈ A⊗B⊗C, say we have reason to believe it
has rank at most r. To find a rank r expression we could work as follows: For

1 ≤ u ≤ r, write au =
∑

iX
i
uei, bu =

∑
j Y

j
u fj , and cu =

∑
k Z

k
ugk where the

Xi
u, Y

j
u , Zku are constants to be determined. We want

∑r
u=1 au⊗bu⊗cu = T ,

i.e.,

(4.6.1)
r∑

u=1

Xi
uY

j
uZ

k
u = tijk

for all i, j, k. If we restrict ourselves to real coefficients, we want

(4.6.2) objfn1 :=
∑
i,j,k

(
r∑

u=1

Xi
uY

j
uZ

k
u − tijk)2,

called the objective function, to be zero. (One can obtain a similar equation
for complex coefficients by splitting all complex numbers into their real and
imaginary parts. I stick to the real presentation for simplicity of exposition.)
Now (4.6.2) is a degree six polynomial, but it is quadratic in each of the
unknown quantities. To solve in practice, one begins with an initial “guess”

of the Xi
u, Y

j
u , Zku , e.g., chosen at random. Then one tries to minimize (4.6.2)

e.g., as a function of the Xi
u while holding the Y j

u , Zku fixed. This is a linear
problem. Once one obtains a solution, one starts again, holding the Xi

u and

Zku fixed and solving for the Y j
u . Then one repeats, minimizing for the Zku ,

and then cycling around again and again until the result converges (or fails
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to, in which case one can start again with different initial points). This
algorithm was first written down in [Bre70].

Now this procedure could “attempt” to find a border rank solution, that
is, the coefficients could go off to infinity. If one wants a rank decomposition,
one can add a penalty term to (4.6.2), instead minimizing

(4.6.3) objfn2 :=
∑
i,j,k

(
r∑

u=1

Xi
uY

j
uZ

k
u − tijk)2 + ε(

r∑
u,i,j,k

(Xi
u)2 + (Y j

u )2 + (Zku)2)

for some ε that in practice is found by trial and error.

In the literature (e.g. [Lad76, JM86, Smi13, AS13]) they prefer
coefficient values to be from a small list of numbers, ideally confined to
something like 0,±1 or 0,±1,±1

2 . If the tensor in question has a large
symmetry group (as does matrix multiplication), one can use the group
action to fix some of the coefficients to these desired values.

According to Smirnov, in [Smi13], for T = M〈n〉 (but not rectangular
matrix multiplication) the critical points of objfn1 are integers in practice,
although he does not give an explanation why one would expect this to be
the case. Thus, by these heuristics, if one can obtain a decomposition with
objfn1 < 1, then it will converge to zero by the ALS process, producing
either a decomposition or limit to a border rank decomposition.

4.7. Secant varieties and additional geometric language

To better discuss border rank decompositions in §4.8, I now introduce the
language of secant varieties. This language will also enable us to discuss rank
decompositions in a larger context and will arise in the study of Valiant’s
conjecture and its variants.

4.7.1. Secant Varieties. Given a variety X ⊂ PV , define the X-rank of
[p] ∈ PV , RX([p]), to be the smallest r such that there exist x1, . . . , xr ∈ X̂
such that p is in the span of x1, . . . , xr, and the X-border rank RX([p]) is

defined to be the smallest r such that there exist curves x1(t), . . . , xr(t) ∈ X̂
such that p is in the span of the limiting plane limt→0〈x1(t), . . . , xr(t)〉,
where 〈x1(t), . . . , xr(t)〉 ⊂ G(r, V ) is viewed as a curve the Grassmannian.
Here and in what follows, I am assuming that for t 6= 0, x1(t), . . . , xr(t) are
linearly independent (otherwise we are really dealing with a decomposition
of lower border rank).

Let σr(X) ⊂ PV denote the set of points of X-border rank at most r,
called the r-th secant variety of X. (Theorem 3.1.6.1 assures us that σr(X)
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is indeed a variety.) In other words

σr(X) =
⋃

x1,...,xr∈X
〈x1, . . . , xr〉

where 〈x1, . . . , xr〉 denotes the linear span in projective space and the over-
line denotes Zariski closure. The notation is such that σ1(X) = X. When
X = Seg(PA1 × · · · × PAn) is the set of rank one tensors, σr(X) = σr.

Let X ⊂ PV be a smooth variety, and let p ∈ σ2(X). If p is not a point
of X, nor a point on an honest secant line, then p must line on some tangent
line to X, where here I take the näıve definition of tangent line, namely a
point on a limit of secant lines.

Terracini’s lemma (see, e.g., [Lan12, §5.3]) generalizes our caculation

of T̂[a1⊗b1⊗c1+a2⊗b2⊗c2]Seg(PA × PB × PC) of §3.1.3: if z = [x1 + · · · + xr]

with [xj ] ∈ X general points, then T̂zσr(X) =
∑r

j=1 T̂[xj ]X. In particular

dimσr(X) ≤ r dimX + r − 1.

Thus dimσr(X) ≤ min{r dimX+ r−1,v−1}, and when equality holds
we will say σr(X) is of the expected dimension. The expected dimension is
indeed what occurs “most” of the time. For example, dimσr(PN×PN×PN )
is the expected dimension min{3Nr + r − 1, N3 − 1} for all (r,N) except
(r,N) = (4, 2) [Lic85].

4.7.2. Homogeneous varieties, orbit closures, and G-varieties. The
Segre, Veronese and Grassmannian of §3.1.2 are examples of homogeneous
varieties:

Definition 4.7.2.1. A subvariety X ⊂ PV , is homogeneous if it is a closed
orbit of some point x ∈ PV under the action of some group G ⊂ GL(V ). If
P ⊂ G is the subgroup fixing x, write X = G/P .

A variety X ⊂ PV is called a G-variety for a group G ⊂ GL(V ), if for
all g ∈ G and x ∈ X, g · x ∈ X.

Orbit closures (see §3.3.1) and homogeneous varieties are G-varieties.

Exercise 4.7.2.2: (1) What are the points in GLn · (x1 · · ·xn) that are not
in GLn · (x1 · · ·xn)?

4.7.3. The abstract secant variety. Given projective varieties Yj ⊂ PVj ,
one can define their Segre product Y1 × · · · × Yr ⊂ Seg(PV1 × · · · × PVr) ⊂
P(V1⊗ · · ·⊗Vr). Let X ⊂ PV be a variety. Consider the set

Sr(X)0 := {(x1, . . . , xr, z) ∈ X×r × PV | z ∈ span{x1, . . . , xr}}
⊂ Seg(X×r × PV ) ⊂ PV ⊗r+1
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and let Sr(X) := Sr(X)0 denote its Zariski closure. (For those familiar with

quotients, it would be more convenient to deal with X(×r) := X×r/Sr.) We
have a map π0 : Sr(X)0 → PV , extending to a map π : Sr(X)→ PV , given
by projection onto the last factor and the image is σ0

r (X) (resp. σr(X)).
Call Sr(X) the abstract r-th secant variety of X. As long as r < v and X
is not contained in a linear subspace of PV , dimSr(X) = r dimX + r − 1
because dimX×r = r dimX and a general set of r points on X will span a
Pr−1.

If σr(X) is of the expected dimension and is not all of PV , so its dimen-
sion equals that of Sr(X), then for general points z ∈ σr(X)0, (π0)−1(z)
will consist of a finite number of points and each point will correspond to a
decomposition z = x1 + · · ·+ xr for xj ∈ x̂j , z ∈ ẑ. In summary:

Proposition 4.7.3.1. If Xn ⊂ PN and σr(X) is of (the expected) dimension
rn+ r − 1 < N , then each of the points of a Zariski dense subset of σr(X)
has a finite number of decompositions into a sum of r elements of X.

If the fiber of π0 over z ∈ σ0
r (X) is k-dimensional, then there is a k-

parameter family of decompositions of z as a sum of r rank one tensors.
This occurs, for example if z ∈ σ0

r−1(X), but it can also occur for points in
σr(X)\σr−1(X).

For example, every point of σ7(Seg(P3×P3×P3)) = P63 has a 5 dimen-
sional family of points in the fiber, but M〈2〉 has a nine dimensional family.

A general point of σ23(Seg(P8×P8×P8)) will have a finite number of points
in the fiber, but M〈3〉 has at least a 24-dimensional fiber, in fact by [JM86],
at least a 27-dimensional fiber.

If X is a G-variety, then σr(X) is also a G-variety, and if z ∈ σ0
r (X)

is fixed by Gz ⊂ G, then Gz will act (possibly trivially) on (π0)−1(z), and

every distinct (up to re-ordering if one is not working with X(×r)) point in
its orbit will correspond to a distinct decomposition of z. Let q ∈ (π0)−1(x).
If dim(Gz · q) = dz, then there is at least a dz parameter family of decom-
positions of z as a sum of r elements of X.

Remark 4.7.3.2. Note that codim(Sr−1(X), Sr(X)) ≤ dimX − 1, where
the inclusion is just by adding any point of X to a border rank r − 1
decomposition. In particular, in the case of the Segre relevant for ma-
trix multiplication, this codimension is at most 3(n2 − 1). On the other
hand dimGM〈n〉 = 3(n2 − 1), so by a dimension count, one might “ex-

pect” π−1
r (M〈n〉) to intersect Sr−1(X), meaning that we could keep reduc-

ing the border rank of M〈n〉 all the way down to one. Of course since
Sr(Seg(PA×PB×PC)) is not a projective space, Theorem 3.1.5.1 does not
apply, but this dimension count illustrates the pathology of the tensor M〈n〉.
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4.7.4. What is a border rank decomposition? Usually an X-border
rank decomposition of some v ∈ V is presented as v = limt→0(x1(t) +
· · · + xr(t)) where [xj(t)] are curves in X. In order to discuss border rank
decompositions geometrically, it will be useful to study the corresponding
curve in the Grassmannian 〈x1(t), . . . , xr(t)〉 ⊂ G(r, V ). The geometry of
the intersection of the limiting r plane that contains v with X has useful
information.

To better understand this geometry, consider

S̃0
r (X) := {([v], ([x1], . . . , [xr]), E) | v ∈ 〈x1, . . . , xr〉 ⊆ E} ⊂ PV×X×r×G(r, V )

and S̃r(X) := S̃0
r (X).

We can stratify σr(X) and S̃r(X) by the h’s of the intermediate ranks Rh

of §3.2.1. The case h = 0 is rank. The next case h = 1 has a straight-forward
geometry.

To understand the h = 1 case, first consider the case r = 2, so v =
limt→0

1
t (x1(t)+x2(t)) for curves [xj(t)] ⊂ X. Then we must have limt→0[x1(t)] =

limt→0[x2(t)], letting [x] denote this limiting point, we obtain an element of

T̂xX. In the case of σr(X), one needs r curves such that the points are
linearly independent for t 6= 0 and such that they become dependent when
t = 0. This is most interesting when no subset of r−1 points becomes linearly
dependent. Then one may obtain an arbitrary point of T̂x1X + · · ·+ T̂xrX
(see [Lan12, §10.8.1]). For some varieties there may not exist r distinct
points on them that are linearly dependent (e.g., vd(P1) when d > r). An
easy way for such sets of points to exist is if there is a Pr−1 on the variety,
as was the case for TSTR of §5.6. The decompositions for M red

〈m,2,2〉 I discuss

in the next section are not quite from such simple configurations, but nearly
are. Because of this I next discuss the geometry of linear spaces on the
Segre.

4.7.5. Lines on Segre varieties. There are three types of lines on Seg(PA×
PB × PC): α-lines, which are of the form P(〈a1, a2〉⊗b⊗c) for some aj ∈ A,
b ∈ B, c ∈ C, and the other two types are defined similarly and called β
and γ lines.

Exercise 4.7.5.1: (2) Show that all lines on Seg(PA × PB × PC) are one
of these types. }

Given two lines Lβ, Lγ ⊂ Seg(PA× PB × PC) respectively of type β, γ,
if they do not intersect, then 〈Lβ, Lγ〉 = P3 and if the lines are general,
furthermore 〈Lβ, Lγ〉 ∩ Seg(PA× PB × PC) = Lβ t Lγ .

However if Lβ = P(a⊗〈b1, b2〉⊗c) and Lγ = P(a′⊗b⊗〈c1, c2〉) with b ∈
〈b1, b2〉 and c ∈ 〈c1, c2〉, then they still span a P3 but 〈Lβ, Lγ〉 ∩ Seg(PA ×
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PB × PC) = Lβ t Lγ t Lα, where Lα = P(〈a, a′〉⊗b⊗c), and Lα intersects
both Lβ and Lγ .

Let x, y, z ∈ Seg(PA× PB × PC) be distinct points that all lie on a line
L ⊂ Seg(PA× PB × PC). Then
(4.7.1)

T̂xSeg(PA× PB × PC) ⊂ 〈T̂ySeg(PA× PB × PC), T̂zSeg(PA× PB × PC)〉.

The analogous statement is true for lines on any cominuscule variety, see
[BL14, Lemma 3.3]. Because of this, it will be more geometrical to refer to

T̂LSeg(PA×PB×PC) := 〈T̂ySeg(PA×PB×PC), T̂zSeg(PA×PB×PC)〉,
as the choice of y, z ∈ L is irrelevant.

Exercise 4.7.5.2: (1) Verify (4.7.1).

The matrix multiplication tensor M〈U,V,W 〉 endows A,B,C with addi-
tional structure, e.g., B = V ∗⊗W , so there are two types of distinguished
β-lines (corresponding to lines of rank one matrices), call them (β, ν∗)-lines
and (β, ω)-lines, where, e.g., a ν∗-line is of the form P(a⊗(〈v1, v2〉⊗w)⊗c),
and among such lines there are further distinguished ones where moreover
both a and c also have rank one. Call such further distinguished lines special
(β, ν∗)-lines.

4.8. Border rank decompositions

4.8.1. M red
〈2〉 . Here A ⊂ U∗⊗V has dimension three.

What follows is a slight modification of the decomposition of M red
〈2〉 from

[BCRL79] that appeared in [LR0]. Call it the BCLR-decomposition. I
label the points such that x1

1 is set equal to zero. The main difference is
that in the original all five points moved, but here one is stationary.

p1(t) = x1
2 ⊗ (y2

2 + y2
1)⊗ (z2

2 + tz1
1)

p2(t) = −(x1
2 − tx2

2)⊗ y2
2 ⊗ (z2

2 + t(z1
1 + z2

1))

p3(t) = x2
1 ⊗ (y2

1 + ty1
2)⊗ (z2

2 + z1
2)

p4(t) = (x2
1 − tx2

2)⊗ (−y2
1 + t(y1

1 − y1
2))⊗ z1

2

p5(t) = −(x2
1 + x1

2)⊗ y2
1 ⊗ z2

2

and

(4.8.1) M red
〈2〉 = lim

t→0

1

t
[p1(t) + · · ·+ p5(t)].

Use the notation xij = ui⊗vj , yjk = vj⊗wk and zki = wk⊗ui.
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Theorem 4.8.1.1. [LR0] Let EBCLR = limt→0〈p1(t), . . . , p5(t)〉 ∈ G(5, A⊗B⊗C).
Then EBCLR ∩ Seg(PA× PB × PC) is the union of three lines:

L12,(β,ω) = x1
2 ⊗ (v2 ⊗W )⊗ z1

2

L21,(γ,ω∗) = x2
1 ⊗ y2

2 ⊗ (W ∗ ⊗ u2)

Lα = 〈x2
1, x

1
2〉 ⊗ y2

2 ⊗ z1
2 .

L
α

L21

L
12

Here L12,(β,ω) is a special (β, ω)-line, L21,(γ,ω∗), is a special (γ, ω∗)-line,
and Lα, is an α-line with rank one B and C points. Moreover, the C-point
of L12,(β,ω) lies in the ω∗-line of L21,(γ,ω∗), the B-point of L21,(γ,ω∗) lies in
the ω-line of L12,(β,ω) and Lα is the unique line on the Segre intersecting
L12,(β,ω) and L21,(γ,ω∗) (and thus it is contained in their span).

Furthermore, EBCLR = 〈M red
〈2〉 , L12,(β,ω), L21,(γ,ω∗)〉 and

M red
〈2〉 ∈ 〈T̂L12,(β,ω)

Seg(PA× PB × PC), T̂L21,(γ,ω∗)Seg(PA× PB × PC)〉.

Proof. Write pj = pj(0). Then (up to sign, which is irrelevant for geometric
considerations)

p1 =x1
2⊗(y2

2 + y2
1)⊗z2

2

p2 =x1
2⊗y2

2⊗z2
2

p3 =x2
1⊗y2

1⊗(z2
2 + z1

2)

p4 =x2
1⊗y2

1⊗z1
2

p5 =(x2
1 + x1

2)⊗y2
1⊗z2

2 .

Then L12,(β,ω) = 〈p1, p2〉, L21,(γ,ω∗) = 〈p3, p4〉, and p5 ∈ Lα.

To see there are no other points in EBCLR∩Seg(PA×PB×PC), first note
that any such point would have to lie on Seg(P〈x1

2, x
2
1〉×P〈y2

1, y
2
2〉×P〈z1

2 , z
2
2〉)

because there is no way to eliminate the rank two x2
2⊗(y2

1⊗z1
2 +y2

2⊗z2
2) term

in M red
〈2〉 with a linear combination of p1, . . . , p4. Let [(sx1

2 + tx2
1)⊗(uy2

2 +

vy2
1)⊗(pz2

2 + qz1
2)] be an arbitrary point on this variety. To have it be in the

span of p1, . . . , p4 it must satisfy the equations suq = 0, svq = 0, tuq = 0,
tup = 0. Keeping in mind that one cannot have (s, t) = (0, 0), (u, v) = (0, 0),
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or (p, q) = (0, 0), we conclude the only solutions are the three lines already
exhibited.

We have

p1(0)′ = x1
2 ⊗ (y2

2 + y2
1)⊗ z1

1

p2(0)′ = x2
2 ⊗ y2

2 ⊗ z2
2 − x1

2 ⊗ y2
2 ⊗ (−z2

1 + z1
1)

p3(0)′ = x2
1 ⊗ y1

2 ⊗ (z2
2 + z1

2)

p4(0)′ = x2
2 ⊗ y2

1 ⊗ z1
2 + x2

1 ⊗ (y1
1 − y1

2)⊗ z1
2

p5(0)′ = 0.

Then M red
〈2〉 = (p′1 + p′2) + (p′3 + p′4) where p′1 + p′2 ∈ TL12,(β,ω)

Seg(PA ×
PB × PC) and p′3 + p′4 ∈ TL21,(γ,ω∗)Seg(PA× PB × PC). �

Remark 4.8.1.2. By removing x1
1 from our tensor, we lose the cyclic Z3-

symmetry but retain a standard transpose symmetry x⊗y⊗z 7→ xT⊗zT⊗yT .
Similarly we lose the GL(U) × GL(V ) symmetry but retain the GL(W )
action. By composing the standard transpose symmetry with another Z2

action which switches the basis vectors of W , the action swaps p1(t) + p2(t)
with p3(t) + p4(t) and L12,(β,ω) with L21,(γ,ω∗). This action fixes p5.

Remark 4.8.1.3. Note that it is important that p5 lies neither on L12,(β,ω)

nor on L21,(γ,ω∗), so that no subset of the five points lies in a linearly de-
generate position to enable us to have tangent vectors coming from all five
points, but I emphasize that any point on the line Lα not on the original lines
would have worked equally well, so the geometric object is this configuration
of lines.

4.8.2. M red
〈3,2,2〉. Here is the decomposition in [AS13, Thm. 2] due to Alex-

eev and Smirnov, only changing the element set to zero in their decomposi-
tion to x1

1. The decomposition is order two and the only nonzero coefficients
appearing are ±1,±1

2 .
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p1(t) = (
−1

2
t2x3

2 −
1

2
tx2

1 + x2
1)⊗ (−y2

1 + y2
2 + ty1

1)⊗ (z1
3 + tz1

2)

p2(t) = (x2
1 +

1

2
x1

2)⊗ (y2
1 − y2

2)⊗ (z1
3 + z2

3 + tz1
2 + tz2

2)

p3(t) = (t2x3
2 + tx3

1 −
1

2
tx2

2 − x2
1)⊗ (y2

1 + y2
2 + ty1

2)⊗ z2
3

p4(t) = (
1

2
t2x3

2 − tx3
1 −

1

2
tx2

2 + x2
1)⊗ (y2

1 + y2
2 − ty1

1)⊗ z1
3

p5(t) = (−t2x3
2 + tx2

2 − x1
2)⊗ y2

1 ⊗ (z2
3 +

1

2
tz1

2 +
1

2
tz2

2 − t2z1
1)

p6(t) = (
1

2
tx2

2 + x2
1)⊗ (−y2

1 + y2
2 + ty1

2)⊗ (z2
3 + tz2

2)

p7(t) = (−tx3
1 + x2

1 +
1

2
x1

2)⊗ (y2
1 + y2

2)⊗ (−z1
3 + z2

3)

p8(t) = (tx2
2 + x1

2)⊗ y2
2 ⊗ (z1

3 +
1

2
tz1

2 +
1

2
tz2

2 + t2z2
1).

Then

M red
〈3,2,2〉 =

1

t2
[p1(t) + · · ·+ p8(t)].

Remark 4.8.2.1. In [BDHM15] they prove R(M red
〈3,2,2〉) = 8.

Theorem 4.8.2.2. [LR0] Let EAS,3 = limt→0〈p1(t), . . . , p8(t)〉 ∈ G(8, A⊗B⊗C).
Then EAS,3 ∩ Seg(PA× PB × PC) is the union of two irreducible algebraic
surfaces, both abstractly isomorphic to P1 × P1: The first is a sub-Segre
variety:

Seg21,(β,ω),(γ,ω∗) := [x2
1]× P(v2⊗W )× P(W ∗⊗u3),

The second, Lα is a one-parameter family of lines passing through a parametrized
curve in Seg21,(β,ω),(γ,ω∗) and the plane conic curve (which has the same
parametrization):

C12,(β,ω),(γ,ω∗) := P(∪[s,t]∈P1x1
2⊗(sy2

1 − ty2
2)⊗(sz2

3 + tz1
3)).

The three varieties C12,(β,ω),(γ,ω∗), Seg21,(β,ω),(γ,ω∗), and Lα respectively play
roles analogous to the lines L12,(β,ω), L21,(γ,ω∗), and Lα, as described below.
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Figure 4.8.1. The curve C12,(β,ω),(γ,ω∗) with its four points, the
surface Seg21,(β,ω),(γ,ω∗), with its four points (only two of which
are visible), and the surface Lα with its two points which don’t lie
on either the curve or surface Seg21,(β,ω),(γ,ω∗).

Proof. The limit points are (up to sign):

p1 =x2
1⊗(y2

1 − y2
2)⊗z1

3

p3 =x2
1⊗(y2

1 + y2
2)⊗z2

3

p4 =x2
1⊗(y2

1 + y2
2)⊗z1

3

p6 =x2
1⊗(y2

1 − y2
2)⊗z2

3

p5 =x1
2⊗y2

1⊗z2
3

p8 =x1
2⊗y2

2⊗z1
3

p2 =(x2
1 +

1

2
x1

2)⊗(y2
1 − y2

2)⊗(z1
3 + z2

3)

p7 =(x2
1 +

1

2
x1

2)⊗(y2
1 + y2

2)⊗(z1
3 − z2

3)

Just as with M red
〈2〉 , the limit points all lie on a Seg(P1 × P1 × P1), in fact

the “same” Seg(P1 × P1 × P1). Pictorially the Segres are:(
0 ∗
∗

)
×
(
∗ ∗

)
×
(
∗
∗

)
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for M red
〈2,2,2〉 and 0 ∗

∗

× (∗ ∗
)
×
(

∗
∗

)
for M red

〈3,2,2〉. Here EAS,3 ∩ Seg(PA × PB × PC) is the union of a one-

parameter family of lines Lα passing through a plane conic and a special
P1 × P1: Seg21,(β,ω),(γ,ω∗) := [x2

1] × P(v2⊗W ) × P(W ∗⊗u3) (which contains
p1, p3, p4, p6). To define the family and make the similarity with the BCLR
case clearer, first define the plane conic curve

C12,(β,ω),(γ,ω∗) := P(∪[s,t]∈P1x1
2⊗(sy2

1 − ty2
2)⊗(sz2

3 + tz1
3)).

The points p5, p8 lie on this conic (respectively the values (s, t) = (1, 0) and
(s, t) = (0, 1)). Then define the variety

Lα := P(∪[σ,τ ]∈P1 ∪[s,t]∈P1 (σx1
2 + τx2

1)⊗(sy2
1 − ty2

2)⊗(sz2
3 + tz1

3)),

which is a one-parameter family of lines intersecting the conic and the special
P1×P1. The points p2, p7 lie on Lα but not on the conic. Explicitly p2 (resp.
p7) is the point corresponding to the values (σ, τ) = (1, 1

2) and (s, t) = (1, 1)
(resp. (s, t) = (1,−1)).

The analog of Lα in the M red
〈2〉 decomposition is Lα, and C12,(β,ω),(γ,ω∗)

and Seg21,(β,ω),(γ,ω∗) are the analogs of the lines L12,(β,ω), L21,(γ,ω∗). (A dif-
ference here is that C12,(β,ω),(γ,ω∗) ⊂ Lα.)

The span of the configuration is the span of a P2 (the span of the conic)
and a P3 (the span of the P1 × P1), i.e., a P6.

The proof that these are the only points in the intersection is similar to
the BCLR case. �

More decompositions are described geometrically in [LR0].

It would be reasonable to expect that the BCLR and Alekseev-Smirnov
decompositions generalize to all m, so that R(M red

〈m,2,2〉) ≤ 3m − 1, which

would imply that R(M〈n,2,2〉) ≤ 3n + 1 for all n.





Chapter 5

The complexity of
Matrix multiplication
IV: The complexity of
tensors and more lower
bounds

In Chapter 2 we developed equations to test the border rank of tensors. In
this chapter I explain further techniques for proving lower and upper bounds
for border rank and rank. I also discuss geometric properties that could be
useful for future investigations.

I begin, in §5.1 by making explicit the dictionary between (1A-generic)
tensors in Ca⊗Cm⊗Cm and linear subspaces of End(Cm). This enables one
to both find new ways to bound rank and border rank via linear algebra,
and to use knowledge of tensors to make progress on classical questions in
linear algebra.

While up until now I have emphasized the use of explicit polynomials
to test membership in varieties, sometimes varieties satisfy Zariski closed
conditions that are easy to describe but difficult to write as polynomials.
Some such are discussed in §5.1. Two more such conditions are discussed in
§5.2. One particularly useful such technique, the border substitution method
is discussed in detail in §5.4. In particular, it enables the 2n2 − log2(n)− 1
lower bound for R(M〈n〉) presented in §5.4.5.

107
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Regarding tensor rank, the only general method for proving tensor rank
lower bounds I am aware of is the substitution method discussed in §5.3.

The best upper bounds for the exponent ω were obtained with TSTR, Tcw,q,
and TCW,q. What makes these tensors special? It is clear they have nice com-
binatorial properties, but do they have distinguishing geometric features? I
discuss several such geometric properties in §5.5. If such features could be
identified, one could in principle look for other tensors with the same prop-
erties and to apply the laser method to those tensors, as was proposed in
[AFLG15].

Several tensors that have been studied arise naturally as structure ten-
sors of algebras. I discuss rank and border rank lower bounds for structure
tensors of algebras in §5.6. In particular I present Bläser’s and Zuiddam’s
sequences of tensors with rank to border rank ratio approaching three.

5.1. Tensors and classical linear algebra

This section follows [LM15].

5.1.1. 1-genericity. How good are Strassen’s equations? We have seen
that unless there exists α ∈ A∗ with T (α) ⊂ B⊗C of maximal rank (or
β ∈ B∗, resp. γ ∈ C∗ with T (β), resp. T (γ), of maximal rank), they are
essentially useless. The following definition names the class of tensors they
are useful for.

Definition 5.1.1.1. A tensor T ∈ A⊗B⊗C is 1A-generic if there exists
α ∈ A∗ with T (α) ⊂ B⊗C of maximal rank, and T is 1-generic if it is 1A, 1B
and 1C-generic.

Fortunately M〈n〉 and all tensors used to study the exponent of matrix
multiplication are 1-generic.

The 1-genericity of M〈n〉 has the consequence that for the purpose of
proving R(M〈n〉) ≤ r, it would be sufficient to find a collection of polynomi-

als such that their common zero set simply contains σr(Seg(Pn2−1×Pn2−1×
Pn2−1)) as an irreducible component, as long as all other components of the
zero set are contained in the set of non-1-generic tensors.

Say a tensor T is 1A-generic, b = c and Strassen’s commutators are
identically zero– can we conclude R(T ) = b?

I address this question in this section and the next. I first show that
the properties of tensor rank and border rank of tensors in A⊗B⊗C can be
studied as properties of a-dimensional linear subspaces of B⊗C.
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5.1.2. The dictionary. The following standard result shows that the rank
and border rank of a tensor T ∈ A⊗B⊗C, may be recovered from the
subspace T (A∗) ⊂ B⊗C. I present a version of it from [LM15].

Proposition 5.1.2.1. For a tensor T ∈ A⊗B⊗C, R(T ) equals the minimal
number of rank one elements of B⊗C needed to span (a space containing)
T (A∗), and similarly for the permuted statements.

Say dimT (A∗) = k. Let Zr ⊂ G(k,B⊗C) denote the set of k-planes in
B⊗C that are contained in the span of r rank one elements, so R(T ) ≤ r if
and only if T (A∗) ∈ Zr. Then R(T ) ≤ r if and only if T (A∗) ∈ Zr.

Proof. Let T have rank r so there is an expression T =
∑r

i=1 ai⊗bi⊗ci.
(The vectors ai need not be linearly independent, and similarly for the bi
and ci.) Then T (A∗) ⊆ 〈b1⊗c1, . . . , br⊗cr〉 shows that the number of rank
one matrices needed to span T (A∗) ⊂ B⊗C is at most R(T ).

For the other inequality, say T (A∗) is contained in the span of rank one
elements b1⊗c1, . . . , br⊗cr. Let α1, . . . , αa be a basis of A∗, with dual basis
e1, . . . , ea of A. Then T (αi) =

∑r
s=1 x

i
sbs⊗cs for some constants xis. But

then T =
∑

s,i ei⊗(xisbs⊗cs) =
∑r

s=1(
∑

i x
i
sei)⊗bs⊗cs proving R(T ) is at

most the number of rank one matrices needed to span T (A∗) ⊂ B⊗C.

Exercise 5.1.2.2: (1) Prove the border rank assertion.

�

5.1.3. Equations via linear algebra. All the equations we have seen so
far arise as Koszul flattenings, which all vanish if Strassen’s equations for
minimal border rank are zero, as can be seen by the coordinate expressions
(2.2.1) and the discussion in §2.4.3. Thus we have robust equations only if
T is 1A, 1B or 1C-generic, because otherwise the presence of T (α)∧a−1 in the
expressions make them likely to vanish. When T is 1A-generic, the Koszul
flattenings T∧pA : ΛpA⊗B∗ → Λp+1A⊗C provide measures of the failure of
T (A∗)T (α)−1 ⊂ End(B) to be an abelian subspace.

A first concern is that perhaps the choice of α ∈ A∗ effects this failure.
The following lemma addresses that concern, at least in the case of minimal
border rank:

Lemma 5.1.3.1. [LM15] Let T ∈ A⊗B⊗C = Ca⊗Ca⊗Ca be 1A-generic
and assume rank(T (α0)) = a. If T (A∗)T (α0)−1 is abelian then T (A∗)T (α′0)−1

is abelian for any α′0 ∈ A∗ such that rank(T (α′0)) = a.

Proof. Say T (A∗)T (α0)−1 is abelian, and setXi = T (αi)T (α0)−1, so [X1, X2] =
0. Set X ′i = T (αi)T (α0)−1 and X ′ = T (α′0)T (α0)−1, so [Xi, X

′] = 0 as
well, which implies [Xi, (X

′)−1] = 0. We want to show [X ′1, X
′
2] = 0. But



110 5. The complexity of Matrix multiplication IV

X ′j = Xj(X
′)−1, so

X ′1X
′
2 −X ′2X ′1 = X1(X ′)−1X2(X ′)−1 −X2(X ′)−1X1(X ′)−1

= X1X2(X ′)−1(X ′)−1 −X2X1(X ′)−1(X ′)−1

= [X1, X2](X ′)−1(X ′)−1

= 0.

�

Definition 5.1.3.2. Let a = b = c and let AbelA ⊂ A⊗B⊗C denote the
set of concise, 1A-generic tensors such that for some (and hence any) α ∈ A∗
with T (α) of maximal rank, T (A∗)T (α)−1 ⊂ End(B) is abelian. Note that
AbelA is not Zariski closed.

Let Diag0
End(B) ⊂ G(b,End(B)) denote the set of b-dimensional sub-

spaces that are simultaneously diagonalizable under the action of GL(B)

and let DiagEnd(B) = Diag0
End(B) denote its Zariski closure. Let α ∈ A∗ be

such that T (α) is of maximal rank, and let

DiagA := {T ∈ AbelA | T (A∗)T (α)−1 ∈ DiagEnd(B)} ∩AbelA .

By definition, DiagA ⊆ AbelA. To what extent does equality hold? The
following proposition gives a necessary algebraic condition to be in DiagA:

Proposition 5.1.3.3. [Ger61] The set

{U ∈ G(a,End(B)) | U is closed under composition}

is Zariski closed.

In particular, if T ∈ A⊗B⊗C = Ca⊗Ca⊗Ca is 1A-generic with R(T ) =
a, then for all α ∈ A∗ with T (α) invertible, T (A∗)T (α)−1 is closed under
composition.

Proof. If u1, . . . , ua is a basis of U , then U is closed under composition if
and only if for all u ∈ U ,

(uuj) ∧ u1 ∧ · · · ∧ ua = 0 ∀1 ≤ j ≤ a.

Let (AbelA × A∗)0 = {(T, α) | rank(T (α)) = b}, and note that the map
(AbelA × A∗)0 → G(a,End(B)), given by (T, α) 7→ T (A∗)T (α)−1 is contin-
uous. The “in particular” assertion follows from this continuity because if
U ∈ Diag0

End(B), then U is closed under composition. �

Exercise 5.1.3.4: (2) Show that if T (α), T (α′) are invertible and T (A∗)T (α)−1

is closed under composition, then T (A∗)T (α′)−1 is closed under composition.
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Let End AbelA ⊆ AbelA denote the subset of tensors with T (A)T (α)−1

closed under composition for some (and hence all) α ∈ A∗ with T (α) invert-
ible. We have

(5.1.1) DiagA ⊆ End AbelA ⊆ AbelA,

where the first inclusion is Proposition 5.1.3.3 and the second is by definition.
Are these containments strict?

A classical theorem states that when a = 3 the three sets are equal.
Moreover:

Theorem 5.1.3.5. [IM05] When a ≤ 4, DiagA = End AbelA = AbelA .

See [IM05] for the proof, which has numerous cases.

What happens when a = 5?

Proposition 5.1.3.6. [Lei16] Let TLeit,5 = a1⊗(b1⊗c1 + b2⊗c2 + b3⊗c3 +
b4⊗c4 + b5⊗c5) + a2⊗(b1⊗c3 + b3⊗c5) + a3⊗b1⊗c4 + a4⊗b2⊗c4 + a5⊗b2⊗c5,
which gives rise to the linear space

(5.1.2) TLeit,5(A∗) =


x1

x1

x2 x1

x3 x4 x1

x5 x2 x1

 .

Then TLeit,5(A∗)T (α1)−1 is an abelian Lie algebra, but not End-closed. I.e.,
TLeit,5 ∈ AbelA but TLeit,5 6∈ End AbelA.

Throughout this chapter, an expression of the form (5.1.2) is to be read
as T (x1α

1 + · · ·xaαa) where α1, . . . , αa is a basis of A∗.

Exercise 5.1.3.7: (1) Verify that TLeit,5(A∗)T (α1)−1 is not closed under
composition.

Thus when a ≥ 5, End AbelA ( AbelA. The following proposition shows
that the first containment in (5.1.1) is also strict when a ≥ 7:

Proposition 5.1.3.8. [LM15] The tensor corresponding to

Tend,7(A∗) =



x1

x1

x1

x1

x2 + x7 x3 x4 x1

x2 x3 x5 x6 x1

x4 x5 x6 x7 x1


is in End AbelA, but has border rank at least 8.
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The proof is given in §5.2.1.

We have seen that set-theoretic equations for End AbelA are easy, whereas
set-theoretic equations for DiagA are not known. One might hope that if
T ∈ End AbelA, that at least R(T ) should be close to a. This hope fails
miserably:

Proposition 5.1.3.9. [LM15] There exist 1A-generic tensors in Ca⊗Ca⊗Ca

in End AbelA of border rank greater than a2

8 .

Proof. Consider T such that

(5.1.3) T (A∗) ⊂



x1

. . .

x1

∗ · · · ∗ x1
...

...
...

. . .

∗ · · · ∗ x1


.

and set x1 = 0. We obtain a generic tensor in Ca−1⊗Cb
a
2
c⊗Cd

a
2
e, which will

have border greater than a2

8 . Conclude by applying Exercise 2.1.6.2. �

Tensors of the form (5.1.3) expose a weakness of Strassen’s equations
that I discuss further in §5.4.2. Variants of the tensors of the form (5.1.3)
are 1-generic and still exhibit the same behavior.

5.1.4. Sufficient conditions for a concise tensor to be of minimal
border rank. A classical result in linear algebra says a subspace U ⊂
End(B) is diagonalizable if and only if U is abelian and every x ∈ U (or
equivalently for each xj in a basis of U), is diagonalizable. This implies:

Proposition 5.1.4.1. A necessary and sufficient condition for a concise
1A-generic tensor T ∈ A⊗B⊗C with a = b = c to be of minimal rank
a is that for some basis α1, . . . , aa of A∗ with rank(T (α1)) = b, the space
T (A)T (α1)−1 ⊂ End(B) is abelian and each T (αj)T (α1)−1 is diagonalizable.

Although we have seen several necessary conditions to be of minimal
border rank, the question is open in general:

Problem 5.1.4.2. [BCS97, Prob. 15.2] Classify concise tensors of minimal
border rank.

Below is a sufficient condition to be of minimal border rank.

For x ∈ End(B), define the centralizer of x, denoted C(x), by

C(x) := {y ∈ End(B) | [y, x] = 0}.
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Definition 5.1.4.3. An element x ∈ End(B) is regular if dimC(x) = b,
and it is regular semi-simple if x is diagonalizable with distinct eigenvalues.

Exercise 5.1.4.4: (2) An m × m matrix is regular nilpotent if it is zero
except for the super diagonal where the entries are all 1’s. Show that a reg-
ular nilpotent element is indeed regular, and that its centralizer is the space
of upper-triangular matrices where the entries on each (upper) diagonal are
the same, e.g., when m = 3 the centralizer is

x y z
x y

x

 | x, y, z ∈ C

 .

Exercise 5.1.4.5: (2) Show that dimC(x) ≥ b, with equality if and only if
the minimal polynomial of x equals the characteristic polynomial. }

Note that x is regular semi-simple if and only if C(x) ⊂ End(B) is a
diagonalizable subspace. In this case the eigenvalues of x are distinct.

Proposition 5.1.4.6. (L. Manivel, [LM15]) Let U ⊂ End(B) be an abelian
subspace of dimension b such that there exists x ∈ U that is regular. Then
U ∈ DiagEnd(B) ⊂ G(b,End(B)).

Proof. Since the Zariski closure of the set of regular semi-simple elements
is all of End(B), for any x ∈ End(B), there exists a curve xt of regular
semi-simple elements with limt→0 xt = x. Consider the induced curve in the
Grassmannian C(xt) ⊂ G(b,End(B)). Then C0 := limt→0C(xt) exists and
is contained in C(x) ⊂ End(B) and since U is abelian, we also have U ⊆
C(x). But if x is regular, then dimC(x) = dim(U) = b, so limt→0C(xt), C0

and U must all be equal and thus U is a limit of diagonalizable subspaces. �

Proposition 5.1.4.6 applied to T (A)T (α)−1 provides a sufficient condi-
tion for a concise 1A-generic tensor T ∈ A⊗B⊗C to be of minimal border
rank. The condition is not necessary, even for 1-generic tensors, e.g., the
Coppersmith-Winograd tensor Tq,CW of (3.4.5), is 1-generic of minimal bor-
der rank but Tq,CW (A∗)Tq,CW (α)−1 does not contain a regular element for
any α ∈ A∗.
Exercise 5.1.4.7: (2) Show that the centralizer of TC[Zm](x1) from Example
3.5.1.2 is TC[Zm](C[Zm]) to obtain a second proof that R(TC[Zm]) = m.

Problem 5.1.4.8. Determine a criterion for U ∈ G(b,End(B)) to be in the
closure of the diagonalizable b-planes, when U does not contain a regular
element.

5.1.5. Strassen’s equations and symmetric tensors.
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Proposition 5.1.5.1. [LM15] Let T ∈ A⊗B⊗C = Cm⊗Cm⊗Cm be 1A
and 1B generic and satisfy the A-Strassen equations. Then, after a suitable
choice of identification of A with B via bases, T is isomorphic to a tensor in
S2A⊗C.

In particular:

(1) After making choices of general α ∈ A∗ and β ∈ B∗, T (A∗) and
T (B∗) are GLm-isomorphic subspaces of End(Cm).

(2) If T is 1-generic, then T is isomorphic to a tensor in S3Cm.

Proof. Let {ai}, {bj}, {ck} respectively be bases of A,B,C, with dual bases

{αi}, {βj}, {γk}. Write T =
∑
tijkai⊗bj⊗ck. After a change of basis in A

so that rank(T (α1)) = m and in B,C, so that it is the identity matrix, we
may assume t1jk = δjk and after a change of basis B so that T (β1) is of

full rank and further changes of bases in A,B,C, we may assume ti1k = δik
as well. (To obtain ti1k = δik only requires changes of bases in A,C, but
a further change in B may be needed to preserve t1jk = δjk.) Identify
T (A∗) ⊂ End(Cm) via α1. Strassen’s A-equations then say

0 = [T (αi1), T (αi2)](j,k) =
∑
l

ti1jlti2lk − ti2jlti1lk ∀i1, i2, j, k.

Consider when j = 1:

0 =
∑
l

ti11lti2lk − ti21lti1lk = ti2i1k − ti1i2k ∀i1, i2, k,

because ti1l = δi,l. But this says T ∈ S2Cm⊗Cm.

For the last assertion, say LB : B → A is such that IdA⊗LB⊗ IdC(T ) ∈
S2A⊗C and LC : C → A is such that IdA⊗ IdB ⊗LC ∈ S2A⊗B. Then
IdA⊗LB⊗LC(T ) is in A⊗3, symmetric in the first and second factors as
well as the first and third. But S3 is generated by two transpositions, so
IdA⊗LB⊗LC(T ) ∈ S3A. �

Thus the A,B, and C-Strassen equations for minimal border rank, de-
spite being non-isomorphic modules (see [LM08a]), when restricted to 1-
generic tensors, all have the same zero sets.

5.2. Indirectly defined equations

This section and §5.4.1 discuss Zariski closed conditions that in principle give
rise to equations, but they are difficult to write down explicitly- to do so
systematically one would need to use elimination theory which is impossible
to implement in practice other than in very small cases. Nonetheless, for
certain tensors these conditions can be used to prove lower bounds on border
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rank, e.g., the lower bound on R(M〈n〉) via Griesser’s equations in §5.2.2 and
the state of the art lower bound on R(M〈n〉) of Theorem 5.4.5.1.

5.2.1. Intersection properties.

Exercise 5.2.1.1: (2) [BCS97, Ex. 15.14] Given T ∈ Ca⊗Ca⊗Ca =
A⊗B⊗C that is concise, show that PT (A∗) ∩ Seg(PB × PC) = ∅ implies
R(T ) > a. }

Proof of Proposition 5.1.3.8. The fact that Tend,7(A∗) is End-closed fol-
lows by inspection. The tensor has border rank at least 8 by Exercise 5.2.1.1
as Tend,7(A∗) does not intersect the Segre. Indeed, if it intersected Segre,
the vanishing of size two minors implies x1 = x4 = 0, (x2 + x7)x2 = 0 and
(x2 + x7)x7 = 0. If x2 + x7 = 0 then x3 = 0, and x2

7 = (x2 + x7)x7 = 0
and hence x2 = 0 as well and we are done. If x2 = 0 analogously we obtain
x7 = 0 and x3 = x5 = x6 = 0. �

A complete flag in a vector space V is a sequence of subspaces 0 ⊂ V1 ⊂
V2 ⊂ · · · ⊂ Vv with dimVj = j.

Proposition 5.2.1.2. [Lei16, LM15] Let T ∈ Ca⊗Ca⊗Ca = A⊗B⊗C be
concise. If R(T ) = a, then there exists a complete flag A1 ⊂ · · · ⊂ Aa−1 ⊂
Aa = A∗, with dimAj = j, such that PT (Aj) ⊂ σj(Seg(PB × PC)).

Proof. Write T = limt→0
∑a

j=1 aj(t)⊗Xj(t) where Xj(t) ∈ B⊗C have rank
one. Since T is concise, we may assume without loss of generality that
a1(t), . . . , aa(t) is a basis of A for t 6= 0. Let α1(t), . . . , αa(t) ∈ A∗ be
the dual basis. Then take Ak(t) = span{α1(t), . . . , αk(t)} ∈ G(k,A∗) and
Ak = limt→0Ak(t). Since PT ∗(Ak(t)) ⊂ σk(Seg(PB × PC)) the same must
be true in the limit. �

One can say even more. For example:

Proposition 5.2.1.3. [LM15] Let T ∈ Ca⊗Ca⊗Ca = A⊗B⊗C. If R(T ) =
a and T (A∗) ∩ Seg(PB × PC) = [X0] is a single point, then P(T (A∗) ∩
T̂[X0]Seg(PB × PC)) must contain a P1.

Proof. Say T (A∗) were the limit of span{X1(t), . . . , Xa(t)} with each Xj(t)
of rank one. Then since PT (A∗)∩Seg(PB×PC) = [X0], we must have each
Xj(t) limiting to X0. But then limt→0 span{X1(t), X2(t)}, which must be

two-dimensional, must be contained in T̂[X0]Seg(PB × PC) and T (A∗). �

5.2.2. Griesser’s equations. The following theorem describes potential
equations for σr(Seg(PA× PB × PC)) in the range b < r ≤ 2b− 1.

Theorem 5.2.2.1. [Gri86] Let b = c. Given a 1A-generic tensor T ∈
A⊗B⊗C with R(T ) ≤ r, let α0 ∈ A∗ be such that T (α0) is invertible. For
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α′ ∈ A∗, let X(α′) = T (α′)T (α0)−1 ∈ End(B). Fix α1 ∈ A∗. Consider the
space of endomorphisms U := {[X(α1), X(α′)] : B → B | α′ ∈ A∗} ⊂ sl(B).
Then there exists E ∈ G(2b− r,B) such that dim(U.E) ≤ r − b.

Remark 5.2.2.2. Compared with the minors of T∧pA , here one is just exam-

ining the first block column of the matrix appearing in the expression QQ̃
in (2.4.7), but one is apparently extracting more refined information from
it.

Proof. For the moment assume R(T ) = r and T =
∑r

j=1 aj⊗bj⊗cj . Let

B̂ = Cr be equipped with basis e1, . . . , er. Define π : B̂ → B by π(ej) = bj .

Let i : B → B̂ be such that π ◦ i = IdB. Choose B′ ⊂ B̂ of dimension
r − b such that B̂ = i(B) ⊕ B′, and denote the inclusion and projection

respectively i′ : B′ → B̂ and π′ : B̂ → B′. Pictorially:

B̂

i↗↙ π π′ ↘↖ i′

B B′

Let α0, α1, . . . , αa−1 be a basis of A∗. Let T̂ =
∑r

j=1 aj⊗ej⊗e∗j ∈ A⊗B̂⊗B̂∗

and let X̂j := T̂ (αj)T̂ (α0)∧r−1. (Recall that the matrix of T̂ (α0)∧r−1 is the

cofactor matrix of T̂ (α0).) Now in End(B̂) all the commutators [X̂i, X̂j ] are

zero because R(T̂ ) = r. For all 2 ≤ s ≤ a− 1, [X̂1, X̂s] = 0 implies

0 = π[X̂1, X̂s]i

= [X1, Xs] + (πX̂1i
′)(π′X̂si)− (πX̂si

′)(π′X̂1i)(5.2.1)

Now take E ⊆ kerπ′X̂1i ⊂ B of dimension 2b− r. Then for all s, [X1, Xs] ·
E ⊂ ImageπX̂1i

′, which has dimension at most r−b because πX̂1i
′ : B′ → B

and dimB′ = r − b. The general case follows because these conditions are
all Zariski closed. �

Proof of Theorem 2.2.2.1. Here there is just one commutator [X1, X2]
and its rank is at most the sum of the ranks of the other two terms in
(5.2.1). But each of the other two terms is a composition of linear maps
including i′ which can have rank at most r− b, so their sum can have rank
at most 2(r − b). �

Remark 5.2.2.3. It is not known to what extent Griesser’s equations are
non-trivial. Proving non-triviality of equations, even when the equations can
be written down explicitly, is often more difficult than finding the equations.
For example, it took several years after Koszul-flattenings were discovered
to prove they were non-trivial to almost the full extent possible. Regarding

Griesser’s equations, it is known they are non-trivial up to r ≤ 3
2m+

√
m
2 −2
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when m is odd, and a similar, slightly smaller bound when m is even by
Proposition 5.2.2.5 below. On the other hand the equations are trivial when
r = 2b − 1 and all a, and when r = 2b − 2, and a ≤ b

2 + 2, in particular
a = b = 4 by [Lan15b]. I do not know whether or not the equations are
trivial for r = 2b− 2, a = b and b > 4.

Griesser’s equations are most robust when T (α1)T (α0)−1 is a generic
endomorphism, which motivates the following definition:

Definition 5.2.2.4. For a 1A-generic tensor T ∈ A⊗B⊗C, define T to be
2A-generic if there exist α ∈ A∗ such that T (α) : C∗ → B is of maximal
rank and α′ ∈ A∗ such that T (α′)T (α)−1 : B → B is regular semi-simple.

Proposition 5.1.4.6 implies that when T ∈ Cm⊗Cm⊗Cm is concise, 2A-
generic and satisfies Strassen’s equations, then R(T ) = m.

Unfortunately for proving lower bounds, M〈n〉 is not 2A-generic. The
equations coming from Koszul flattenings, and even more so Griesser’s equa-
tions, are less robust for tensors that fail to be 2A-generic. This partially
explains why M〈n〉 satisfies some of the Koszul flattening equations and
Griesser’s equations (as shown below). Thus an important problem is to
identify modules of equations for σr that are robust for non-2-generic ten-
sors.

Proposition 5.2.2.5. [Lan15b] Matrix multiplication M〈n〉 fails to satisfy

Griesser’s equations for r ≤ 3
2n2 − 1 when n is even and r ≤ 3

2n2 + n
2 − 2

when n is odd, and satisfies the equations for all larger r.

Proof. Consider matrix multiplication M〈n〉 ∈ Cn2⊗Cn2⊗Cn2
= A⊗B⊗C.

Recall from Exercise 2.1.7.4 that with a judicious ordering of bases, M〈n〉(A
∗)

is block diagonal

(5.2.2)

x . . .

x


where x = (xij) is n × n. In particular, the image is closed under brackets.

Choose X0 ∈ M〈n〉(A∗) to be the identity. It is not possible to have X1 ∈
M〈n〉(A

∗) diagonal with distinct entries on the diagonal, the most generic
choice for X1 is to be block diagonal with each block having the same n
distinct entries. For a subspace E of dimension 2n2 − r = dn + e with
0 ≤ e ≤ n − 1, the image of a generic choice of [X1, X2], . . . , [X1, Xn2−1]
applied to E is of dimension at least (d+ 1)n if e ≥ 2, at least (d+ 1)n− 1
if e = 1 and dn if e = 0, and equality will hold if we choose E to be,
e.g., the span of the first 2n2 − r basis vectors of B. (This is because the
[X1, Xs] will span the entries of type (5.2.2) with zeros on the diagonal.) If
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n is even, taking 2n2 − r = n2

2 + 1, so r = 3n2

2 − 1, the image occupies a

space of dimension n2

2 + n − 1 > n2

2 − 1 = r − n2. If one takes 2n2 − r =
n2

2 , so r = 3n2

2 , the image occupies a space of dimension n2

2 = r − n2,
showing Griesser’s equations cannot do better for n even. If n is odd, taking

2n2 − r = n2

2 −
n
2 + 2, so r = 3n2

2 + n
2 − 2, the image will have dimension

n2

2 + n
2 > r−n2 = n2

2 + n
2 −1, and taking 2n2−r = n2

2 −
n
2 +1 the image can

have dimension n2

2 −
n
2 + (n− 1) = r − n2, so the equations vanish for this

and all larger r. Thus Griesser’s equations for n odd give Lickteig’s bound

R(M〈n〉) ≥ 3n2

2 + n
2 − 1. �

5.3. The substitution method

The following method has a long history dating back to [Pan66], see [BCS97,
Chap. 6] and [Blä14, Chapter 6] for a history and many applications. It
is the only general technique available for proving lower bounds on tensor
rank that I am aware of. However, limit of the method is at most tensor
rank lower bounds of 3m − 1 in Cm⊗Cm⊗Cm. (In §10.1 I will describe a
powerful method for proving lower bounds on symmetric rank.)

5.3.1. Lower bounds on tensor rank via the substitution method.

Proposition 5.3.1.1. [AFT11, Appendix B] Let T ∈ A⊗B⊗C. Fix a
basis a1, . . . , aa of A, with dual basis α1, . . . , αa. Write T =

∑a
i=1 ai ⊗Mi,

where Mi ∈ B ⊗ C. Let R(T ) = r and M1 6= 0. Then there exist constants
λ2, . . . , λa, such that the tensor

T̃ :=
a∑
j=2

aj ⊗ (Mj − λjM1) ∈ span{a2, . . . , aa}⊗B⊗C,

has rank at most r − 1. Moreover, if rank(M1) = 1 then for any choice of

λj , R(T̃ ) is either r or r − 1.

The same assertions hold exchanging the role of A with that of B or C.

Proof. (Following [LM15].) By Proposition 5.1.2.1 there existX1, . . . , Xr ∈
Ŝeg(PB × PC) and scalars dij such that:

Mj =
r∑
i=1

dijXi.

Since M1 6= 0 we may assume d1
1 6= 0 and define λj =

d1
j

d1
1
. Then the

subspace T̃ (〈α2, . . . , αa〉) is spanned by X2, . . . , Xr so Proposition 5.1.2.1

implies R(T̃ ) ≤ r − 1. The last assertion holds because if rank(M1) = 1
then we may assume X1 = M1, so we cannot lower the rank by more than
one. �
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In practice, the method is used iteratively, with each of A,B,C playing
the role of A above, to reduce T to a smaller and smaller tensor, at each
step gaining one in the lower bound for the rank of T . At some steps one
may project T to a smaller space to simplify the calculation.

Example 5.3.1.2. [AFT11] Let Taft,3 ∈ A⊗B⊗C have an expression in
bases such that, letting the columns of the following matrix correspond to
B-basis vectors and the rows to C basis vectors,

Taft,3(A∗) =



x1

x1

x1

x1

x2 x1

x2 x1

x3 x2 x1

x4 x3 x2 x1


.

For the first iteration of the substitution method, start with b8 ∈ B in the
role of a1 in the proposition. Write

Taft,3 =b1⊗(a1⊗c1 + a2⊗c5 + a3⊗c7 + a4⊗c8) + b2⊗(a1⊗c2 + a2⊗c6 + a3⊗c8)

+ b3⊗(a1⊗c3 + a2⊗c7) + b4⊗(a1⊗c4 + a2⊗c8)

+ b5⊗a1⊗c5 + b6⊗a1⊗c6 + b6⊗a1⊗c6 + b7⊗a1⊗c7 + b8⊗a1⊗c8.

Then there exist λ1, . . . , λ7 and a new tensor T ′ ∈ A⊗C7⊗C with R(T ) ≥
R(T ′) + 1 where

T ′(A∗) =



x1

x1

x1

x1

x2 x1

x2 x1

x3 x2 x1

x4 x3 x2


+


λ1x1 λ2x1 · · · λ7x1


.
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Continue removing the last three columns until we get a tensor T ′′ ∈ A⊗C4⊗C
with

T ′′(A∗) =



x1

x1

x1

x1

x2

x2

x3 x2

x4 x3 x2


+


µ1,1x1 µ2,1x1 µ3,1x1 µ4,1x1

µ1,2x1 µ2,2x1 µ3,2x1 µ4,2x1

µ1,3x1 µ2,3x1 µ3,3x1 µ4,3x1

µ1,4x1 µ2,4x1 µ3,4x1 µ4,4x1


.

Now apply the method successively to c1, . . . , c4 to obtain a tensor T ′′′

with T ′′′(A∗) ∈ C4⊗C4 such that R(Taft,3) ≥ 8+R(T ′′′). Now project T ′′′ to
the space given by x1 = 0, so all the unknown constants disappear. The new
tensor cannot have rank or border rank greater than that of T ′′′. Iterate the
method with the projection of T ′′′ until one arrives at T̃ (A∗) ∈ C1⊗C1 and
the bound R(Taft,3) ≥ 8+4+2+1 = 15. In fact R(Taft,3) = 15: observe that
Taft,3(A∗)Taft,3(α1)−1 is a projection of the centralizer of a regular nilpotent
element as in Exercise 5.3.1.8 below, which implies R(Taft,3) ≤ 15.

On the other hand R(Taft,3) = 8, again because Taft,3(A∗)Taft,3(α1)−1 is
a projection of the centralizer of a regular nilpotent element, so Proposition
5.1.4.6 applies.

This example generalizes to Taft,k ∈ Ck+1⊗C2k⊗C2k of rank 2 · 2k − 1

and border rank 2k. The tensor T ′′′ above is Taft,2.

Example 5.3.1.3. [AFT11] Let TAFT,3 = a1⊗(b1⊗c1 + · · · + b8⊗c8) +
a2⊗(b1⊗c5 + b2⊗c6 + b3⊗c7 + b4⊗c8) + a3⊗(b1⊗c7 + b2⊗c8) + a4⊗b1⊗c8 +
a5⊗b8⊗c1 + a6⊗b8⊗c2 + a7⊗b8⊗c3 + a8⊗b8⊗c4, so

TAFT,3(A∗) =



x1 x5

x1 x6

x1 x7

x1 x8

x2 x1

x2 x1

x3 x2 x1

x4 x3 x2 x1


.
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Begin the substitution method with b8 in the role of a1 in the proposition,
then project to 〈α8, . . . , α5〉⊥ to obtain a tensor T̃ represented by the matrix

x1

x1

x1

x1

x2 x1

x2 x1

x3 x2 x1

x4 x3 x2


,

and R(TAFT,3) ≥ 4+R(T̃ ). The substitution method then gives R(T̃ ) ≥ 14
by Example 5.3.1.2 and thus R(TAFT,3) ≥ 18. This example generalizes to

TAFT,k ∈ C2k+1⊗C2k⊗C2k+1 of rank at least 3(2k+1)−k−4. In fact, equality
holds: in the case of TAFT,3, it is enough to consider 17 matrices with just
one nonzero entry corresponding to all nonzero entries of TAFT,3(A∗), apart
from the top left and bottom right corner and one matrix with 1 at each
corner and all other entries equal to 0. Moreover, as observed in [Lan15b],
for these tensors (2k + 1) + 1 ≤ R(TAFT,k) ≤ 2k+1 − k.

Exercise 5.3.1.4: (2) Prove (2k + 1) + 1 ≤ R(TAFT,k) ≤ 2k+1 − k. }

In summary:

Proposition 5.3.1.5. The tensors TAFT,k ∈ C2k+1⊗C2k⊗C2k+1 of [AFT11]

satisfy (2k + 1) + 1 ≤ R(TAFT,k) ≤ 2(2k + 1)− 2− k < 3(2k + 1)− k − 4 =
R(TAFT,k).

Exercise 5.3.1.6: (2) Show that for all m,n, N , R(M〈1,m,n〉 ⊕M〈N,1,1〉) =
mn +N .

Exercise 5.3.1.7: (2) Show that Strassen’s tensor from §5.6, TSTR,q =∑q
j=1(a0⊗bj⊗cj + aj⊗b0⊗cj) ∈ Cq+1⊗Cq+1⊗Cq satisfies R(TSTR,q) = 2q.

Exercise 5.3.1.8: (3) Show that a tensor T ∈ Cm⊗Cm⊗Cm corresponding
to the centralizer of a regular nilpotent element satisfies R(T ) = 2m− 1. }

To date, TAFT,k and its cousins are the only known examples of explicit
tensors T ∈ Cm⊗Cm⊗Cm satisfying R(T ) ≥ 3m − O(log(m)). There are
several known to satisfy R(T ) ≥ 3m − O(m), e.g., M〈n〉, as was shown in

§2.6, and T⊗nWState ∈ C2n⊗C2n⊗C2n discussed in §5.6.

Problem 5.3.1.9. [Blä14] Find an explicit tensor T ∈ Cm⊗Cm⊗Cm sat-
isfying R(T ) ≥ (3 + ε)m for any ε > 0.

Remark 5.3.1.10. Proposition 5.3.1.1 holds with any choice of basis, so
we get to pick [α1] ∈ PA∗, as long as M1 6= 0 (which is automatic if T is



122 5. The complexity of Matrix multiplication IV

A-concise). On the other hand, there is no choice of the λj , so when dealing

with T̃ , one has to assume the λj are as bad as possible for proving lower
bounds. For this reason, it is easier to implement this method on tensors
with simple combinatorial structure or tensors that are sparse in some basis.

From a geometric perspective, we are restricting T , considered as a tri-
linear form A∗ ×B∗ ×C∗ → C, to the hyperplane A′ ⊂ A∗ defined by α1 +∑a

j=2 λjα
j = 0 and our condition is that R(T |A′⊗B∗⊗C∗) ≤ R(T )− 1. Our

freedom is the choice of 〈a2, . . . , aa〉 ⊂ A, and then A′ (which we do not get to
choose) is any hyperplane satisfying the open condition 〈a2, . . . , aa〉⊥ 6⊂ A′.

5.3.2. Strassen’s additivity conjecture. Given T1 ∈ A1⊗B1⊗C1 and
T2 ∈ A2⊗B2⊗C2, if one considers T1+T2 ∈ (A1⊕A2)⊗(B1⊕B2)⊗(C1⊕C2),
where each Aj⊗Bj⊗Cj is naturally included in (A1⊕A2)⊗(B1⊕B2)⊗(C1⊕
C2), we saw that R(T1 + T2) ≤ R(T1) + R(T2). Also recall Schönhage’s
example §3.3.2 that R(M〈1,m,n〉 ⊕M〈(n−1)(m−1),1,1〉) = mn + 1 < 2mn −
m − n + 1 = R(M〈1,m,n〉) + R(M〈(n−1)(m−1),1,1〉). Before this example was
known, Strassen made the following conjecture:

Conjecture 5.3.2.1. [Str73] With the above notation, R(T1+T2) = R(T1)+
R(T2).

Exercise 5.3.1.6 shows that despite the failure of a border rank analog of
the conjecture for M〈1,m,n〉 ⊕M〈(n−1)(m−1),1,1〉, the rank version does hold
in this case.

While this conjecture has been studied from several different perspec-
tives, e.g. [FW84, JT86, Bsh98, CCC15b, BGL13], very little is known
about it, and experts are divided as to whether it should be true or false.

In many cases of low rank the substitution method provides the correct
rank. In light of this, the following theorem indicates why providing a
counter-example to Strassen’s conjecture would need new techniques for
proving rank lower bounds.

Theorem 5.3.2.2. [LM15] Let T1 ∈ A1⊗B1⊗C1 and T2 ∈ A2⊗B2⊗C2 be
such that that R(T1) can be determined by the substitution method applied
to two of A1, B1, C1. Then Strassen’s additivity conjecture holds for T1⊕T2,
i.e., R(T1 ⊕ T2) = R(T1) + R(T2).

Proof. With each application of the substitution method to elements of A1,
B1, and C1, T1 is modified to a tensor of lower rank living in a smaller space
and T2 is unchanged. After all applications, T1 has been modified to zero
and T2 is still unchanged. �

The rank of any tensor in C2⊗B⊗C can be computed using the sub-
stitution method as follows: by dimension count, we can always find either
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β ∈ B∗ or γ ∈ C∗, such that T (β) or T (γ) is a rank one matrix. In particular,
Theorem 5.3.2.2 provides an easy proof of Strassen’s additivity conjecture
if the dimension of any of A1, B1 or C1 equals 2. This was first shown in
[JT86] by other methods.

5.4. The border substitution method

What follows are indirectly defined equations for border rank, in other words,
indirectly defined algebraic varieties that contain σr(Seg(PA× PB × PC)).
While we don’t have equations for these varieties, sometimes one can prove
membership or non-membership by direct arguments. The method is pri-
marily useful for tensors with symmetry, as there border rank decomposi-
tions come in families, and it suffices to prove non-membership for a conve-
nient member of a putative family.

5.4.1. The border substitution method. The substitution method may
be restated as follows:

Proposition 5.4.1.1. Let T ∈ A⊗B⊗C be A-concise. Fix a′ < a and
Ã ⊂ A of dimension a′. Then

R(T ) ≥ min{A′∈G(a′,A∗)|A′∩Ã⊥=0}R(T |A′⊗B∗⊗C∗) + (a− a′).

Here Ã in the case a′ = a−1 plays the role of 〈a2, . . . , aa〉 in Proposition
5.3.1.1. Recall that T |A′⊗B∗⊗C∗ ∈ (A/(A′)⊥)⊗B⊗C.

More generally,

Proposition 5.4.1.2. Let T ∈ A⊗B⊗C be concise. Fix a′ < a, Ã ⊂ A,
B̃ ⊂ B and C̃ ⊂ C respectively of dimensions a′, b′, and c′. Then

R(T ) ≥(a− a′) + (b− b′) + (c− c′)

+ min
A′ ∈ G(a′, A∗) | A′ ∩ Ã⊥ = 0

B′ ∈ G(b′, B∗) | B′ ∩ B̃⊥ = 0

C ′ ∈ G(c′, C∗) | A′ ∩ C̃⊥ = 0


R(T |A′⊗B∗⊗C∗).

A border rank version is as follows:

Proposition 5.4.1.3. [BL16, LM] Let T ∈ A⊗B⊗C be A-concise. Fix
a′ < a. Then

R(T ) ≥ minA′∈G(a′,A∗) R(T |A′⊗B∗⊗C∗) + (a− a′).

Proof. Say R(T ) = r, so T = limt→0 Tt, for some tensors Tt =
∑r

j=1 aj(t)⊗bj(t)⊗cj(t).
Without loss of generality, we may assume a1(t), . . . , aa(t) form a basis
of A. Let A′t = 〈aa′+1, . . . , aa〉⊥ ⊂ A∗. Then R(Tt |A′t⊗B∗⊗C∗) ≤ r −
(a − a′) by Proposition 5.4.1.1. Let A′ = limt→0A

′
t ∈ G(a′, A∗). Then
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T |A′⊗B∗⊗C∗ = limt→0 Tt|A′t⊗B∗⊗C∗ so R(T |A′⊗B∗⊗C∗) ≤ r − (a − a′), i.e.,

r ≥ R(T |A′⊗B∗⊗C∗) + (a− a′). �

Corollary 5.4.1.4. [BL16] Let T ∈ A⊗B⊗C be A-concise. Then R(T ) ≥
a− 1 + minα∈A∗\{0} rank(T (α)).

The Corollary follows because for matrices, rank equals border rank, and
C1⊗B⊗C = B⊗C.

Although our freedom in the substitution method was minor (a restric-

tion to a Zariski open subset of the Grassmannian determined by Ã⊥), it is
still useful for tensors with simple combinatorial structure. With the border
substitution method we have no freedom at all, but nevertheless it will be
useful for tensors with symmetry, as the symmetry group will enable us to
restrict to special A′.

As was the case for the substitution method, this procedure can be
iterated: write T1 = T |A′⊗B∗⊗C∗ . If T1 is B-concise, apply the proposition
again with B, if not, let B1 ⊂ B be maximal such that T1 is B1-concise and
then apply the proposition. By successive iterations one finds:

Corollary 5.4.1.5. [LM16] If for all A′ ⊂ A∗, B′ ⊂ B∗, C ′ ⊂ C∗ re-
spectively of dimensions a′,b′, c′ one has T |A′⊗B′⊗C′ 6= 0, then R(T ) >
a + b + c− (a′ + b′ + c′).

It is obvious this method cannot prove border rank bounds better than
a + b + c− 3. The actual limit of the method is even less, as I now explain.

5.4.2. Limits of the border substitution method.

Definition 5.4.2.1. A tensor T ∈ A⊗B⊗C is (a′,b′, c′)-compressible if
there exist subspaces A′ ⊂ A∗, B′ ⊂ B∗, C ′ ⊂ C∗ of respective dimen-
sions a′,b′, c′ such that T |A′⊗B′⊗C′ = 0, i.e., there exists (A′, B′, C ′) ∈
G(a′, A∗)×G(b′, B∗)×G(c′, C∗), such that A′⊗B′⊗C ′ ⊂ T⊥, where T⊥ ⊂
(A⊗B⊗C)∗ is the hyperplane annihilating T . Otherwise one says T is
(a′,b′, c′)-compression generic.

Let X(a′,b′, c′) be the set of all tensors that are (a′,b′, c′)-compressible.

Corollary 5.4.1.5 may be rephrased as:

σa+b+c−(a′+b′+c′)Seg(PA× PB × PC) ⊂ X(a′,b′, c′).

Proposition 5.4.2.2. [LM16] The setX(a′,b′, c′) ⊆ P(A⊗B⊗C) is Zariski
closed of dimension at most

min{abc− 1, (abc− a′b′c′ − 1) + (a− a′)a′ + (b− b′)b′ + (c− c′)c′}.

In particular, if

(5.4.1) aa′ + bb′ + cc′ < (a′)2 + (b′)2 + (c′)2 + a′b′c′
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then X(a′,b′, c′) ( P(A⊗B⊗C), so in this range the substitution methods
may be used to prove nontrivial lower bounds for border rank.

Proof. The following is a standard construction in algebraic geometry called
an incidence correspondence (see, e.g., [Har95, §6.12] for a discussion): Let

I :=

{((A′, B′, C ′), [T ]) ∈ [G(a′, A∗)×G(b′, B∗)×G(c′, C∗)]× P(A⊗B⊗C)

| A′⊗B′⊗C ′ ⊂ T⊥}

and note that the projection of I to P(A⊗B⊗C) has image X(a′,b′, c′).
A fiber of the other projection I → G(a′, A∗) × G(b′, B∗) × G(c′, C∗) is
P((A′⊗B′⊗C ′)⊥), a projective space of dimension abc− a′b′c′ − 1. Hence:

dim I := (abc− a′b′c′ − 1) + (a− a′)a′ + (b− b′)b′ + (c− c′)c′.

Since the map I → X is surjective, this proves the dimension assertion.
Since the projection to P(A⊗B⊗C) is a regular map, the Zariski closed
assertion also follows. �

The proof and examples show that beyond this bound one expects
X(a′,b′, c′) = P(A⊗B⊗C), so that the method cannot be used. Also note
that tensors could be quite compressible and still have near maximal bor-
der rank, a weakness we already saw with the tensor of (5.1.3) (which also
satisfies Strassen’s equations).

The inequality in Proposition 5.4.2.2 may be sharp or nearly so. For
tensors in Cm⊗Cm⊗Cm the limit of this method alone would be a border

rank lower bound of 3(m−
√

3m + 9
4 + 3

2).

5.4.3. How to exploit symmetry. As mentioned above, the border sub-
stitution method is particularly useful for tensors T with a large symmetry
group GT , as one can replace the unknown A′ by representatives of the closed
GT -orbits in the Grassmannian. For matrix multiplication, one obtains:

Theorem 5.4.3.1. [LM]

M〈n〉 ∈ σr(Seg(Pn2−1 × Pn2−1 × Pn2−1))

if and only if there exist curves pj(t) ⊂ Seg(Pn2−1×Pn2−1×Pn2−1) such that
for 2 ≤ j ≤ r, limt→0 pj(t) = x1

2⊗y1
2⊗z1

2 andM〈n〉 ∈ limt→0〈x1
2⊗y1

2⊗z1
2 , p2(t), . . . , pr(t)〉.

In §5.4.5, Theorem 5.4.3.1 is used to improve the lower bounds for border
rank.

In this section and the next, I explain the theory. One can also use these
methods when attempting to search for new decompositions to limit one’s
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searches for decompositions with certain normal forms. In order to discuss
these methods, I first develop language to discuss the GT orbit closures in
the Grassmannian.

To simplify notation, for a tensor T ∈ A1⊗ . . .⊗Ak, and Ã ⊂ A1, write

T/Ã := T |Ã⊥⊗A∗2⊗···⊗A∗k∈ (A1/Ã)⊗A2⊗ . . .⊗Ak.

Define

Bρ,a′(T ) := {Ã ∈ G(a′, A1) | R(T/Ã) ≤ ρ}.
Proposition 5.4.3.2. [LM16] The set Bρ,a′(T ) is Zariski closed.

The proof requires some standard notions from geometry and can be
skipped on a first reading.

A vector bundle V on a variety X is a variety V equipped with a surjective
regular map π : V → X such that for all x ∈ X, π−1(x) is a vector space of
dimension v, satisfying certain compatibility conditions (in particular, local
triviality: for all x ∈ X, there exists an open subset U containing x such
that V|U ' Cv × U). See [Sha13b, §6.1.2] for an algebraic definition or
[Spi79, Chap. 3 p71] for a differential-geometric definition. A section of V
is a regular map s : X → V such that π ◦ s = IdX .

Two vector bundles over the GrassmannianG(k, V ) are ubiquitous: First
the tautological subspace bundle πS : S → G(k, V ) where πS

−1(E) = E.
This is a vector subbundle of the trivial bundle with fiber V , which I denote
V . The tautological quotient bundle πQ : Q → G(k, V ) has fiber πQ

−1(E) =
V/E, i.e., we have an exact sequence of vector bundles

0→ S → V → Q→ 0.

All three bundles are GL(V )-homogeneous. See e.g., [Wey03, §3.3] for more
details.

For any vector bundle over a projective variety, the corresponding bundle
of projective spaces is a projective variety, and a sub-fiber bundle defined
by homogeneous equations is also projective.

Proof. Consider the bundle π : Q⊗A1⊗ · · ·⊗Ak → G(a′, A1), where π−1(Ã) =

(A1/Ã)⊗A2⊗ · · ·⊗Ak. Given T , define a natural section sT : G(a′, A1) →
Q⊗A1⊗ · · ·⊗Ak by sT (Ã) := T/Ã. Let X ⊂ P(Q⊗A2⊗ · · ·⊗Ak) denote the

subvariety (that is also a sub-fiber bundle) defined byX∩P((A1/Ã)⊗A2⊗ · · ·⊗Ak) =

σρ(Seg(P((A1/Ã)×PA2×· · ·×PAk)). By the discussion above, X is realiz-
able as a projective variety. Let π̃ : X → G(a′, A1) denote the projectiviza-
tion of π restricted to X. Then Bρ,a′(T ) = π̃(X ∩ PsT (G(a′, A1))). Since
the intersection of two projective varieties is a projective variety, as is the
image of a projective variety under a regular map (see Theorem 3.1.4.7), we
conclude. �
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Lemma 5.4.3.3. [LM16] Let T ∈ A1⊗ . . .⊗Ak be a tensor, let GT ⊂
GL(A1) × · · · × GL(Ak) denote its stabilizer and let G1 ⊂ GL(A1) denote
its projection to GL(A1). Then Bρ,a′(T ) is a G1-variety.

Proof. Let g = (g1, . . . , gk) ∈ GT . Then R(T/Ã) = R(g · T/g · Ã) =

R(T/g1Ã). �

Recall the definition of a homogeneous variety X = G/P ⊂ PV from
Definition 4.7.2.1.

Lemma 5.4.3.4. [BL14] Let X = G/P ⊂ PV be a homogeneous variety

and let p ∈ σr(X). Then there exist a point x0 ∈ X̂ and r − 1 curves

zj(t) ∈ X̂ such that p ∈ limt→0〈x0, z1(t), . . . , zr−1(t)〉.

Proof. Since p ∈ σr(X), there exist r curves x(t), y1(t), . . . , yr−1(t) ∈ X̂
such that

p ∈ lim
t→0

P〈x(t), y1(t), . . . , yr−1(t)〉.

Choose a curve gt ∈ G, such that gt(x(t)) = x0 = x(0) for all t and g0 = Id.
We have

〈x(t), y1(t), . . . , yr−1(t)〉 = gt
−1 · 〈x0, gt · y1(t), . . . , gt · yr−1(t)〉 and

lim
t→0
〈x(t), y1(t), . . . , yr−1(t)〉 = lim

t→0

(
gt
−1 · 〈x0, gt · y1(t), . . . , gt · yr−1(t)〉

)
= lim
t→0
〈x0, gt · y1(t), . . . , gt · yr−1(t)〉.

Set zj(t) = gt · yj(t) to complete the proof. �

Exercise 5.4.3.5: (1) Show that if X is a G-variety, then any orbit G · x
for x ∈ X of minimal dimension must be Zariski closed. }

The following Lemma applies both to M〈n〉 and to the determinant poly-
nomial:

Lemma 5.4.3.6 (Normal form lemma). [LM] Let X = G/P ⊂ PV be a
homogeneous variety and let v ∈ V be such that Gv := {g ∈ G | g[v] = [v]}
has a single closed orbit Omin in X. Then any border rank r decomposition
of v may be modified using Gv to a border rank r decomposition with limit
plane limt→0〈x1(t), . . . , xr(t)〉 such that there is a stationary point x1(t) ≡ x1

lying in Omin.

If moreover every orbit of Gv ∩ Gx1 contains x1 in its closure, we may
further assume that all other xj(t) limit to x1.

Proof. I prove the second statement. By Lemma 5.4.3.4, it is sufficient to
show that we can have all points limiting to the same point x1(0).
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Work by induction. Say we have shown that x1(t), . . . , xq(t) all limit
to the same point x1 ∈ Omin. It remains to show that our curves can
be modified so that the same holds for x1(t), . . . , xq+1(t). Take a curve
gε ∈ Gv ∩Gx1 such that limε→0 gεxq+1(0) = x1. For each fixed ε, acting on
the xj(t) by gε, we obtain a border rank decomposition for which gεxi(t)→
gεx1(0) = x1(0) for i ≤ q and gεxq+1(t)→ gεxq+1(0). Fix a sequence εn → 0.
Claim: we may choose a sequence tn → 0 such that

• limn→∞ gεnxq+1(tn) = x1(0),

• limn→∞ < gεnx1(tn), . . . , gεnxr(tn) > contains v and

• limn→∞ gεnxj(tn) = x1(0) for j ≤ q.

The first point holds as limε→0 gεxq+1(0) = x1. The second follows as for
each fixed εn, taking tn sufficiently small we may assure that a ball of radius
1/n centered at v intersects < gεnx1(tn), . . . , gεnxr(tn) >. In the same way
we may assure that the third point is satisfied. Considering the sequence
x̃i(tn) := gεnxi(tn) we obtain the desired border rank decomposition. �

Exercise 5.4.3.7: (1) Write out a proof of the first assertion in the normal
form lemma.

Applying the normal form lemma to matrix multiplication, in order to
prove [M〈n〉] 6∈ σr(Seg(PA × PB × PC)), it is sufficient to prove it is not
contained in a smaller variety. This variety, called the greater areole is
discussed in the next section.

5.4.4. Larger geometric context. Recall that for X ⊂ PV , σr(X) may
be written as

σr(X) =
⋃

xj(t)⊂X, 1≤j≤r

{z ∈ PV | z ∈ lim
t→0
〈x1(t), . . . , xr(t)〉}

where the union is over all curves xj(t) in X, including stationary ones. (One
can take algebraic or analytic curves.) Remarkably, for the study of certain
points such as M〈n〉 and detn with large symmetry groups, it is sufficient to
consider “local” versions of secant varieties.

It is better to discuss Theorem 5.4.3.1 in the larger context of secant
varieties, so make the following definition:

Definition 5.4.4.1 (Greater Areole). [LM] Let X ⊂ PV be a projective
variety and let p ∈ X. The r-th greater areole at p is

ãr(X, p) :=
⋃

xj(t)⊂X
xj(t)→p

lim
t→0
〈x1(t), . . . , xr(t)〉 ⊂ PV.

Then Theorem 5.4.3.1 may be restated as:
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Theorem 5.4.4.2. [LM]

M〈n〉 ∈ σr(Seg(Pn2−1 × Pn2−1 × Pn2−1))

if and only if

M〈n〉 ∈ ãr(Seg(Pn2−1 × Pn2−1 × Pn2−1), [x1
2⊗y1

2⊗z1
2 ])

Exercise 5.4.4.3: (2) Show that when G/P = vn(Pn2−1) is the Veronese
variety and v = detn, Omin = vn(Seg(PE×PF )) is the unique closed Gdetn-
orbit, and every orbit of Gdetn,(x1

1)n contains (x1
1)n in its closure, so the

normal form lemma applies. }

Exercise 5.4.4.4: (2) WhenG/P = Seg(P(U∗⊗V )×P(V ∗⊗W )⊗P(W ∗⊗U)) ⊂
P(Cn2⊗Cn2⊗Cn2

) and v = M〈n〉, let

K := {[µ⊗v⊗ν⊗w⊗ω⊗u] ∈ Seg(PU∗×PV×PV ∗×PW×PW ∗×PU) | µ(u) = ω(w) = ν(v) = 0}.

Show that K is the unique closed GM〈U,V,W 〉-orbit in Seg(PA × PB × PC),

and every orbit of GM〈U,V,W 〉,x1
2⊗y1

2⊗z1
2

contains x1
2⊗y1

2⊗z1
2 in its closure. (Of

course the same is true for any k ∈ K.) }

5.4.5. The border rank bound R(M〈n〉) ≥ 2n2 − dlog2(n)e − 1.

Theorem 5.4.5.1. [LM16] Let 0 < m < n. Then

R(M〈n,n,w〉) ≥ 2nw −w +m−

⌊
w
(
n−1+m
m−1

)(
2n−2
n−1

) ⌋
.

In particular, taking w = n and m = n− dlog2(n)e − 1,

R(M〈n〉) ≥ 2n2 − dlog2(n)e − 1.

Proof. First observe that the “In particular” assertion follows from the
main assertion because, taking m = n− c, we want c such that

n
(

2n−1−c
n

)(
2n−2
n−1

) < 1.

This ratio is

(n− 1) · · · (n− c)
(2n− 2)(2n− 3) · · · (2n− c)

=
n− c
2c−1

n− 1

n− 2
2

n− 2

n− 3
2

n− 3

n− 4
2

· · · n− c+ 1

n− c
2

so if c− 1 ≥ log2(n) it is less than one.

For the rest of the proof, introduce the following notation: a Young
diagram associated to a partition λ = (λ1, . . . , λ`) is a collection of left
aligned boxes, with λj boxes in the j-th row. Label it with the upside-
down convention as representing entries in the south-west corner of an n×
n matrix. More precisely for (i, j) ∈ λ, number the boxes of λ by pairs
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(row,column), however, number the rows starting from n, i.e. i = n is the
first row. For example

(5.4.2)

x y
z
w

is labeled x = (n, 1), y = (n, 2), z = (n − 1, 1), w = (n − 2, 1). Let Ãλ :=

span{ui⊗vj | (i, j) ∈ λ} and write Mλ
〈n,n,w〉 := M〈n,n,w〉/Ãλ.

The proof consists of two parts. The first is to show that for any k < n
there exists a Young diagram λ with k boxes such that R(Mλ

〈n,n,w〉) ≤
R(M〈n,n,w〉) − k, and this is done by induction on k. The second is to use

Koszul flattenings to obtain a lower bound on R(Mλ
〈n,n,w〉) for any λ.

As usual, write M〈n,n,w〉 ∈ A⊗B⊗C = (U∗⊗V )⊗(V ∗⊗W )⊗(W ∗⊗U)
where u = v = n.

Part 1) First consider the case k = 1. By Proposition 5.4.1.3 there
exists [a] ∈ BR(M〈n,n,w〉)−1,n2−1(M〈n,n,w〉) such that the reduced tensor drops

border rank. The group GL(U) × GL(V ) × GL(W ) stabilizes M〈n,n,w〉.
Lemma 5.4.3.3 applies with G1 = GL(U) × GL(V ) ⊂ GL(A). Since the
GL(U) × GL(V )-orbit closure of any [a] ∈ PA contains [un⊗v1], we may
replace [a] by [un⊗v1].

Now assume that R(Mλ′

〈n,n,w〉) ≤ R(M〈n,n,w〉)−k+1, where λ′ has k−1

boxes. Again by Proposition 5.4.1.3 there exists [a′] ∈ BR(M〈n,n,w〉)−k,n2−k(M
λ′

〈n,n,w〉)

such that when we reduce by [a′] the border rank of the reduced tensor
drops. We no longer have the full action of GL(U) × GL(V ). However,
the product of parabolic subgroups of GL(U) ×GL(V ), which by definition
are the subgroups that stabilize the flags in U∗ and V induced by λ′, stabi-
lizes Mλ′

〈n,n,w〉. In particular, all parabolic groups are contained in the Borel

subgroup of upper-triangular matrices. By the diagonal (torus) action and
Lemma 5.4.3.3 we may assume that a has just one nonzero entry outside of
λ. Further, using the upper-triangular (Borel) action we can move the entry
south-west to obtain the Young diagram λ.

For example, when the Young diagram is (5.4.2) with n = 4, and we
want to move x1

4 into the diagram, we may multiply it on the left and right
respectively by 

ε
1 1

1
1

 and


ε 1

ε
1

1


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where blank entries are zero. Then x1
4 7→ ε2x1

4 + ε(x2
4 + x4

1) + x2
1 and we let

ε→ 0.

Part 2) Recall that for the matrix multiplication operator, the Koszul
flattening of §2.4 factors as M〈n,n,w〉 = M〈n,n,1〉⊗ IdW , so it will suffice to

apply the Koszul flattening to Mλ
〈n,n,1〉 ∈ [(U∗⊗V )/Aλ]⊗V ∗⊗U . We need to

show that for all λ of size m,

R(Mλ
〈n,n,1〉) ≥ 2n− 1−

(
n−1+m
m−1

)(
2n−1
n−1

) .

This will be accomplished by restricting to a suitable A′ ⊂ [(U∗⊗V )/Aλ]∗

of dimension 2n− 1, such that, setting Â = (A′)∗,

rank(Mλ
〈n,n,1〉|A′⊗V⊗U∗)

∧n−1

Â
) ≥

(
2n− 1

n− 1

)
n−

(
n− 1 +m

m− 1

)
,

i.e.,

dim ker(Mλ
〈n,n,1〉|A′⊗V⊗U∗)

∧n−1

Â
) ≤

(
n− 1 +m

m− 1

)
,

and applying Proposition 2.4.2.1. Since we are working in bases, we may
consider Mλ

〈n,n,1〉 ∈ (A/Aλ)⊗B⊗C in A⊗B⊗C, with specific coordinates set

equal to 0.

Recall the map φ : A → C2n−1 = Â given by ui⊗vj 7→ ei+j−1 from
(2.5.2) and the other notations from the proof of Theorem 2.5.2.6. The
crucial part is to determine how many zeros are added to the diagonal when
the entries of λ are set to zero. The map (Mλ

〈n,n,1〉|A′⊗V⊗U∗)
∧n−1

Â
is

(S, j) := es1 ∧ · · · ∧ esn−1⊗vj 7→
∑

{k∈[n]|(i,j)6∈λ}

ej+i−1 ∧ es1 ∧ · · · ∧ esn−1⊗ui.

Recall that when working with M〈n,n,1〉, the diagonal terms in the matrix
were indexed by pairs [(S, j) = (P\pl, 1 + pl − l), (P, l)], in other words that
(P\pl, 1 + pl − l) mapped to (P, l) plus terms that are lower in the order.
So fix (i, j) ∈ λ, we need to count the number of terms (P, i) that will not
appear anymore as a result of (i, j) being in λ. That is, fixing (i, j), we need
to count the number of (p1, . . . , pi−1) with p1 < · · · < pi−1 < i + j − 1, of

which there are
(
i+j−2
i−1

)
, and multiply this by the number of (pi+1, . . . , pn)

with i+ j−1 < pi+1 < · · · < pn ≤ 2n−1, of which there are
(

2n−1−(i+j−1)
n−i

)
.

In summary, each (i, j) ∈ λ kills g(i, j) :=
(
i+j−1
i−1

)(
2n−i−j
n−i

)
terms on the

diagonal. Hence, it is enough to prove that
∑

(i,j)∈λ g(i, j) ≤
(
n−1+m
m−1

)
.

Exercise 5.4.5.2: (1) Show that
∑m

j=1

(
n+j−2
j−1

)
=
(
m+n−2
m−1

)
. }



132 5. The complexity of Matrix multiplication IV

By Exercise 5.4.5.2 and a similar calculation, we see
∑n−m+1

i=n g(i, 1) =∑m
j=1 g(n, j) =

(
n−2+m
m−1

)
. So it remains to prove that the Young diagram

that maximizes fλ :=
∑

(i,j)∈λ g(i, j) has one row or column. Use induction

on the size of λ, the case |λ| = 1 being trivial. Note that g(n − i, j) =
g(n− j, i). Moreover, g(i, j + 1) ≥ g(i, j).

Say λ = λ′ ∪ {(i, j)}. By induction it is sufficient to show that:
(5.4.3)

g(n, ij) =

(
n− 1 + ij − 1

n− 1

)
≥
(

n + i− j − 1

i− 1

)(
n− i+ j

j − 1

)
= g(i, j),

where n > ij.

Exercise 5.4.5.3: (3) Prove the estimate. }

�

5.4.6. The boundary case. The proof of Corollary 5.4.6.1 below uses
elementary properties of Chern classes and can be skipped by readers unfa-
miliar with them. Let πA : G(a′, A∗) × G(b′, B∗) × G(c′, C∗) → G(a′, A∗)
denote the projection and similarly for πB, πC . Let E = E(a′,b′, c′) :=
π∗A(SA)⊗π∗B(SB)⊗π∗C(SC) be the vector bundle that is the tensor product
of the pullbacks of tautological subspace bundles SA,SB,SC . In each partic-
ular case it is possible to explicitly compute how many different A′⊗B′⊗C ′
a generic hyperplane may contain as follows:

Corollary 5.4.6.1. [LM16]

(1) If (5.4.1) holds then a generic tensor is (a′,b′, c′)-compression generic.

(2) If (5.4.1) does not hold then rank E∗ ≤ dim (G(a′, A∗)×G(b′, B∗)×
G(c′, C∗)). If the top Chern class of E∗ is nonzero, then no tensor
is (a′,b′, c′)-compression generic.

Proof. The first assertion is a restatement of Proposition 5.4.2.2.

For the second, notice that T induces a section T̃ of the vector bun-
dle E∗ → G(a′, A∗) × G(b′, B∗) × G(c′, C∗) defined by T̃ (A′⊗B′⊗C ′) =

T |A′⊗B′⊗C′ . The zero locus of T̃ is {(A′, B′, C ′) ∈ G(a′, A∗) × G(b′, B∗) ×
G(c′, C∗) | A′⊗B′⊗C ′ ⊂ T⊥}. In particular, T̃ is non-vanishing if and only
if T is (a′,b′, c′)-compression generic. If the top Chern class is nonzero,
there cannot exist a non-vanishing section. �

5.5. Geometry of the Coppersmith-Winograd tensors

As we saw in Chapter 3, in practice, only tensors of minimal, or near minimal
border rank have been used to prove upper bounds on the exponent of
matrix multiplication. Call a tensor that gives a “good” upper bound for



5.5. Geometry of the Coppersmith-Winograd tensors 133

the exponent via the methods of [Str87, CW90], of high Coppersmith-
Winograd value or high CW-value for short. Ambainis, Filmus and LeGall
[AFLG15] showed that taking higher powers of TCW,q when q ≥ 5 cannot
prove ω < 2.30 by this method alone. They posed the problem of finding
additional tensors of high value. The work in this section was motivated by
their problem - to isolate geometric features of the Coppersmith-Winograd
tensors and find other tensors with such features. However, it turned out
that the features described here, with the exception of a large rank/border
rank ratio, actually characterize them. The study is incomplete because the
CW-value of a tensor also depends on its presentation, and in different bases
a tensor can have quite different CW-values. Moreover, even determining
the value in a given presentation still involves some “art” in the choice of a
good decomposition, choosing the correct tensor power, estimating the value
and probability of each block [Wil].

5.5.1. The Coppersmith-Winograd tensors. Recall the Coppersmith-
Winograd tensors

(5.5.1) Tq,cw :=

q∑
j=1

a0⊗bj⊗cj+aj⊗b0⊗cj+aj⊗bj⊗c0 ∈ Cq+1⊗Cq+1⊗Cq+1,

and

Tq,CW :=

q∑
j=1

(a0⊗bj⊗cj + aj⊗b0⊗cj + aj⊗bj⊗c0)

(5.5.2)

+ a0⊗b0⊗cq+1 + a0⊗bq+1⊗c0 + aq+1⊗b0⊗c0 ∈ Cq+2⊗Cq+2⊗Cq+2,

both of which have border rank q + 2.

Written as symmetric tensors (polynomials): Tq,cw = x0(
∑q

j=1 x
2
j ) and

Tq,CW = x0(
∑q

j=1 x
2
j + x0xq+1).

Proposition 5.5.1.1. [LM15] R(Tq,cw) = 2q + 1, R(Tq,CW ) = 2q + 3.

Proof. I first prove the lower bound for Tq,cw. Apply Proposition 5.3.1.1 to
show that the rank of the tensor is at least 2q−2 plus the rank of a0⊗b1⊗c1+
a1⊗b0⊗c1 +a1⊗b1⊗c0, which is 3. An analogous estimate provides the lower
bound for R(Tq,CW ). To show that R(Tq,cw) ≤ 2q+1 consider the following
rank 1 matrices, whose span contains T (A∗):

1) q+ 1 matrices with all entries equal to 0 apart from one entry on the
diagonal equal to 1,

2) q matrices indexed by 1 ≤ j ≤ q, with all entries equal to zero apart
from the four entries (0, 0), (0, j), (j, 0), (j, j) equal to 1. �
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Exercise 5.5.1.2: (2) Using the lower bound for Tq,cw, prove the lower
bound for Tq,CW .

In §5.6 we saw that R(TSTR,q) = q+1, and by Exercise 5.3.1.7, R(TSTR,q) =
2q. Strassen’s tensor has rank nearly twice the border rank, like the Coppersmith-
Winograd tensors. So one potential source of high CW-value tensors are
tensors with a large gap between rank and border rank.

5.5.2. Extremal tensors. Let A,B,C = Ca. There are normal forms for
curves in Seg(PA× PB × PC) up to order a− 1, namely

Tt = (a1+ta2+· · ·+ta−1aa+O(ta))⊗(b1+tb2+· · ·+ta−1ba+O(ta))⊗(c1+tc2+· · ·+ta−1ca+O(ta))

and if the aj , bj , cj are each linearly independent sets of vectors, call the
curve general to order a− 1.

Proposition 5.5.2.1. [LM15] Let T ∈ A⊗B⊗C = Ca⊗Ca⊗Ca. If there
exists a curve Tt that is general to order a such that

T (A∗) =
da−1Tt(A

∗)

(dt)a−1
|t=0,

then, for suitably chosen α ∈ A∗ and bases, T (A∗)T (α)−1 is the centralizer
of a regular nilpotent element.

Proof. Note that dqTt
(dt)q |t=0 = q!

∑
i+j+k=q+3 ai⊗bj⊗ck, i.e.,

dqTt(A
∗)

(dt)q
|t=0 =



xq−2 xq−3 · · · · · · x1 0 · · ·
xq−3 xq−4 · · · x1 0 · · · · · ·

...

... . .
.

x1 0 · · ·
0 0 · · ·
...

...
0 0 · · ·


.

In particular, each space contains the previous ones, and the last equals
xa xa−1 · · · x1

xa−1 xa−2 · · · x1 0
...

...
. . .

... x1

x1 0


which is isomorphic to the centralizer of a regular nilpotent element. �
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This provides another, explicit proof that the centralizer of a regular
nilpotent element belongs to the closure of diagonalizable algebras.

Note that the Coppersmith-Winograd tensor Ta−2,CW satisfies PT (A∗)∩
Seg(PB × PC) = [X] is a single point, and PT̂[X]Seg(PB × PC) ∩ PT (A∗)

is a Pa−2. It turns out these properties characterize it among 1A-generic
tensors:

Theorem 5.5.2.2. [LM15] Let T ∈ A⊗B⊗C = Ca⊗Ca⊗Ca be of border
rank a > 2. Assume PT (A∗) ∩ Seg(PB × PC) = [X] is a single point, and

PT̂[X]Seg(PB × PC) ⊃ PT (A∗). Then T is not 1A-generic.

If

(i) PT (A∗) ∩ Seg(PB × PC) = [X] is a single point,

(ii) PT̂[X]Seg(PB × PC) ∩ PT (A∗) is a Pa−2, and

(iii) T is 1A-generic,

then T is isomorphic to the Coppersmith-Winograd tensor Ta−2,CW .

Proof. For the first assertion, no element of PT̂[X]Seg(PB × PC) has rank
greater than two.

For the second, I first show that T is 1-generic. Choose bases such
that X = b1⊗c1, then, after modifying the bases, the Pa−2 must be the
projectivization of

(5.5.3) E :=


x1 x2 · · · xa−1 0
x2
...

xa−1

0

 .

(Rank one tangent vectors cannot appear by property (i).)

Write T (A∗) = span{E,M} for some matrix M . As T is 1A-generic
we can assume that M is invertible. In particular, the last row of M must
contain a nonzero entry. In the basis order where M corresponds to T (αa),
the space of matrices T (B∗) has triangular form and contains matrices with
nonzero diagonal entries. The proof for T (C∗) is analogous, hence T is
1-generic.

By Proposition 5.1.5.1 we may assume that T (A∗) is contained in the
space of symmetric matrices. Hence, we may assume that E is as above and
M is a symmetric matrix. By further changing the bases we may assume
that M has:

(1) the first row and column equal to zero, apart from their last entries
that are nonzero (we may assume they are equal to 1),
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(2) the last row and column equal to zero apart from their first entries.

Hence the matrix M is determined by a submatrix M ′ of rows and columns
2 to a−1. As T (A∗) contains a matrix of maximal rank, the matrix M ′ must
have rank a − 2. We can change the basis α2, . . . , αa−1 in such a way that
the quadric corresponding to M ′ equals x2

2+· · ·+x2
a−1. This will also change

the other matrices, which correspond to quadrics x1xi for 1 ≤ i ≤ a−1, but
will not change the space that they span. We obtain the tensor Ta−2,CW .

�

5.5.3. Compression extremality. In this subsection I discuss tensors for
which the border substitution method fails miserably. In particular, al-
though the usual substitution method correctly determines the rank of the
Coppersmith-Winograd tensors, the tensors are special in that they are
nearly characterized by the failure of the border substitution method to
give lower border rank bounds.

Definition 5.5.3.1. A 1-generic, tensor T ∈ A⊗B⊗C is said to be maxi-
mally compressible if there exists hyperplanes HA ⊂ A∗, HB ⊂ B∗, HC ⊂ C∗
such that T |HA×HB×HC= 0.

If T ∈ S3A ⊂ A⊗A⊗A, T is maximally symmetric compressible if there
exists a hyperplane HA ⊂ A∗ such that T |HA×HA×HA= 0.

Recall from Proposition 5.1.5.1 that a tensor T ∈ Ca⊗Ca⊗Ca that is
1-generic and satisfies Strassen’s equations, with suitable choices of bases
becomes a tensor in S3Ca.

Theorem 5.5.3.2. [LM15] Let T ∈ S3Ca be 1-generic and maximally sym-
metric compressible. Then T is one of:

(1) Ta−1,cw

(2) Ta−2,CW

(3) T = a1(a2
1 + · · · a2

a).

In particular, the only 1-generic, maximally symmetric compressible, mini-
mal border rank tensor in Ca⊗Ca⊗Ca is isomorphic to Ta−2,CW .

Proof. Let a1 be a basis of the line HA
⊥ ⊂ Ca. Then T = a1Q for some

Q ∈ S2Ca. By 1-genericity, the rank of Q is either a or a − 1. If the rank
is a, there are two cases, either the hyperplane HA is tangent to Q, or it
intersects it transversely. The second is case (3). The first has a normal form
a1(a1aa + a2

2 + · · ·+ a2
a−1), which, when written as a tensor, is Ta−2,CW . If

Q has rank a−1, by 1-genericity, ker(Q1,1) must be in HA and thus we may
choose coordinates such that Q = (a2

2 + · · ·+ a2
a), but then T , written as a

tensor, is Ta−1,cw. �
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Proposition 5.5.3.3. [LM15] The Coppersmith-Winograd tensor Ta−2,CW

is the unique up to isomorphism 1-generic tensor in Ca⊗Ca⊗Ca that is
maximally compressible and satisfies any of the following:

(1) Strassen’s equations

(2) cyclic Z3-invariance

(3) has border rank a.

Proof. Let a1, . . . , aa be a basis of A with HA = a1
⊥ and similarly for

HB = b1
⊥ and HC = c1

⊥. Thus (allowing re-ordering of the factors A,B,C)
T = a1⊗X+b1⊗Y +c1⊗Z where X ∈ B⊗C, Y ∈ A⊗C, Z ∈ A⊗B. Now no
α ∈ HA can be such that T (α) is of maximal rank, as for any β1, β2 ∈ HB,
T (α, βj) ⊂ C{c1}. So T (a1), T (b1), T (c1) are all of rank a, where a1 is the
dual basis vector to a1 etc. After a modification, we may assume X has
rank a.

Let (g, h, k) ∈ GL(A) × GL(B) × GL(C). We may normalize X = Id,
which forces g = h. We may then rewrite X,Y, Z such that Y is full rank
and renormalize

X = Y =

(
1
3

Ida−1

)
,

which forces h = k and uses up our normalizations.

Now we use any of the above three properties. The weakest is the second,
but by Z3-invariance, if X = Y , we must have Z = X = Y as well and T
is the Coppersmith-Winograd tensor. The other two imply the second by
Proposition 5.1.5.1. �

Remark 5.5.3.4. Theorem 5.5.3.2 and Proposition 5.5.3.3 were motivated
by the suggestion in [AFLG15] to look for tensors to replace the Coppersmith-
Winograd tensor in Strassen’s laser method. We had hoped to isolate geo-
metric properties of the tensor and then find other tensors with similar prop-
erties, to then test the method on. However, the properties we found, with
the exception of a large rank/border rank ratio, essentially characterized the
tensors.

5.6. Ranks and border ranks of Structure tensors of algebras

In this section I discuss ranks and border ranks of a class of tensors that
appear to be more tractable than arbitrary tensors: structure tensors of
algebras. It turns out this class is larger than appears at first glance: as
explained in §5.6.1, all tensors in A⊗B⊗C = Cm⊗Cm⊗Cm that are 1A
and 1B-generic are equivalent to structure tensors of algebras with unit.
In §5.6.2, I show structure tensors corresponding to algebras of the form
C[x1, . . . , xn]/I, where I is an ideal whose zero set is finite, are equivalent
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to symmetric tensors and give several examples. (For those familiar with the
language, these are structure tensors of coordinate rings of zero dimensional
affine schemes, see §10.1.1.) The algebra structure can facilitate the appli-
cation of the substitution and border substitution methods, as is illustrated
in §5.6.3 and §5.6.4 respectively. In particular, using algebras of the form
C[x1, . . . , xn]/I, I present examples of tensors with rank to border rank ratio
approaching three. I conclude with Bläser and Lysikov’s study of structure
tensors of algebras that have minimal border rank.

Throughout this section A denotes a finite dimensional associative alge-
bra and TA ∈ A∗⊗A∗⊗A denotes its structure tensor as discussed in §3.5.1.

5.6.1. Algebras and minimal border rank tensors. The following re-
duction theorem is due to Bläser and Lysikov:

Theorem 5.6.1.1. [BL16] Let A,A1 be algebras of dimension m with

structure tensors TA, TA1 . Then TA ⊂ GL×3
m · TA1 if and only if TA ⊂

GLm · TA1 .

Proof. Write Cm ' A ' A1 as a vector space, so TA, TA1 ∈ Cm∗⊗Cm∗⊗Cm

Write TA = limt→0 Tt, where Tt := (ft, gt, ht) · TA1 , with ft, gt, ht curves in
GLm. Let e ∈ A denote the identity element. Then Tt(e, y) = htTA1(ft

−1e, gt
−1y) =

y +O(t). Write Lft−1e : A → A for ft
−1e considered as a linear map. Then

htLft−1egt
−1 = Id +O(t) so we may replace gt by g̃t := htLft−1e. Similarly,

using that Tt(y, e) = y+O(t), we may replace ft by f̃t := htRg̃t−1e, where R
is used to remind us that it corresponds to right multiplication in the algebra,
so our new curve is TA = limt→0((Rg̃t−1e)

−1ht
−1, (Lft−1e)

−1ht
−1, ht) · TA1 .

Finally, noting that for any linear maps X,Y ∈ End(Cm), TA(Xy, Y z) =
XTA(y, z)Y , and taking Xt = Lft−1e

−1, Yt = Rg̃t−1e
−1, our new action is by

htLft−1eRg̃t−1e ∈ GLm ⊂ GL×3
m . �

Proposition 5.6.1.2. [BL16] Let T ∈ A⊗B⊗C = Cm⊗Cm⊗Cm be 1A
and 1B generic. Then there exists an algebra A with unit such that T is
equivalent to TA, i.e., they are in the same GL×3

m -orbit.

Proof. Take α ∈ A∗, β ∈ B∗ with T (α) : B∗ → C and T (β) : A∗ → C of
full rank. Give C the algebra structure c1 ·c2 := T (T (β)−1c1, T (α)−1c2) and
note that the structure tensor of this algebra is in the same GL×3

m -orbit as
T . �

Exercise 5.6.1.3: (1) Verify that the product above indeed gives C the
structure of an algebra with unit.

Combining Theorem 5.6.1.1 and Proposition 5.6.1.2, we obtain:
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Theorem 5.6.1.4. [BL16] Let T ∈ A⊗B⊗C = Cm⊗Cm⊗Cm be 1A and
1B generic. Take α ∈ A∗, β ∈ B∗ with T (α) ∈ B⊗C, T (β) ∈ A⊗C of

full rank, and use them to construct an equivalent tensor T̃ ∈ C∗⊗C∗⊗C.

Then R(T ) = m, i.e., T ∈ GL(A)×GL(B)×GL(C) ·M⊕m〈1〉 , if and only if

T̃ ∈ GL(C) ·M⊕m〈1〉 .

Recall the Comon conjecture from §4.1.4 that posits that for symmetric
tensors, R(T ) = RS(T ). One can define a border rank version:

Conjecture 5.6.1.5. [Border rank Comon conjecture] [BGL13] Let T ∈
S3Cm ⊂ (Cm)⊗3. Then R(T ) = RS(T ).

Theorem 5.6.1.4 combined with Proposition 5.1.5.1, which says that min-
imal border rank 1-generic tensors are symmetric, implies:

Proposition 5.6.1.6. The border rank Comon conjecture holds for 1-generic
tensors of minimal border rank.

5.6.2. Structural tensors of algebras of the form C[x1, . . . , xn]/I. Let
I ⊂ C[x1, . . . , xn] be an ideal whose zero set in affine space is finite, so that
AI := C[x1, . . . , xn]/I is a finite dimensional algebra. Let {pI} be a basis
of AI with dual basis {p∗I} We can write the structural tensor of AI as

TAI =
∑

pI ,pJ∈AI

p∗I⊗p∗J⊗(pIpJ mod I).

This tensor is transparently in S2A∗⊗A.

Given an algebra A = AI ∈ S2A∗⊗A defined by an ideal as above,
note that since TA(1, ·) ∈ End(A) and TA(·, 1) ∈ End(A) have full rank and
the induced isomorphism B∗ → C is just (A∗)∗ → A, and similarly for the
isomorphism A∗ → C, and since the algebra is abelian Strassen’s equations
are satisfied, so by Proposition 5.1.5.1 there exists a choice of bases such
that TA ∈ S3A.

Proposition 5.6.2.1. [Michalek and Jelisiejew, personal communication]
Structural tensors of algebras of the formA = C[x1, . . . , xn]/I are symmetric
if either of the following equivalent conditions hold:

• A∗ = A · f for some f ∈ A∗, where for a, b ∈ A, (a · f)(b) := f(ab).

• TA is 1-generic.

Proof. We have already seen that if TA is 1-generic and satisfies Strassen’s
equations, then TA is symmetric.

The following are clearly equivalent for an element f ∈ A∗:
1) TA(f) ∈ A∗ ⊗A∗ is of full rank,

2) the pairing A⊗A → C given by (a, b) 7→ f(ab) is non-degenerate,
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3) Af = A∗. �

Remark 5.6.2.2. The condition that A∗ = A · f for some f ∈ A∗ is
called Gorenstein. There are numerous definitions of Gorenstein. One that
is relevant for Chapter 10 is that A is Gorenstein if and only if A is the
annhilator of some polynomial D in the dual space, i.e., D ∈ C[ ∂

∂x1
, . . . , ∂

∂xn
].

Example 5.6.2.3. [Zui15] Consider A = C[x]/(x2), with basis 1, x, so

TA = 1∗⊗1∗⊗1 + x∗⊗1∗⊗x+ 1∗⊗x∗⊗x.
Writing e0 = 1∗, e1 = x∗ in the first two factors and e0 = x, e1 = 1 in the
third,

TA = e0⊗e0⊗e1 + e1⊗e0⊗e0 + e0⊗e1⊗e0

That is, TA = TWState is a general tangent vector to Seg(PA× PB × PC).

More generally, consider A = C[x1, . . . , xn]/(x2
1, . . . , x

2
n), with basis xI =

xi1 · · ·xi|I| , where 1 ≤ i1 < · · · < i|I| ≤ n, and by convention x∅ = 1. Then

TA =
∑

I,J⊂[n]|I∩J=∅

x∗I⊗x∗J⊗xI∪J .

Similar to above, let eI = x∗I in the first two factors and eI = x[n]\I in
the third, we obtain

TA =
∑

{I,J,K| I∪J∪K=[n],
|I|+|J|+|K|=n}

eI⊗eJ⊗eK

so we explicitly see TA ∈ S3C2n .

Exercise 5.6.2.4: (2) Show that for A = C[x1, . . . , xn]/(x2
1, . . . , x

2
n), TA '

T⊗nWState, where for T ∈ A⊗B⊗C, consider T⊗n ∈ (A⊗n)⊗(B⊗n)⊗(C⊗n) as
a three-way tensor.

Exercise 5.6.2.5: (2) Let A = C[x]/(xn). Show that TA(A)TA(1)−1 ⊂
End(A) corresponds to the centralizer of a regular nilpotent element, so
in particular R(TA) = n and R(TA) = 2n − 1 by Exercise 5.3.1.8 and
Proposition 5.1.4.6.

Exercise 5.6.2.6: (2) Fix natural numbers d1, . . . , dn. LetA = C[x1, . . . , xn]/(xd1
1 , . . . , x

dn
n ).

Find an explicit identification A∗ → A that renders TA ∈ S3A. }

Example 5.6.2.7. [Zui15] Consider the tensor

TWState,k = a1,0⊗ · · ·⊗ak−1,0⊗ak,1+a1,0⊗ · · ·⊗ak−2,0⊗ak−1,1⊗ak,0+· · ·+a1,1⊗a2,0⊗ · · ·⊗ak,0
that corresponds to a general tangent vector to Seg(P1×· · ·×P1) ∈ P((C2)⊗k).
(Note that TWState = TWState,3.) This tensor is called the generalized W -

state by physicists . LetAd,N = (C[x]/(xd))⊗N ' C[x1, . . . , xN ]/(xd1, . . . , x
d
N ).

Exercise 5.6.2.8: (2) Show that TAd,N = (TWState,d)
⊗N .
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Example 5.6.2.9 (The Coppersmith-Winograd tensor). [LM, BL16] Con-
sider the algebra

ACW,q = C[x1, . . . , xq]/(xixj , x
2
i − x2

j , x
3
i , i 6= j)

Let {1, xi, [x2
1]} be a basis of A, where [x2

1] = [x2
j ] for all j. Then

TACW,q =1∗⊗1∗⊗1 +

q∑
i=1

(1∗⊗x∗i⊗xi + x∗i⊗1∗⊗xi)

+ x∗i⊗x∗i⊗[x2
1] + 1∗⊗[x2

1]∗⊗[x2
1] + [x2

1]∗⊗1∗⊗[x2
1].

Set e0 = 1∗, ei = x∗i , eq+1 = [x2
1]∗ in the first two factors and e0 = [x2

1],
ei = xi, eq+1 = 1 in the third to obtain

TACW,q =TCW,q = e0⊗e0⊗eq+1 +

q∑
i=1

(e0⊗ei⊗ei + ei⊗e0⊗ei + ei⊗ei⊗e0)

+ e0⊗eq+1⊗e0 + eq+1⊗e0⊗e0,

so we indeed obtain the Coppersmith-Winograd tensor.

When is the structure tensor of AI of minimal border rank? Note that
if T ∈ Cm⊗Cm⊗Cm is the structure tensor of an algebra A that is a degen-
eration of (C[x]/(x))⊕m (whose structure tensor is M⊕m〈1〉 ), then R(T ) = m.

5.6.3. The substitution method applied to structure tensors of al-
gebras. Let A be a finite dimensional associative algebra. The radical of
A is the intersection of all maximal left ideals and denoted Rad(A). When
A is abelian, the radical is often call the nilradical.

Exercise 5.6.3.1: (2) Show that every element of Rad(A) is nilpotent and
that if A is abelian, Rad(A) consists exactly of the nilpotent elements of A.
(This exercise requires knowledge of standard notions from algebra.) }

Theorem 5.6.3.2. [Blä00, Thm. 7.4] For any integers p, q ≥ 1,

R(TA) ≥ dim(Rad(A)p) + dim(Rad(A)q) + dimA− dim(Rad(A)p+q−1).

For the proof we will need the following Lemma, whose proof I skip:

Lemma 5.6.3.3. [Blä00, Lem. 7.3] Let A be a finite dimensional algebra,
let U, V ⊆ A be vector subspaces such that U + Rad(A)p = A and V +
Rad(A)q = A. Then 〈UV 〉+ Rad(A)p+q−1 = A.

Proof of Theorem 5.6.3.2. Use Proposition 5.4.1.2 with

Ã = (Rad(A)p)⊥ ⊂ A∗,

B̃ = (Rad(A)q)⊥ ⊂ A∗, and

C̃ = Rad(A)p+q−1 ⊂ A.
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Then observe that any A′ ⊂ A\Rad(A)p, B′ ⊂ A\Rad(A)q, can play the
roles of U, V in the Lemma, so TA(A′, B′) 6⊂ Rad(A)p+q−1. Since C ′ ⊂
A∗\(Rad(A)p+q−1)⊥, we conclude. �

Remark 5.6.3.4. Theorem 5.6.3.2 illustrates the power of the (rank) sub-
stitution method over the border substitution method. By merely prohibit-
ing a certain Zariski closed set of degenerations, we can make TA non-
compressible. Without that prohibition, TA can indeed be compressed in
general.

Remark 5.6.3.5. Using similar (but easier) methods, one can show that if
A is simple of dimension a, then R(TA) ≥ 2a− 1, see, e.g., [BCS97, Prop.
17.22]. More generally, the Alder-Strassen Theorem [AS81] states that if
there are m maximal two-sided ideals in A, then R(TA) ≥ 2a−m

Theorem 5.6.3.6. [Bla01a] LetAtrunc,d := C[x1, . . . , xn]/(SdCn) =
⊕d−1

j=0 S
jCn.

Then

R(TAtrunc,d) ≥ 3

(
n+ d

d− 1

)
−
(
n+ bd2c
bd2c − 1

)
−
(
n+ dd2e
dd2e − 1

)
.

Proof. Apply Theorem 5.6.3.2. Here Rad(Atrunc,d) is a vector space com-

plement to {Id} inAtrunc,d, so it has dimension
(
n+d
d−1

)
−1 and Rad(Atrunc,d)k =∑d−1

j=k S
jCn which has dimension

(
n+d
d−1

)
−
(
n+k
k−1

)
. �

In §5.6.5 we will see that any algebra C[x1, . . . , xn]/I where I is an
ideal generated by monomials, gives rise to a tensor of minimal border rank.
Thus, as was observed by Bläser:

Corollary 5.6.3.7 (Bläser, personal communication). Let d = d(n) < n be
an integer valued function of n. Then

R(TAtrunc,d)

R(TAtrunc,d)
≥ 3− o(n).

If d = bn2 c, then the error term is on the order of 1/ dimAtrunc,d.
Theorem 5.6.3.8. [Zui15] R(T⊗nWState) = 3 · 2n − o(2n).

Proof. We have A = C[x1, . . . , xn]/(x2
1, . . . , x

2
n), so the degree n−s compo-

nent ofA isAs = span
⋃
S⊂[n]{x1 · · · x̂i1 · · · x̂is · · ·xn} = span

⋃
S⊂[n]{

x1······xn
xi1 ···xis

}.
In particular dimAs =

(
n
s

)
.
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Note that Rad(A)m = ⊕j≥mAj . Recall that
∑n

j=0

(
n
j

)
= 2n. Take p = q

in Theorem 5.6.3.2. We have

R(TA) ≥ 2n + 2
n∑
j=p

(
n

j

)
−

n∑
k=2p−1

(
n

k

)

= 3 · 2n − 2

p∑
j=0

(
n

j

)
−
n−2p+1∑
k=0

(
n

k

)
.

Write p = εn, for some 0 < ε < 1. Since
∑εn

j=0

(
n
j

)
≤ 2(−ε log(ε)−(1−ε) log(1−ε))n

(see §7.5.1), taking, e.g., ε = 1
3 gives the result. �

Corollary 5.6.3.9. [Zui15]
R(T⊗nWState)

R(T⊗nWState)
≥ 3 − o(1), where the right hand

side is viewed as a function of n.

More generally, Zuiddam shows, for T⊗nWState,k ∈ (Cn)⊗k:

Theorem 5.6.3.10. [Zui15] R(T⊗nWState,k) = k2n − o(2n).

Regarding the maximum possible ratio for rank to border rank, there is
the following theorem applicable even to X-rank and X-border rank:

Theorem 5.6.3.11. [BT15] Let X ⊂ PV be a complex projective variety
not contained in a hyperplane. Let RX,max denote the maximum X-border
rank of a point in PV and RX,max the maximum possible X-rank. Then
RX,max ≤ 2RX,max.

Proof. Let U ⊂ PV be a Zariski dense open subset of points of rank exactly
RX,max. Let q ∈ PV be any point and let p be any point in U . The line L
through q and p intersects U at another point p (in fact, at infinitely many
more points). Since p and p′ span L, q is a linear combination of p and p′,
thus RX(q) ≤ RX(p) + RX(p′) �

Theorem 5.6.3.11 implies that the maximal possible rank of any tensor

in Cm⊗Cm⊗Cm is at most 2dm3−1
3m−2e, so for any concise tensor the maximal

rank to border rank ratio is bounded above by approximately 2m
3 , which is

likely far from sharp.

5.6.4. The border substitution method and tensor powers of Tcw,2.

Lemma 5.6.4.1. [BL16] For any tensor T1 ∈ A1⊗B1⊗C1, and any q ≥ 2,

minα∈(A⊗A1)∗\{0}(rank(Tcw,q⊗T1) |α⊗B∗⊗C∗) ≥ 2 minα1∈A1\{0}(rank(T1 |α1⊗B∗1⊗C∗1 )).

Proof. Write α = 1⊗α0 +
∑q

j=1 e
∗
j⊗αj ∈ (A⊗A1)∗ for some α0, αj ∈ A∗1. If

all the αj are zero for 1 ≤ j ≤ q, then Tcw,q(e
∗
0⊗α0) is the reordering and
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grouping of
q∑
i=1

(ei⊗ei)⊗T1(α0)

which has rank (as a linear map) at least q ·rank(T1(α0)). Otherwise without
loss of generality, assume α1 6= 0. Note that Tcw,q(e

∗
1⊗α1) is the reordering

and grouping of
e1⊗e0⊗T1(α1) + e0⊗e1⊗T1(α1)

which has rank two, and is linearly independent of any of the other factors
appearing in the image, so the rank is at least 2 · rank(T1(α0)). �

Theorem 5.6.4.2. [BL16] For all q ≥ 2, consider T⊗ncw,q ∈ C(q+1)n⊗C(q+1)n⊗C(q+1)n .

Then R(T⊗ncw,q) ≥ (q + 1)n + 2n − 1.

Proof. Note that T⊗ncw,q = Tcw,q⊗T⊗(n−1)
cw,q . Apply the Lemma iteratively and

use Corollary 5.4.1.4. �

Remark 5.6.4.3. As was pointed out in [BCS97, Rem. 15.44] if the as-
ymptotic rank (see Definition 3.4.6.1) of Tcw,2 is the minimal 3, then the
exponent of matrix multiplication is 2. The bound in the theorem does not
rule this out.

5.6.5. Smoothable ideals and tensors of minimal border rank. In
§5.6.1 we saw that classifying 1A and 1B generic tensors of minimal border
rank is equivalent to the potentially simpler problem of classifying algebras
in the GLm-orbit closure of M⊕m〈1〉 . We can translate this further when the

algebras are of the form C[x1, . . . , xN ]/I for some ideal I. The question
then becomes if I is a degeneration of an ideal whose zero set consists of m
distinct points (counted with multiplicity).

The degenerations of ideals have been well-studied, and we are interested
in the degeneration of the ideal of m distinct points to other ideals.

For example, the following algebras have the desired property and thus
their structure tensors are of minimal border rank (see [CEVV09]):

• dim(A) ≤ 7,

• A is generated by two elements,

• the radical of A satisfies dim(Rad(A)2/Rad(A)3) = 1,

• the radical ofA satisfies dim(Rad(A)2/Rad(A)3) = 2, dim Rad(A)3 ≤
2 and Rad(A)4 = 0.

An ideal I is a monomial ideal if it is generated by monomials (in some
coordinate system). Choose an order on monomials such that if |I| > |J |,
then xI < xJ . Given f ∈ C[x1, . . . , xn], define in(f) to be the lowest
monomial term of f , the initial term of f . Given an ideal I, define its initial
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ideal (with respect to some chosen order) as (in(f) | f ∈ I). An ideal can
be degenerated to its initial ideal.

Proposition 5.6.5.1. [CEVV09] Monomial ideals are smoothable, so if I
is a monomial ideal then the structure tensor of C[x1, . . . , xn]/I is of minimal
border rank.

Proof. Write I = (xI1 , . . . , xIs) for the ideal, where Iα = (iα,1, . . . , iα,|Iα|),
and let m = dimC[x1, . . . , xN ]/I. Take a sequence a1, a2, ... of distinct
elements of C. Define

fq := ΠN
j=1(xj − a1)(xj − a2) · · · (xj − ais,q).

Note that in(fq) = xIq . Let J be the ideal generated by the fq. Then
in(J ) ⊃ (in(f1), . . . , in(fs)) = I, so dimC[x1, . . . , xN ]/J ≤ m. But now
for any of the xIq ∈ I, there each fq vanishes at (aIq,1 , . . . , aIq,N ) ∈ CN .
Thus J must be the radical ideal vanishing at the s points and have initial
ideal I, so I is smoothable. �





Chapter 6

Valiant’s hypothesis I:
permanent v.
determinant and the
complexity of
polynomials

Recall from the introduction that for a polynomial P , the determinantal
complexity of P , denoted dc(P ), is the smallest n such that P is an affine
linear projection of the determinant, and Valiant’s hypothesis 1.2.4.2 that
dc(permm) grows faster than any polynomial in m. In this chapter I discuss
the conjecture, progress towards it, and its Geometric Complexity Theory
(GCT) variant.

I begin, in §6.1, with a discussion of circuits, context for Valiant’s
hypothesis, definitions of the complexity classes VP and VNP, and the
strengthening of Valiant’s hypothesis of [MS01] that is more natural for
algebraic geometry and representation theory. In particular, I explain why
it might be considered as an algebraic analog of the famous P 6= NP con-
jecture (although there are other conjectures in the Boolean world that are
more closely related to it).

Our study of matrix multiplication indicates a strategy for Valiant’s
hypothesis: look for polynomials on the space of polynomials that vanish on
the determinant and not on the permanent, and to look for such polynomials
with the aid of geometry and representation theory. Here there is extra

147
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geometry available: a polynomial P ∈ SdV defines a hypersurface

Zeros(P ) := {[α] ∈ PV ∗ | P (α) = 0} ⊂ PV ∗.

Hypersurfaces in projective space have been studied for hundreds of years
and much is known about them.

In §6.2 I discuss the simplest polynomials on spaces of polynomials, the
catalecticants that date back to Sylvester.

One approach to Valiant’s hypothesis discussed at several points in this
chapter is to look for pathologies of the hypersurface Zeros(detn) that per-
sist under degeneration, and that are not shared by Zeros(`n−m permm).
The simplest pathology of a hypersurface is its singular set. I discuss the
singular loci of the permanent and determinant, and make general remarks
on singularities in §6.3.

I then present the classical and recent lower bounds on dc(permm) of
von zur Gathen and Alper-Bogart-Velasco in §6.3.4. These lower bounds
on dc(permm) rely on a key regularity result observed by von zur Gathen.
These results do not directly extend to the measure dc(permm) defined in
§6.1.6 because of the regularity result.

The best general lower bound on dc(permm), namely dc(permm) ≥ m2

2 ,
comes from local differential geometry: the study of Gauss maps. It is
presented in §6.4. This bound extends to dc(permm) after some work. The
extension is presented in §6.5. To better utilize geometry and representation
theory, I describe the symmetries of the permanent and determinant in §6.6.
Given P ∈ SdV , let GP := {g ∈ GL(V ) | g · P = P} denote the symmetry
group of the polynomial P .

Since det(AXB) = det(X) if A,B are n× n matrices with determinant
one, and det(XT ) = det(X), writing V = E⊗F with E,F = Cn, we have a
map

(SL(E)× SL(F )) o Z2 → Gdetn

where the Z2 is transpose and SL(E) is the group of linear maps with
determinant equal to one.

Similarly, letting TSLE ⊂ SL(E) denote the diagonal matrices, we have
a map

[(TSLE oSn)× (TSLF oSn)] o Z2 → Gpermn
.

In §6.6, I show that both maps are surjective.

Just as it is interesting and useful to study the difference between rank
and border rank, it is worthwhile to study the difference between dc and dc,
which I discuss in §6.7.

One situation where there is some understanding of the difference be-
tween dc and dc is for cubic surfaces: a smooth cubic polynomial P in three
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variables satisfies dc(P ) = 3, and thus every cubic polynomial Q in three
variables satisfies dc(Q) = 3. I give an outline of the proof in §6.8. Finally,
although it is not strictly related to complexity theory, I cannot resist a brief
discussion of determinantal hypersurfaces - those degree n polynomials P
with dc(P ) = n, which I also discuss in in §6.8.

In this chapter I emphasize material that is not widely available to com-
puter scientists, and do not present proofs that already have excellent ex-
positions in the literature, such as the completeness of the permanent for
VNP.

This chapter may be read mostly independently of chapters 2-5.

6.1. Circuits and definitions of VP and VNP

In this section I give definitions of VP and VNP via arithmetic circuits
and show (detn) ∈ VP. I also discuss why Valiant’s hypothesis is a cousin
of P 6= NP, namely I show that the permanent can compute the number of
perfect matchings of a bipartite graph, something considered difficult, while
the determinant can be computed by a polynomial size circuit.

6.1.1. The permanent can do things considered difficult. A stan-
dard problem in graph theory, for which the only known algorithms are
exponential in the size of the graph, is to count the number of perfect
matchings of a bipartite graph, that is, a graph with two sets of vertices
and edges only joining vertices from one set to the other.
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Figure 6.1.1. A bipartite graph, Vertex sets are {A,B,C} and {α, β, γ}.

A perfect matching is a subset of the edges such that each vertex shares
an edge from the subset with exactly one other vertex.

To a bipartite graph one associates an incidence matrix xij , where xij = 1
if an edge joins the vertex i above to the vertex j below and is zero otherwise.
The graph above has incidence matrix1 1 0

0 1 1
0 1 1

 .
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Figure 6.1.2. Two perfect matchings of the graph from Figure 6.1.1.

A perfect matching corresponds to a matrix constructed from the in-
cidence matrix by setting some of the entries to zero so that the resulting
matrix has exactly one 1 in each row and column, i.e., is a matrix obtained
by applying a permutation to the columns of the identity matrix.

Exercise 6.1.1.1: (1) Show that if x is the incidence matrix of a bipartite
graph, then permn(x) indeed equals the number of perfect matchings.

For example, perm3

1 1 0
0 1 1
0 1 1

 = 2.

Thus a classical problem: determine the complexity of counting the
number of perfect matchings of a bipartite graph (which is complete for the
complexity class ]P, see [BCS97, p. 574]), can be studied via algebra -
determine the complexity of evaluating the permanent.

6.1.2. Circuits.

Definition 6.1.2.1. An arithmetic circuit C is a finite, directed, acyclic
graph with vertices of in-degree 0 or 2 and exactly one vertex of out-degree
0. The vertices of in-degree 0 are labeled by elements of C ∪ {x1, . . . , xn},
and called inputs. Those of in-degree 2 are labeled with + or ∗ and are
called gates. If the out-degree of v is 0, then v is called an output gate. The
size of C is the number of edges.

To each vertex v of a circuit C, associate the polynomial that is computed
at v, which will be denoted Cv. In particular the polynomial associated with
the output gate is called the polynomial computed by C.

At first glance, circuits do not look geometrical, as they depend on a
choice of coordinates. While computer scientists always view polynomials
as being given in some coordinate expression, in geometry one is interested in
properties of objects that are independent of coordinates. These perspectives
are compatible because with circuits one is not concerned with the precise
size of a circuit, but its size up to, e.g., a polynomial factor. Reducing
the size at worst by a polynomial factor, we can think of the inputs to our
circuits as arbitrary affine linear or linear functions on a vector space.
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yx

+

*

*

Figure 6.1.3. Circuit for (x+ y)3

6.1.3. Arithmetic circuits and complexity classes.

Definition 6.1.3.1. Let d(n), N(n) be polynomials and let fn ∈ C[x1, . . . , xN(n)]≤d(n)

be a sequence of polynomials. We say (fn) ∈ VP if there exists a sequence
of circuits Cn of size polynomial in n computing fn.

Often the phrase “there exists a sequence of circuits Cn of size polynomial
in n computing fn” is abbreviated “there exists a polynomial sized circuit
computing (fn)”.

The class VNP, which consists of sequences of polynomials whose coef-
ficients are “easily” described, has a more complicated definition:

Definition 6.1.3.2. A sequence (fn) is in VNP if there exists a polynomial
p and a sequence (gn) ∈ VP such that

fn(x) =
∑

ε∈{0,1}p(n)

gn(x, ε).

One may think of the class VP as a bundle over VNP where elements of
VP are thought of as sequences of maps, say gn : CN(n) → C, and elements
of VNP are projections of these maps by eliminating some of the variables
by averaging or “integration over the fiber”. In algebraic geometry, it is well
known that projections of varieties can be far more complicated than the
original varieties. See [Bas14] for more on this perspective.

The class VNP is sometimes described as the polynomial sequences
that can be written down “explicitly”. Mathematicians should take note
that the computer science definition of explicit is different from what a
mathematician might use. For example, as pointed out in [FS13a], roots of
unity are not explicit because using them computationally typically requires
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expanding them as a decimal with exponential precision, which is inefficient.
On the other hand, the lexicographically first function f : {0, 1}blog lognc →
{0, 1} with the maximum possible circuit complexity among all functions
on blog log nc bits is explicit because, while seemingly unstructured, this
function can be writtend down efficiently via brute-force. See [FS13a] for
the definition.

Definition 6.1.3.3. One says that a sequence (gm(y1, . . . , yM(m))) can be
polynomially reduced to (fn(x1, . . . , xN(n))) if there exists a polynomial
n(m) and affine linear functions X1(y1, . . . , yM ), . . . , XN (y1, . . . , yM ) such
that gm(y1, . . . , yM(m)) = fn(X1(y), . . . , XN(n)(y)). A sequence (pn) is hard
for a complexity class C if (pn) can be reduced to every (fm) ∈ C, and it is
complete for C if furthermore (pn) ∈ C.

Exercise 6.1.3.4: (1) Show that every polynomial of degree d can be re-
duced to xd.

Theorem 6.1.3.5. [Valiant] [Val79] (permm) is complete for VNP.

There are many excellent expositions of the proof, see, e.g. [BCS97] or
[Gat87].

Thus Conjecture 1.2.1.1 is equivalent to:

Conjecture 6.1.3.6. [Valiant][Val79] There does not exist a polynomial
size circuit computing the permanent.

Now for the determinant:

Proposition 6.1.3.7. (detn) ∈ VP.

Remark 6.1.3.8. detn would be VP complete if dc(pm) grew no faster
than a polynomial for all sequences (pm) ∈ VP.

One can compute the determinant quickly via Gaussian elimination: one
uses the group to put a matrix in a form where the determinant is almost
effortless to compute (the determinant of an upper triangular matrix is just
the product of its diagonal entries). However this algorithm as presented is
not a circuit (there are divisions and one needs to check if pivots are zero).
After a short detour on symmetric polynomials, I prove Proposition 6.1.3.7
in §6.1.5.

6.1.4. Symmetric polynomials. An ubiquitous class of polynomials are
the symmetric polynomials: let SN act on CN by permuting basis ele-
ments, which induces an action on the polynomial ring C[x1, . . . , xN ]. Let
C[x1, . . . , xN ]SN denote the subspace of polynomials invariant under this
action. What follows are standard facts and definitions about symmetric
functions. For proofs, see, e.g., [Mac95, §I.2].
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The elementary symmetric functions (or elementary symmetric polyno-
mials) are

(6.1.1) en = en,N = en(x1, . . . , xN ) :=
∑

J⊂[N ]||J |=n

xj1 · · ·xjn .

If the number of variables is understood, I write en for en,N . They generate
the ring of symmetric polynomials. They have the generating function

(6.1.2) EN (t) :=
∑
k≥0

ek(x1, . . . , xN )tk =
N∏
i=1

(1 + xit).

Exercise 6.1.4.1: (1) Verify the coefficient of tn in EN (t) is en,N .

The power sum symmetric functions are

(6.1.3) pn = pn,N = pn,N (x1, . . . , xN ) = xn1 + · · ·+ xnN .

They also generate the ring of symmetric polynomials. They have the gen-
erating function

(6.1.4) PN (t) =
∑
k≥1

pkt
k−1 =

d

dt
ln[

N∏
j=1

(1− xjt)−1].

Exercise 6.1.4.2: (2) Verify that the coefficient of tn in PN (t) is indeed
pn,N . }

Exercise 6.1.4.3: (2) Show that

(6.1.5) PN (−t) = −
E′N (t)

EN (t)
.

Exercise 6.1.4.3, together with a little more work (see, e.g. [Mac95, p.
28]) shows that

(6.1.6) pn = detn


e1 1 0 · · · 0
2e2 e1 1 · · · 0

...
...

. . .
. . .

...
...

...
... 1

nen en−1 en−2 · · · e1

 .

Similarly

(6.1.7) en =
1

n!
detn


p1 1 0 · · · 0
p2 p1 2 · · · 0
...

...
...

. . .
...

pn−1 pn−2 · · · n− 1
pn pn−1 · · · p1

 .
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6.1.5. Proof of Proposition 6.1.3.7. Here is a construction of a small
circuit for the determinant that essentially appeared in [Csa76]:

The determinant of a linear map f : V → V is the product of its
eigenvalues λ1, . . . , λv, i.e., ev(λ) = λ1 · · ·λv.

On the other hand, trace(f) is the sum of the eigenvalues of f , and more
generally, letting fk denote the composition of f with itself k times,

trace(fk) = pk(λ) = λk1 + · · ·+ λkv.

The quantities trace(fk) can be computed with small circuits.

Exercise 6.1.5.1: (2) Write down a circuit for the polynomialA 7→ trace(A2)
when A is an n× n matrix with variable entries.

Thus we can compute detn via small circuits and (6.1.7). While (6.1.7) is
still a determinant, it is almost lower triangular and its näıve computation,
e.g., with Laplace expansion, can be done with an O(n3)-size circuit and
the full algorithm for computing detn can be executed with an O(n4) size
circuit.

Remark 6.1.5.2. A more restrictive class of circuits are formulas which
are circuits that are trees. Let VPe denote the sequences of polynomials
that admit a polynomial size formula. The circuit in the proof above is not
a formula because results from computations are used more than once. It is
known that the determinant admits a quasi-polynomial size formula, that is,
a formula of size nO(logn), and it is complete for the complexity class VQP =
VPs consisting of sequences of polynomials admitting a quasi-polynomial
size formula see, e.g., [BCS97, §21.5] (or equivalently, a polynomial sized
“skew” circuit, see [Tod92]). It is not known whether or not the determinant
is complete for VP.

6.1.6. The Geometric Complexity Theory (GCT) variant of Valiant’s
hypothesis. Recall that when we used polynomials in the study of matrix
multiplication, we were proving lower bounds on tensor border rank rather
than tensor rank. In the case of matrix multiplication, at least as far as the
exponent is concerned, this changed nothing. In the case of determinant
versus permanent, it is not known if using polynomial methods leads to a
stronger separation of complexity classes. In any case, it will be best to
clarify the two different types of lower bounds.

I recall from §1.2 that using padded polynomials, one can rephrase
Valiant’s hypothesis as:

Conjecture 6.1.6.1. [Rephrasing of Valiant’s hypothesis] Let ` be a linear

coordinate on C1 and consider any linear inclusion C1 ⊕ Cm2 → Cn2
, so in

particular `n−m permm ∈ SnCn
2
. Let n(m) be a polynomial. Then for all
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sufficiently large m,

[`n−m permm] 6∈ End(Cn
2
) · [detn(m)].

Recall that the formulations are equivalent because if perm(yij) = detn(Λ+∑
i,j Aijyi,j), then `n−m permm(yi,j) = detn(`Λ +

∑
i,j Aijyi,j). Such an ex-

pression is equivalent to setting each entry of the n×nmatrix to a linear com-
bination of the variables `, yi,j , which is precisely what the elements of rank

m2 + 1 in End(Cn2
) can accomplish. Moreover `n−m permm = X · detn(m)

for some X ∈ End(Cn2
) implies X has rank m2 + 1.

Recall the following conjecture, made to facilitate the use of tools from
algebraic geometry and representation theory to separate complexity classes:

Conjecture 6.1.6.2. [MS01] Let ` be a linear coordinate on C1 and con-

sider any linear inclusion C1 ⊕ Cm2 → Cn2
, so in particular `n−m permm ∈

SnCn2
. Let n(m) be a polynomial. Then for all sufficiently large m,

[`n−m permm] 6∈ GLn2 · [detn(m)].

Note thatGLn2 · [detn] = End(Cn2) · [detn]. In §6.7.2 I showGLn2 · [detn] )
End(Cn2

) · [detn], so Conjecture 6.1.6.2 is a strengthening of Conjecture
6.1.6.1. It will be useful to rephrase the conjecture slightly, to highlight
that it is a question about determining whether one orbit closure is con-
tained in another. Let

Detn := GLn2 · [detn],

and let

Permm
n := GLn2 · [`n−m permm].

Conjecture 6.1.6.3. [MS01] Let n(m) be a polynomial. Then for all suf-
ficiently large m,

Permm
n(m) 6⊂ Detn(m).

The equivalence of Conjectures 6.1.6.3 and 6.1.6.2 follows as `n−m permm 6∈
Detn implies GLn2 · `n−m permm 6⊂ Detn, and since Detn is closed and both
sides are irreducible, there is no harm in taking closure on the left hand side,
as you showed in Exercise 3.3.1.1.

Both Permm
n and Detn are invariant under GLn2 so their ideals are

GLn2-modules. To separate them, one may look for a GLn2-module M such
that M ⊂ I[Detn] and M 6⊂ I[Permm

n ].

In §8.8 I explain the original program to solve this conjecture. Although
that program cannot work as stated, I believe that the re-focusing of a
problem of separating complexity classes to questions in algebraic geometry
and representation theory could lead to viable paths to resolving Valiant’s
hypothesis.
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6.2. Flattenings: our first polynomials on the space of
polynomials

In this section I discuss the most classical polynomials on the space of poly-
nomials, which were first introduced by Sylvester in 1852 and called catalec-
ticants by him. They are also called flattenings and in the computer science
literature the polynomials induced by the method of partial derivatives.

6.2.1. Three perspectives on SdCM . I review our perspectives on SdCM
from §2.3.2. We have seen SdCM is the space of symmetric tensors in
(CM )⊗d. Given a symmetric tensor T ∈ SdCM , we may form a polynomial
PT on CM∗ by, for v ∈ CM∗, PT (v) := T (v, . . . , v). I use this identification
repeatedly without further mention.

One can also recover T from PT via polarization. Then (up to universal
constants) T (vi1 , . . . , viM ) where 1 ≤ i1 ≤ · · · ≤ iM is the coefficient of
ti1 · · · tiM in PT (t1v1 + · · ·+ tMvM ). See [Lan12, Chap. 2] for details.

As was mentioned in Exercise 2.3.2.4, we may also think of SdCM as
the space of homogeneous differential operators of order d on Sym(CM∗) :=
⊕∞j=0S

jCM∗.
Thus we may view an element of SdCM as a homogeneous polynomial

of degree d on CM∗, a symmetric tensor, and as a homogeneous differential
operator of order d on the space of polynomials Sym(CM∗).

6.2.2. Catalecticants, a.k.a. the method of partial derivatives.
Now would be a good time to read §3.1 if you have not already done so.
I review a few essential points from it.

The simplest polynomials in SnCN are just the n-th powers of linear
forms. Their zero set is a hyperplane (counted with multiplicity n). Let
P ∈ SnCN . How can one test if P is an n-th power of a linear form, P = `n

for some ` ∈ CN?

Exercise 6.2.2.1: (1!) Show that P = `n for some ` ∈ CN if and only if
dim〈 ∂P

∂x1 , . . . ,
∂P
∂xN
〉 = 1, where x1, . . . , xN are coordinates on CN .

Exercise 6.2.2.1 is indeed a polynomial test: The dual space CN∗ may
be considered as the space of first order homogeneous differential operators
on SnCN , and the test is that the 2× 2 minors of the map P1,n−1 : CN∗ →
Sn−1CN , given by ∂

∂xj
7→ ∂P

∂xj
are zero.

Exercise 6.2.2.1 may be phrased without reference to coordinates: recall
the inclusion SnV ⊂ V⊗Sn−1V = Hom(V ∗, Sn−1V ). For P ∈ SnV , write
P1,n−1 ∈ Hom(V ∗, Sn−1V ).

Definition 6.2.2.2. I will say P is concise if P1,n−1 is injective.
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In other words, P is concise if every expression of P in coordinates uses
all the variables.

Exercise 6.2.2.1 may be rephrased as: P is an n-th power of a linear
form if and only if rank(P1,n−1) = 1.

Recall that the n-th Veronese variety is

vn(PV ) := {[P ] ∈ PSnV | P = `n for some ` ∈ V } ⊂ P(SnV ).

Exercise 6.2.2.1 shows that the Veronese variety is indeed an algebraic vari-
ety. It is homogenous, i.e., a single GL(V )-orbit.

More generally define the subspace variety

Subk(S
nV ) := P{P ∈ SnV | rank(P1,n−1) ≤ k}.

Note that [P ] ∈ Subk(S
nV ) if and only if there exists a coordinate sys-

tem where P can be expressed using only k of the dimV variables. The
subspace variety Subk(S

nV ) ⊂ PSnV has the geometric interpretation as
the polynomials whose zero sets in projective space are cones with a v − k
dimensional vertex. (In affine space the zero set may look like a cylin-
der, such as the surface x2 + y2 = 1 in R3.) Consider the hypersurface
XP ⊂ Pk−1 cut out by restricting P to a subspace L where (P |L)1,n−1 is
injective. Then points of Zeros(P ) ⊂ PV ∗ are of the form [x + y] where

x ∈ X̂P and y ∈ Pv−k−1 = P ker(P1,n−1). See §6.4.2 for more details.

The symmetric rank of P ∈ SnV ∗, Rvn(PV )(P ) = RS(P ), is the smallest
r such that P = `n1 + · · ·+ `nr for `j ∈ V . The symmetric border rank of P ,
Rvn(PV )(P ) = RS(P ), is is the smallest r such that [P ] ∈ σr(vn(PV )), the

r-th secant variety of the Veronese variety (see §4.7.1). Symmetric rank will
appear naturally in the study of Valiant’s hypothesis and its variants. In the
language of §7.1, RS(P ) is essentially the size of the smallest homogeneous
ΣΛΣ-circuit computing P .

How would one test if P is the sum of two n-th powers, P = `n1 + `n2 for
some `1, `2 ∈ CN?

Exercise 6.2.2.3: (1) Show that P = `n1 + `n2 for some `j ∈ CN implies

dim span{ ∂P
∂x1 , . . . ,

∂P
∂xN
| 1 ≤ i, j ≤ N} ≤ 2.

Exercise 6.2.2.4: (2) Show that any polynomial vanishing on all polyno-
mials of the form P = `n1 + `n2 for some `j ∈ CN also vanishes on xn−1y.
}

Exercise 6.2.2.4 reminds us that σ2(vn(PV )) also includes points on tan-
gent lines.

The condition in Exercise 6.2.2.3 is not sufficient to determine member-
ship in σ2(vn(PV )), in other words, σ2(vn(PV )) ( Sub2(SnV ): Consider
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P = `n−2
1 `22. It has rank(P1,n−1) = 2 but P 6∈ σ2(vn(PV )) as can be seen by

the following exercises:

Exercise 6.2.2.5: (1) Show that P = `n1 + `n2 for some `j ∈ CN implies

dim span{ ∂2P
∂xi∂xj

} ≤ 2.

Exercise 6.2.2.6: (1) Show that P = `n−2
1 `22 for some distinct `j ∈ CN

implies dim span{ ∂2P
∂xi∂xj

} > 2.

Let P2,n−2 : S2CN∗ → Sn−2CN denote the map with image 〈∪i,j ∂2P
∂xi∂xj

〉.
Vanishing of the size three minors of P1,n−1 and P2,n−2 are necessary and suf-
ficient conditions for P ∈ σ2(vn(PV )), as was shown in 1886 by Gundelfinger
[Gun].

More generally, one can consider the polynomials given by the minors
of the maps SkCN∗ → Sn−kCN , given by D 7→ D(P ). Write these maps as
Pk,n−k : SkV ∗ → Sn−kV . These equations date back to Sylvester [Syl52]
and are called the method of partial derivatives in the complexity literature,
e.g. [CKW10]. The ranks of these maps gives a complexity measure on
polynomials.

Let’s give a name to the varieties defined by these polynomials: define

Flatk,d−kr (SdV ) := {P ∈ SdV | rank(Pk,d−k) ≤ r}.
Exercise 6.2.2.7: (1!) What does the method of partial derivatives tell us
about the complexity of x1 · · ·xn, detn and permn, e.g., taking k = bn2 c? }

Exercise 6.2.2.7 provides an exponential lower bound for the permanent
in the complexity measure of symmetric border rank RS , but we obtain the
same lower bound for the determinant. Thus this measure will not be useful
for separating the permanent from the determinant. It still gives interesting
information about other polynomials such as symmetric functions, which we
will examine.

The variety of homogeneous polynomials of degree n that are products of
linear forms also plays a role in complexity theory. Recall the Chow variety
of polynomials that decompose into a product of linear forms from §3.1.2:

Chn(V ) := P{P ∈ SnV | P = `1 · · · `n for `j ∈ V }.

One can define a complexity measure for writing a polynomial as a sum
of products of linear forms. The “Zariski closed” version of this condition
is membership in σr(Chn(V )). In the language of circuits, RChn(V )(P ) is
(essentially) the size of the smallest homogeneous ΣΠΣ circuit computing a
polynomial P . I discuss this in §7.5.

Exercise 6.2.2.7 gives a necessary test for a polynomial P ∈ SnCN to be
a product of n linear forms, namely rank(Pbn

2
c,dn

2
e) ≤

(
n
bn

2
c
)
. A question to
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think about: how would one develop a necessary and sufficient condition to
show a polynomial P ∈ SnCN is a product of n linear forms? See §9.6 for
an answer.

Unfortunately we have very few techniques for finding good spaces of
polynomials on polynomials. One such that generalizes flattenings, called
Young flattenings is discussed in §8.2.

A natural question is whether or not all flattenings are non-trivial. I
address this in §6.2.4 below after defining conormal spaces, which will be
needed for the proof.

6.2.3. Conormal spaces. Recall the definition of the tangent space to a
point on a variety X ⊂ PV or X ⊂ V , T̂xX ⊂ V , from §3.1.3. The conormal
space N∗xX ⊂ V ∗ is simply defined to be the annihilator of the tangent space:

N∗xX = (T̂xX)⊥.

Exercise 6.2.3.1: (2!) Show that in σ̂0
r (Seg(Pu−1 × Pv−1)), the space of

u× v matrices of rank r,

T̂Mσ
0
r (Seg(Pu−1 × Pv−1)) = {X ∈Matu×v | X ker(M) ⊂ Image(M)}.

Give a description of N∗Mσ
0
r (Seg(Pu−1 × Pv−1)). }

6.2.4. All flattenings give non-trivial equations. The polynomials ob-
tained from the maximal minors of Pi,d−i give nontrivial equations. In other

words, let r0 = r0(i, d,v) =
(
v+i−1

i

)
. Then I claim that for i ≤ d − i,

Flati,d−ir0−1(SdV ) is a proper subvariety of PSdV .

The most natural way to prove the claim would be to exhibit an explict
sequences of polynomials with maximal flatting rank. At this writing, I do
not know of any such explicit sequence. I give an indirect proof of the claim
below.

Problem 6.2.4.1. Find an explicit sequence of polynomials Pd,n ∈ SdCn
with maximal flattening rank. Can one find such an explicit sequence that
lies in VP, VPs or even VPe?

Exercise 6.2.4.2: (1) Show that if Pb d
2
c,d d

2
e is of maximal rank, then all

Pk,d−k are of maximal rank.

Theorem 6.2.4.3. [Gre78, IE78] For a general polynomial P ∈ SdV , all
the maps Pk,d−k : SkV ∗ → Sd−kV are of maximal rank.

Proof. (Adapted from [IK99].) By Exercise 6.2.4.2 it is sufficient to con-

sider the case k = bd2c. For each 0 ≤ t ≤
(v+b d

2
c−1

b d
2
c

)
, let

Gor(t) := {P ∈ SdV | rankPb d
2
c,d d

2
e = t}.
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(“Gor” is after Gorenstein, see [IK99].) Note that SdV = ttGor(t). Since

this is a finite union there must be exactly one t0 such that Gor(t0) = SdV .

We want to show that t0 =
(v+b d

2
c−1

b d
2
c

)
. I will do this by computing conormal

spaces as N∗PGor(t0) = 0 for P ∈ Gor(t0). Now, for any t, the subspace

N∗PGor(t) ⊂ SdV satisfies

N∗PGor(t) ⊂ N∗Pb d2 c,d d2 e
σt = N∗Pb d2 c,d d2 e

σt(Seg(PSb
d
2
cV×PSd

d
2
eV )) ⊂ Sb

d
2
cV⊗Sd

d
2
eV,

and N∗PGor(t) is simply the image of N∗Pb d2 c,d d2 e
σt under the multiplication

map Sb
d
2
cV⊗Sd

d
2
eV → SdV ∗. On the other hand, by Exercise 6.2.3.1,

N∗Pb d2 c,d d2 e
σt = kerPb d

2
c,d d

2
e⊗ kerPd d

2
e,b d

2
c.

In order for N∗PGor(t) to be zero, we need N∗Pb d2 c,d d2 e
σt to be zero (otherwise

there will be something nonzero in the image of the symmetrization map:
if d is odd, the two degrees are different and this is clear. If d is even, the
conormal space is the tensor product of a vector space with itself), which

implies kerPd d
2
e,b d

2
c = 0, and thus t0 =

(v+b d
2
c−1

b d
2
c

)
. �

Note that the maximum symmetric border rank (in all but a few known

exceptions) is d 1
v

(
v+d−1

d

)
e, whereas flattenings only give equations up to

symmetric border rank
(v+b d

2
c−1

b d
2
c

)
.

6.3. Singular loci and Jacobian varieties

As mentioned above, the geometry of the hypersurfaces Zeros(detn) and
Zeros(permm) will aid us in comparing the complexity of the determinant
and permanent. A simple invariant that will be useful is the dimension
of the singular set of a hypersurface. The definition presented in §3.1.3 of
the singular locus results in a singular locus whose dimension is not upper
semi-continuous under degeneration. I first give a new definition that is
semi-continuous under degeneration.

6.3.1. Definition of the (scheme theoretic) singular locus.

Definition 6.3.1.1. Say a variety X = {P1 = 0, . . . , Ps = 0} ⊂ PV has
codimension c, using the definition of codimension in §3.1.5. Then x ∈ X is
a singular point if dP1,x, . . . , dPs,x fail to span a space of dimension c. Let
Xsing ⊂ X denote the singular points of X. In particular, if X = Zeros(P )
is a hypersuface and x ∈ X, then x ∈ Xsing if and only if dPx = 0. Note
that Xsing is also the zero set of a collection of polynomials.
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Warning: This definition is a property of the ideal generated by the
polynomials P1, . . . , Ps, not of X as a set. For example every point of (x2

1 +
· · ·+x2

n)2 = 0 is a singular point. In the language of algebraic geometry, one
refers to the singular point of the scheme associated to the ideal generated
by {P1 = 0, . . . , Ps = 0}.

“Most” hypersurfaces X ⊂ PV are smooth, in the sense that {P ∈
PSdV | Zeros(P )sing 6= ∅} ⊂ PSdV is a hypersurface, see, e.g., [Lan12,
§8.2.1]. The dimension of Zeros(P )sing is a measure of the pathology of P .

Singular loci will also be used in the determination of symmetry groups.

6.3.2. Jacobian varieties. While the ranks of symmetric flattenings are
the same for the permanent and determinant, by looking more closely at the
maps, we can extract geometric information that distinguishes them.

First, for P ∈ SnV , consider the images Pk,n−k(S
kV ∗) ⊂ Sn−kV . This

is a space of polynomials and we can consider the ideal they generate, called
the k-th Jacobian ideal of P , and the common zero set of these polynomials
is called the k-th Jacobian variety of P :

Zeros(P )Jac,k := {[α] ∈ PV ∗ | q(α) = 0 ∀q ∈ Pk,n−k(SkV ∗)}.

Exercise 6.3.2.1: (1) Show that Zeros(detn)Jac,k is σn−k−1(Seg(Pn−1 ×
Pn−1)), the matrices of rank at most n− k − 1.

It is not known what the varieties Zeros(permm)Jac,k are in general. I
explicitly determine Zeros(permm)Jac,m−2 in Lemma 6.3.3.4 below as it is
used to prove the symmetries of the permanent are what we expect them to
be.

6.3.3. Singularities of Zeros(permm). In contrast to the determinant, the
singular set of the permanent is not understood; even its codimension is not
known. The problem is more difficult because, unlike in the determinant
case, we do not have normal forms for points on Zeros(permm). In this
section I show that codim(Zeros(permm)sing) ≥ 5.

Exercise 6.3.3.1: (1!) Show that the permanent admits a “Laplace type”
expansion similar to that of the determinant.

Exercise 6.3.3.2: (2) Show that Zeros(permm)sing consists of the m ×m
matrices with the property that all size m − 1 sub-matrices of it have per-
manent zero.

Exercise 6.3.3.3: (1) Show that Zeros(permm)sing has codimension at most

2m in Cm2
. }

Since Zeros(perm2)sing = ∅, let’s start with perm3. Since we will need
it later, I prove a more general result:
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Lemma 6.3.3.4. The variety Zeros(permm)Jac,m−2 is the union of the fol-
lowing varieties:

(1) Matrices A with all entries zero except those in a single size 2
submatrix, and that submatrix has zero permanent.

(2) Matrices A with all entries zero except those in the j-th row for
some j.

(3) Matrices A with all entries zero except those in the j-th column for
some j.

In other words, let X ⊂Matm(C) denote the subvariety of matrices that
are zero except in the upper 2× 2 corner and that 2× 2 submatrix has zero
permanent, and let Y denote the variety of matrices that are zero except in
the first row, then

(6.3.1) Zeros(permm)Jac,m−2 =
⋃

σ∈(Sm×Sm)oZ2

σ ·X ∪ σ · Y.

Here Sm × Sm acts by left and right multiplication by permutation
matrices and the Z2 is generated by sending a matrix to its transpose.

The proof is straight-forward. Here is the main idea: Take a matrix with
entries that don’t fit that pattern, e.g., one that begins

a b e
∗ d ∗

and note that it is not possible to fill in the two unknown entries and have
all size two sub-permanents, even in this corner, zero. There are just a few
such cases since we are free to act by (Sm ×Sm) o Z2 ⊂ Gpermm

.

Corollary 6.3.3.5.

{perm3 = 0}sing =
⋃

σ∈(S3×S3)oZ2

σ ·X ∪ σ · Y.

In particular, all the irreducible components of {perm3 = 0}sing have the
same dimension and codim({perm3 = 0}sing,C9) = 6.

This equi-dimensionality property already fails for perm4: consider

x1

1 x1
2 0 0

x2
1 x2

2 0 0
0 0 x3

3 x3
4

0 0 x4
3 x4

4

 | x1
1x

2
2 + x2

1x
1
2 = 0, x3

3x
4
4 + x4

3x
3
4 = 0

 .

This defines a six dimensional irreducible component of {perm4 = 0}sing
which is not contained in either a space of matrices with just two nonzero
rows (or columns) or the set of matrices that are zero except for in some
3 × 3 submatrix which has zero permanent. In [vzG87] von zur Gathen
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states that all components of {perm4 = 0}sing are either of dimension six or
eight.

Although we do not know the codimension of Zeros(permm)sing, the fol-
lowing estimate will suffice for the application of von zur Gathen’s regularity
theorem 6.3.4.1 below.

Proposition 6.3.3.6 (von zur Gathen [vzG87]).

codim(Zeros(permm)sing,Pm
2−1) ≥ 5.

Proof. I work by induction on m. Since Zeros(perm2) is a smooth quadric,
the base case is established. Let I, J be multi-indices of the same size and
let sp(I|J) denote the sub-permanent of the (m − |I|,m − |I|) submatrix
omitting the index sets (I, J). Let C ⊂ Zeros(permm)sing be an irreducible
component of the singular set. If sp(i1, i2|j1, j2)|C = 0 for all (i1, i2|j1, j2),
we are done by induction as then C ⊂

⋃
i,j Zeros(sp(i|j))sing. So assume

there is at least one size m− 2 subpermanent that is not identically zero on
C, without loss of generality assume it is sp(m− 1,m|m− 1,m). We have,
via permanental Laplace expansions,

0 = sp(m,m)|C

=

m−2∑
j=1

xjm−1sp(i,m|m− 1,m) + xm−1
m−1sp(m− 1,m|m− 1,m)

so on a Zariski open subset of C, xm−1
m−1 is a function of the m2 − 4 vari-

ables xst , (s, t) 6∈ {(m − 1,m − 1), (m − 1,m), (m,m − 1), (m,m)}, Similar
expansions give us xm−1

m , xmm−1, and xmm as functions of the other variables,

so we conclude dimC ≤ m2 − 4. We need to find one more nonzero poly-
nomial that vanishes identically on C that does not involve the variables
xm−1
m−1, x

m
m−1, x

m−1
m , xmm to obtain another relation and to conclude dimC ≤

m2 − 5. Consider

sp(m− 1,m|m− 1,m)sp(m− 2,m)− sp(m− 2,m|m− 1,m)sp(m− 1,m)

− sp(m− 2,m− 1|m− 1,m)sp(m,m)

= −2xm−2
m−1sp(m− 2,m− 1|m− 1,m)sp(m− 2,m|m− 1,m)

+ terms not involving xm−2
m−1,

where we obtained the second line by permanental Laplace expansions in the
size m−1 subpermanents in the expression, and arranged things such that all
terms with xm−1

m−1, x
m
m−1, x

m−1
m , xmm appearing cancel. Since this expression is

a sum of terms divisible by size m−1 subpermanents, it vanishes identically
on C. But 2xm−2

m−1sp(m− 2,m− 1|m− 1,m)sp(m− 2,m|m− 1,m) is not the
zero polynomial, so the whole expression is not the zero polynomial. Thus
we obtain another nonzero polynomial that vanishes identically on C and is
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not in the ideal generated by the previous four as it does not involve any of
xm−1
m−1, x

m
m−1, x

m−1
m , xmm. �

It is embarrassing that the following question is still open:

Question 6.3.3.7. What is codim(Zeros(permm)sing)?

6.3.4. von zur Gathen’s regularity theorem and its consequences
for lower bounds.

Proposition 6.3.4.1 (von zur Gathen [vzG87], also see [ABV15]). Let
M > 4, and let P ∈ SmCM be concise and satisfy codim({P = 0}sing,CM ) ≥
5. If P = detn ◦Ã, where Ã = Λ + A : CM → Cn2

is an affine linear map
with Λ constant and A linear, then rank(Λ) = n− 1.

Proof. I first claim that if Ã(y) ∈ Zeros(detn)sing then y ∈ Zeros(P )sing.
To see this, note that for any y ∈ CM , the differential of P at y satisfies (by
the chain rule)

dP |y = d(detn ◦Ã)|y = AT (d(detn)|Ã(y)),

where I have used that d(detn)|Ã(y) ∈ T
∗
Ã(y)

Cn2 ' Cn2∗ and AT : Cn2∗ →
CM∗ is the transpose of the differential of Ã. In particular, if d(detn)|Ã(y) = 0

then dPy = 0, which is what we needed to show.

Now by Theorem 3.1.5.1, the set

Ã(CM ) ∩ Zeros(detn)sing ⊂ Cn
2

is either empty or of dimension at least dim(Ã(CM ))+dim(Zeros(detn)sing)−
n2 = M +(n2−4)−n2 = M −4. (Here Ã must be injective as P is concise.)

The same is true for Ã−1(Ã(CM ) ∩ Zeros(detn)sing). But this latter set
is contained in Zeros(P )sing, which is of dimension at most M − 5, so we
conclude it is empty.

Thus for all y ∈ CM , rank(Ã(y)) ≥ n − 1. In particular rank(Ã(0)) ≥
n − 1, but Ã(0) = Λ. Finally equality holds because if Λ had rank n, then

det(Ã(CM )) would have a constant term. �

Exercise 6.3.4.2: (1) Prove that any polynomial P ∈ SdCM with singular
locus of codimension greater than four must have dc(P ) > d.

Proposition 6.3.4.3. [Cai90] Let F ⊂ Matn(C) be an affine linear sub-

space such that for all X ∈ F , rank(F ) ≥ n− 1. Then dimF ≤
(
n+1

2

)
+ 1.

For the proof, see [Cai90]. Note that Proposition 6.3.4.3 is near optimal
as consider F the set of upper triangular matrices with 1’s on the diagonal,
which has dimension

(
n
2

)
.

Exercise 6.3.4.4: (2) Use Proposition 6.3.4.3 to show dc(permm) ≥
√

2m.
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Exercise 6.3.4.5: (2) Let Q ⊂ Pn+1 be a smooth quadric hypersurface of
dimension n. Show that the maximum dimension of a linear projective space
contained in Q is bn2 c. }

Theorem 6.3.4.6 (Alper-Bogart-Velasco [ABV15]). Let P ∈ SdCM with
d ≥ 3 and such that codim(Zeros(P )sing,CM ) ≥ 5. Then

dc(P ) ≥ codim(Zeros(P )sing,CM ) + 1.

Proof. Let n = dc(P ). Say P = detn ◦Ã, with Ã = Λ +A. By Proposition
6.3.4.1, rank(Λ) = n − 1, and using Gdetn , we may assume Λ is normalized
to the matrix that is zero everywhere but the diagonal, where it has one’s
except in the (1, 1)-slot where it is zero. Expand det(Ã(y)) = p0+p1+· · ·+pn
as a sum of homogeneous polynomials. Since the right hand side equals P ,
we must have pj = 0 for j < d. Then p0 = det(Λ) = 0 and p1 = A1

1. Now
p2 =

∑n
i=2A

1
iA

i
1 = 0 and more generally, each pj is a sum of monomials,

each of which contains an element in the first column and an element in
the first row of A. Each Aij is a linear form on CM and as such, we can

consider the intersection of their kernels. Write Γ = ∩n−1
i=1 (kerAi1)∩(kerA1

i ).

Then Γ ⊂ Zeros(P )sing. Consider the A1
i , A

j
1 as coordinates on C2(n−1), p2

defines a smooth quadric hypersurface in P2(n−1)−1. By Exercise 6.3.4.5, the
maximum dimension of a linear space on such a quadric is n−1, so the rank

of the linear map CM → C2(n−1) given by y 7→ (A1
i (y), Aj1(y)) is at most

n− 1. But Γ is the kernel of this map. We have

n− 1 ≥ codim(Γ) ≥ codim(Zeros(P )sing,CM )

and recalling that n = dc(P ) we conclude. �

Exercise 6.3.4.7: (2) Prove that codim((permm)sing) = 2m when m = 3, 4.

Corollary 6.3.4.8. [ABV15] dc(perm3) = 7 and dc(perm4) ≥ 9.

The upper bound for dc(perm3) is from (1.2.3).

Even if one could prove codim((permm)sing) = 2m for all m, the above
theorem would only give a linear bound on dc(permm). This bound would
be obtained from taking one derivative. In the next section, I show that
taking two derivatives, one can get a quadratic bound.

6.4. Geometry and the state of the art regarding dc(permm)

In mathematics, one often makes transforms to reorganize information, such
as the Fourier transform. There are geometric transforms to “reorganize” the
information in an algebraic variety. Taking the Gauss image (dual variety)
of a hypersurface is one such, as I now describe.
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6.4.1. Gauss maps. A classical construction for the geometry of surfaces
in 3-space, is the Gauss map that maps a point of the surface to its unit
normal vector on the unit sphere as in Figure 3.

Figure 6.4.1. The shaded area of the surface maps to the shaded
area of the sphere.

This Gauss image can be defined for a surface in P3 without the use of
a distance function if one instead takes the union of all conormal lines (see
§6.2.3) in P3∗. Let S∨ ⊂ P3∗ denote this Gauss image, also called the dual
variety of S. One loses qualitative information in this setting, however one
still has the information of the dimension of S∨.

This dimension will drop if through all points of the surface there is
a curve along which the tangent plane is constant. For example, if M is
a cylinder, i.e., the union of lines in three space perpendicular to a plane
curve, the Gauss image is a curve:

Figure 6.4.2. Lines on the cylinder are collapsed to a point.

The extreme case is when the surface is a plane, then its Gauss image is
just a point.
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6.4.2. What do surfaces with degenerate Gauss maps “look like”?
Here is a generalization of the cylinder above: Consider a curve C ⊂ P3,
and a point p ∈ P3. Define the cone over C with vertex p,

J(C, p) := {[x] ∈ P3 | x = y + p for some y ∈ Ĉ, p ∈ p̂}.

Exercise 6.4.2.1: (1) Show that if p 6= y, T̂[y+p]J(C, p) = span{T̂yC, p̂}.

Thus the tangent space to the cone is constant along the rulings, and
the surface only has a curves worth of tangent (hyper)-planes, so its dual
variety is degenerate.

Exercise 6.4.2.2: (2) More generally, let X ⊂ PV be an irreducible variety
and let L ⊂ PV be a linear space. Define J(X,L), the cone over X with
vertex L analogously. Show that given x ∈ Xsmooth, with x 6∈ L, the tangent
space to J(X,L)∨ at [x+ `] is constant for all ` ∈ L.

Here is another type of surface with a degenerate Gauss map: Consider
again a curve C ⊂ P3, and this time let τ(C) ⊂ P3 denote the Zariski closure

of the union of all points on PT̂xC as x ranges over the smooth points of C.
The variety τ(C) is called the tangential variety to the curve C.
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Exercise 6.4.2.3: (2) Show that if y1, y2 ∈ τ(C) are both on a tangent line

to x ∈ C, then T̂y1τ(C) = T̂y2τ(C), and thus τ(C)∨ is degenerate. }

In 1910 C. Segre proved that the above two examples are the only sur-
faces with degenerate dual varieties:

Theorem 6.4.2.4. [Seg10, p. 105] Let S2 ⊂ P3 be a surface with degener-
ate Gauss image. Then S is one of the following:

(1) A linearly embedded P2,

(2) A cone over a curve C,

(3) A tangential variety to a curve C.

(1) is a special case of both (2) and (3) and is the only intersection of the
two.

The proof is differential-geometric, see [IL16b, §4.3].

6.4.3. Dual varieties. If X ⊂ PV is an irreducible hypersurface, the
Zariski closure of its Gauss image will be a projective subvariety of PV ∗.
Gauss images of hypersurfaces are special cases of dual varieties. For an
irreducible variety X ⊂ PV , define X∨ ⊂ PV ∗, the dual variety of X, by

X∨ :={H ∈ PV ∗ | ∃x ∈ Xsmooth, T̂xX ⊆ Ĥ}

={H ∈ PV ∗ | ∃x ∈ Xsmooth, H ∈ PN∗xX}

Here H refers both to a point in PV ∗ and the hyperplane in PV it
determines.

That the dual variety is indeed a variety may be seen by considering the
following incidence correspondence:

I := {(x,H) ∈ Xsmooth × PV ∗ | PT̂xX ⊆ H} ⊂ PV × PV ∗

and note that its image under the projections to PV and PV ∗ are respectively
X and X∨. When X is smooth, I = PN∗X, the projectivized conormal
bundle. Both projections are surjective regular maps, so by Theorem 3.1.4.1,
X∨ is an irreducible variety.

Exercise 6.4.3.1: (2) Show

I = {(x,H) ∈ PV × (X∨)smooth | PT̂HX∨ ⊆ x} ⊂ PV × PV ∗

and thus (X∨)∨ = X. (This is called the reflexivity theorem and dates back
to C. Segre.) }

For our purposes, the most important property of dual varieties is that
for a smooth hypersurface other than a hyperplane, its dual variety is also a
hypersurface. This will be a consequence of the B. Segre dimension formula
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6.4.5.1 below. If the dual of X ⊂ PV is not a hypersurface, one says that X
has a degenerate dual variety. It is a classical problem to study the varieties
with degenerate dual varieties.

Exercise 6.4.2.2 shows that higher dimensional cones have degenerate
dual varieties. Griffiths and Harris [GH79] vaguely conjectured a higher
dimensional generalization of C. Segre’s theorem, namely that a variety with
a degenerate dual is “built out of” cones and tangent developables. For
example, Zeros(detn) may be thought of as the union of tangent lines to
tangent lines to ... to the Segre variety Seg(Pn−1 × Pn−1), and we will see
that it indeed has a degenerate dual variety.

Segre’s theorem indicates that if we take the Zariski closure in PSdV ∗ of
the set of irreducible hypersurfaces of degree d with degenerate dual varieties,
we will obtain a reducible variety. This will complicate the use of dual
varieties for Valiant’s hypothesis.

For more on dual varieties see [Lan12, §8.2].

6.4.4. Zeros(detn)sing. As far as singularities are concerned, the determi-
nant is quite pathological: Thanks toGdetn , the determination of Zeros(detn)sing
is easy to describe. Any point of Zeros(detn) is in the Gdetn-orbit of some

(6.4.1) pr :=

(
Idr 0
0 0

)
where 1 ≤ r ≤ n− 1 and the blocking is (r, n− r)× (r, n− r). The nature of
the singularity of x ∈ Zeros(detn) is the same as that of the corresponding
pr.

Recall that σr = σr(Seg(Pn−1 × Pn−1)) ⊂ P(Cn⊗Cn) is the set of ma-
trices (up to scale) of rank at most r.

The smooth points of Zeros(detn) = σn−1 are those in the Gdetn-orbit
of pn−1, as shown by the following exercises:

Exercise 6.4.4.1: (1) Show that d(detn)pn−1 = dxnn.

Exercise 6.4.4.2: (1) Show that Zeros(detn)sing = σn−2.

Exercise 6.4.4.3: (1) Show that σr = Zeros(detn)Jac,n−r.

Exercise 6.2.3.1 implies dimσr(Seg(Pu−1 × Pv−1)) = r(u+ v − r)− 1.

6.4.5. What does this have to do with complexity theory? Hav-
ing a degenerate dual variety is a pathology, and our dimension calcula-
tion below will show that if Q ∈ SmCM is an irreducible polynomial such
that Q is an affine linear degeneration of an irreducible polynomial P , then
dim(Zeros(Q)∨) ≤ dim(Zeros(P )∨).
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To determine the dual variety of Zeros(detn) ⊂ P(E⊗F ), recall that any
smooth point of Zeros(detn) is Gdetn-equivalent to

pn−1 =


1

. . .

1
0

 ∈ Zeros(detn).

and that

N∗pn−1
Zeros(detn) =


0 0 0 0
...

. . .
...

...
0 0 0 0
0 0 0 ∗

 .

Since any smooth point of Zeros(detn) can be moved to pn−1 by a change of
basis, we conclude that the tangent hyperplanes to Zeros(detn) are parametrized
by the rank one matrices Seg(PE∗⊗PF ∗), which has dimension 2n− 2, be-
cause they are obtained by multiplying a column vector by a row vector.

Proposition 6.4.5.1 (B. Segre). Let P ∈ SdV ∗ be irreducible and let [x] ∈
Zeros(P ) be a general point. Then

(6.4.2) dim Zeros(P )∨ = rank(Pd−2,2(xd−2))− 2.

Here (Pd−2,2(xd−2)) ∈ S2V ∗, and we are computing the rank of this
symmetric matrix. In coordinates, Pd−2,2 may be written as a symmetric
matrix whose entries are polynomials of degree d − 2 in the coordinates of
x, and is called the Hesssian.

Proof. Let x ∈ ˆZeros(P ) ⊂ V be a general point, so P (x) = P (x, . . . , x) = 0
and dPx = P (x, . . . , x, ·) 6= 0 and take h = dPx ∈ V ∗, so [h] ∈ Zeros(P )∨.

Now consider a curve ht ⊂ ˆZeros(P )∨ with h0 = h. There must be a

corresponding (possibly stationary) curve xt ∈ ˆZeros(P ) such that ht =
P (xt, . . . , xt, ·) and thus h′0 = (d − 1)P (xd−2, x′0, ·). Thus the dimension of

T̂hZeros(P )∨ is the rank of Pd−2,2(xd−2) minus one (we subtract one because
we are only allowed to feed in vectors x′0 that are tangent to Zeros(P )). Now

just recall that dimZ = dim T̂zZ − 1. We needed x to be general to insure
that [h] is a smooth point of Zeros(P )∨. �

Exercise 6.4.5.2: (1) Show that if Q ∈ SmCM and there exists Ã : CM →
CN such that Q(y) = P (Ã(y)) for all y ∈ CM∗, then rank(Qm−2,2(y)) ≤
rank(Pm−2,m(Ã(y))).

Exercise 6.4.5.3: (1) Show that every P ∈ Subk(SdV ) has dim Zeros(P )∨ ≤
k − 2.

Exercise 6.4.5.4: (2) Show that σ3(Chn(Cn2
)) 6⊂ Detn.
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Exercise 6.4.5.5: (2) Show that σ2n+1(vn(Pn2−1)) 6⊂ Detn.

Exercise 6.4.5.6: (2) Show that {x1 · · ·xn + y1 · · · yn = 0} ⊂ P2n−1 is self
dual, in the sense that it is isomorphic to its own dual variety.

To show a hypersurface has a nondegenerate dual variety, it suffices to
find a point where the Hessian of its defining equation has maximal rank.

6.4.6. Permanent case. Consider the point

y0 =


1−m 1 · · · 1

1 1 · · · 1
...

1 1 · · · 1

 .

Exercise 6.4.6.1: (1!) Show perm(y0) = 0. }

Now compute (permm)m−2,2(y0): First note that

∂

∂yij

∂

∂ykl
permm(y) =

{
0 if i = k or j = l

permm−2(yîk̂
ĵ l̂

) otherwise

where yîk̂
ĵ l̂

is the size (m − 2) × (m − 2) matrix obtained by removing rows

i, k and columns j, l.

Exercise 6.4.6.2: (2) Show that if we order indices y1
1, . . . , y

m
1 , y

1
2, . . . , y

m
2 , . . . , y

m
m,

then the Hessian matrix of the permanent at y0 takes the form

(6.4.3)


0 Q Q · · · Q
Q 0 R · · · R

Q R 0
. . .

...
...

...
. . .

. . . R
Q R · · · R 0

 ,

where

Q = (m−2)


0 1 · · · 1

1 0
. . .

...
...

. . .
. . . 1

1 · · · 1 0

 , R =


0 m− 2 m− 2 · · · m− 2

m− 2 0 −2 · · · −2

m− 2 −2 0
. . .

...
...

...
. . .

. . . −2
m− 2 −2 · · · −2 0

 .

Lemma 6.4.6.3. Let Q,R be invertible m ×m matrices and let M be an
m2 ×m2 matrix of the form (6.4.3). Then M is invertible.

Proof. Without loss of generality, we may assume Q = Idm by multipling
on the left and right by the block diagonal matrix whose block diagonals
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are Q−1, Idm, . . . , Idm. Let v = (v1, . . . , vm)T , where vj ∈ Cm, be a vector
in the kernel. Then we have the equations

v2 + · · ·+ vm = 0,

v1 +Rv3 + · · ·+Rvm = 0,

...

v1 +Rv2 + · · ·+Rvm−1 = 0,

i.e.,

v2 + · · ·+ vm = 0,

v1 −Rv2 = 0,

...

v1 −Rvm = 0.

Multiply the first line by R to conclude (m − 1)v1 = 0 and hence v1 = 0,
and the remaining equations imply the other vj = 0. �

Thus the permanent hypersurface Zeros(permm) ⊂ Pm2−1 has a non-

degenerate Gauss map. When one includes Cm2 ⊂ Cn2
, so the equation

Zeros(permm) becomes an equation in a space of n2 variables that only uses

m2 of the variables, one gets a cone with vertex Pn2−m2−1 corresponding
to the unused variables, in particular, the Gauss image will have dimension
m2 − 2.

If one makes an affine linear substitution X = X(Y ), by the chain rule,
the Gauss map of {det(X(Y )) = 0} will be at least as degenerate as the
Gauss map of {det(X) = 0} by Exercise 6.4.5.2. Using this, one obtains:

Theorem 6.4.6.4 (Mignon-Ressayre [MR04]). If n(m) < m2

2 , then there

do not exist affine linear functions xij(y
s
t ), 1 ≤ i, j ≤ n, 1 ≤ s, t ≤ m such

that permm(Y ) = detn(X(Y )). I.e., dc(permm) ≥ m2

2 .

Remark 6.4.6.5. We saw a linear lower bound by taking one derivative
and a quadratic lower bound by taking two. Unfortunately it does not
appear to be possible to improve the Mignon-Ressayre bound by taking
three derivatives.

6.5. Extension of the Mignon-Ressayre result to dc

To extend the Mignon-Ressayre theorem to dc we will need to find poly-
nomials on PSnV that vanish on the hypersurfaces with degenerate dual
varieties. This was a classically studied question whose answer was known
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only in a very few number of small cases. In this section I present an answer
to the classical question and its application to Conjecture 1.2.5.2.

6.5.1. First steps towards equations. Let P ∈ SdV ∗ be irreducible.
Segre’s formula (6.4.2) may be restated as: dim Zeros(P )∨ ≤ k if and only
if, for all w ∈ V ,

(6.5.1) P (w) = 0 ⇒ detk+3(Pd−2,2(wd−2)|F ) = 0 ∀F ∈ G(k + 3, V ).

Here G(k + 3, V ) is the Grassmannian of (k + 3)-planes through the origin
in V (see Definition 2.3.3.1). Equivalently, for any F ∈ G(k + 3, V ), the

polynomial P must divide detk+3(Pd−2,2|F ) ∈ S(k+3)(d−2)V ∗, where detk+3

is evaluated on the S2V ∗ factor in S2V ∗⊗Sd−2V ∗.

Thus to find polynomials on SdV ∗ characterizing hypersurfaces with
degenerate duals, we need polynomials that detect if a polynomial P divides
a polynomial Q. Now, P ∈ SdV ∗ divides Q ∈ SeV ∗ if and only if Q ∈
P · Se−dV ∗, i.e.

xI1P ∧ · · · ∧ xIDP ∧Q = 0

where xIj , is a basis of Se−dV (and D =
(
v+e−d−1

e−d
)
). Let Dk,d,N ⊂ PSdCN

denote the zero set of these equations when Q = detk+3(Pd−2,2|F ) as F
ranges over G(k + 3, V ).

Define Dualk,d,N ⊂ P(SdV ∗) as the Zariski closure of the set of irre-

ducible hypersurfaces of degree d in PV ' PN−1, whose dual variety has
dimension at most k. Our discussion above implies Dualk,d,N ⊆ Dk,d,N .

Note that

(6.5.2) [detn] ∈ Dual2n−2,n,n2 ⊆ D2n−2,n,n2 .

6.5.2. The lower bound on dc(permm). The calculation of §6.4.6 shows
that permm−2,2(ym−2

0 ) is of maximal rank. Here we don’t have permm, but

rather `n−m permm.

Proposition 6.5.2.1. Let U = CM , let R ∈ SmU∗ be irreducible, let ` be a
coordinate on L ' C1 be nonzero, let U∗ ⊕ L∗ ⊂ CN∗ be a linear inclusion.

If [R] ∈ Dκ,m,M and [R] 6∈ Dκ−1,m,M , then [`d−mR] ∈ Dκ,d,N and

[`d−mR] 6∈ Dκ−1,d,N .

Proof. Let u1, . . . , uM , v, wM+2, . . . , wN be a basis of CN adapted to the
inclusions CM ⊂ CM+1 ⊂ CN , so (U∗)⊥ = 〈wM+2, . . . , wN 〉 and (L∗)⊥ =
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〈u1, . . . , uM , wM+2, . . . , wN 〉. Let c = (d −m)(d −m − 1). In these coordi-
nates, the matrix of (`d−mR)d−2,2 in (M, 1, N −M −1)× (M, 1, N −M −1)-
block form:

(`d−mR)d−2,2 =

 `d−mRm−2,2 `d−m−1Rm−1,1 0
`d−m−1Rm−1,1 c`d−m−2R 0

0 0 0

 .

First note that detM+1((`d−mR)d−2,2|F ) for any F ∈ G(M + 1,CN ) is

either zero or a multiple of `d−mR. If dim Zeros(R)∨ = M −2 (the expected
dimension), then for a general F ∈ G(M+1,CN ), detM ((`d−mR)d−2,2|F ) will

not be a multiple of (`d−mR)d−2,2, and more generally if dim Zeros(R)∨ = κ,

then for a general F ∈ G(κ+ 2,CN ), detκ+2((`d−mR)d−2,2|F ) will not be a

multiple of `d−mR but for any F ∈ G(κ+ 3,CN ), detκ+3((`d−mR)d−2,2|F )

will be a multiple of `d−mR. This shows [R] 6∈ Dκ−1,m,M , implies [`d−mR] 6∈
Dκ−1,d,N .

Exercise 6.5.2.2: (1) Show that [R] ∈ Dκ,m,M , implies [`d−mR] ∈ Dκ,d,N .
}

�

The inclusion (6.5.2) and Proposition 6.5.2.1 imply:

Theorem 6.5.2.3. [LMR13] Permm
n 6⊂ D2n−2,n,n2 when m < n2

2 . In par-

ticular, dc(permm) ≥ m2

2 .

On the other hand, by Exercise 6.4.5.3 cones have degenerate duals, so

`n−m permm ∈ D2n−2,n,n2 whenever m ≥ n2

2 .

The next step from this perspective would be:

Problem 6.5.2.4. Find equations that distinguish cones (e.g. Zeros(`n−m permm) ⊂
Pn2−1) from tangent developables (e.g., Zeros(detn) ⊂ Pn2−1). More pre-
cisely, find equations that are zero on tangent developables but nonzero on
cones.

6.5.3. A better module of equations. The equations above are of enor-
mous degree. I now derive equations of much lower degree. Since P ∈ SdCN
divides Q ∈ SeCN if and only if for each L ∈ G(2,CN ), P |L divides Q|L,
it will be sufficient to solve this problem for polynomials on C2. This will
have the advantage of producing polynomials of much lower degree.

Let d ≤ e, let P ∈ SdC2 and Q ∈ SeC2. If P divides Q then Se−dC2 · P
will contain Q. That is,

xe−dP ∧ xe−d−1yP ∧ · · · ∧ ye−dP ∧Q = 0.
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Since dimSeC2 = e+ 1, these potentially give a
(
e+1
e−d+2

)
-dimensional vector

space of equations, of degree e− d+ 1 in the coefficients of P and linear in
the coefficients of Q.

By taking our polynomials to be P = P |L and Q = detk+3(Pn−2,2|F )|L
for F ∈ G(k+3, V ) and L ∈ G(2, F ) (or, for those familiar with flag varieties,
better to say (L,F ) ∈ Flag2,k+3(V )) we now have equations parametrized
by the pairs (L,F ). Note that deg(Q) = e = (k+ 3)(d− 2). These were the
polynomials that were used in [LMR13].

Remark 6.5.3.1. More generally, given P ∈ SdC2, Q ∈ SeC2, one can
ask if P,Q have at least r roots in common (counting multiplicity). Then
P,Q having r points in common says the spaces Se−rC2 · P and Sd−rC2 ·Q
intersect. That is,

xe−rP ∧ xe−r−1yP ∧ · · · ∧ ye−rP ∧ xd−rQ ∧ xd−r−1yQ ∧ · · · ∧ yd−rQ = 0.

In the case r = 1, we get a single polynomial, called the resultant, which
is of central importance. In particular, the proof of Noether normalization
from §3.1.4, that the projection of a projective variety X ⊂ PW from a
point y ∈ PW with y 6∈ X, to P(W/ŷ) is still a projective variety, relies on
the resultant to produce equations for the projection.

6.6. Symmetries of the determinant and permanent

The permanent and determinant both have the property that they are char-
acterized by their symmetry groups in the sense described in §1.2.5. I expect
these symmetry groups to play a central role in the study of Valiant’s hy-
pothesis in future work. For example, the only known exponential separation
of the permanent from the determinant in any restricted model (as defined
in Chapter 7), is the model of equivariant determinantal complexity, which
is defined in terms of symmetry groups, see §7.4.1.

6.6.1. Symmetries of the determinant.

Theorem 6.6.1.1 (Frobenius [Fro97]). Write ρ : GLn2 → GL(SnCn2
) for

the induced action. Let φ ∈ GLn2 be such that ρ(φ)(detn) = detn. Then,

identifying Cn2
with the space of n× n matrices,

φ(z) =

{
gzh, or
gzTh

for some g, h ∈ GLn, with detn(g) detn(h) = 1. Here zT denotes the trans-
pose of z.

I present the proof from [Die49] below.

Write Cn2
= E⊗F = Hom(E∗, F ) with E,F = Cn. Let Zn denote the

cyclic group of order n and consider the inclusion Zn×Zn ⊂ GL(E)×GL(F )
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given by the n-th roots of unity times the identity matrix. Let µn denote
the kernel of the product map (Zn)×2 → Zn.

Corollary 6.6.1.2. Gdetn = (SL(E)× SL(F ))/µn o Z2

To prove the Corollary, just note that the C∗ corresponding to det(g)
above and µn are the kernel of the map C∗×SL(E)×SL(F )→ GL(E⊗F ).

Exercise 6.6.1.3: (2) Prove the n = 2 case of Theorem 6.6.1.1. }

Lemma 6.6.1.4. Let U ⊂ E⊗F be a linear subspace such that U ⊂
Zeros(detn). Then dimU ≤ n2 − n. The subvariety of the Grassmannian
G(n2−n,E⊗F ) consisting of maximal linear spaces on Zeros(detn) has two
irreducible components, call them Σα and Σβ, where

Σα = {X ∈ G(n2 − n,E⊗F ) | ker(X) = L̂ for some L ∈ PE∗} ' PE∗, and
(6.6.1)

Σβ = {X ∈ G(n2 − n,E⊗F ) | Image(X) = Ĥ for some H ∈ PF ∗} ' PF ∗.
(6.6.2)

Here for f ∈ X, f : E∗ → F is considered as a linear map, ker(X) means
the intersections of the kernels of all f ∈ X and Image(X) is the span of all
the images.

Moreover, for any two distinct Xj ∈ Σα, j = 1, 2, and Yj ∈ Σβ we have

dim(X1 ∩X2) = dim(Y1 ∩ Y2) = n2 − 2n, and(6.6.3)

dim(Xi ∩ Yj) = n2 − 2n+ 1.(6.6.4)

Exercise 6.6.1.5: (2) Prove Lemma 6.6.1.4. }

One can say more: each element of Σα corresponds to a left ideal and
each element of Σβ corresponds to a right ideal in the space of n×n matrices.

Proof of theorem 6.6.1.1. Let Σ = Σα ∪ Σβ. Then the automorphism
of G(n2 − n,E⊗F ) induced by φ must preserve Σ. By the conditions
(6.6.3),(6.6.4) of Lemma 6.6.1.4, in order to preserve dimensions of inter-
sections, either every U ∈ Σα must map to a point of Σα, in which case
every V ∈ Σβ must map to a point of Σβ, or, every U ∈ Σα must map to a
point of Σβ, and every V ∈ Σβ must map to a point of Σα. If we are in the

second case, replace φ by φ ◦ T , where T (z) = zT , so we may now assume φ
preserves both Σα and Σβ.

Observe that φ induces an algebraic map φE : PE∗ → PE∗.
Exercise 6.6.1.6: (2) Show that L1, L2, L3 ∈ PE lie on a P1 if and only if
then dim(UL1 ∩ UL2 ∩ UL3) = n2 − 2n, where UL = {X | ker(X) = L}.

In order for φ to preserve dim(UL1 ∩ UL2 ∩ UL3), the images of the Lj
under φE must also lie on a P1, and thus φE must take lines to lines (and
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similarly hyperplanes to hyperplanes). But then, (see, e.g., [Har95, §18, p.
229]) φE ∈ PGL(E), and similarly, φF ∈ PGL(F ), where φF : PF ∗ → PF ∗
is the corresponding map. Here PGL(E) denotes GL(E)/C∗, the image of

GL(E) in its action on projective space. Write φ̂E ∈ GL(E), φ̂F ∈ GL(F )
for any choices of lifts.

Consider the map φ̃ ∈ GL(E⊗F ) given by φ̃(z) = φ̂E
−1φ(z)φ̂F

−1. The

map φ̃ sends each U ∈ Σα to itself as well as each V ∈ Σβ, in particular
it does the same for all intersections. Hence it preserves Seg(PE × PF ) ⊂
P(E⊗F ) point-wise, so it is up to scale the identity map because E⊗F is

spanned by points of Ŝeg(PE × PF ). �

6.6.2. Symmetries of the permanent. Write Cn2
= E⊗F . Let ΓEn :=

TSLE o Sn, and similarly for F . As discussed in the introduction to this
chapter, (ΓEn × ΓFn )oZ2 → Gpermn

, where the nontrivial element of Z2 acts
by sending a matrix to its transpose. We would like to show this map is
surjective and determine its kernel. However, it is not when n = 2.

Exercise 6.6.2.1: (1) What is Gperm2
? }

Theorem 6.6.2.2. [MM62] For n ≥ 3, Gpermn
= (ΓEn × ΓFn )/µn o Z2.

Proof. I follow [Ye11]. Recall the description of Zeros(permn)Jac,n−2 from
Lemma 6.3.3.4. Any linear transformation preserving the permanent must
send a component of Zeros(permn)Jac,n−2 of type (1) to another of type (1).

It must send a component Cj either to some Ck or some Ci. But if i 6= j,
Cj ∩ Ci = 0 and for all i, j, dim(Ci ∩ Cj) = 1. Since intersections must be
mapped to intersections, either all components Ci are sent to components
Ck or all are permuted among themselves. By composing with an element
of Z2, we may assume all the Ci’s are sent to Ci’s and the Cj ’s are sent to
Cj ’s. Similarly, by composing with an element of Sn ×Sn we may assume
each Ci and Cj is sent to itself. But then their intersections are sent to
themselves. So we have, for all i, j,

(6.6.5) (xij) 7→ (λijx
i
j)

for some λij and there is no summation in the expression. Consider the
image of a size 2 submatrix, e.g.,

(6.6.6)
x1

1 x1
2

x2
1 x2

2
7→ λ1

1x
1
1 λ1

2x
1
2

λ2
1x

2
1 λ2

2x
2
2
.

In order that the map (6.6.5) is given by an element of Gpermn
, when (xij) ∈

Zeros(permn)Jac,n−2, the permanent of the matrix on the right hand side
of (6.6.6) must be zero. Using that x1

1x
2
2 + x1

2x
2
1 = 0, the permanent of the

right hand side of (6.6.6) is λ1
1λ

2
2x

1
1x

2
2 +λ2

1λ
1
2x

1
2x

2
1 = x1

1x
2
2(λ1

1λ
2
2−λ2

1λ
1
2) which

implies λ1
1λ

2
2−λ1

2λ
2
1 = 0, thus all the 2×2 minors of the matrix (λij) are zero,
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so it has rank one and is the product of a column vector and a row vector,
but then it arises from x 7→ txt′ with t, t′ diagonal, and for the permanent
to be preserved, det(t) det(t′) = 1. Without loss of generality, we may insist
both determininants equal one. �

6.6.3. Grenet’s decomposition: symmetry and the best upper bound
on dc(permm). Recall from Chapter 4 that the symmetries of the matrix
multiplication tensor appear in the optimal and conjecturally optimal rank
expressions for it. Will the same be true for determinantal expressions of
polynomials, in particular of the permanent?

The best known determinantal expression of permm is of size 2m − 1
and is due to Grenet [Gre11]. (Previously Valiant [Val79] had shown there
was an expression of size 4m.) We saw (Corollary 6.3.4.8) that when m = 3
this is the best expression. This motivated N. Ressayre and myself to try
to understand Grenet’s expression. We observed the following equivariance
property:

Let G ⊆ Gpermm
I will say a determinantal expression for permm is

G-equivariant if given g ∈ G, there exist n × n matrices B,C such that
ÃGrenet,m(g · Y ) = BÃGrenet,m(Y )C or BÃGrenet,m(Y )TC. In other words,
there exists an injective group homomorphism ψ : G → Gdetn such that

ÃGrenet,m(Y ) = ψ(g)(ÃGrenet,m(gY )).

Proposition 6.6.3.1. [LR15] Grenet’s expressions ÃGrenet : Matm(C) →
Matn(C) such that permm(Y ) = detn(ÃGrenet(Y )) are ΓEm-equivariant.

For example, let

g(t) =

t1 t2
t3

 .

Then AGrenet,3(g(t)Y ) = B(t)AGrenet,3(Y )C(t), where

B(t) =



t3
t1t3

t1t3
t1t3

1
1

1


and C(t) = B(t)−1.

Exercise 6.6.3.2: (2) Determine B(g) and C(g) when g ∈ ΓE3 is the per-
mutation (1, 2).

Via this equivariance, one can give an invariant description of Grenet’s
expressions:



6.7. dc v. dc 179

The space SkE is an irreducible GL(E)-module but it is is not in gen-
eral irreducible as a ΓEm-module. Let e1, . . . , em be a basis of E, and let
(SkE)reg ⊂ SkE denote the span of

∏
i∈I ei, for I ⊂ [m] of cardinal-

ity k (the space spanned by the square-free monomials, also known as the
space of regular weights): (SkE)reg is an irreducible ΓEm-submodule of SkE.

Moreover, there exists a unique ΓEm-equivariant projection πk from SkE to
(SkE)reg.

For v ∈ E, define sk(v) : (SkE)reg → (Sk+1E)reg to be multiplica-

tion by v followed by πk+1. Alternatively, (Sk+1E)reg is a ΓEm-submodule

of E⊗(SkE)reg, and sk : E → (SkE)∗reg⊗(Sk+1E)reg is the unique ΓEm-
equivariant inclusion.

Fix a basis f1, . . . , fm of F ∗. If y = (y1, . . . , ym) ∈ E⊗F , let (sk⊗fj)(y) :=
sk(yj).

Proposition 6.6.3.3. [LR15] The following is Grenet’s determinantal rep-

resentation of permm. Let Cn =
⊕m−1

k=0 (SkE)reg, so n = 2m−1, and identify
S0E ' (SmE)reg (both are trivial ΓEm-modules). Set

Λ0 =

m−1∑
k=1

Id(SkE)reg

and define

(6.6.7) Ã = Λ0 +

m−1∑
k=0

sk⊗fk+1.

Then (−1)m+1 permm = detn ◦Ã. To obtain the permanent exactly, replace
Id(S1E)reg by (−1)m+1 Id(S1E)reg in the formula for Λ0.

Moreover the map Ã is ΓEm-equivariant.

I prove Proposition 6.6.3.3 in §8.11.1.

Remark 6.6.3.4. In bases respecting the block decomposition induced from
the direct sum, the linear part, other than the last term which lies in the
upper right block, lies just below the diagonal blocks, and all blocks other
than the upper right block and the diagonal and sub-diagonal blocks, are
zero. This expression is better viewed as an iterated matrix multiplication
as in §7.3.1: perm(y) = (sm−1⊗fm(y))(sm−2⊗fm−1(y)) · · · (s0⊗f1(y)).

6.7. dc v. dc

Is conjecture 6.1.6.2 really stronger than Valiant’s hypothesis 6.1.6.1? That
is, do there exist sequences (Pm) of polynomials with dc(Pm) bounded by a
polynomial in m but dc(Pm) growing super-polynomially?
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K. Mulmuley [Mul] conjectures that this is indeed the case, and that
the existence of such sequences “explains” why Valiant’s hypothesis is so
difficult.

Before addressing this conjecture, one should at least find a sequence
Pm with dc(Pm) > dc(Pm). I describe one such sequence in §6.7.2.

6.7.1. On the boundary of the orbit of the determinant. Let W =

Cn2
= E∗⊗E with E = Cn, and let σn2−1(Seg(PW ∗×PW )) ⊂ P(W ∗⊗W ) be

the endomorphisms of W of rank at most n2−1 An obvious subset of ∂Detn
is obtained by σ̂n2−1(Seg(PW ∗×PW )) ·detn. This is GL(W ) · detn |(E∗⊗E)0

,
the orbit closure of the determinant restricted to the traceless matrices. This
description shows it has codimension one in Detn and is irreducible, so it is
a component of ∂Detn.

Other components can be found as follows: Let U ⊂ W be a subspace
such that detn |U = 0 and let V be a complement. Given a matrix M , write
M = MU⊕MV . Introduce a parameter t and considerM 7→ detn(MU+tMV )
and expand out in a Taylor series. Say the first non-vanishing term is tk, then
M 7→ detn(MU , . . . ,MU ,MV , . . . ,MV ) where there are k MV ’s, is a point
of Detn and it is “usually” a point of ∂Detn. One can do more complicated
constructions by taking more complicated splittings. In all cases, the first
step is to find a subspace U ⊂ W on which the determinant is zero. It is
not hard to see that without loss of generality, one can restrict to U that
are unextendable, i.e., there does not exist any U ′ ⊃ U with detn |U ′ = 0.
For results on such subspaces, see, e.g., [IL99, Atk83, EH88, dSP16,
FLR85]. Unfortunately they are little understood in general. The first
interesting such example, when n is odd, is the space of skew-symmetric
matrices.

When n = 3, the unextendable subspaces have been classified by Atkin-
son [Atk83]: There are four such up to GL3 ×GL3-action, namely∗ ∗ ∗∗ ∗ ∗

0 0 0

 ,

∗ ∗ 0
∗ ∗ 0
∗ ∗ 0

 ,

∗ ∗ ∗∗ 0 0
∗ 0 0

 ,


 0 α β
−α 0 γ
−β −γ 0

 | α, β, γ ∈ C

 .

Another way to study the boundary is to consider the rational map

ψ : P(End(Cn
2
)) 99K Detn(6.7.1)

[X] 7→ [detn ◦X]

One could hope to understand the components of the boundary by blowing

up the indeterminacy locus, which consists of X ∈ End(Cn2
) such that

detn |Image(X) = 0.
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6.7.2. A component via the skew-symmetric matrices. The trans-

position τ ∈ Gdetn allows us to write Cn2
= E⊗E = S2E ⊕ Λ2E, where

the decomposition is into the ±1 eigenspaces for τ . For M ∈ E⊗E, write
M = MS +MΛ reflecting this decomposition.

Define a polynomial PΛ ∈ Sn(Cn2
)∗ by

PΛ(M) = detn(MΛ, . . . ,MΛ,MS).

Let Pfi(MΛ) denote the Pfaffian (see, e.g., [Lan12, §2.7.4] for the defini-
tion of the Pfaffian and a discussion of its properties) of the skew-symmetric
matrix, obtained from MΛ by suppressing its i-th row and column. Write
MS = (sij).

Exercise 6.7.2.1: (2) Show that

PΛ(M) =
∑
i,j

sij Pfi(MΛ) Pfj(MΛ).

In particular, PΛ = 0 if n is even but is not identically zero when n is odd.

Proposition 6.7.2.2. [LMR13] PΛ ∈ Detn. Moreover, GL(W ) · PΛ is an
irreducible codimension one component of the boundary of Detn, not con-
tained in End(W ) · [detn]. In particular dc(PΛ) = n < dc(PΛ).

The proof of Proposition 6.7.2.2 is given in §8.5.1.

Exercise 6.7.2.3: (3) Show that

Zeros(PΛ)∨ = P{v2 ⊕ v ∧ w ∈ S2Cn ⊕ Λ2Cn, v, w ∈ Cn} ⊂ Pn
2−1.

As expected, Zeros(PΛ)∨ resembles Seg(Pn−1 × Pn−1).

Remark 6.7.2.4. For those familiar with the notation, Zeros(PΛ) can be
defined as the image of the projective bundle π : P(E) → Pn−1, where
E = O(−1)⊕Q is the sum of the tautological and quotient bundles on Pn−1,
by a sub-linear system of OE(1)⊗π∗O(1). This sub-linear system contracts
the divisor P(Q) ⊂ P(E) to the Grassmannian G(2, n) ⊂ PΛ2Cn.

For large n I expect there are many components of the boundary, how-
ever, for n = 3, we have:

Theorem 6.7.2.5. [HL16] The boundary ∂Det3 has exactly two irreducible

components: GL9 · PΛ and GL9 · det3 |(E∗⊗E)0
.

The proof has two parts: first they resolve (6.7.1), which can be done
with one blow-up (so in terms of a limit above, only 1

t need show up). They
then analyze each component of Atkinson’s classification and identify the
component of the boundary it lies in.
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6.7.3. Mulmuley’s conjectures on the wildness of the boundary.
There is scant evidence for or against the conjecture of [Mul] mentioned
above. In §6.8.1 I outline the proof that all P ∈ S3C3 with smooth zero set
have dc(P ) = 3 and thus for all Q ∈ S3C3, dc(Q) = 3. In this one case,
there is a big jump between dc and dc, giving some positive news for the
conjecture:

Theorem 6.7.3.1. [ABV15] dc(x3
1 + x2

2x3 + x2x
2
4) ≥ 6, and thus when

n = 3, dc(PΛ) ≥ 6.

The second assertion follows because x3
1 +x2

2x3 +x2x
2
4 is the determinant

of the degeneration of PΛ obtained by taking

MΛ =

 0 x4 x2

−x3 0 x1

−x3 −x1 0

 , MS =

x1 0 0
0 x4 0
0 0 x2

 .

Exercise 6.7.3.2: (1) Using Theorem 6.3.4.6, prove the first assertion of
Theorem 6.7.3.1.

6.8. Determinantal hypersurfaces

This section uses more results from algebraic geometry that we have not
discussed. It is not used elsewhere and can be safely skipped.

6.8.1. All smooth cubic surfaces in P3 are determinantal. Grass-
mann [Gra55] showed that all smooth cubic surfaces in P3 lie in End(C9) ·
det3, and thus all cubic surfaces in P3 lie in Det3. I give an outline of the
proof from [BKs07, Ger89]. Every smooth cubic surface S ⊂ P3 arises
in the following way. Consider P2 and distinguish 6 points not on a conic
and with no three colinear. There is a four dimensional space of cubic
polynomials, say spanned by F1, . . . , F4 ∈ S3C3, that vanish on the six
points. Consider the rational map P2 99K P3 defined by these polynomials,
i.e. [y] 7→ [F1(y), . . . , F4(y)], where the map is defined on P2 minus the six
points and let S denote the closure of the image. (Better, one blows up

P2 at the six points to obtain a surface S̃ and S is the image of the cor-
responding regular map from S̃.) Give C3 coordinates x1, x2, x3. By the
Hilbert-Burch Theorem (see, e.g., [Eis05, Thm. 3.2]), there exists a 3 × 4
matrix L(x1, x2, x3), linear in x1, x2, x3, whose size three minors are the Fj .
Define a 3× 3 matrix M = M(z1, . . . , z4) by

M

x1

x2

x3

 = L


z1

z2

z3

z4


Then det(M) is the equation of S.
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Remark 6.8.1.1. The set of non-equivalent representations of a cubic as
a determinant is in one-to-one correspondence with the subsets of 6 (of the
27) lines of S that do not intersect each other, see [BKs07]. In particular
there are 72 such representations.

6.8.2. Description of the quartic hypersurfaces in P3 that are de-
terminantal. Classically, there was interest in determining which smooth
hypersurfaces of degree d were expressible as a d×d determinant. The result
in the first nontrivial case shows how daunting GCT might be.

Theorem 6.8.2.1 (Letao Zhang and Zhiyuan Li, personal communication).
The variety P{P ∈ S4C4 | [P ] ∈ Det4} ⊂ PS4C4 is a hypersurface of degree
640, 224.

The rest of this subsection uses more advanced language from algebraic
geometry and can be safely skipped.

The following “folklore” theorem was made explicit in [Bea00, Cor.
1.12]:

Theorem 6.8.2.2. Let U = Cn+1, let P ∈ SdU , and let Z = Zeros(P ) ⊂ Pn
be the corresponding hypersurface of degree d. Assume Z is smooth and

choose any inclusion U ⊂ Cd2
.

If P ∈ End(Cd2
) · [detd], we may form a map between vector bundles

M : OPn(−1)d → OdPn whose cokernel is a line bundle L → Z with the
properties:

i) H i(Z,L(j)) = 0 for 1 ≤ i ≤ n− 2 and all j ∈ Z
ii) H0(X,L(−1)) = Hn−1(X,L(j)) = 0

Conversely, if there exists L→ Z satisfying properties i) and ii), then Z
is determinantal via a map M as above whose cokernel is L.

If we are concerned with the hypersurface being in Detn, the first case
where this is not automatic is for quartic surfaces, where it is a codimension
one condition:

Proposition 6.8.2.3. [Bea00, Cor. 6.6] A smooth quartic surface is de-
terminantal if and only if it contains a nonhyperelliptic curve of genus 3
embedded in P3 by a linear system of degree 6.

Proof of 6.8.2.1. From Proposition 6.8.2.3, the hypersurface is the locus
of quartic surfaces containing a (Brill-Noether general) genus 3 curve C of
degree six. This translates into the existence of a lattice polarization

h C
h 4 6
C 6 4
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of discriminant −(42 − 62) = 20. By the Torelli theorems, the K3 surfaces
with such a lattice polarization have codimension one in the moduli space
of quartic K3 surfaces.

Let D3,6 denote the locus of quartic surfaces containing a genus 3 curve
C of degree six in P34 = P(S4C4). It corresponds to the Noether-Lefschetz
divisor NL20 in the moduli space of the degree four K3 surfaces. Here
NLd denotes the Noether-Lefschetz divisor, parameterizing the degree 4 K3
surfaces whose Picard lattice has a rank 2 sub-lattice containing h with
discriminant −d. (h is the polarization of the degree four K3 surface, h2 =
4.)

The Noether-Lefschetz number n20, which is defined by the intersection
number of NL20 and a line in the moduli space of degree four K3 surfaces,
equals the degree of D3,6 in P34 = P(S4C4).

The key fact is that nd can be computed via the modularity of the
generating series for any integer d. More precisely, the generating series
F (q) :=

∑
d ndq

d/8 is a modular form of level 8, and can be expressed by a

polynomial of A(q) =
∑

n q
n2/8 and B(q) =

∑
n(−1)nqn

2/8.

The explicit expression of F (q) is in [MP, Thm 2]. As an application,

the Noether-Lefschetz number n20 is the coefficient of the term q20/8 = q5/2,
which is 640, 224. �



Chapter 7

Valiant’s hypothesis II:
Restricted models and
other approaches

This chapter continues the discussion of Valiant’s hypothesis and its vari-
ants. Chapter 6 described progress via benchmarks such as lower bounds
for dc(permm). Another approach to these problems is to prove complexity
lower bounds under supplementary hypotheses, called restricted models in
the computer science literature. I begin, in §7.1, with a discussion of the
geometry of one of the simplest classes of shallow circuits, the ΣΛΣ-circuits
whose complexity essentially measures symmetric tensor rank, and discuss
the symmetric tensor rank of the elementary symmetric polynomials. Next,
in §7.2, I discuss ΣΠΣ circuits and their relationship to secant varieties of
the Chow variety. There are several complexity measures that are equiva-
lent to determinantal complexity, such as algebraic branching programs and
iterated matrix multiplication complexity. These are discussed in §7.3. Addi-
tional restricted models are presented in §7.4: Aravind and Joegelkar’s rank
k determinantal expressions of [AJ15], Shpilka’s restricted model [Shp02]
of depth-2 symmetric arithmetic circuits, a result of Glynn [Gly13] on a cer-
tain class of expressions for the permanent, Nisan’s non-commutative ABP’s
[Nis91], and the equivariant determinantal complexity of [LR15]. Equivari-
ant determinantal complexity is the only known restricted model that gives
an exponential separation between the permanent and determinant.

I devote §7.5 to the restricted models of shallow circuits because there
is a path to proving Valiant’s hypothesis by proving lower bounds that are
stronger than super-polynomial for them. The depth of a circuit C is the

185
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number of edges in the longest path in C from an input to its output. If a
circuit has small depth, it is called a shallow circuit, and the polynomial
it computes can be computed quickly in parallel. The section begins in
§7.5.1 with a detour for readers not familiar with big numbers as different
levels of super-polynomial growth need to be compared both for statements
and proofs. Having already discussed the geometry associated to depth 3
circuits in §7.2, I explain the geometry associated to the depth 4 and 5
circuits that arise in [GKKS13a] in §7.5.3. I discuss the tantalizing lower
bounds of [GKKS13a] in §7.6, and analyze the method of proof, shifted
partial derivatives, in detail. I then show that this method cannot separate
the padded permanent from the determinant.

I conclude with a brief discussion of polynomial identity testing (PIT),
hitting sets, and effective Noether normalization in §7.7. I believe these
topics are potentially of great interest to algebraic geometry.

As pointed out by Shpilka and Yehudayoff in [SY09], restricted circuits
of polynomial size only compute polynomials with “simple” structure. Thus
to understand them one needs to determine the precise meaning of “simple”
for a given restricted class, and then find an “explicit” polynomial without
such structure. One could rephrase this geometrically as restricted circuits
of a fixed size s define an algebraic variety in SnCN that is the closure of
the set of polynomials computable with a restricted circuit of size s. The
goal becomes to find an equation of that variety and an explicit polynomial
not satisfying that equation.

Recall that computer scientists always work in bases and the inputs to
the circuits are constants and variables. For homogeneous circuits, the in-
puts are simply the variables. The first layer of a ΣΛΣ, ΣΠΣ, or ΣΛΣΛΣ
circuit for a polynomial P ∈ SdCN is just to obtain arbitrary linear forms
from these variables, so it plays no role in the geometry, and at worst mul-
tiplies the circuit size by N , and often enlarges it by much less. This fact
will be used throughout this chapter.

I continue to work exclusively with homogeneous polynomials and over
the complex numbers. In particular, for a v-dimensional complex vector
space V , SdV denotes the space of homogeneous polynomials of degree d on
V ∗.

7.1. Waring rank, depth three powering circuits and
symmetric polynomials

Recall from §6.2.2 that the symmetric tensor rank (Waring rank) of a poly-
nomial P ∈ SdV , denoted RS(P ) is the smallest r such that we may write
P = `d1 + · · ·+`dr for some `j ∈ V . As explained in §7.1.1, such P admit ΣΛΣ
circuits of size at most r(v + 2). Although not directly related to Valiant’s
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hypothesis, they are a simple enough class of circuits that one can actually
prove lower bounds and they are used as the basis for further lower bound
results.

Similarly, the class of elementary symmetric polynomials is a class of
polynomials simple enough for one to prove complexity results, but rich
enough to be of interest. In §7.1.2 I discuss the elementary symmetric func-
tion en,n = x1 · · ·xn, describing its symmetry group and Waring decomposi-
tion. In §7.1.3 I discuss the Waring decompositions of elementary symmetric
polynomials in general.

Recall the notation σr(vd(PV )) = P{P ∈ SdV | P = `d1 + · · · `dr , `j ∈ V }
for the Zariski closure of the set of polynomials in PSdV of Waring rank
at most r, called the r-th secant variety of the Veronese variety, and that
RS(P ) denotes the smallest r such that P ∈ σr(vd(PV )).

7.1.1. σr(vd(PV )) and ΣΛΣ circuits. When one studies circuits of bounded
depth, one must allow gates to have an arbitrary number of edges coming in
to them, which is called unbounded fanin. For such circuits, multiplication
by constants is considered free.

A ΣΛδΣ circuit consists of three layers, the first of addition gates, the
second of powering gates, that map ` 7→ `δ (so each gate has a single input
and output), and the third a single addition gate. Such circuits are also
called diagonal depth-3 circuits, or depth three powering circuits, see, e.g.,
[Sax08].

Proposition 7.1.1.1. Say P ∈ SdCv satisfies RS(P ) = r. Then P admits
a ΣΛdΣ circuit of size r(v + 2).

Proof. We are given that P = `d1 + · · ·+ `dr from some `j ∈ Cv. We need at
most v additions to construct each `j , of which there are r, so rv edges at
the first level. Then there are r powering gates, of one edge each and each of
these sends one edge to the final addition gate, for a total of rv + r+ r. �

The following proposition bounds ΣΛΣ complexity by dc:

Proposition 7.1.1.2. Let P ∈ SmV and let ` ∈ V . Then dc(P ) ≤
mRS(P ) + 1 and dc(P ) ≤ mRS(P ) + 1.

Exercise 7.1.1.3: (2) Prove Proposition 7.1.1.2. }

7.1.2. The polynomial x1 · · ·xn. Consider the polynomial en,n := x1 · · ·xn ∈
SnCn (the n-th elementary symmetric function in n variables). This simple
polynomial plays a major role in complexity theory and geometry. Its GLn-
orbit closure has been studied for over a hundred years and is discussed in
Chapter 9. In some sense it is the “weakest” polynomial known that re-
quires an exponential size ΣΛΣ-circuit, which will be important in §7.7. I
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first determine its symmetry group Gen,n , which will be used several times
in what follows.

It is clear TSLn oSn ⊆ Gen,n , where TSLn denotes the diagonal matrices
with determinant one (the matrix with (λ1, . . . , λn) on the diagonal sends xj
to λjxj) and Sn acts by permuting the basis vectors. We need to determine
if the stabilizer is larger. Let g ∈ GLn. Then

g · en,n =

 n∑
j1=1

gj11 xj1

 · · ·
 n∑
jn=1

gjnn xjn

 .

In order that this be equal to x1 · · ·xn, by unique factorization of polyno-
mials, there must be a permutation σ ∈ Sn such that for each k, we have∑

j g
j
kxj = λkxσ(k) for some λk ∈ C∗. Composing with the inverse of this

permutation we have gjk = δjkλj , and finally we see that we must further

have λ1 · · ·λn = 1, which means it is an element of TSLn , so the original g
is an element of TSLn oSn. Thus Gen,n = TSLn oSn. By the discussion in
§4.2, any Waring decomposition of en,n containing a pinning set can have
symmetry group at most Sn.

The optimal Waring decomposition of x1 · · ·xn is

(7.1.1) x1 · · ·xn =
1

2n−1n!

∑
ε∈{−1,1}n

ε1=1

(Πn
i=1εi

n∑
j=1

εjxj
)n ,

a sum with 2n−1 terms. It is called Fischer’s formula in the computer
science literature because Fischer wrote it down in 1994 [Fis94]. While
similar formulas appeared earlier (e.g. formula (7.1.2) below appeared in
1934), I have not found this precise formula earlier in the literature. I give
the proof of its optimality (due to Ranestad and Schreyer [RS11]) in §10.1.2.

This decomposition transparently has an Sn−1-symmetry. Here is a
slightly larger expression that transparently has an Sn-symmetry:

(7.1.2) x1 · · ·xn =
1

2nn!

∑
ε∈{−1,1}n

Πn
i=1εi

( n∑
j=1

εjxj
)n .

This formula dates back at least to 1934, where Mazur and Orlicz [MO34]
gave it and generalizations.

Remarkably, as was realized by H. Lee [Lee16], Fischer’s expression
already has an Sn-symmetry when n is odd.

For example:

xyz =
1

24
[(x+ y + z)3 − (x+ y − z)3 − (x− y + z)3 − (−x+ y + z)3].
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For an integer set I and an integer i, define

δ(I, i) =

{
−1 i ∈ I
1 i 6∈ I .

When n = 2k + 1 is odd, rewrite Fischer’s formula as:
(7.1.3)

x1x2 · · ·xn =
1

2n−1n!

∑
I⊂[n],|I|≤k

(−1)|I|(δ(I, 1)x1+δ(I, 2)x2+· · ·+δ(I, n)xn)n.

When n = 2k is even, the situation is a little more subtle. One may
rewrite Fischer’s formula as:

x1x2 · · ·xn =
1

2n−1n!
[

∑
I⊂[n],|I|<k

(−1)|I|(δ(I, 1)x1 + δ(I, 2)x2 + · · ·+ δ(I, n)xn)n

(7.1.4)

+
∑

I⊂[n],|I|=k,1∈I

(−1)k

2
(δ(I, 1)x1 + δ(I, 2)x2 + · · ·+ δ(I, n)xn)n].

The collection of terms in the second summation is only Sn-invariant up
to sign. In the language of Chapter 4, if we write the decomposition as
S = {`n1 , . . . , `n2n−1}, the decomposition S is Sn-invariant. Moreover, the
set {[`1], . . . , [`2n−1 ]} is Sn-invariant, however the set {`1, . . . , `2n−1} is only
Sn−1-invariant (and Sn-invariant up to sign).

Remark 7.1.2.1. Using the techniques of [RS00], Ranestad (personal com-
munication) has shown that every minimal rank decomposition of x1 · · ·xn
is in the TSLn-orbit of the the right hand side of (7.1.1), so in particular,
by Proposition 4.1.2.2 every decomposition has Sn-symmetry.

7.1.3. Symmetric ranks of elementary symmetric polynomials. Here
are generalizations of the Waring expressions for en,n to all symmetric poly-
nomials due to H. Lee:

Theorem 7.1.3.1. [Lee16] Let d = 2k + 1 and let N ≥ d. Then

ed,N =
1

2d−1d!

∑
I⊂[N ],|I|≤k

(−1)|I|
(
N − k − |I| − 1

k − |I|

)
(δ(I, 1)x1+δ(I, 2)x2+· · ·+δ(I,N)xN )d.

In particular, for d odd, RS(ed,N ) ≤
∑b d

2
c

i=0

(
N
i

)
.

This formula nearly appeared in [MO34] in 1934, but just as with Fis-
cher’s, there was a doubling of size.

Proof. Work by downwards induction, the case d = N is Fischer’s formula.
Let d < N and let Fd,N denote the right hand side of the expression.
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Observe that Fd,d = ed,d and Fd,N−1 = Fd,N (x1, . . . , xN−1, 0) up to a
constant. In particular Fd,d = Fd,N (x1, . . . , xd, 0, . . . , 0) up to a constant.
The analogous statement holds setting any subset of the variables to zero.
This implies that Fd,N is an expression that has all the square-free monomials
in ed,N appearing in it, all with the same coefficient. Moreover, there are no
other monomials appearing in Fd,N as otherwise there would be a monomial
involving fewer than d variables that would appear in some specialization to
some ed,d. One concludes by checking the constant is correct. �

Lee gives a similar formula for d even.

7.2. Depth three circuits and secant varieties of the Chow
variety

In this section I discuss the depth three or ΣΠΣ circuits, which consist of
depth three formulas where the first layer of gates consist of additions, the
second of multiplications, and the last gate is an addition gate. Remarkably,
these circuits are powerful enough to potentially separate VP from VNP,
as is explained in §7.5.

There is a subtlety with these circuits: their homogeneous version, used
näıvely, lacks computing power. This can be fixed either by allowing inho-
mogeneous circuits, which is what is done in the computer science literature,
or with the help of padding, which I discuss in §7.2.3.

7.2.1. Secant varieties and homogeneous depth three circuits. Re-
call the Chow variety Chn(W ) ⊂ PSnW . When w = dimW ≥ n, it is

the orbit closure GL(W ) · [x1 · · ·xn]. The set of polynomials of the form∑r
i=1 `i,1 · · · `i,n, where `i,j ∈ W (the sum-product polynomial in the com-

puter science literature) is denoted σ0
r (Chn(W )), and σr(Chn(W )) is the

Zariski closure in PSnW of σ0
r (Chn(W )), the r-th secant variety of the

Chow variety.

The relation between secant varieties of Chow varieties and depth three
circuits is as follows:

Proposition 7.2.1.1. [Lan15a] A polynomial P ∈ SnW in σ0
r (Chn(W ))

is computable by a homogeneous depth three circuit of size r + nr(1 + w).
If P 6∈ σ0

r (Chn(W )), then P cannot be computed by a homogeneous depth
three circuit of size n(r + 1) + r + 1.

Proof. In the first case, P =
∑r

j=1(`1j · · · `nj) for some `sj ∈W . Expressed
in terms of a fixed basis of W , each `sj is a linear combination of at worst
w basis vectors, thus to create the `sj requires at worst nrw additions.
Then to multiply them in groups of n is nr multiplications, and finally to
add these together is r further additions. In the second case, at best P is in
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σ0
r+1(Chn(W )), in which case, even if each of the `sj ’s is a basis vector (so no

initial additions are needed), we still must perform n(r + 1) multiplications
and r + 1 additions. �

7.2.2. Why homogeneous depth three circuits do not appear use-
ful at first glance. Exercise 6.2.2.7 implies that in order that [detn] ∈
σr(Chn(Cn2

)) we must have r
(
n
bn

2
c
)
≥
(
n
bn

2
c
)2

, i.e., r >
(
n
bn

2
c
)
∼ 2n/n (see

§7.5.1).

By Proposition 7.2.1.1, we conclude:

Proposition 7.2.2.1. [NW97] The polynomial sequences detn and permn

do not admit homogeneous depth three circuits of size 2n/n.

Remark 7.2.2.2. The proof above follows from considering partial deriva-
tives in middle degree. In [NW97] they consider all partial derivatives of
all orders simultaneously to improve the lower bound to 2n.

Thus homogeneous depth three circuits at first sight do not seem that
powerful because a homogeneous depth 3 circuit of size 2n cannot compute
the determinant.

To make matters worse, consider the polynomial corresponding to iter-
ated matrix multiplication of three by three matrices IMM3

k ∈ Sk(C9k). It
is complete for the class VPe of sequences with polynomial sized formulas
discussed in Remark 6.1.5.2 (see [BOC92]), and also has an exponential
lower bound for its Chow border rank:

Exercise 7.2.2.3: (2) Use flattenings to show IMM3
k 6∈ σpoly(k)(Chk(C9k)).

By Exercise 7.2.2.3, sequences of polynomials admitting polynomial size
formulas do not in general have polynomial size homogeneous depth three
circuits.

7.2.3. Homogeneous depth three circuits for padded polynomials.
If one works with padded polynomials instead of polynomials (as we did
with Detn), the power of homogeneous depth three circuits increases to the
power of arbitrary depth three circuits. The following geometric version of a
result of Ben-Or and Cleve (presented below as a Corollary) was suggested
by K. Efremenko:

Proposition 7.2.3.1. [Lan15a] Let Cm+1 have coordinates `, x1, . . . , xm
and let ek,m = ek,m(x1, . . . , xm) be the k-th elementary symmetric polyno-

mial. For all k ≤ m, `m−kek,m ∈ σ0
m(Chm(Cm+1)).
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Proof. Fix an integer u ∈ Z, recall the generating function Em for the
elementary symmetric functions from (6.1.2), and define

gu(x, `) = (u`)mEm(
1

u`
)

=
m∏
i=1

(xi + u`)

=
∑
k

um−kek,m(x)`m−k.

The second line shows gu(x, `) ∈ Chm(Cm+1). Letting u = 1, . . . ,m, we
may use the inverse of the Vandermonde matrix to write each `m−kek,m as
a sum of m points in Chm(Cm+1) because

10 11 · · · 1m

20 21 · · · 2m

...
m0 m1 · · · mm



`m−1e1,m

`m−2e2,m
...

`0em,m

 =


g1(x, `)
g2(x, `)

...
gm(x, `)

 .

�

Corollary 7.2.3.2. [BOC92] `m−kek,m can be computed by a homogeneous
depth three circuit of size 3m2 +m.

Proof. As remarked above, for any point of σr(Chn(Cm+1)) one gets a
circuit of size at most r + nr + rn(m+ 1), but here at the first level all the
addition gates have fanin two (i.e., there are two inputs to each addition
gate) instead of the possible m+ 1. �

Remark 7.2.3.3. The best lower bound for computing the ekn via a ΣΠΣ
circuit is Ω(n2) [SW01], so Corollary 7.2.3.2 is very close to (and may well
be) sharp.

Proposition 7.2.3.4. [Lan15a] Say P ∈ SmCM is computable by a depth
three circuit of size s. Then, for some n < s+m, `n−mP is computable by
a homogeneous depth three circuit of size O(s2).

Proof. Start with the inhomogeneous circuit computing P . At the first
level, add a homogenizing variable `, so that the affine linear outputs become
linear in our original variables plus `, the product gates will each produce
a homogeneous polynomial. While the different product gates may produce
polynomials of different degrees, when we add them up what remains must
be a sum of homogeneous polynomials, such that when we set ` = 1, we
obtain the desired homogeneous polynomial. Say the largest power of `
appearing in this sum is q. Note that q < s. For each other term there
is some other power of ` appearing, say qi for the i-th term. Then to the
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original circuit, add q− qi inputs to the i-th product gate, where each input
is `. This will not change the size of the circuit by more than qr < s2. Our
new homogeneous depth three circuit will output `qP . �

7.3. Algebraic branching programs

In this section I describe algebraic branching programs, a model of com-
putation with complexity equivalent to that of the determinant, as well as
two restrictions of it, one (non-commutative ABP’s) that has an exponential
lower bound for the permanent (but also for the determinant), and another
(read once ABP’s) where it is possible to carry out deterministic polynomial
identity testing as described in §7.7.

7.3.1. Algebraic branching programs and iterated matrix multi-
plication.

Definition 7.3.1.1 (Nisan [Nis91]). An Algebraic Branching Program (ABP)
over C is a directed acyclic graph Γ with a single source s and a single sink
t. Each edge e is labeled with an affine linear function `e in the variables
{yi|1 ≤ i ≤ M}. Every directed path p = e1e2 · · · ek computes the prod-

uct Γp :=
∏k
j=1 `ej . For each vertex v the polynomial Γv is defined as∑

p∈Ps,v Γp where Ps,v is the set of paths from s to v. We say that Γv is

computed by Γ at v. We also say that Γt is computed by Γ or that Γt is the
output of Γ.

The size of Γ is the number of vertices. Let abpc(P ) denote the smallest
size of an algebraic branching program that computes P .

An ABP is layered if we can assign a layer i ∈ N to each vertex such that
for all i, all edges from layer i go to layer i+1. An ABP is homogeneous if the
polynomials computed at each vertex are all homogeneous. A homogeneous
ABP Γ is degree layered if Γ is layered and the layer of a vertex v coincides
with the degree of v. For a homogeneous P let dlabpc(P ) denote the smallest
size of a degree layered algebraic branching program that computes P . Of
course dlabpc(P ) ≥ abpc(P ).

Definition 7.3.1.2. The iterated matrix multiplication complexity of a poly-
nomial P (y) in M variables, immc(P ) is the smallest n such that there
exists affine linear maps Bj : CM → Matn(C), j = 1, . . . , n, such that
P (y) = trace(Bn(y) · · ·B1(y)). The homogeneous iterated matrix multi-
plication complexity of a degree m homogeneous polynomial P ∈ SmCM ,
himmc(P ), is the smallest n such that there exist natural numbers n1, . . . , nm
with 1 = n1, and n = n1+· · ·+nm, and linear maps As : CM → Matns×ns+1 ,
1 ≤ s ≤ m, with nm+1 = 1, such that P (y) = Am(y) · · ·A1(y).
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7.3.2. Determinantal complexity and ABP’s. Two complexity mea-
sures m1,m2 are polynomially related if for any sequence pn of polyno-
mials, there exist constants C1, C2 such that for all sufficiently large n,
m1(pn) ≤ (m2(pn))C1 and m2(pn) ≤ (m1(pn))C2 .

The following folklore theorem was stated explicitly in [IL16a] with
precise upper and lower bounds between the various complexity measures:

Theorem 7.3.2.1. [IL16a] The complexity measures dc, abpc, immc, dlabpc
and himmc, are all polynomially related.

Additional relations between different models are given in [MP08].

Regarding the geometric search for separating equations, the advantage
one gains by removing the padding in the iterated matrix multiplication
model is offset by the disadvantage of dealing with the himmc polynomial
that for all known equations such as Young flattenings (which includes the
method of shifted partial derivatives as a special case) and equations for
degenerate dual varieties, behaves far more generically than the determinant.

Work of Mahajan-Vinay [MV97] implies:

Proposition 7.3.2.2. [IL16a] dlabpc(detm) ≤ m3

3 −
m
3 +2 and himmc(detm) ≤

m3

3 −
m
3 + 2.

Remark 7.3.2.3. For m < 7, the size 2m − 1 Grenet-like expressions from
[LR15] for detm give smaller iterated matrix multiplication expressions.
This warns us that small cases can be deceptive.

Remark 7.3.2.4. It is an important and perhaps tractable open problem to
prove an ω(m2) lower bound for dc(permm). By the more precise version of
Theorem 7.3.2.1 in [IL16a], it would suffice to prove an ω(m6) lower bound
for himmc(permm).

Here are the size m3

3 −
m
3 +2 himmc expressions for detm whenm = 3, 4, 5:

det3(x) = (x2
1, x

3
1, x

2
2, x

3
2, x

3
3)


x2

2 x3
2 0

x2
3 x3

3 0
−x2

1 −x3
1 0

0 0 x2
3

−x2
1 −x3

1 −x2
2


 x1

2

x1
3

−x1
1

 .
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Let M1 = (−x2
1,−x3

1,−x4
1,−x2

2,−x3
2,−x4

2,−x3
3,−x4

3,−x4
4). Then

det4(x) = M1



x2
2 x3

2 x4
2 0 0 0 0

x2
3 x3

3 x4
3 0 0 0 0

x2
4 x3

4 x4
4 0 0 0 0

−x2
1 −x3

1 −x4
1 0 0 0 0

0 0 0 x2
3 x3

3 x4
3 0

0 0 0 x2
4 x3

4 x4
4 0

−x2
1 −x3

1 −x4
1 −x2

2 −x3
2 −x4

2 0
0 0 0 0 0 0 x3

4

−x2
1 −x3

1 −x4
1 −x2

2 −x3
2 −x4

2 −x3
3





x2
2 x3

2 x4
2 0

x2
3 x3

3 x4
3 0

x2
4 x3

4 x4
4 0

−x2
1 −x3

1 −x4
1 0

0 0 0 x2
3

0 0 0 x2
4

−x2
1 −x3

1 −x4
1 −x2

2




x1

2

x1
3

x1
4

−x1
1



Let M1 = (x2
1, x

3
1, x

4
1, x

5
1, x

2
2, x

3
2, x

4
2, x

5
2, x

3
3, x

4
3, x

5
3, x

4
4, x

5
4, x

5
5),

M2 =



x2
2 x3

2 x4
2 x5

2 0 0 0 0 0 0 0 0
x2

3 x3
3 x4

3 x5
3 0 0 0 0 0 0 0 0

x2
4 x3

4 x4
4 x5

4 0 0 0 0 0 0 0 0
x2

5 x3
5 x4

5 x5
5 0 0 0 0 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 0 0 0 0 0 0 0 0
0 0 0 0 x2

3 x3
3 x4

3 x5
3 0 0 0 0

0 0 0 0 x2
4 x3

4 x4
4 x5

4 0 0 0 0
0 0 0 0 x2

5 x3
5 x4

5 x5
5 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 −x2
2 −x3

2 −x4
2 −x5

2 0 0 0 0
0 0 0 0 0 0 0 0 x3

4 x4
4 x5

4 0
0 0 0 0 0 0 0 0 x3

5 x4
5 x5

5 0
−x2

1 −x3
1 −x4

1 −x5
1 −x2

2 −x3
2 −x4

2 −x5
2 −x3

3 −x4
3 −x5

3 0
0 0 0 0 0 0 0 0 0 0 0 x4

5

−x2
1 −x3

1 −x4
1 −x5

1 −x2
2 −x3

2 −x4
2 −x5

2 −x3
3 −x4

3 −x5
3 −x4

4



,

M3 =



x2
2 x3

2 x4
2 x5

2 0 0 0 0 0
x2

3 x3
3 x4

3 x5
3 0 0 0 0 0

x2
4 x3

4 x4
4 x5

4 0 0 0 0 0
x2

5 x3
5 x4

5 x5
5 0 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 0 0 0 0 0
0 0 0 0 x2

3 x3
3 x4

3 x5
3 0

0 0 0 0 x2
4 x3

4 x4
4 x5

4 0
0 0 0 0 x2

5 x3
5 x4

5 x5
5 0

−x2
1 −x3

1 −x4
1 −x5

1 −x2
2 −x3

2 −x4
2 −x5

2 0
0 0 0 0 0 0 0 0 x3

4

0 0 0 0 0 0 0 0 x3
5

−x2
1 −x3

1 −x4
1 −x5

1 −x2
2 −x3

2 −x4
2 −x5

2 −x3
3



,
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M4 =



x2
2 x3

2 x4
2 x5

2 0
x2

3 x3
3 x4

3 x5
3 0

x2
4 x3

4 x4
4 x5

4 0
x2

5 x3
5 x4

5 x5
5 0

−x2
1 −x3

1 −x4
1 −x5

1 0
0 0 0 0 x2

3

0 0 0 0 x2
4

0 0 0 0 x2
5

−x2
1 −x3

1 −x4
1 −x5

1 −x2
2


, M5 =


x1

2

x1
3

x1
4

x1
5

−x1
1

 .

Then det5(x) = M1M2M3M4M5.
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Let
M1 = (−x2

1,−x
3
1,−x

4
1,−x

5
1,−x

6
1,−x

2
2,−x

3
2,−x

4
2,−x

5
2,−x

6
2,−x

3
3,−x

4
3,−x

5
3,−x

6
3,−x

4
4,−x

5
4,−x

6
4,−x

5
5,−x

6
5,−x

6
6)

M2 =



x2
2 x3

2 x4
2 x5

2 x6
2 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
3 x3

3 x4
3 x5

3 x6
3 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
4 x3

4 x4
4 x5

4 x6
4 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
5 x3

5 x4
5 x5

5 x6
5 0 0 0 0 0 0 0 0 0 0 0 0 0

x2
6 x3

6 x4
6 x5

6 x6
6 0 0 0 0 0 0 0 0 0 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x2
3 x3

3 x4
3 x5

3 x6
3 0 0 0 0 0 0 0 0

0 0 0 0 0 x2
4 x3

4 x4
4 x5

4 x6
4 0 0 0 0 0 0 0 0

0 0 0 0 0 x2
5 x3

5 x4
5 x5

5 x6
5 0 0 0 0 0 0 0 0

0 0 0 0 0 x2
6 x3

6 x4
6 x5

6 x6
6 0 0 0 0 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2 −x3
2 −x4

2 −x5
2 −x6

2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 x3

4 x4
4 x5

4 x6
4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 x3
5 x4

5 x5
5 x6

5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 x3

6 x4
6 x5

6 x6
6 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2 −x3
2 −x4

2 −x5
2 −x6

2 −x3
3 −x4

3 −x5
3 −x6

3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x4

5 x5
5 x6

5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x4

6 x5
6 x6

6 0
−x2

1 −x3
1 −x4

1 −x5
1 −x6

1 −x2
2 −x3

2 −x4
2 −x5

2 −x6
2 −x3

3 −x4
3 −x5

3 −x6
3 −x4

4 −x5
4 −x6

4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x5

6

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2 −x3
2 −x4

2 −x5
2 −x6

2 −x3
3 −x4

3 −x5
3 −x6

3 −x4
4 −x5

4 −x6
4 −x5

5



M3 =



x2
2 x3

2 x4
2 x5

2 x6
2 0 0 0 0 0 0 0 0 0 0

x2
3 x3

3 x4
3 x5

3 x6
3 0 0 0 0 0 0 0 0 0 0

x2
4 x3

4 x4
4 x5

4 x6
4 0 0 0 0 0 0 0 0 0 0

x2
5 x3

5 x4
5 x5

5 x6
5 0 0 0 0 0 0 0 0 0 0

x2
6 x3

6 x4
6 x5

6 x6
6 0 0 0 0 0 0 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x2
3 x3

3 x4
3 x5

3 x6
3 0 0 0 0 0

0 0 0 0 0 x2
4 x3

4 x4
4 x5

4 x6
4 0 0 0 0 0

0 0 0 0 0 x2
5 x3

5 x4
5 x5

5 x6
5 0 0 0 0 0

0 0 0 0 0 x2
6 x3

6 x4
6 x5

6 x6
6 0 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2 −x3
2 −x4

2 −x5
2 −x6

2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 x3

4 x4
4 x5

4 x6
4 0

0 0 0 0 0 0 0 0 0 0 x3
5 x4

5 x5
5 x6

5 0
0 0 0 00 0 0 0 0 0 x3

6 x4
6 x5

6 x6
6 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2 −x3
2 −x4

2 −x5
2 −x6

2 −x3
3 −x4

3 −x5
3 −x6

3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x4

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 x4
6

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2 −x3
2 −x4

2 −x5
2 −x6

2 −x3
3 −x4

3 −x5
3 −x6

3 −x4
4



M4 =



x2
2 x3

2 x4
2 x5

2 x6
2 0 0 0 0 0 0

x2
3 x3

3 x4
3 x5

3 x6
3 0 0 0 0 0 0

x2
4 x3

4 x4
4 x5

4 x6
4 0 0 0 0 0 0

x2
5 x3

5 x4
5 x5

5 x6
5 0 0 0 0 0 0

x2
6 x3

6 x4
6 x5

6 x6
6 0 0 0 0 0 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 0 0 0 0 0 0

0 0 0 0 0 x2
3 x3

3 x4
3 x5

3 x6
3 0

0 0 0 0 0 x2
4 x3

4 x4
4 x5

4 x6
4 0

0 0 0 0 0 x2
5 x3

5 x4
5 x5

5 x6
5 0

0 0 0 0 0 x2
6 x3

6 x4
6 x5

6 x6
6 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2 −x3
2 −x4

2 −x5
2 −x6

2 0
0 0 0 0 0 0 0 0 0 0 x3

4

0 0 0 0 0 0 0 0 0 0 x3
5

0 0 0 0 0 0 0 0 0 0 x3
6

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2 −x3
2 −x4

2 −x5
2 −x6

2 −x3
3



M5 =



x2
2 x3

2 x4
2 x5

2 x6
2 0

x2
3 x3

3 x4
3 x5

3 x6
3 0

x2
4 x3

4 x4
4 x5

4 x6
4 0

x2
5 x3

5 x4
5 x5

5 x6
5 0

x2
6 x3

6 x4
6 x5

6 x6
6 0

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 0

0 0 0 0 0 x2
3

0 0 0 0 0 x2
4

0 0 0 0 0 x2
5

0 0 0 0 0 x2
6

−x2
1 −x3

1 −x4
1 −x5

1 −x6
1 −x2

2


, M6 =



x1
2

x1
3

x1
4

x1
5

x1
6

−x1
1


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Then det6(X) = M1M2M3M4M5M6.

Compare these with the expression from [LR15]:

(7.3.1) det3(x) = (x1
1, x

2
1, x

3
1)

 x2
2 −x3

2 0
−x1

2 0 x3
2

0 x1
2 −x2

2

x3
3

x2
3

x1
3

 .

and for det4 the sizes of the matrices are 1× 4, 4× 6, 6× 4, 4× 1.

7.3.3. A classical exponential lower bound for the permanent (and
determinant). Consider a restricted model where one is not allowed to
exploit the commutativity of multiplication. Let C{y1, . . . , yN} denote the
ring of polynomials in the non-commuting variables y1, . . . , yN . Choose an
expression for a polynomial P and consider it in this larger ring. The defi-
nition of circuits is the same here, just that we cannot assume ab = ba for
expressions a and b.

Theorem 7.3.3.1. [Nis91] The degree homogeneous non-commutative ABP
complexity of detm and permm are both 2m − 1.

Proof. Choose the representations of the determinant and permanent where
the first row comes first, the second comes second, etc. Consider the degree
homogeneous ABP Γ with m + 1 layers that computes detm (or permm).
Keep the labels from all edges that appear before level s and set the la-
bels on all other layers to constants to see that all terms of the form∑

σ∈Sm cσy
1
σ(1) · · · y

s
σ(s) can be computed by taking linear combinations of

the polynomials Γv, where v is a vertex in layer s. Since these terms span
a vector space of dimension

(
m
s

)
there must be at least

(
m
s

)
linearly inde-

pendent polynomials Γv, so there must be at least
(
m
s

)
vertices on layer s.

Summing up the binomial coefficients yields the lower bound.

The Grenet determinantal presentation of permm [Gre11] and the reg-
ular determinantal presentation of detm of [LR15] give rise to column-
wise multi-linear iterated matrix multiplication presentations, and thus non-
commutative ABP’s, of size 2m − 1. �

Remark 7.3.3.2. In contrast to ABP’s, for general non-commutative cir-
cuits, very little is known, see, e.g., [LMS16, HsWY10]. There are expo-
nential bounds for skew circuits in [LMS16] (the class of circuits equivalent
in power to the determinant).

7.3.4. Read once ABP’s. Another restriction of ABP’s is that of read
once oblivious ABP’s, henceforth ROABP’s. Here the ABP is layered. The
read-once means that the edges at layer i only use a variable xi. On the other
hand, the weights are allowed to be low degree polynomials in the xi. The
word oblivious means additionally that an ordering of the variables is fixed in
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advance. I return to this model in §7.7 because it is restrictive enough that
it admits explicit deterministic hitting sets for polynomial identity testing.
On the other hand, this model can efficiently simulate depth three powering
circuits.

7.4. Additional restricted models

The purpose of this section is to survey restricted models that have geometric
aspects. Each subsection may be read independently of the others.

7.4.1. Equivariant determinantal complexity. Motivated by the sym-
metry of Grenet’s expressions for the permanent discussed in §6.6.3, N.
Ressayre and I asked, what happens if one imposes the ΓEm-equivariance?
We found:

Theorem 7.4.1.1. [LR15] Among ΓEm-equivariant determinantal expres-
sions for permm, Grenet’s size 2m − 1 expressions are optimal and unique
up to trivialities.

The ΓEm-equivariance is peculiar as it only makes sense for the perma-
nent. To fix this, we defined a complexity measure that could be applied to
all polynomials:

Let P ∈ SmCM have symmetry group GP , let A : CM → Cn2
be the

linear part of a determinantal expression of P with constant term Λ. Let

Gdetn,Λ = Gdetn ∩ GΛ ⊂ GLn2 . Note that GP × Gdetn,Λ acts on CM∗⊗Cn2

by (g, h)A(y) := h ·A(g−1y).

Definition 7.4.1.2. Define the symmetry group of Ã to be

GÃ := {(g, h) ∈ GP ×Gdetn,Λ | (g, h) ·A = A}

Call Ã an equivariant determinantal expression for P if the projection from
GÃ to GP is surjective. Define edc(P ) to be the smallest size of an equivari-
ant determinantal expression for P .

If G is a subgroup of GP , we say that Ã is G-equivariant if G ⊆ GÃ.

Note that if P is a generic polynomial of degree greater than two,
edc(P ) = dc(P ) because it will have a trivial symmetry group. One also

has edc(detm) = dc(detm) because A = Id : Cn2 → Cn2
and Λ = 0 is an

equivariant expression.

Theorem 7.4.1.3. [LR15] There exists an equivariant determinantal ex-

pression for permm of size
(

2m
m

)
− 1.

Theorem 7.4.1.4. [LR15] Among equivariant determinatal expressions for

permm, the size
(

2m
m

)
−1 expressions are optimal and unique up to trivialities.
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In particular, Valiant’s hypothesis holds in the restricted model of equi-
variant expressions. To my knowledge, equivariant determinantal complexity
is the only restricted model with a known exponential separation of the per-
manent from the determinant.

Proofs are outlined in §8.11.2.

Note that
(

2m
m

)
∼ 4m so the size of the equivariant determinantal expres-

sions are roughly the square of the size of Grenet’s expressions. In particular,
they are polynomially related in size.

Thus, if one could show either

• there exists an optimal determinantal expression for permm with
some symmetry, or

• there exists an equivariant determinantal expression for permm of
size polynomial in dc(permm),

then one would have proven Valiant’s hypothesis. I write “some” symmetry,
because as is shown in the proof, full ΓEm-symmetry is not needed for the
exponential lower bound. (I do not know just how large the symmetry group
needs to be to obtain an exponential bound.)

Regarding the possibility of proving either of the above, we have seen
that the optimal Waring rank expression for x1 · · ·xn (and more generally
odd degree elementary symmetric functions) have maximal symmetry, as
does the optimal rank expression for M〈2〉.

7.4.2. Elementary symmetric polynomial complexity. Let P ∈ SmCk
and define the elementary symmetric complexity of P , esc(P ), to be the
smallest N such that there exists a linear inclusion Ck ⊂ Cn with P ∈
End(CN ) · em,N =: Êlemen0

m,N , and esc(P ) to be the smallest N such that

P ∈ End(CN ) · em,N = GLN · em,N =: Êlemenm,N . A. Shpilka [Shp02]
refers to esc(P ) as the “size of the smallest depth two circuit with a sym-
metric gate at the top and plus gates at the bottom”.

For any polynomial P , esc(P ) is finite. More precisely:

Proposition 7.4.2.1. [Shp02] σ0
r (vm(PV )) ⊂ Elemen0

m,rm and σr(vm(PV )) ⊂
Elemenm,rm. In other words, if P ∈ SdV is computable by a ΣΛΣ circuit
of size r then esc(P ) ≤ rm.

Proof. Without loss of generality, assume v = r and let y1, . . . , yr be a
basis of V . It will be sufficient to show

∑
ymj ∈ Elemen0

m,mr. Let ω be a
primitive m-th root of unity. Then I claim∑

ymj = −em,rm(y1,−ωy1,−ω2y1, . . . , ω
m−1y1,−y2,−ωy2, . . . ,−ωm−1yr).
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To see this, evaluate the generating function:

Erm(t)(y1,−ωy1,−ω2y1, . . . , ω
m−1y1,−y2,−ωy2, . . . ,−ωm−1yr)

=
∏
i∈[r]

∏
s∈[m]

(1− ωsyi)

=
∏
i∈[r]

(1− ymi tm).

The coefficient of tm on the last line is −
∑

i y
m
i . �

Note that dim(Elemenm,rm) ≤ r2m2 while dim(σr(vm(Prm−1))) = rm2−
1, so the dimensions differ only by a factor of r. Contrast this with the
inclusion implied by Theorem 7.1.3.1 of Elemend,N ⊂ σq(vd(PN−1) with

q =
∑b d

2
c

j=0

(
N
j

)
where the second space in general has dimension exponen-

tially larger than the first.

Regarding lower bounds for esc, Corollary 7.2.3.2 implies that esc(P )
is at least the square root of the size of the smallest depth three circuit
computing P .

Shpilka proves lower bounds for esc in the same way the first lower
bounds for determinantal complexity were found: by considering linear
spaces on the zero set Zeros(em,N ) ⊂ PN−1.

Theorem 7.4.2.2. [Shp02] Let L ⊂ Zeros(em,N ) ⊂ PN−1 be a linear space.

Then dimL ≤ min(max(N −m,m− 1), m+N
2 )− 1.

Proof. The key to the proof is the algebraic independence of the ej,N (see,
e.g., [Mac95, §1.2]). Any linear space of dimension k will have an isomorphic
projection onto some coordinate k-plane. Without loss of generality, assume
it has an isomorphic projection onto the span of the first k-coordinates, so
that L̂ ⊂ CN has equations xs = `s(x1, . . . , xk) for k + 1 ≤ s ≤ N . We are
assuming em,N |L̂ = 0.

Exercise 7.4.2.3: (1) Show that if we have two sets of variables (x, y) =
(x1, . . . , xk, y1, . . . , yN−k), then em,N (x, y) =

∑m
j=0 em−j,k(x)ej,N−k(y).

By Exercise 7.4.2.3,

0 = em,N (x, `(x))

= em,k(x) +

m∑
j=1

em−j,k(x)ej,N−k(`(x)).(7.4.1)

First assume k = dim L̂ ≥ max(N −m+ 1,m). Since ek,u = 0 if k > u,
if N − k < m the sum in (7.4.1) is from 1 to N − k.



202 7. Valiant’s hypothesis II: Restricted models and other approaches

Let Ψ : C[x1, . . . , xk] → C[x1, . . . , xk]
Sk denote the symmetrization op-

erator. (Sometimes Ψ is called a Reynolds operator.)

Exercise 7.4.2.4: (1) Show that for any functions f, g, that Ψ(f + g) =
Ψ(f) + Ψ(g).

Exercise 7.4.2.5: (1) Show that if f is a symmetric function and g is a
polynomial, then Ψ(fg) = Ψ(f)Ψ(g).

Apply Ψ to (7.4.1) to obtain

0 = em,k(x) +

N−k∑
j=1

em−j,k(x)Ψ(ej(`(x))),

but this expresses em,k as a polynomial in symmetric functions of degree less
than k, a contradiction.

Now assume dim L̂ ≥ m+N
2 , so

0 = em,k(x) + em,N−k(`(x)) +

m∑
j=1

em−j,k(x)ej(`(x)).

The idea is again the same, but we must somehow reduce to a smaller space.
If we take D ∈ {`1, . . . , `N−k}⊥ ⊂ CN and apply it, we can eliminate the
em,N−k(`(x)) term. But if we take a general such D, we will no longer have
symmetric functions. However, one can find a D such that, if we restrict to
span of the first m− 1 coordinate vectors, call this space Vm−1 ⊂ Ck ⊂ CN ,
then (Der,k)|Vm−1 = er−1,m−1, see [Shp02]. Unfortunately this is still not
good enough, as letting x′ = (x1, . . . , xm−1) we now have

0 = em−1,m−1(x′) +

m∑
j=1

em−j,k(x
′)ej(`(x

′)).

We could argue as before if we could eliminate the j = 1 term. A modifica-
tion of D as described in [Shp02] also satisfies D(e1,k(x)) = 0. �

Thus if Zeros(P ) has large linear spaces on it we obtain lower bounds

for esc(P ). Recall that for a projective subspace L ⊂ PN−1, that L̂ ⊂ CN
denotes the corresponding linear subspace.

Exercise 7.4.2.6: (1) Show esc(detm) ≥ 2m2 − 3m.

Exercise 7.4.2.7: (1) Show that if m ≥ N+1
2 , there exists a linear space of

dimension m− 2 on Zeros(em,N ). }

Say m is odd and N is even. Let

L̂ = span{(1,−1, 0, . . . , 0), (0, 0, 1,−1, 0, . . . , 0), , . . . , (0, . . . , 0, 1,−1).
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Notice that all odd power sum functions vanish on L̂. When we express
em,N in terms of power sum functions, each term will contain an odd degree
power sum so we conclude em,N |L̂ = 0. More generally:

Proposition 7.4.2.8. [Shp02] [attributed to Saks] There exists a Pb
N
q
c−1 ⊂

Zeros(em,N ), where q is the smallest integer such that q does not divide m.

Exercise 7.4.2.9: (2) Prove Proposition 7.4.2.8. }

Exercise 7.4.2.7 and Proposition 7.4.2.8 show that Theorem 7.4.2.2 is
close to being sharp.

The following conjecture appeared in [Shp02] (phrased differently):

Conjecture 7.4.2.10. [Shp02] There exists a polynomial r(m) such that

σr(m)(Chm(Cmr(m))) 6⊂ Elemenm,2m . One might even be able to take r(m) ≡
2.

The second assertion is quite strong, as when r = 1 there is containment,
and when r = 2 the left hand side has dimension about 4m and the right
hand side has dimension about 4m.

Exercise 7.4.2.11: (2) Show that σ2(Chm(C2m)) 6⊂ Elemenm, 3
2
m−3.

Question 7.4.2.12. [Shp02] What is the maximal dimension of a linear
subspace L ⊂ PN−1 such that L ⊂ Zeros(em,N )?

7.4.3. Raz’s theorem on tensor rank and formula size. In this section
I explain Raz’s results that if one considers a tensor as a polynomial, lower
bounds on the tensor rank have consequences for the formula size of the
corresponding polynomial.

Definition 7.4.3.1. A polynomial P ∈ SdV is multi-linear if V = V1⊕· · ·⊕
Vd and P ∈ V1⊗ · · ·⊗Vd ⊂ SdV .

The permanent and determinant may be considered as multi-linear poly-
nomials (in two different ways). In the literature, e.g., [Raz10b], they do
not insist on homogeneous polynomials, so they use the term set-multi-linear
to describe such polynomials where each monomial appearing is multi-linear
(but does not necessarily use variables from each of the Vj).

Given a tensor T ∈ A1⊗ · · ·⊗Ad, by considering A1⊗ · · ·⊗Ad ⊂ Sd(A1⊕
· · · ⊕Ad), we may think of T as defining a multi-linear polynomial. When I
want to emphasize T as a multi-linear polynomial, I’ll write PT ∈ Sd(A1 ⊕
· · · ⊕Ad).

One can compare the tensor rank of T with the circuit complexity of
PT . Raz compares it with the formula complexity: He shows that super-
polynomial lower bounds for multi-linear formulas for polynomial sequences
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Pn where the degree grows slowly, imply super-polynomial lower bounds for
general formulas:

Theorem 7.4.3.2. [Raz10b] Let dimAj = n and let Tn ∈ A1⊗ · · ·⊗Ad be

a sequence of tensors with d = d(n) satisfying d = O( log(n)
log(log(n))). If there

exists a formula of size nC for PTn , then R(Tn) ≤ nd(1−2O(C)).

Corollary 7.4.3.3. [Raz10b] Let dimAj = n and let Tn ∈ A1⊗ · · ·⊗Ad
be a sequence of tensors with d = d(n) satisfying d = O( log(n)

log(log(n))). If

R(Tn) ≥ nd(1−o(1)), then there is no polynomial size formula for PT .

These results were extended in [CKSV16].

Via flattenings, one can exhibit explicit tensors with R(T ) ≥ nb
d
2
c. Using

the substitution method (see §5.3), that was improved for tensor rank to

2nb
d
2
c + n−O(d log(n)) in [AFT11] by a construction generalizing the one

described in §5.3.1 for the case d = 3.

The idea of proof is as follows: A rank decomposition of T , viewed as
a computation of PT , corresponds to a depth-3 multi-linear formula for PT .
Raz shows that for any polynomial sequence Pn, if there is a fanin-2 formula
of size s and depth δ for P , then there exists a homogeneous formula of size
O(
(
δ+d+1
d

)
s) for Pn. He then shows that for any multi-linear polynomial Pn,

if there exists a fanin-2 formula of size s and depth δ, then there exists a
multi-linear formula of size O((δ + 2)ds) for Pn.

7.4.4. Multi-linear formulas. A formula is multi-linear if the polynomial
computed by each of its sub-formulas is multi-linear. For example, Ryser’s
formula for the permanent is multi-linear. On the other hand, the smallest
known formula for the determinant is not multi-linear.

In [Raz09], Raz shows that any multi-linear arithmetic formula for

permn or detn is of size nΩ(n). The starting point of the proof is the method
of partial derivatives. Then Raz makes certain reductions, called random
restrictions to reduce to a smaller polynomial that one can estimate more
precisely.

7.4.5. Raz’s elusive functions and circuit lower bounds. Raz defines
the following “hay in a haystack” approach to Valiant’s hypothesis. Consider
a linear projection of a Veronese proj : PSrCs 99K Pm, and let Γr,s :=
proj ◦ vr : Ps−1 99K Pm be the composition of the projection with the
Veronese map. A map f : Pn → Pm is said to be (r, s)-elusive if f(Pn) is
not contained in the image of any such Γr,s.

Recall that VNP may be thought of as the set of “explicit” polynomial
sequences.
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Theorem 7.4.5.1. [Raz10a] Let m be super-polynomial in n, and s ≥ m
9
10 .

If there exists an explicit (s, 2)-elusive f : Pn → Pm, then VP 6= VNP.

Theorem 7.4.5.2. [Raz10a] Let r(n) = log(log(n)), s(n) = nlog(log(log(n))),
m = nr, and let C be a constant. If there exists an explicit (s, r)-elusive
f : Pn → Pm, then VP 6= VNP.

By a dimension count, a general polynomial in either range will be elu-
sive.

Again, one can approach, e.g., the case where r = 2, by finding equations
for the variety of all images of projections of the quadratic Veronese, and
then finding a polynomial (point) not in the zero set.

In the same paper Raz constructs an explicit f , whose entries are mono-

mials, that requires circuits of size at least n1+Ω( 1
r

) to compute.

7.4.6. Glynn’s Theorem on expressions for the permanent. Recall,
for P ∈ SmCM , RChm(CM )(P ) is the smallest r such that P (y1, . . . , yM ) =∑r

s=1 Πm
u=1(

∑M
a=1 λs,u,aya) for some constants λs,u,a. This corresponds to

the smallest homogeneous ΣrΠmΣM circuit that computes P . If P is multi-
linear, so M = mw and we may write ya = (yiα) where 1 ≤ i ≤ m, 1 ≤
α ≤ w, and P =

∑
Cαy1α · · · ymα we could restrict to multi-linear ΣΠΣ

circuits (ML-ΣΠΣ circuits), those of the form
∑r

s=1 Πm
i=1(

∑w
α=1 λs,αyiα).

Write RML
Chm(CM )

(P ) for the smallest multi-linear ΣrΠΣw circuit for such a

P . Consider multi-linear ΣΠΣ-circuit complexity as a restricted model. In
this context, we have the following theorem of D. Glynn:

Theorem 7.4.6.1. [Gly13] RML
Chm(CM )

(permm) = RS(x1 · · ·xm) = 2m−1.

Moreover, there is a one to one correspondence between Waring de-
compositions of x1 · · ·xm and ML − ΣΠΣ decompositions of permm. The
correspondence is as follows: Constants λs,j , 1 ≤ s ≤ r, 1 ≤ j ≤ m satisfy

(7.4.2) x1 · · ·xm =

r∑
s=1

(

m∑
j=1

λs,jxj)
m

if and only if

(7.4.3) permm(yij) = m!
r∑
s=1

m∏
i=1

(
m∑
j=1

λs,jyij).

Proof. Given a Waring decomposition (7.4.2) of x1 · · ·xm, set xj =
∑

k yjkzk.
The coefficient of z1 · · · zm in the resulting expression on the left hand side
is the permanent and the coefficient of z1 · · · zm on the right hand side is the
right hand side of (7.4.3).
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To see the other direction, given an expression (7.4.3), I will specialize
to various matrices to show identities among the λs,j that will imply all
coefficients but the desired one on the right hand side of (7.4.2) are zero.

The coefficient of xb11 · · ·xbmm , where b1 + · · · + bm = m in (7.4.2) is(
m

b1,...,bm

)∑
s λ

b1
s,1 · · ·λbms,m.

Let y be a matrix where there are bj 1’s in column j and zero elsewhere.
Then unless each bj = 1, perm(y) = 0. But (7.4.3) says that 0 = perm(y) is

a nonzero constant times
∑

s λ
b1
s,1 · · ·λbms,m. Thus all these terms are zero and

the only potential nonzero coefficient in the right hand side of (7.4.2) is the
coefficient of x1 · · ·xm. This coefficient is m! =

(
m

1,...,1

)
times λs,1 · · ·λs,m.

Plugging in y = Id shows 1 = m!λs,1 · · ·λs,m. �

Remark 7.4.6.2. As mentioned in Remark 7.1.2.1, all rank 2m−1 expres-
sions for x1 · · ·xm come from the TSLm orbit of (7.1.1), so the same holds
for size 2m−1 ML− ΣΠΣ expressions for permm.

7.4.7. Rank k determinantal expressions. Restricted models with a
parameter k that converge to the original problem as k grows are particularly
appealing, as one can measure progress towards the original conjecture. Here
is one such: Given a polynomial P ∈ SmCM and determinantal expression

Ã : CM → Cn2
, Ã(y) = Λ +

∑M
j=1Ajyj where Λ, Aj are matrices, define

the rank of Ã to be the largest rank of the Aj ’s. Note that this depends on
the coordinates up to rescaling them, but for the permanent this is not a
problem, as Gpermm

defines the coordinates up to scale.

If one could show that permm did not admit an expression with rank
polynomial in m, then that would trivially prove Valiant’s hypothesis.

The notation of rank of a determinantal expression was introduced in
[AJ15], as a generalization of the read of a determinantal expression, which
is the maximal number of nonzero entries of the Aj . As observed by An-
derson, Shpilka and Volk (personal communication from Shpilka) as far as
complexity is concerned the measures are equivalent: if a polynomial P in n
variables admits a rank k determinantal expression of size s, then it admits
a read-k determinantal expression of size s+ 2nk.

The state of the art regarding this model is not very impressive:

Theorem 7.4.7.1. [IL16a] The polynomial permm does not admit a rank
one determinantal expression over C when m ≥ 3. In particular, permm

does not admit a read once regular determinantal expression over C when
m ≥ 3.
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7.5. Shallow Circuits and Valiant’s hypothesis

In this section I discuss three classes of shallow circuits that could be used to
prove Valiant’s hypothesis. We have already seen the first, the ΣΠΣ circuits.
The next is the ΣΛΣΛΣ circuits, which are depth five circuits where the first
layer of gates are additions, the second layer consists of “powering gates”,
where a powering gate takes f to f δ for some natural number δ, the third
layer addition gates, the fourth layer again powering gates, and the fifth layer
is an addition gate. The third is the class of depth four ΣΠΣΠ circuits. I
describe the associated varieties to these classes of circuits in §7.5.3. A
ΣΛαΣΛβΣ circuit means the powers are respectively β and α, and other
superscripts are to be similarly interpreted.

7.5.1. Detour for those not familiar with big numbers. When deal-
ing with shallow circuits, we will have to distinguish between different rates
of super-polynomial growth, both in statements and proofs of theorems.
This detour is for those readers not used to comparing large numbers.

All these identities follow from (7.5.1), which follows from Stirling’s for-
mula, which gives an approximation for the Gamma function, e.g., for x > 0,

Γ(x) =
√

2πxx−
1
2 e−xe

θ(x)
12x

where 0 < θ(x) < 1. Stirling’s formula may be proved via complex analysis
(estimating a contour integral), see, e.g., [Ahl78, §5.2.5]. Let

He(x) := −x lnx− (1− x) ln(1− x)

denote the Shannon entropy.

n! '
√

2πn(
n

e
)n(7.5.1)

ln(n!) = n ln(n)−O(ln(n))(7.5.2) (
2n

n

)
'

4n√
πn

(7.5.3)

ln

(
αn

βn

)
= αHe(

β

α
)n−O(lnn)(7.5.4) (

αn

βn

)
=

[
αα

ββ(α− β)α−β

]n
O(

1

n
).(7.5.5)

Exercise 7.5.1.1: (1) Show that for 0 < x < 1, 0 < He(x) ≤ 1. For which
x is the maximum achieved?

Exercise 7.5.1.2: (1) Show alog(b) = blog(a).
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Exercise 7.5.1.3: (1!) Consider the following sequences of n:

log2(n), n, 100n, n2, n3, nlog2(n), 2[log2(n)]2 , n
√

log2(n), 2n,

(
2n

n

)
, n!, nn.

In each case, determine for which n, the sequence surpasses the number of
atoms in the known universe. (It is estimated that there are between 1078

and 1082 atoms in the known universe.)

Exercise 7.5.1.4: (1) Compare the growth of s
√
d and 2

√
d log ds.

Exercise 7.5.1.5: (1!) Compare the growth of
(n2+n

2
−1

n
2

)
and

(
n
n
2

)2
. Com-

pare with your answer to Exercise 6.2.2.7.

7.5.2. Depth reduction theorems. A major result in the study of shal-
low circuits was [VSBR83], where it was shown that if a polynomial of
degree d can be computed by a circuit of size s, then it can be computed by
a circuit of depth O(log d log s) and size polynomial in s. Since then there
has been considerable work on shallow circuits. See, e.g., [GKKS17] for a
history.

Here are the results relevant for our discussion. They combine results of
[Bre74, GKKS13b, Tav15, Koi, AV08]:

Theorem 7.5.2.1. Let N = N(d) be a polynomial and let Pd ∈ SdCN be
a sequence of polynomials that can be computed by a circuit of polynomial

size s = s(d). Let S(d) := 2O(
√
d log(ds) log(N)).

Then:

(1) P is computable by a homogeneous ΣΠΣΠ circuit of size S(d).

(2) P is computable by a ΣΠΣ circuit of size of size S(d).

(3) P is computable, by a homogeneous ΣΛΣΛΣ circuit of size S(d),

and both powering gates of size O(
√
d).

Note that S(d) is approximately s
√
d.

Corollary 7.5.2.2. If permm is not computable by one of: a homogeneous
ΣΠΣΠ circuit, a ΣΠΣ circuit, or a homogeneous ΣΛΣΛΣ circuit of size

2ω(
√
m log

3
2 m), then VP 6= VNP.

Here are ideas towards the proof: In [GKKS13b] they prove upper
bounds for the size of a depth three circuit computing a polynomial, in terms
of the size of an arbitrary circuit computing the polynomial. They first apply
the work of [Koi, AV08], which allows one to reduce an arbitrary circuit
of size s computing a polynomial of degree d in N variables to a formula of
size 2O(log s log d) and depth d.
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The next step is via the iterated matrix multiplication polynomial. By
Theorem 7.3.2.1 formula size is at least as large as iterated matrix multi-
plication complexity. Say we can compute f ∈ SmCM via m matrix multi-
plications of n× n matrices with linear entries. (Here n will be comparable
to s.) Group the entries into groups of dma e for some a. To simplify the
discussion, assume m

a is an integer. Write

X1 · · ·Xm = (X1 · · ·Xm
a

)(Xm
a

+1 · · ·X2m
a

) · · · (Xm−m
a

+1 · · ·Xm).

Each term in parenthesis can be computed (using the näıve matrix mul-

tiplication algorithm) via a ΣΠ
m
a -circuit of size O(n

m
a ). After getting the

resulting matrices, we can compute the rest via a ΣΠa circuit of size O(na).

This reduces one to a depth four circuit of size S = 2O(
√
d log d log s logn). Then

one can get a depth five powering circuit using (7.1.1). (An alternative, per-
haps simpler, proof appears in [Sap, Thm. 5.17].)

The new circuit has size O(S) and is of the form ΣΛΣΛΣ. Finally, they
use (6.1.6) to convert the power sums to elementary symmetric functions
which keeps the size at O(S) and drops the depth to three.

7.5.3. Geometry and shallow circuits. I first rephrase the depth 3 re-
sult:

Proposition 7.5.3.1. [Lan15a] Let d = NO(1) and let P ∈ SdCN be a
polynomial that can be computed by a circuit of size s.

Then [`n−dP ] ∈ σr(Chn(CN+1)) with roughly rn ∼ s
√
d, more precisely,

rn = 2O(
√
d log(N) log(ds)).

Corollary 7.5.3.2. [GKKS13b] [`n−m detm] ∈ σr(Chn(Cm2+1)) where rn =

2O(
√
m logm).

Proof. The determinant admits a circuit of size m4, so it admits a ΣΠΣ
circuit of size

2O(
√
m log(m) log(m∗m4)) = 2O(

√
m logm),

so its padded version lies in σr(Chn(Cm2+1)) where rn = 2O(
√
m logm). �

Corollary 7.5.3.3. [GKKS13b] If for all but finitely many m and all r, n

with rn = 2
√
m log(m)ω(1), one has [`n−m permm] 6∈ σr(Chn(Cm2+1)), then

there is no circuit of polynomial size computing the permanent, i.e., VP 6=
VNP.

Proof. One just needs to observe that the number of edges in the first layer
(which are invisible from the geometric perspective) is dominated by the
number of edges in the other layers. �
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I now reformulate the other shallow circuit results in geometric language.
I first give a geometric reformulation of homogeneous ΣΛΣΛΣ circuits As
mentioned previously, the first layer just allows one to work with arbitrary
linear forms. The second layer of a ΣΛΣΛΣ circuit sends a linear form `
to `δ, i.e., it outputs points of vδ(PV ). The next layer consists of addition
gates, outputting sums of d-th powers, i.e., points of σr(vδ(PV )). The next

layer Veronese re-embeds and multiplies (i.e. projects Sδ
′
(SδV ) → Sδδ

′
V )

these secant varieties to obtain points of mult(vδ′(σr(vδ(PV )))), and the
final addition gate outputs a point of σr′(mult((vδ′(σr(vδ(PV ))))). In what
follows I will simply write σr′(vδ′(σr(vδ(PV ))) for this variety. Thus we may
rephrase Theorem 7.5.2.1(2) of [GKKS13b] as:

Proposition 7.5.3.4. [Lan15a] Let d = NO(1) and let PN ∈ SdCN be a
polynomial sequence that can be computed by a circuit of size s. Then

[PN ] ∈ σr1(v d
δ
(σr2(vδ(PN−1)))) with roughly δ ∼

√
d and r1r2 ∼ s

√
d, more

precisely r1r2δ = 2O(
√
d log(ds) log(N)).

Corollary 7.5.3.5. [Lan15a] If for all but finitely manym, δ '
√
m, and all

r1, r2 such that r1r2 = 2
√
m log(m)ω(1), one has [permm] 6∈ σr1(vm/δ(σr2(vδ(Pm

2−1)))),
then there is no circuit of polynomial size computing the permanent, i.e.,
VP 6= VNP.

Problem 7.5.3.6. Find equations in the ideal of σr1(vδ(σr2(vδ(Pm
2−1)))).

Y. Guan [Gua15b] has compared the flattening rank of a generic poly-

nomial in σr1(vδ(σr2(vδ(Pm
2−1)))) with that of the permanent and showed

that
permn 6∈ σ2

√
n log(n)ω(1)(v√n(σ22

√
n−log(n)ω(1)(v√n(Pn

2−1))).

Remark 7.5.3.7. The expected dimension of σr(Chm(W )) is rmw + r −
1. If we take n and work instead with padded polynomials `n−mP , the
expected dimension of σr(Chn(W )) is rnw+r−1. In contrast, the expected
dimension of σr(vd−a(σρ(va(PW )))) does not change when one increases the
degree, which indicates why padding is so useful for homogeneous depth
three circuits but not for ΣΛΣΛΣ circuits.

I now describe depth four circuits in terms of joins and multiplicative
joins. Following [Lan10], for varieties X ⊂ PSaW and Y ⊂ PSbW , define
the multiplicative join of X and Y , MJ(X,Y ) := {[xy] | [x] ∈ X, [y] ∈
Y } ⊂ PSa+bW , and define MJ(X1, . . . , Xk) similarly. Let MJk(X) =
MJ(X1, . . . , Xk) when all the Xj = X, which is a multiplicative analog

of the secant variety. Note that MJk(PW ) = Chk(W ). The varieties asso-
ciated to the polynomials computable by depth k+1 formulas are of the form
σrk(MJdk−1(σrk−2

(· · ·MJd1(PW ) · · · ))), andMJdk(σrk−1
(MJdk−2(σrk−3

(· · ·MJd1(PW ) · · · )))).
In particular, a ΣrΠαΣsΠβ circuit computes (general) points of σr(MJα(σs(MJβ(PW ))).
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7.6. Hilbert functions of Jacobian ideals (shifted partial
derivatives) and VP v. VNP

The paper [GKKS13a], by Gupta, Kamath, Kayal, and Saptharishi (GKKS)
won the best paper award at the 2013 Conference on Computational Com-
plexity (CCC) because it came tantalizingly close to proving Valiant’s hy-
pothesis by showing that the permanent does not admit a depth four circuit
with top fanin 2o(

√
m). Compare this with Theorem 7.5.2.1 that implies

to prove VP 6= VNP, it would be sufficient to show that permm is not

computable by a homogeneous ΣΠO(
√
m)ΣΠO(

√
m) circuit with top fanin

2Ω(
√
m log(m)).

The caveat is that in the same paper, they proved the same lower bound
for the determinant. On the other hand, a key estimate they use (7.6.6) is
close to being sharp for the determinant but conjecturally far from being
sharp for the permanent.

Their method of proof is via a classical subject in algebraic geometry:
the study of Hilbert functions, and opens the way for using techniques from
commutative algebra (study of syzygies) in algebraic complexity theory. I
begin, in §7.6.1, with a general discussion on the growth of Hilbert functions
of ideals. In §7.6.2, I outline the proof of the above-mentioned GKKS the-
orem. In §7.6.3, I show that the shifted partial derivative technique alone
cannot separated the determinant from the padded permanent. However,
more powerful tools from commutative algebra should be useful for future
investigations. With this in mind, in §10.4, I discuss additional information
about the permanent and determinant coming from commutative algebra.

7.6.1. Generalities on Hilbert functions. In what follows we will be
comparing the sizes of ideals in judiciously chosen degrees. In this section I
explain the fastest and slowest possible growth of ideals generated in a given
degree.

Theorem 7.6.1.1 (Macaulay, see, e.g., [Gre98]). Let I ⊂ Sym(CN ) be a
homogeneous ideal, and let d be a natural number. Write

(7.6.1) dimSdCN/Id =

(
ad
d

)
+

(
ad−1

d− 1

)
+ · · ·+

(
aδ
δ

)
with ad > ad−1 > · · · > aδ (such an expression exists and is unique). Then
(7.6.2)

dim Id+τ ≥
(
N + d+ τ − 1

d+ τ

)
−
[(
ad + τ

d+ τ

)
+

(
ad−1 + τ

d+ τ − 1

)
+ . . .+

(
aδ + τ

δ + τ

)]
.

See [Gre98] for a proof.
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Corollary 7.6.1.2. Let I be a homogeneous ideal such that dim Id ≥
dimSd−qCN =

(
N+d−q−1

d−q
)

for some q < d. Then

dim Id+τ ≥ dimSd−q+τCN =

(
N + τ + d− q − 1

τ + d− q

)
.

Proof of Corollary. First use the identity

(7.6.3)

(
a+ b

b

)
=

q∑
j=1

(
a+ b− j
b− j + 1

)
+

(
a+ b− q
b− q

)
with a = N − 1, b = d. Write this as(

N − 1 + d

d

)
= Qd +

(
N − 1 + d− q

d− q

)
.

Set

Qd+τ :=

q∑
j=1

(
N − 1 + d+ τ − j
d+ τ − j + 1

)
.

By Macaulay’s theorem, any ideal I with

dim Id ≥
(
N − 1 + d− q

d− q

)
must satisfy

dim Id+τ ≥
(
N − 1 + d+ τ

d+ τ

)
−Qd+τ =

(
N − 1 + d− q + τ

d− q + τ

)
.

�

Gotzman [Got78] showed that if I is generated in degree at most d, then
equality is achieved for all τ in (7.6.2) if equality holds for τ = 1. This is the
slowest possible growth of an ideal. Ideals satisfying this minimal growth
exist. For example, lex-segment ideals satisfy this property, see [Gre98].
These are the ideals, say generated by K elements, where the generators
are the first K monomials in lexicographic order. For 1 ≤ K ≤ M , the
generators are xd1, x

d−1
1 x2, . . . , x

d−1
1 xK . ForM+1 ≤ K ≤ 2M , the generators

are xd−1
1 xj , x

d−2
1 x2xs, 1 ≤ j ≤M , 2 ≤ s ≤ K −M , etc...

In general, slow growth occurs because there are syzygies among the
generators of the ideal, that is there are relations of the form P1Q1 + · · ·+
PrQr = 0, where Pj ∈ I and the Qj are polynomials of low degree. For any
ideal, one has tautological syzygies, called the Koszul syzygies with r = 2
and Q1 = P2 and Q2 = −P1. Ideals which have only these syzygies grow fast.
Explicitly, the fastest possible growth of an ideal generated in degree d by
K < N generators is like that of a complete intersection: a variety X ⊂ PV
of codimension c is a complete intersection if its ideal can be generated by
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c elements. The degree D component of an ideal generated in degree d by
K generators that grows like a complete intersection ideal has dimension

(7.6.4)
K∑
j=1

(−1)j+1

(
K

j

)(
N +D − jd− 1

D − jd

)
Fröberg [Frö85] conjectures ideals with this growth exist even when K >
N and Iarrobino [Iar97] conjectures further that the ideal generated by
`d1, . . . , `

d
K , with the `j general, has this growth (this is known for K ≤ N).

Exercise 7.6.1.3: (2) Prove directly that (7.6.4) holds for an ideal gener-
ated by `d1, `

d
2. }

The study of the growth of ideals is a classical subject in algebraic ge-
ometry. The function HilbFt(I) := dim It is called the Hilbert function of
the ideal I ⊂ Sym(V ).

7.6.2. Lower complexity bounds for permm (and detn) for depth
four circuits.

Theorem 7.6.2.1. [GKKS13a] Any ΣΠO(
√
m)ΣΠO(

√
m) circuit that com-

putes permm or detm must have top fanin at least 2Ω(
√
m).

In other words [permm] 6∈ σs(MJq(σt(MJm−q(Pm2−1)))), for s = 2o(
√
m)

and q = O(
√
m). In fact they show [permm] 6∈ σs(MJq(PSm−qCm2

)).

Recall the Jacobian varieties from §6.3.2. The dimension of Zeros(P )Jac,k
is a measure of the nature of the singularities of Zeros(P ). The proof pro-
ceeds by comparing the Hilbert functions of Jacobian varieties.

If P = Q1 · · ·Qp is the product of p polynomials, and k ≤ p, then ZJac,k
will be of codimension at most k + 1 because it contains Zeros(Qi1) ∩ · · · ∩
Zeros(Qik+1

) for all (i1, . . . , ik+1) ⊂ [p].

Now σs(MJq(PSm−qCm2
)) does not consist of polynomials of this form,

but sums of such. With the sum of m such, we can arrive at a smooth
hypersurface. So the goal is to find a pathology of Q1 · · ·Qp that persists
even when taking sums. (The goal is to find something that persists even

when taking a sum of 2
√
m such!)

In this situation, the dimension of the space of partial derivatives (rank
of the flattenings) is not small enough to prove the desired lower bounds.
However, the image of the flattening map will be of a pathological nature,
in that all the polynomials in the image are in an ideal generated by a small
number of lower degree polynomials. To see this, when P = Q1 · · ·Qp, with

deg(Qj) = q, any first derivative is in
∑

j S
q−1V · (Q1 · · · Q̂j · · ·Qp), where

the hat denotes omission. The space of k-th derivatives, when k < p, is in∑
|J |=k S

q−kV · (Q1 · · · Q̂j1 · · · Q̂jk · · ·Qp). In particular, it has dimension at
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most

(7.6.5)

(
p

k

)
dimSq−kV =

(
p

k

)(
v + q − k − 1

q − k

)
.

More important than its dimension, is its structure: the ideal it gener-
ates, in a given degree D “looks like” the polynomials of degree D−k times
a small fixed space of dimension

(
p
k

)
.

This behavior is similar to the lex-segment ideals. It suggests comparing
the Hilbert functions of the ideal generated by a polynomial computable by a
“small” depth four circuit, i.e., of the form

∑s
j=1Q1j · · ·Qpj with the ideal

generated by the partial derivatives of the permanent, which are just the
sub-permanents. As remarked earlier, even the dimension of the zero set
of the size k subpermanents is not known in general. Nevertheless, we just
need a lower bound on its growth, which we can obtain by degenerating it
to an ideal we can estimate.

First we get an upper bound on the growth of the ideal of the Jacobian
variety of Q1 · · ·Qm: By the discussion above, in degree m − k + τ it has
dimension at most(

p

k

)
dimSq−k+τV =

(
p

k

)(
v + τ + q − k − 1

q − k

)
.

To get the lower bound on the growth of the ideal generated by sub-
permanents we use a crude estimate: given a polynomial f given in co-
ordinates, its leading monomial in some order (say lexicographic), is the
monomial in its expression that is highest in the order. So if an ideal is
generated by f1, . . . , fq in degree d, then in degree d+ τ , it is of dimension
at most the number of monomials in degree d + τ divisible by a leading
monomial from one of the fj .

If we order the variables in Cm2
by y1

1 > y1
2 > · · · > y1

m > y2
1 > · · · > ymm,

then the leading monomial of any sub-permanent is the product of the el-
ements on the principal diagonal. Even working with this, the estimate
is difficult, so in [GKKS13a] they restrict further to only look at lead-
ing monomials among the variables on the diagonal and super diagonal:
{y1

1, . . . , y
m
m, y

1
2, y

2
3, . . . , y

m−1
m }. Among these, they compute that the num-

ber of leading monomials of degree δ is
(

2m−δ
δ

)
. In our case, δ = m− k and

D = τ + m − k. Let I
permm,k
d ⊂ SdCm2

denote the degree d component of
the ideal generated by the order k partial derivatives of the permanent, i.e.,

the k-th Jacobian variety of permm. In [GKKS13a], I
permm,k
d is denoted

〈∂=k permm〉=d−m. We have

(7.6.6) dim I
permm,k
m−k+τ ≥

(
m+ k

2k

)(
m2 + τ − 2k

τ

)
,
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and

(7.6.7) dim Idetm,k
m−k+τ ≥

(
m+ k

2k

)(
m2 + τ − 2k

τ

)
.

Putting the estimates together, if we want to realize the permanent by size
s ΣΠO(

√
m)ΣΠO(

√
m) circuit, we need

(7.6.8) s ≥
(
m+k

2k

)(
m2+τ−2k

τ

)(c√m+k
k

)(m2+τ+(
√
m−1)k

m2

)
Theorem 7.6.2.1 follows by setting τ = m

5
2 and k = εm

1
2 where ε is a

constant defined below. To see this, one calculates (using the estimates of
§7.5.1):

ln

(m2+m
5
2−2ε

√
m

m
5
2

)
(m2+m

5
2 +(
√
m−1)ε

√
m

m2

) = −2ε
√
m ln

√
m− ε

√
m±O(1)

ln

(m2+ε
√
m

2ε
√
m

)
((c+ε)√m

ε
√
m

) =
√
m2ε ln

√
m

2ε
+ 2ε

+ (c+ ε)[
ε

c+ ε
ln(

ε

c+ ε
) + (1− ε

c+ ε
) ln(1− ε

c+ ε
)] +O(lnm)

These imply

ln(s) ≥ ε
√
m ln

1

4ε(c+ ε)
±O(1)

so choosing ε such that 1
4ε(c+ε) = e, yields ln(s) ≥ Ω(

√
m).

7.6.3. Shifted partial derivatives cannot separate permanent from

determinant. Recall the notations for a polynomial P ∈ SnV , that IP,kd =

〈∂=kP 〉=d−n is the degree d component of the ideal generated by the order
k partial derivatives of P , i.e., the degree d component of the ideal of the
k-th Jacobian variety of P .

Theorem 7.6.3.1. [ELSW16] There exists a constant M such that for all
m > M , every n > 2m2 + 2m, any τ , and any k < n,

dim I
`n−m permm,k
n+τ < dim Idetn,k

n+τ .

In other words

dim〈∂=k(`n−m permm)〉=τ < dim〈∂=k detn〉=τ .

The proof of Theorem 7.6.3.1 splits into four cases:

• (C1) Case k≥n− n
m+1 . This case has nothing to do with the padded

permanent or its derivatives: the estimate is valid for any polyno-
mial in m2 + 1 variables.
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• (C2) Case 2m ≤ k ≤ n− 2m. This case uses that when k < n−m,
the Jacobian ideal of any padded polynomial `n−mP ∈ SnW is
contained in the ideal generated in degree n − m − k by `n−m−k

which has slowest growth by Macaulay’s theorem.

• (C3) Case k < 2m and τ > 3
2n

2m. This case is similar to case C2,
only a degeneration of the determinant is used in the comparison.

• (C4) Case k < 2m and τ < n3

6m . This case uses (7.6.7) and compares
it with a very crude upper bound for the dimension of the space of
the shifted partial derivatives of the permanent.

Note that C1, C2 overlap when n > 2m2 + 2m and C3, C4 overlap when

n > m2

4 , so it suffices to take n > 2m2 + 2m.

Case C1. The assumption is (m + 1)(n − k)≤n. It will be sufficient to

show that some R ∈ End(W ) ·detn satisfies dim I
`n−m permm,k
n−k+τ < dim IR,kn−k+τ .

Block the matrix x = (xsu) ∈ Cn2
, with 1 ≤ s, u ≤ n, as a union of n − k

blocks of size m×m in the upper-left corner plus the remainder, which by
our assumption includes at least n − k elements on the diagonal. Set each
diagonal block to the matrix (yij), with 1 ≤ i, j ≤ n, (there are n − k such

blocks), fill the remainder of the diagonal with ` (there are at least n − k
such terms), and fill the remainder of the matrix with zeros. Let R be the
restriction of the determinant to this subspace. Then the space of partials

of R of degree n − k, IR,kn−k ⊂ Sn−kCn2
contains a space of polynomials

isomorphic to Sn−kCm2+1, and I
`n−m permm,k
n−k ⊂ Sn−kCm2+1 so we conclude.

Example 7.6.3.2. Let m = 2, n = 6, k = 4. The matrix is

y1
1 y1

2

y2
1 y2

2

y1
1 y1

2

y2
1 y2

2

`
`

 .

The polynomial (y1
1)2 is the image of ∂4

∂x2
2∂x

4
4∂x

5
5∂x

6
6

and the polynomial y1
2y

2
2

is the image of ∂4

∂x2
1∂x

3
3∂x

5
5∂x

6
6
.

Case C2. As long as k < n−m, I
`n−m permm,k
n−k ⊂ `n−m−k · SmW , so

(7.6.9) dim I
`n−m permm,k
n−k+τ ≤

(
n2 +m+ τ − 1

m+ τ

)
.



7.6. Hilbert functions and VP v. VNP 217

By Corollary 7.6.1.2, with N = n2, d = n − k, and d − q = m, it will be
sufficient to show that

(7.6.10) dim Idetn,k
n−k =

(
n

k

)2

≥ dimSmW =

(
n2 +m− 1

m

)
.

In the range 2m ≤ k ≤ n − 2m, the quantity
(
n
k

)
is minimized at k = 2m

and k = n− 2m, so it is enough to show that

(7.6.11)

(
n

2m

)2

≥
(
n2 +m− 1

m

)
.

The estimates of §7.5.1 show that this holds when ( n
2m − 1)4 > (n

2

m −
m−1
m )

which holds for all sufficiently large m when n > m2.

Case C3. Here simply degenerate detn to R = `n1 + `n2 by e.g., setting all
diagonal elements to `1, all the sub-diagonal elements to `2 as well as the
(1, n)-entry, and setting all other elements of the matrix to zero. Then

IR,kn−k = span{`n−k1 , `n−k2 }. Since this is a complete intersection ideal,

(7.6.12) dim IR,kn−k+τ = 2

(
n2 + τ − 1

τ

)
−
(
n2 + τ − (n− k)− 1

τ − (n− k)

)
.

Using the estimate (7.6.9) from Case C2, it remains to show

2

(
n2 + τ − 1

τ

)
−
(
n2 + τ +m− 1

τ +m

)
−
(
n2 + τ − (n− k)− 1

τ − (n− k)

)
> 0.

Divide by
(
n2+τ−1

τ

)
. We need

2 >
m∏
j=1

n2 + τ +m− j
τ +m− j

+
n−k∏
j=1

τ − j
n2 + τ − j

(7.6.13)

=

m∏
j=1

(1 +
n2

τ +m− j
) +

n−k∏
j=1

(1− n2

n2 + τ − j
).(7.6.14)

The second line is less than

(7.6.15) (1 +
n2

τ
)m + (1− n2

n2 + τ − 1
)n−k.

Consider (7.6.15) as a function of τ . Write τ = n2mδ, for some constant δ.
Then (7.6.15) is bounded above by

e
1
δ + e

2
δ
− n
mδ .

The second term goes to zero for large m, so we just need the first term to
be less than 2, so take, e.g., δ = 3

2 .
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Case C4. Compare (7.6.7) with the very crude estimate

dim I
`n−m permm,k
n−k+τ ≤

k∑
j=0

(
m

j

)2(n2 + τ − 1

τ

)
,

where
∑k

j=0

(
m
j

)2
is the dimension of the space of partials of order k of

`n−m permm, and the
(
n2+τ−1

τ

)
is what one would have if there were no

syzygies. One then concludes using the estimates of §7.5.1, although it is
necessary to split the estimates into two sub-cases: k ≥ m

2 and k < m
2 . See

[ELSW16] for details.

7.7. Polynomial identity testing, hitting sets and explicit
Noether normalization

I give an introduction to the three topics in the section title. Hitting sets are
defined with respect to a coordinate system, however they reflect geometry
that is independent of coordinates that merits further study.

For simplicity, I work with homogeneous polynomials, and continue to
work exclusively over C.

7.7.1. PIT. If someone hands you a homogeneous polynomial, given in
terms of a circuit, or in terms of a sequence of symmetrizations and skew-
symmetrizations (as often happens in representation theory), how can you
test if it is identically zero?

I will only discuss “black box” polynomial identity testing (henceforth
PIT), where one is only given the output of the circuit, as opposed to “white
box” PIT where the structure of the circuit may also be examined.

Consider the simplest case: say you are told the polynomial in N -
variables is linear. Then it suffices to test it on N points in general linear
position in PN−1. Similarly, if we have a conic the projective plane, six
general points suffice to test if the conic is zero (and given six points, it is
easy to test if they are general enough).

Any P ∈ SdC2 vanishing on any d+ 1 distinct points in P1 is identically
zero. More generally, for P ∈ SdCN ,

(
N+d−1

d

)
sufficiently general points in

PN−1 suffice to test if P is zero. If N, d are large, this is not feasible. Also,
it is not clear how to be sure points are sufficiently general. Fortunately, for
a small price, we have the following Lemma, which dates back at least to
[AT92], addressing the “sufficiently general” issue:

Lemma 7.7.1.1. Let Σ be a collection of d + 1 distinct nonzero complex
numbers, let ΣN = {(c1, . . . , cN ) | ci ∈ Σ}. Then any P ∈ SdCN vanishing
on ΣN is identically zero.
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Proof. Work by induction on N , the case N = 1 is clear. Write P as a

polynomial in xN : P (x1, . . . , xN ) =
∑d

j=0 Pj(x1, . . . , xN−1)xjN where Pj ∈
Sd−jCN−1 and assume P vanishes on ΣN . For each (c1, . . . , cN−1) ∈ ΣN−1,
P (c1, . . . , cN−1, xN ) is a polynomial in one variable vanishing on Σ1, and is
therefore identically zero. Thus each Pj vanishes identically on ΣN−1 and
by induction is identically zero. �

Now say we are given a polynomial with extra structure and we would
like to exploit the structure to determine if it is non-zero using a smaller set
of points than ΣN . If we are told it is a d-th power (or zero), then its zero
set is simply a hyperplane, so N + 1 points in general linear position again
suffice. Now say we are told it has low Waring rank. How could we exploit
that information to find a small set of points to test?

7.7.2. Hitting sets.

Definition 7.7.2.1. (see, e.g, [SY09, §4.1]) Given a subset C ⊂ C[x1, x2, . . . , xN ],
a finite subset H ⊂ CN is a hitting set for C if for all nonzero f ∈ C, there
exists α ∈ H such that f(α) 6= 0.

Lemma 7.7.1.1 provides an explicit, size (d+ 1)N hitting set for SdCN .
Call this the näıve (d,N)-hitting set.

In geometric language, a hitting set is a subset H ⊂ CN such that the

evaluation map evalH : C(n+d
d ) → C|H| satisfies evalH

−1(0) ∩ C = 0.

Existence of a hitting set implies black box PIT via the evaluation map.

Lemma 7.7.2.2. [HS82] There exist hitting sets for

Cs := {f ∈ SdCn | ∃ a size s circuit computing f},

with size bounded by a polynomial in s, d and n.

7.7.3. Waring rank. Returning to the problem of finding an explicit (in
the computer science sense, see §6.1.3) hitting set for polynomials of small
Waring rank, recall that we do not know defining equations for σr(vd(PN−1)),

however, we do have some equations, at least as long as r <
(N+b d

2
c−1

b d
2
c

)
,

namely the flattenings. So it is easier to change the question: we sim-

ply look for a hitting set for the larger variety Flat
b d

2
c,d d

2
e

r (SdV ) := {P ∈
SdV | rank(Pb d

2
c,d d

2
e) ≤ r}, where Pb d

2
c,d d

2
e : Sb

d
2
cV ∗ → Sd

d
2
eV is the par-

tial derivative map. We have a considerable amount of information about

Flat
b d

2
c,d d

2
e

r (SdV ).

Consider the case r = 2: our polynomial is of the form P = (λ1x1 +
· · ·λNxN )d+(µ1x1+· · ·µNxN )d, for some λi, µj ∈ C. It is no longer sufficient
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to check on the N coordinate points, as it could be that λdj + µdj = 0 for
all j but P is nonzero. On the other hand, there cannot be too much
“interference”: restrict to the

(
N
2

)
coordinate P1’s: it is straightforward to

see that if all these restrictions are identically zero, then the polynomial
must be zero. Moreover, each of those restrictions can be tested to be zero
by just checking on d + 1 points on a line. Rephrasing geometrically: no
point of σ2(vd(PN−1)) has a zero set that contains the

(
N
2

)
P1’s spanned by

pairs of points from any collection of N points that span PN−1. (Compare
with Lemma 2.6.2.1.) In contrast, consider `1 · · · `d = 0: it contains d-
hyperplanes!

The general idea is that, if the flattening rank of P is small and P is
not identically zero, then for some “reasonably small” k, there cannot be a
collection of

(
N
k

)
Pk−1’s spanned by k subsets of any set of N points spanning

PN−1 in the zero set of P . In coordinates, this means there is a monomial
in the expression for P that involves at most k variables, so it will suffice to
restrict P to each of the

(
N
k

)
coordinate subspaces and test these restrictions

on a näıve (d, k)-hitting set.

From the example of P = `1 · · · `d, we see that “small” means at least
that r <

( N
b d

2
c
)
. In [FS13a], they show that we may take k = log(r). (Note

that if r is close to 2N , the assertion becomes vacuous as desired.) Explicitly:

Theorem 7.7.3.1. [FS13a] Let H consist of the (d+1)k
(
N
k

)
points of näıve

hitting sets on each coordinate Pk−1. Then H is an explicit hitting set for
{P ∈ SdCN | rank(Pb d

2
c,d d

2
e) < 2k}, in particular for points of σ2k(vd(PN−1)).

An even better hitting set is given in [FSS13].

Recall ROABP’s from §7.3.4.

Theorem 7.7.3.2. [FS13b] Let C ⊂ C[x1, . . . , xn] denote the set of polyno-
mials computable by a depth n, width at most w, degree at most r ROABP.
Then C has an explicit hitting set H of size poly(n,w, r)O(log(n)) (quasi-
polynomial size). Furthermore, one can take H ⊂ Qn.

7.7.4. Efficient Noether normalization. One of the difficulties in un-
derstanding Detn ⊂ PSnCn2

is that its codimension is of size exponential
in n. It would be desirable to have a subvariety of at worst polynomial
codimension to work with, as then one could use additional techniques to
study its coordinate ring. If one is willing to put up with the destruction
of external symmetry, one might simply take a linear projection of Detn to
a small ambient space. By Noether-Normalization §3.1.4, we know that a
“random” linear space of codimension, say 2n4 would give rise to an iso-
morphic projection. However what one would need is an explicit such linear
space. In [Mul12] Mulmuley considers this problem of explicitness, in the
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context of separating points of an affine variety (described below) via a small
subset of its coordinate ring. Call S ⊂ C[X] a separating subset if for all
x, y ∈ X, there exists f ∈ S that distinguishes them, i.e., f(x) 6= f(y).

Remark 7.7.4.1. In [Mul12] the desired linear projection is referred to as
a “normalizing map”, which is potentially confusing to algebraic geometers
because it is not a normalization of the image variety.

Consider End(Cm)⊕r, which is an SLm-variety under the diagonal ac-
tion. Write A = A1 ⊕ · · · ⊕Ar ∈ End(Cm)⊕r.

Theorem 7.7.4.2. [Raz74, Pro76] [First fundamental theorem for matrix
invariants] C[End(Cm)⊕r]SLm is generated by

Tα(A) := trace(Aα1 · · ·Aαk), k ≤ m2, α1, . . . , αk ∈ [r].

It is also known that if one takes k ≤ bm2

8 c one does not obtain gen-
erators. In particular, one has an exponentially large (with respect to m)
number of generators.

Put all these polynomials together in a generating function: let y = (ysj ),

1 ≤ j ≤ m2, 1 ≤ s ≤ r and define

T (y,A) := trace[(Id +y1
1A1 + · · ·+ yk1Ak) · · · (Id +y1

m2A1 + · · ·+ ykm2Ak)]

The right hand side is an IMM, even a ROABP. Thus all the generating
invariants may be read off as the coefficients of the output of an ROABP.
This, combined with Theorem 7.7.3.2 implies:

Theorem 7.7.4.3. [FS13a] There exists a poly(n, r)O(log(n))-sized set H ⊂
C[End(Cm)⊕r]SLm of separating invariants, with poly(n, r)-explicit ABP’s.
In other words, for anyA,B ∈ End(Cm)⊕r, there exists f ∈ C[End(Cm)⊕r]SLm

with f(A) 6= f(B) if and only if there exists such f ∈ H.

Remark 7.7.4.4. A more geometric way of understanding Theorem 7.7.4.3
is to introduce the GIT-quotient End(Cm)⊕r //SLm (see §9.5.2), which is an
affine algebraic variety whose coordinate ring is C[End(Cm)⊕r]SLm . Then
H is a subset that separates points of the GIT-quotient End(Cm)⊕r // SLm.

The following conjecture appeared in the 2012 version of [Mul12]:

Conjecture 7.7.4.5. [Mul12] Noether normalization can be performed ex-
plicitly for End(Cm)⊕r // SLm in polynomial time.

Conjecture 7.7.4.5 motivated the work of [FS13a], as Theorem 7.7.4.3
implies:

Corollary 7.7.4.6. [FS13a] Noether normalization can be performed ex-
plicitly for End(Cm)⊕r // SLm in quasi-polynomial time.



222 7. Valiant’s hypothesis II: Restricted models and other approaches

Remark 7.7.4.7. The PIT problem is the word problem for the field of
rational functions over a set of commuting variables. One can ask the same
for the (free) skew field over non-commuting variables. This is answered
in [GGOW15] where there are connections to and implications for many
areas including PIT, quivers and GIT questions.



Chapter 8

Representation theory
and its uses in
complexity theory

In this chapter I derive the representation theory of the general linear group
GL(V ) and give numerous applications to complexity theory. In order to
get to the applications as soon as possible, I summarize basic facts about
representations of GL(V ) in §8.1. The first application, in §8.2, explains the
theory of Young flattenings underlying the equations that led to the 2n2−n
lower bound for the border rank of matrix multiplication (Theorem 2.5.2.6).
I also explain how the method of shifted partial derivatives may be viewed
as a special case of Young flattenings. Next, in §8.3, I briefly discuss how
representation theory has been used to find equations for secant varieties
of Segre varieties and other varieties. In §8.4, I describe severe restrictions
on modules of polynomials to be useful for the permanent v. determinant
problem. In §8.5, I give the proofs of several statements about Detn from
Chapter 7. In §8.6, I begin to develop representation theory via the dou-
ble commutant theorem, the algebraic Peter-Weyl theorem and Schur-Weyl
duality. The reason for this choice of development is that the (finite) Peter-
Weyl theorem is the starting point of the Cohn-Umans program of §3.5 and
the algebraic Peter-Weyl theorem was the starting point of the program of
[MS01, MS08] described in §8.8. The representations of the general linear
group are then derived in §8.7. In §8.8 I begin a discussion of the program
of [MS01, MS08], as refined in [BLMW11], to separate the permanent
from the determinant via representation theory. This is continued in §8.9,
which contains a general discussion of plethysm coefficients, and §8.10, which
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presents results of [IP15] and [BIP16] that show this program cannot work
as stated. I then, in §8.11 outline the proofs of Theorems 7.4.1.1 and 7.4.1.4
regarding equivariant determinantal expressions for the permanent. I con-
clude, in §8.12 with additional theory how to determine symmetry groups
of polynomials and illustrate the theory with several examples relevant for
complexity theory.

8.1. Representation theory of the general linear group

Irreducible representations of GL(V ) in V ⊗d are indexed by partitions of
d with length at most v, as we will prove in Theorem 8.7.1.2. Let SπV
denote the isomorphism class of the irreducible representation associated to
the partition π, and let SπV denote some particular realization of SπV in
V ⊗d. In particular S(d)V = SdV and S(1,...,1)V = ΛdV where there are d 1’s.
For a partition π = (p1, . . . , pk), write |π| = p1 + · · ·+ pk and l(π) = k. If a
number is repeated I sometimes use superscripts to record its multiplicity,
for example (2, 2, 1, 1, 1) = (22, 13).

To visualize π, define a Young diagram associated to a partition π to
be a collection of left-aligned boxes with pj boxes in the the j-th row, as in
Figure 8.1.1.

Figure 8.1.1. Young diagram for π = (4, 2, 1)

Define the conjugate partition π′ to π to be the partition whose Young
diagram is the reflection of the Young diagram of π in the north-west to
south-east diagonal.

Figure 8.1.2. Young diagram for π′ = (3, 2, 1, 1), the conjugate parti-
tion to π = (4, 2, 1).
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8.1.1. Lie algebras. Associated to any Lie group G is a Lie algebra g,
which is a vector space that may be identified with TIdG. For basic infor-
mation on Lie algebras associated to a Lie group, see any of [Spi79, IL16b,
Pro07].

When G = GL(V ), then g = gl(V ) := V ∗⊗V . If G ⊆ GL(V ), so that G
acts on V ⊗d, there is an induced action of g ⊆ gl(V ) given by, for X ∈ g,

X.(v1⊗v2⊗ · · ·⊗vd)
= (X.v1)⊗v2⊗ · · ·⊗vd + v1⊗(X.v2)⊗ · · ·⊗vd + · · ·+ v1⊗v2⊗ · · ·⊗vd−1⊗(X.vd).

To see why this is a natural induced action, consider a curve g(t) ⊂ G with
g(0) = Id and X = g′(0) and take

d

dt
|t=0 g(t) · (v1⊗ · · ·⊗vd) =

d

dt
|t=0 (g(t) · v1)⊗ · · ·⊗(g(t) · vd).

One concludes by applying the Leibnitz rule.

8.1.2. Weights. Fix a basis e1, . . . , ev of V , let T ⊂ GL(V ) denote the
subgroup of diagonal matrices, called a maximal torus, let B ⊂ GL(V ) be
the subgroup of upper triangular matrices, called a Borel subgroup, and let
N ⊂ B be the upper triangular matrices with 1’s along the diagonal. The
Lie algebra n of N consists of nilpotent matrices. Call z ∈ V ⊗d a weight
vector if T [z] = [z]. Ifx1

. . .

xv

 z = (x1)p1 · · · (xv)pvz

we say z has weight (p1, . . . , pv) ∈ Zv.

Call z a highest weight vector if B[z] = [z], i.e., if Nz = z. If M is
an irreducible GL(V )-module and z ∈ M is a highest weight vector, call
the weight of z the highest weight of M . A necessary condition for two
irreducible GL(V )-modules to be isomorphic is that they have the same
highest weight (because they must also be isomorphic T -modules). The
condition is also sufficient, see §8.7.

Exercise 8.1.2.1: (1) Show that z is a highest weight vector if and only if
n.z = 0.

The elements of n are often called raising operators.

Exercise 8.1.2.2: (1) Show that if z ∈ V ⊗d is a highest weight vector of
weight (p1, . . . , pv), then (p1, . . . , pv) is a partition of d. }

When G = GL(A1) × · · · × GL(An), the maximal torus in G is the
product of the maximal tori in the GL(Aj), and similarly for the Borel. A
weight is then defined to be an n-tuple of weights etc...
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Because of the relation with weights, it will often be convenient to add
a string of zeros to a partition to make it a string of v integers.

Exercise 8.1.2.3: (1) Show that the space S2(S2C2) contains a copy of
S(2,2)C2 by showing that (x2

1)(x2
2) − (x1x2)(x1x2) ∈ S2(S2C2) is a highest

weight vector.

Exercise 8.1.2.4: (1!) Find highest weight vectors in V, S2V,Λ2V, S3V,Λ3V
and the kernels of the symmetrization and skew-symmetrization maps V⊗S2V →
S3V and V⊗Λ2V → Λ3V . Show that both of the last two modules have
highest weight (2, 1), i.e., they are realizations of S(2,1)V .

Exercise 8.1.2.5: (2) More generally, find a highest weight vector for the
kernel of the symmetrization map V⊗Sd−1V → SdV and of the kernel of
the “exterior derivative” (or “Koszul”) map

SkV⊗ΛtV → Sk−1V⊗Λt+1V(8.1.1)

x1 · · ·xk⊗y1 ∧ · · · ∧ yt 7→
k∑
j=1

x1 · · · x̂j · · ·xk⊗xj ∧ y1 ∧ · · · ∧ yt.

Exercise 8.1.2.6: (1!) Let π = (p1, . . . , p`) be a partition with at most v
parts and let π′ = (q1, . . . , qp1) denote the conjugate partition. Show that

(8.1.2) zπ := (e1 ∧ · · · ∧ eq1)⊗(e1 ∧ · · · ∧ eq2)⊗ · · ·⊗(e1 ∧ · · · ∧ eqp1 ) ∈ V ⊗|π|

is a highest weight vector of weight π.

8.1.3. The Pieri rule. I describe the decomposition of SπV⊗V as aGL(V )-
module. Write π′ = (q1, . . . , qp1) and recall zπ from (8.1.2). Consider the
vectors:

(e1 ∧ · · · ∧ eq1 ∧ eq1+1)⊗(e1 ∧ · · · ∧ eq2)⊗ · · ·⊗(e1 ∧ · · · ∧ eqp1 )

...

(e1 ∧ · · · ∧ eq1)⊗(e1 ∧ · · · ∧ eq2)⊗ · · ·⊗(e1 ∧ · · · ∧ eqp1 ∧ eqp1+1)

(e1 ∧ · · · ∧ eq1)⊗(e1 ∧ · · · ∧ eq2)⊗ · · ·⊗(e1 ∧ · · · ∧ eqp1 )⊗e1.

These are all highest weight vectors obtained by tensoring zπ with a vector
in V and skew-symmetrizing appropriately, so the associated modules are
contained in SπV⊗V . With a little more work, one can show these are
highest weight vectors of all the modules that occur in SπV⊗V . If qj =
qj+1 one gets the same module if one inserts eqj+1 into either slot, and its
multiplicity in SπV⊗V is one. More generally one obtains:

Theorem 8.1.3.1 (The Pieri formula). The decomposition of SπV⊗SdV is
multiplicity free. The partitions corresponding to modules SµV that occur
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are those obtained from the Young diagram of π by adding d boxes to the
diagram of π, with no two boxes added to the same column.

Definition 8.1.3.2. Let π = (p1, . . . , pl(π)), µ = (m1, . . . ,ml(µ)) be parti-
tions with l(µ) < l(π) One says µ interlaces π if p1 ≥ m1 ≥ p2 ≥ m2 ≥ · · · ≥
ml(π)−1 ≥ pl(π).

Exercise 8.1.3.3: (1) Show that SπV⊗S(d)V consists of all the SµV such
that |µ| = |π|+ d and π interlaces µ.

Exercise 8.1.3.4: (1) Show that a necessary condition for SπV to appear
in Sd(SnV ) is that l(π) ≤ d.

Although a pictorial proof is possible, the standard proof of the Pieri
formula uses a character (see §8.6.7) calculation, computing χπχ(d) as a
sum of χµ’s. See, e.g., [Mac95, §I.9]. A different proof, using Schur-Weyl
duality is in [GW09, §9.2]. There is an algorithm to compute arbitrary
tensor product decompositions called the Littlewood Richardson Rule. See,
e.g., [Mac95, §I.9] for details.

Similar considerations give:

Theorem 8.1.3.5. [The skew-Pieri formula] The decomposition of SπV⊗ΛkV
is multiplicity free. The partitions corresponding to modules SµV that oc-
cur are those obtained from the Young diagram of π by adding k boxes to
the diagram of π, with no two boxes added to the same row.

8.1.4. The GL(V )-modules not appearing in the tensor algebra of
V . The GL(V )-module V ∗ does not appear in the tensor algebra of V . Nor

do the one-dimensional representations for k > 0, det−k : GL(V )→ GL(C1)

given by, for v ∈ C1, det−k(g)v := det(g)−kv.

Exercise 8.1.4.1: (1) Show that if π = (p1, . . . , pv) with pv > 0, then
det−1⊗SπV = S(p1−1,...,pv−1)V . }

Exercise 8.1.4.2: (1) Show that as aGL(V )-module, V ∗ = Λv−1V⊗det−1 =
S1v−1V⊗det−1. }

Every irreducible GL(V )-module is of the form SπV⊗det−k for some
partition π and some k ≥ 0. Thus they may be indexed by non-increasing
sequences of integers (p1, . . . , pv) where p1 ≥ p2 ≥ · · · ≥ pv. Such a module
is isomorphic to S(p1−pv,...,pv−1−pv,0)V⊗detpv .

Using

SπV⊗V ∗ = SπV⊗Λv−1V⊗det−1,

we may compute the decomposition of SπV⊗V ∗ using the skew-symmetric
version of the Pieri rule.
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Example 8.1.4.3. Let w = 3, then

S(32)W⊗W ∗ = S(43)W⊗det−1⊕S(331)W⊗det−1⊕S(421)W⊗ det−1

= S(43)W⊗det−1⊕S(22)W ⊕ S(31)W.

The first module does not occur in the tensor algebra but the rest do.

8.1.5. SL(V )-modules in V ⊗d. Every SL(V )-module is the restriction to
SL(V ) of some GL(V )-module. However distinct GL(V )-modules, when re-
stricted to SL(V ) can become isomorphic, such as the trivial representation
and ΛvV = S(1v)V = det1.

Proposition 8.1.5.1. Let π = (p1, . . . , pv) be a partition. The SL(V )-
modules in the tensor algebra V ⊗ that are isomorphic to SπV are SµV with
µ = (p1 + j, p2 + j, . . . , pv + j) for −pv ≤ j <∞.

Exercise 8.1.5.2: (2) Prove Proposition 8.1.5.1. }

For example, for SL2-modules, Sp1,p2C2 ' Sp1−p2C2. We conclude:

Corollary 8.1.5.3. A complete set of the finite dimensional irreducible rep-
resentations of SL2 are the SdC2 with d ≥ 0.

The GL(V )-modules that are SL(V )-equivalent to SπV may be visu-
alized as being obtained by erasing or adding columns of size v from the
Young diagram of π, as in Figure 8.1.5.

, , , , · · ·

Figure 8.1.3. Young diagrams for SL3-modules equivalent to S421C3

The Lie algebra of SL(V ), denoted sl(V ), is the set of traceless endomor-
phisms. One can define weights for the Lie algebra of the torus, which are
essentially the logs of the corresponding torus in the group. In particular,
vectors of sl-weight zero have GL(V )-weight (d, . . . , d) = (dv) for some d.

Exercise 8.1.5.4: (1!) Let TSL ⊂ SL(V ) be the diagonal matrices with

determinant one. Show that (V ⊗d)T
SL

is zero unless d = δv for some natural
number δ and in this case it consists of all vectors of weight (δv).

8.2. Young flattenings

Most known equations for border rank of tensors, i.e., polynomials in the
ideal of the variety σr(Seg(PA1 × · · · × PAn)) and symmetric border rank
of polynomials, i.e., polynomials in the ideal of the variety σr(vd(PV )), are
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obtained by taking minors of some auxiliary matrix constructed from the
tensor (polynomial). What follows is a general way to use representation
theory to find such matrices.

8.2.1. The case of polynomials. Let P ∈ SdV . Recall the flattenings
from §6.2: Pk,d−k : SkV ∗ → Sd−kV . Flattenings give rise to a GL(V )-

module of equations because SdV ⊂ SkV⊗Sd−kV . The generalization is
similar:

Proposition 8.2.1.1. Given a linear inclusion SdV ⊂ U⊗W , i.e., SdV is
realized as a space of linear maps from U∗ to W , say the rank of the linear
map associated to `d is r0. If the rank of the linear map associated to P is
r, then RS(P ) ≥ r

r0
.

Exercise 8.2.1.2: (1!) Prove Proposition 8.2.1.1. }

This method works best when r0 is small. For example in the classical
flattening case r0 = 1.

We will take U,W to be GL(V )-modules and the linear inclusion a
GL(V )-module map because I(σr(vd(PV ))) is a GL(V )-module. It turns
out that we know all such maps. The Pieri rule §8.1.3 says they are all
of the form SdV ⊂ SπV

∗⊗SµV where the Young diagram of µ is obtained
from the Young diagram of π by adding d boxes, with no two boxes added
to the same column. To make this completely correct, we need to con-
sider sequences with negative integers, where e.g., the Young diagram of
(−d) should be thought of as −d boxes in a row. Alternatively, one can

work with SL(V )-modules, as then det−d = S(−d)V = S(dv−1)V as SL(V )-
modules. For every such pair (π, µ) there is exactly one GL(V )-inclusion.
Call the resulting linear map a Young-flattening.

The classical case is π = (−k) and µ = (d − k), or in terms of SL(V )-
modules, π = (kv−1) and µ = (kv, d − k). The main example in [LO13],
called a (polynomial) Koszul flattening was constructed as follows: take the
classical flattening Pk,d−k : SkV ∗ → Sd−kV and tensor it with IdΛpV for

some p, to get a map SkV ∗⊗ΛpV → Sd−kV⊗ΛpV . Now include Sd−kV ⊂
Sd−k−1V⊗V , to obtain a map SkV ∗⊗ΛpV → Sd−k−1V⊗V⊗ΛpV and finally
skew-symmetrize the last two factors to obtain a map

(8.2.1) P∧pk,d−k : SkV ∗⊗ΛpV → Sd−k−1V⊗Λp+1V.

If one views this as a map SdV⊗(SkV ∗⊗ΛpV ) → Sd−k−1V⊗Λp+1V , it is a
GL(V )-module map. By the Pieri rule,

(SkV ∗⊗ΛpV )∗ = S(k,1v−p)V⊗det−1⊕S(k+1,1v−p−1)V⊗det−1

and

Sd−k−1V⊗Λp+1V = S(d−k−1,1p+1)V ⊕ S(d−k,1p)V.
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Although in practice one usually works with the map (8.2.1), the map is
zero except restricted to the map between irreducible modules:

[S(k,1v−p)V
∗⊗det−1]∗ → S(d−k,1p)V.

The method of shifted partial derivatives §7.6 is a type of Young flatten-
ing which I will call a Hilbert flattening, because it is via Hilbert functions
of Jacobian ideals. It is the symmetric cousin of the Koszul flattening: take
the classical flattening Pk,d−k : SkV ∗ → Sd−kV and tensor it with IdS`V
for some `, to get a map SkV ∗⊗S`V → Sd−kV⊗S`V . Now simply take the
projection (multiplication map) Sd−kV⊗S`V → Sd−k+`V , to obtain a map

(8.2.2) Pk,d−k[`] : SkV ∗⊗S`V → Sd−k+`V.

The target is an irreducible GL(V )-module, so the pruning is easier here.

8.2.2. The case of tensors. Young flattenings can also be defined for
tensors. For tensors in A⊗B⊗C, the Koszul flattenings T∧pA : ΛpA⊗B∗ →
Λp+1A⊗C used in §2.4 appear to be the only useful cases.

In principle there are numerous inclusions

A⊗B⊗C ⊂ (SπA⊗SµB⊗SνC)∗⊗(Sπ̃A⊗Sµ̃B⊗Sν̃C),

where the Young diagram of π̃ is obtained from the Young diagram of π
by adding a box (and similarly for µ, ν), and the case of Koszul flattenings
is where (up to permuting the three factors) π = (1p), µ = (1b−1) (so
SµB ' B∗ as SL(B)-modules) and ν = ∅.

Exercise 2.4.1.1 already indicates why symmetrization is not useful, and
an easy generalization of it proves this to be the case for Young flattenings
of tensors. But perhaps additional skew-symmetrization could be useful:
Let T ∈ A⊗B⊗C and consider T⊗ IdΛpA⊗ IdΛqB ⊗ IdΛsC as a linear map
B∗⊗ΛqB∗⊗ΛpA⊗ΛsC → ΛqB∗⊗ΛpA⊗A⊗ΛsC⊗C. Now quotient to the
exterior powers to get a map:

Tp,q,s : Λq+1B∗⊗ΛpA⊗ΛsC → ΛqB∗⊗Λp+1A⊗Λs+1C.

This generalizes the map T∧pA which is the case q = s = 0. Claim: this
generalization does not give better lower bounds for border rank than Koszul
flattenings when a = b = c. (Although it is possible it could give better
lower bounds for some particular tensor.) If T has rank one, say T = a⊗b⊗c,
the image of Tp,q,s is

Λq(b⊥)⊗(a ∧ ΛpA)⊗(c ∧ ΛsC).

Here b⊥ := {β ∈ B∗ | β(b) = 0}. The image of (a⊗b⊗c)p,q,s has dimension

dp,q,s :=

(
b− 1

q

)(
a− 1

p

)(
c− 1

s

)
.
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Thus the size rdp,q,s + 1 minors of Tp,q,s potentially give equations for the
variety of tensors of border rank at most r. We have nontrivial minors as
long as

rdp,q,s + 1 ≤ min
{

dim(ΛqB∗⊗Λp+1A⊗Λs+1), dim(Λq+1B∗⊗ΛpA⊗ΛsC)
}
,

i.e., as long as

r < min

{ (
b
q

)(
a
p+1

)(
c
s+1

)(
b−1
q

)(
a−1
p

)(
c−1
s

) , (
b
q+1

)(
a
p

)(
c
s

)(
b−1
q

)(
a−1
p

)(
c−1
s

)} ,
i.e.

r < min{ abc

(b− q)(p+ 1)(s+ 1)
,

abc

(q + 1)(a− p)(c− s)
}.

Consider the case q = 0, so we need

r < min

{
ac

(p+ 1)(s+ 1)
,

abc

(a− p)(c− s)

}
.

Let’s specialize to a = c, p = q, so we need

r < min

{
a2

(p+ 1)2
,

a2b

(a− p)2

}
.

Consider the case a = mp for some m. Then if m is large, the first term
is large, but the second is very close to b. So unless the dimensions are
unbalanced, one is unlikely to get any interesting equations out of these
Young flattenings.

8.2.3. General perspective. Let X ⊂ PV be a G-variety for some reduc-
tive group G, where V = Vλ is an irreducible G-module.

Proposition 8.2.3.1. Given irreducible G-modules Vµ, Vν such that Vλ ⊂
Vµ⊗Vν and v ∈ V , we obtain a linear map vµ,ν : V ∗µ → Vν . Say the maximum
rank of such a linear map for x ∈ X is q, then the size (qr + 1)-minors of
vµ,ν test membership σr(X).

8.3. Additional uses of representation theory to find
modules of equations

In this section, I briefly cover additional techniques for finding modules of
polynomials in ideals of G-varieties. I am brief because either the methods
are not used in this book or they are described at length in [Lan12].
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8.3.1. A näıve algorithm. Let X ⊂ PW be a G-variety. We are primarily
interested in the cases X = σr(Seg(PA× PB × PC)) ⊂ P(A⊗B⊗C), where

G = GL(A)×GL(B)×GL(C) and X = Detn ⊂ PSnCn2
, where G = GLn2 .

Since the ideal of X will be a G-module, we can look for irreducible modules
in the ideal of X by testing highest weight vectors. If U ⊂ SdW ∗ is an
irreducible G-module with highest weight vector u, then U ⊂ I(X) if and
only if u ∈ I(X) because if u ∈ I(X) then g(u) ∈ I(X) for all g ∈ G and
such vectors span U . Thus in each degree d, we can in principle determine
Id(X) by a finite calculation. In practice we test each highest weight vector
u on a “random” point [x] ∈ X. (If X is an orbit closure it suffices to test
on a point in the orbit.) If u(x) 6= 0, we know for sure that U 6⊂ Id(X).
If u(x) = 0, then with extremely high probability (probability one if the
point is truly randomly chosen, and with certainty if dealing with an orbit
closure), we have U ⊂ I(X). After testing several such points, we have high
confidence in the result. Once one has a candidate module by such tests,
one can often prove it is in the ideal by different methods.

More precisely, if SdW ∗ is multiplicity free as a G-module, there are
a finite number of highest weight vectors to check. If a given module has
multiplicity m, then we need to take a basis u1, . . . , um of the highest weight
space, test on say x1, . . . , xq with q ≥ m if

∑
j yjuj(xs) = 0 for some con-

stants y1, . . . , ym and all 1 ≤ s ≤ q.
To carry out this procedure in our two cases we would respectively need

- A method to decompose Sd(A⊗B⊗C)∗ (resp. Sd(SnCn2
)) into irre-

ducible submodules.

- A method to explicitly write down highest weight vectors.

There are several systematic techniques for accomplishing both these
tasks that work well in small cases, but as cases get larger one needs to
introduce additional methods to be able to carry out the calculations in
practice. The first task amounts to the well-studied problem of computing
Kronecker coefficients defined in §8.8.2. I briefly discuss the second task in
§8.7.2.

8.3.2. Enhanced search using numerical methods. Rather than dis-
cuss the general theory, I outline the method used in [HIL13] to find equa-
tions for σ6(Seg(P3 × P3 × P3)). First fix a “random” linear space L ⊂ P63

of dimension 4 (i.e., codimσ6(Seg(P3 × P3 × P3))) and consider the finite
set Z := σ6(Seg(P3 × P3 × P3)) ∩ L. The first objective is to compute
points in Z, with a goal of computing every point in Z. To this end, we
first computed one point in Z as follows. One first picks a random point
x∗ ∈ σ6(Seg(P3 × P3 × P3)), which is easy since an open dense subset of

σ6(Seg(P3 × P3 × P3)) is parameterizable. Let L̃ be a system of 59 linear
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forms so that L is the zero locus of L̃ and let Lt,x∗ be the zero locus of
L(x) − t · L(x∗). Since x∗ ∈ σ6(Seg(P3 × P3 × P3)) ∩ L1,x∗ , a point in Z is
the endpoint of the path defined by σ6(Seg(P3 × P3 × P3)) ∩ Lt,x∗ at t = 0
starting from x∗ at t = 1.

Even though the above process could be repeated for different x∗ to
compute points in Z, we instead used monodromy loops [SVW01] for gen-
erating more points in Z. After performing 21 loops, the number of points
in Z that we computed stabilized at 15,456. The trace test [SVW02] shows
that 15,456 is indeed the degree of σ6(Seg(P3 × P3 × P3)) thereby showing
we had indeed computed Z.

From Z, we performed two computations. The first was the membership
test of [HS13] for deciding if M〈2〉 ∈ σ6(Seg(P3 × P3 × P3)), which requires
tracking 15,456 homotopy paths that start at the points of Z and end on
a P4 containing M〈2〉. In this case, each of these 15,456 paths converged to

points in σ6(Seg(P3 × P3 × P3)) distinct from M〈2〉 providing a numerical

proof that M〈2〉 /∈ σ6(Seg(P3 × P3 × P3)). The second was to compute the
minimal degree of nonzero polynomials vanishing on Z ⊂ L. This sequence
of polynomial interpolation problems showed that no non-constant polyno-
mials of degree ≤ 18 vanished on Z and hence on σ6(Seg(P3×P3×P3)). The
15456×8855 matrix resulting from polynomial interpolation of homogeneous
forms of degree 19 in 5 variables using the approach of [GHPS14] has a
64-dimensional null space. Thus, the minimal degree of nonzero polynomials
vanishing on Z ⊂ L is 19, showing dim I19(σ6) ≤ 64.

The next objective was to verify that the minimal degree of nonzero
polynomials vanishing on the curve C := σ6(Seg(P3 × P3 × P3)) ∩K ⊂ K
for a fixed “random” linear space K ⊂ P63 of dimension 5 was also 19.
We used 50,000 points on C and the 50000 × 42504 matrix resulting from
polynomial interpolation of homogeneous forms of degree 19 in 6 variables
using the approach of [GHPS14] also has a 64-dimensional null space.
With this agreement, we decomposed S19(C4⊗C4⊗C4) and looked for a 64-
dimensional submodule. The only reasonable candidate was to take a copy of
S5554C4⊗S5554C4⊗S5554C4. We found a particular copy that was indeed in
the ideal and then proved that M〈2〉 is not contained in σ6(Seg(P3×P3×P3))
by showing a polynomial in this module did not vanish on it. The evaluation
was numerical, so the result was:

Theorem 8.3.2.1. [HIL13] With extremely high probability, the ideal of
σ6(Seg(P3×P3×P3)) is generated in degree 19 by the module S5554C4⊗S5554C4⊗S5554C4.
This module does not vanish on M〈2〉.
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In the same paper, a copy of the trivial degree twenty module S5555C4⊗S5555C4⊗S5555C4

is shown to be in the ideal of σ6(Seg(P3 × P3 × P3)) by symbolic methods,
giving a new proof that:

Theorem 8.3.2.2. [Lan06, HIL13] R(M〈2〉) = 7.

The same methods have shown I45(σ15(Seg(P3×P7×P8)) = 0 and that
I186,999(σ18(Seg(P6 × P6 × P6)) = 0 (this variety is a hypersurface), both of
which are relevant for determining the border rank of M〈3〉, see [HIL13].

8.3.3. Inheritance. Inheritance is a general technique for studying equa-
tions of G-varieties that come in series. It is discussed extensively in [Lan12,
§7.4,§16.4].

If V ⊂ W then SπV ⊂ V ⊗d induces a module SπW ⊂ W⊗d by, e.g.,
choosing a basis of W whose first v vectors are a basis of V . Then the two
modules have the same highest weight vector and one obtains the GL(W )-
module the span of the GL(W )-orbit of the highest weight vector.

Because the realizations of SπV in V ⊗d do not depend on the dimen-
sion of V , one can reduce the study of σr(Seg(PA × PB × PC)) to that of
σr(Seg(Pr−1×Pr−1×Pr−1)). As discussed in §3.3.1 this latter variety is an
orbit closure, namely the orbit closure of M⊕r〈1〉 .

Proposition 8.3.3.1. [LM04, Prop. 4.4] For all vector spaces Bj with
dimBj = bj ≥ dimAj = aj ≥ r, a module Sµ1

B1⊗ · · ·⊗SµnBn such
that l(µj) ≤ aj for all j, is in Id(σr(Seg(PB∗1 × · · · × PB∗n))) if and only
if Sµ1

A1⊗ · · ·⊗SµnAn is in Id(σr(Seg(PA∗1 × · · · × PA∗n))).

Corollary 8.3.3.2. [LM04, AR03] Let dimAj ≥ r, 1 ≤ j ≤ n. The ideal
of σr(Seg(PA1×· · ·×PAn)) is generated by the modules inherited from the
ideal of σr(Seg(Pr−1 × · · · × Pr−1)) and the modules generating the ideal
of Subr,...,r(A1⊗ · · ·⊗An). The analogous scheme and set-theoretic results
hold as well.

8.3.4. Prolongation. Prolongation and multi-prolongation provide a sys-
tematic method to find equations for secant varieties that is particularly
effective for secant varieties of homogeneous varieties. For a general dis-
cussion and proofs see [Lan12, §7.5]. For our purposes, we will need the
following:

Proposition 8.3.4.1. Given X ⊂ PV ∗, Ir+1(σr(X)) = (I2(X)⊗Sr−1V ) ∩
Sr+1V .

Proposition 8.3.4.2. [SS09] Let X ⊂ PV be a variety with Id−1(X) = 0.
Then for all δ < (d− 1)r, Iδ(σr(X)) = 0.

Corollary 8.3.4.3. Id(σd(vn(PV )) = 0.
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8.4. Necessary conditions for modules of polynomials to be
useful for GCT

The polynomial `n−m permm ∈ SnCn
2

has two properties that can be studied
individually: it is padded, i.e., it is divisible by a large power of a linear
form, and its zero set is a cone with a (n2 − m2 − 1)-dimensional vertex,
that is, it only uses m2 + 1 of the n2 variables in an expression in good
coordinates. Both of these properties restrict the types of polynomials we
should look for. Equipped with the language of representation theory we
can give precise descriptions of the modules we should restrict our attention
to, which I call GCT useful.

I begin with the study of cones, a classical topic.

8.4.1. Cones. Recall the subspace variety Subk(S
dV ) ⊂ PSdV from §6.2.2,

the polynomials whose associated hypersurfaces are cones with a v − k di-
mensional vertex.

Proposition 8.4.1.1. Iδ(Subk(S
dV )) consists of the isotypic components

of the modules SπV
∗ appearing in Sδ(SdV ∗) such that l(π) > k.

Exercise 8.4.1.2: (2!) Prove Proposition 8.4.1.1. }

With just a little more effort, one can prove the degree k + 1 equations
from Proposition 8.4.1.1 generate the ideal:

Theorem 8.4.1.3. [Wey03, Cor. 7.2.3] The ideal of Subk(S
dV ) is gener-

ated by the image of Λk+1V ∗⊗Λk+1Sd−1V ∗ ⊂ Sk+1(V ∗⊗Sd−1V ∗) in Sk+1(SdV ∗),
the size k + 1 minors of the (k, d− k)-flattening.

Aside 8.4.1.4. Here is further information about the variety Subk(S
dV ):

It is an example of a variety admitting a Kempf-Weyman desingularization,
a type of desingularization that G-varieties often admit. Rather than dis-
cuss the general theory here (see [Wey03] for a full exposition or [Lan12,
Chap. 17] for an elementary introduction), I just explain this example,
which gives a proof of Theorem 8.4.1.3, although more elementary proofs
are possible. As was mentioned in §5.4.3, the Grassmannian G(k, V ) has a
tautological vector bundle π : S → G(k, V ), where the fiber over a k-plane
E is just the k-plane itself. The whole bundle is a sub-bundle of the triv-
ial bundle V with fiber V . Consider the bundle SdS ⊂ SdV . We have a
projection map p : SdV → SdV . The image of SdS under p is Ŝubk(S

dV ).
Moreover, the map is a desingularization, that is SdS is smooth, and the
map to Ŝubk(S

dV ) is generically one to one. In particular, this implies

dim Ŝubk(S
dV ) = dim(SdS) =

(
k+d−1
d

)
+ d(v − k). One obtains the entire

minimal free resolution of Subk(S
dV ) by “pushing down” a tautological res-

olution “upstairs”. From the minimal free resolution one can read off the
generators of the ideal.
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8.4.2. The variety of padded polynomials. Define the variety of padded
polynomials

Padn−m(SnW ) :=

P{P ∈ SnW | P = `n−mh, for some ` ∈W,h ∈ SmW} ⊂ PSnW.

Note that Padn−m(SnW ) is a GL(W )-variety.

Proposition 8.4.2.1. [KL14] Let π = (p1, . . . , pw) be a partition of dn.
If p1 < d(n − m), then the isotypic component of SπW

∗ in Sd(SnW ∗) is
contained in Id(Padn−m(SnW )).

Proof. Fix a (weight) basis e1, . . . , ew of W with dual basis x1, . . . , xw of
W ∗. Note any element `n−mh ∈ Padn−m(SnW ) is in the GL(W )-orbit

of (e1)n−mh̃ for some h̃, so it will be sufficient to show that the ideal in
degree d contains the modules vanishing on the orbits of elements of the
form (e1)n−mh. The highest weight vector of any copy of S(p1,...,pw)W

∗

in Sd(SnW ∗) will be a linear combination of vectors of the form mI :=

(x
i11
1 · · ·x

i1w
w ) · · · (xi

d
1

1 · · ·x
idw
w ), where i1j + · · · + idj = pj for all 1 ≤ j ≤ w and

ik1 + · · ·+ ikw = n for all 1 ≤ k ≤ d as these are all the vectors of weight π in
Sd(SnW ). Each mI vanishes on any (e1)n−mh unless p1 ≥ d(n −m). (For
a coordinate-free proof, see [KL14].) �

What we really need to study is the variety Padn−m(Subk(S
dW )) of

padded cones.

Proposition 8.4.2.2. [KL14] Id(Padn−m(Subk(S
nW ∗))) consists of all mod-

ules SπW such that SπCk is in the ideal of Padn−m(SnCk∗) and all modules
whose associated partition has length at least k + 1.

Exercise 8.4.2.3: (2) Prove Proposition 8.4.2.2.

In summary:

Proposition 8.4.2.4. In order for a module S(p1,...,pl)W
∗, where (p1, . . . , pl)

is a partition of dn to be GCT-useful for showing `n−m permm 6∈ GLn2 · detn
we must have

• l ≤ m2 + 1, and

• p1 > d(n−m).

8.5. Representation theory and Detn

8.5.1. Proof of Proposition 6.7.2.2. Recall PΛ(M) = detn(MΛ, . . . ,MΛ,MS)
from §6.7.1 where M = MΛ + MS is the decomposition of the matrix M
into its skew-symmetric and symmetric components. We need to show
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GLn2 · [PΛ] has codimension one in Detn and is not contained in End(Cn2
) ·

[detn]. We compute the stabilizer of PΛ inside GL(E⊗E), where E = Cn.
The action of GL(E) on E⊗E by M 7→ gMgT preserves PΛ up to scale, and
the Lie algebra of the stabilizer of [PΛ] is a GL(E) submodule of End(E⊗E).
Note that sl(E) = S(21n−2)E and gl(E) = sl(E)⊕C. Decompose End(E⊗E)
as a SL(E)-module:

End(E⊗E) = End(Λ2E)⊕ End(S2E)⊕Hom(Λ2E,S2E)⊕Hom(S2E,Λ2E)

= Λ2E⊗Λ2E∗ ⊕ S2E⊗S2E∗ ⊕ Λ2E∗⊗S2E ⊕ S2E∗⊗Λ2E

= (gl(E)⊕ S22,1n−2E)⊕ (gl(E)⊕ S4,2n−1E)⊕ (sl(E)⊕ S3,1n−2E)⊕ (sl(E)⊕ S32,2n−2E)

(8.5.1)

By testing highest weight vectors, one concludes the Lie algebra of GPΛ
is

isomorphic to gl(E) ⊕ gl(E), which has dimension 2n2 = dimGdetn + 1,

implying GL(W ) · PΛ has codimension one in GL(W ) · [detn]. Since it is
not contained in the orbit of the determinant, it must be an irreducible
component of its boundary. Since the zero set is not a cone, PΛ cannot be
in End(W )·detn which consists of GL(W )·detn plus polynomials whose zero
sets are cones, as any element of End(W ) either has a kernel or is invertible.

Exercise 8.5.1.1: (3) Verify by testing on highest weight vectors that the
only summands in (8.5.1) annihilating PΛ are those in gl(E)⊕ gl(E). Note
that as a gl(E)-module, gl(E) = sl(E) ⊕ C so one must test the highest
weight vector of sl(E) and C.

8.5.2. The module structure of the equations for hypersurfaces
with degenerate duals. Recall the equations for Dk,d,N ⊂ P(SdCN∗) that
we found in §6.5.3. In this subsection I describe the module structure of
those equations. It is technical and can be skipped on a first reading.

Write P =
∑

J P̃Jx
J with the sum over |J | = d. The weight of a mono-

mial P̃J0x
J0 is J0 = (j1, . . . , jn). Adopt the notation [i] = (0, . . . , 0, 1, 0, . . . , 0)

where the 1 is in the i-th slot and similarly for [i, j] where there are two
1’s. The entries of Pd−2,2 are, for i 6= j, (Pd−2,2)i,j = PI+[i,j]x

I , and for

i = j, PI+2[i]x
I , where |I| = d − 2, and PJ is P̃J with the coefficient

adjusted, e.g., P(d,0,...,0) = d(d − 1)P̃(d,0,...,0) etc.. (This won’t matter be-
cause we are only concerned with the weights of the coefficients, not their
values.) To determine the highest weight vector, take L = span{e1, e2},
F = span{e1, . . . , ek+3}. The highest weight term of

(xe−d1 P |L) ∧ (xe−d−1
1 x2P |L) ∧ · · · ∧ (xe−d2 P |L) ∧ (detk+3(Pd−2,2 |F ))|L

is the coefficient of xe1 ∧ x
e−1
1 x2 ∧ · · · ∧ xe−(e−d+2)

1 xe−d+2
2 . It will not mat-

ter how we distribute these for the weight, so take the coefficient of xe1 in
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(detk+3(Pd−2,2 |F ))|L. It has leading term

P(d,0,...,0)P(d−2,2,0,...,0)P(d−2,0,2,0,...,0) · · ·P(d−2,0,...,0,2,0,...,0)

which is of weight (d+(k+2)(d−2), 2k+2). For each (xe−d−s1 xs2P |L) take the

coefficient of xe−s−1
1 xs+1

2 which has the coefficient of P(d−1,1,0,...,0) each time,
to get a total weight contribution of ((e− d+ 1)(d− 1), (e− d+ 1), 0, . . . , 0)
from these terms. Adding the weights together, and recalling that e =
(k + 3)(d− 2) the highest weight is

(d2k + 2d2 − 2dk − 4d+ 1, dk + 2d− 2k − 3, 2k+1),

which may be written as

((k + 2)(d2 − 2d) + 1, (k + 2)(d− 2) + 1, 2k+1).

In summary:

Theorem 8.5.2.1. [LMR13] The ideal of the variety Dk,d,N ⊂ P(SdCN∗)
contains a copy of the GLN -module Sπ(k,d)CN , where

π(k, d) = ((k + 2)(d2 − 2d) + 1, d(k + 2)− 2k − 3, 2k+1).

Since |π| = d(k + 2)(d− 1), these equations have degree (k + 2)(d− 1).

Observe that the module π(2n − 2, n) indeed satisfies the requirements

to be (m, m
2

2 )-GCT useful, as p1 = 2n3 − 2n2 + 1 > n(n−m) and l(π(2n−
2, n)) = 2n+ 1.

8.5.3. Dualk,d,N v. Dk,d,N . Recall that Dualk,d,N ⊂ PSdCN∗ is the Zariski
closure of the irreducible polynomials whose hypersurfaces have k-dimensional
dual varieties. The following more refined information may be useful for
studying permanent v. determinant:

Proposition 8.5.3.1. [LMR13] As subsets of SdCN∗ , Dualk,d,N inter-
sected with the irreducible hypersurfaces equals Dk,d,N intersected with the
irreducible hypersurfaces.

Proof. Let P ∈ Dk,d,N be irreducible. For each (L,F ) ∈ G(2, F ) × G(k +
3, V ) one obtains set-theoretic equations for the condition that P |L divides
Q|L, where Q = det(Pd−2,2|F ). But P divides Q if and only if restricted to
each plane P divides Q, so these conditions imply that the dual variety of
the irreducible hypersurface Zeros(P ) has dimension at most k. �

Theorem 8.5.3.2. [LMR13]Detn is an irreducible component ofD2n−2,n,n2

The proof of Theorem 8.5.3.2 requires familiarity with Zariski tangent
spaces to schemes. Here is an outline: Given two schemes, X,Y with X
irreducible and X ⊆ Y , an equality of Zariski tangent spaces, TxX = TxY
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for some x ∈ Xsmooth, implies that X is an irreducible component of Y (and
in particular, if Y is irreducible, that X = Y ). The following theorem is a
more precise version:

Theorem 8.5.3.3. [LMR13] The scheme D2n−2,n,n2 is smooth at [detn],
and Detn is an irreducible component of D2n−2,n,n2 .

The idea of the proof is as follows: We need to show T[detn]Dn,2n−2,n2 =
T[detn]Detn. We already know T[detn]Detn ⊆ T[detn]Dn,2n−2,n2 . Both of these
vector spaces are Gdetn-submodules of Sn(E⊗F ). In 8.7.1.3 you will prove
the Cauchy formula that Sn(E⊗F ) =

⊕
|π|=n SπE⊗SπF .

Exercise 8.5.3.4: (2) Show that [detn] = S1nE⊗S1nF and T̂detnDetn =
S1nE⊗S1nF ⊕ S2,1n−1E⊗S2,1n−1F . }

So as a GL(E)×GL(F )-module, T[detn]Detn = S2,1n−2E⊗S2,1n−2F . The
problem now becomes to show that none of the other modules in Sn(E⊗F )
are in T[detn]Dn,2n−2,n2 . To do this, it suffices to check a single point in
each module. A first guess would be to check highest weight vectors, but
these are not so easy to write down in any uniform manner. Fortunately
in this case there is another choice, namely the immanants IMπ defined by
Littlewood [Lit06], the unique trivial representation of the diagonal Sn in
the weight ((1n), (1n)) subspace of SπE⊗SπF , and the proof in [LMR13]
proceeds by checking that none of these other than IM2,1n−2 are contained
in T[detn]Dn,2n−2,n2 .

Theorem 8.5.3.3 implies that theGL(W )-module of highest weight π(2n−
2, n) given by Theorem 8.5.2.1 gives local equations at [detn] of Detn, of
degree 2n(n − 1). Since Subk(S

nCN ) ⊂ Dualk,n,N , the zero set of the

equations is strictly larger than Detn. Recall that dimSubk(S
nCn2

) =(
k+n+1
n

)
+ (k + 2)(N − k − 2) − 1. For k = 2n − 2, N = n2, this is larger

than the dimension of the orbit of [detn], and therefore Dual2n−2,n,n2 is not
irreducible.

8.6. Double-Commutant and algebraic Peter-Weyl Theorems

I now present the theory that will enable proofs of the statements in §8.1
and §3.5.

8.6.1. Algebras and their modules. For an algebra A, and a ∈ A the
space Aa is a left ideal and a (left) A-module.

Let G be a finite group. Recall from §3.5.1 the notation C[G] for the
space of functions on G, and δg ∈ C[G] for the function such that δg(h) = 0
for h 6= g and δg(g) = 1. Define a representation L : G → GL(C[G]) by
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L(g)δh = δgh and extending the action linearly. Define a second representa-
tion R : G → GL(C[G]) by R(g)δh = δhg−1 . Thus C[G] is a G × G-module
under the representation (L,R), and for all c ∈ C[G], the ideal C[G]c is a
G-module under the action L.

A representation ρ : G → GL(V ) induces an algebra homomorphism
C[G] → End(V ), and it is equivalent that V is a G-module or a left C[G]-
module.

A module M (for a group, ring, or algebra) is simple if it has no proper
submodules. The module M is semi-simple if it may be written as the direct
sum of simple modules. An algebra is completely reducible if all its modules
are semi-simple. For groups alone I will continue to use the terminology
irreducible for a simple module, completely reducible for a semi-simple mod-
ule, and reductive for a group such that all its modules can be decomposed
into a direct sum of irreducible modules.

Exercise 8.6.1.1: (2) Show that if A is completely reducible, V is an A-
module with an A-submodule U ⊂ V , then there exists an A-invariant
complement to U in V and a projection map π : V → U that is an A-
module map. }

8.6.2. The double-commutant theorem. Our sought-after decomposi-
tion of V ⊗d as a GL(V )-module will be obtained by exploiting the fact that
the actions of GL(V ) and Sd on V ⊗d commute. In this subsection I discuss
commuting actions in general, as this is also the basis of the generalized DFT
used in the Cohn-Umans method §3.5, and the starting point of the program
of [MS01, MS08]. References for this section are [Pro07, Chap. 6] and
[GW09, §4.1.5]. Let S ⊂ End(V ) be any subset. Define the centralizer or
commutator of S to be

S′ := {X ∈ End(V ) | Xs = sX ∀s ∈ S}
Proposition 8.6.2.1.

(1) S′ ⊂ End(V ) is a sub-algebra.

(2) S ⊂ (S′)′.

Exercise 8.6.2.2: (1!) Prove Proposition 8.6.2.1.

Theorem 8.6.2.3. [Double-Commutant Theorem] Let A ⊂ End(V ) be a
completely reducible associative algebra. Then A′′ = A.

There is an ambiguity in the notation S′ as it makes no reference to V ,
so instead introduce the notation EndS(V ) := S′.

Proof. By Proposition 8.6.2.1, A ⊆ A′′. To show the reverse inclusion, say
T ∈ A′′. Fix a basis v1, . . . , vv of V . Since the action of T is determined
by its action on a basis, we need to find a ∈ A such that avj = Tvj for
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j = 1, . . . ,v. Let w := v1 ⊕ · · · ⊕ vv ∈ V ⊕v and consider the submodule
Aw ⊆ V ⊕v. By Exercise 8.6.1.1, there exists an A-invariant complement to
this submodule and anA-equivariant projection π : V ⊕v → Aw ⊂ V ⊕v, that
is, a projection π that commutes with the action of A, i.e., π ∈ EndA(V ⊕v).
Since T ∈ EndA(V ) and the action on V ⊕v is diagonal, T ∈ EndA(V ⊕v).
We have π(Tw) = T (π(w)) but T (π(w)) = T (w) = Tv1 ⊕ · · · ⊕ Tvv. But
since π(Tw) ∈ Aw, there must be some a ∈ A such that aw = T (w), i.e.,
av1 ⊕ · · · ⊕ avv = Tv1 ⊕ · · · ⊕ Tvv, i.e., avj = Tvj for j = 1, . . . ,v. �

Burnside’s theorem, stated in §3.5, has a similar proof:

Theorem 8.6.2.4. [Burnside] Let A ⊆ End(V ) be a finite dimensional sim-
ple sub-algebra of End(V ) (over C) acting irreducibly on a finite-dimensional
vector space V . Then A = End(V ). More generally, a finite dimensional
semi-simple associative algebra A over C is isomorphic to a direct sum of
matrix algebras:

A 'Matd1×d1(C)⊕ · · · ⊕Matdq×dq(C)

for some d1, . . . , dq.

Proof. For the first assertion, we need to show that given X ∈ End(V ),
there exists a ∈ A such that avj = Xvj for v1, . . . , vv a basis of V . Now just
imitate the proof of Theorem 8.6.2.3. For the second assertion, note that A
is a direct sum of simple algebras. �

Remark 8.6.2.5. A pessimist could look at this theorem as a disappoint-
ment: all kinds of interesting looking algebras over C, such as the group
algebra of a finite group, are actually just plain old matrix algebras in dis-
guise. An optimist could view this theorem as stating there is a rich structure
hidden in matrix algebras. We will determine the matrix algebra structure
explicitly for the group algebra of a finite group.

8.6.3. Consequences for reductive groups. Let S be a group or algebra
and let V,W be S-modules, adopt the notation HomS(V,W ) for the space
of S-module maps V →W , i.e.,

HomS(V,W ) : = {f ∈ Hom(V,W ) | s(f(v)) = f(s(v)) ∀ s ∈ S, v ∈ V }

= (V ∗⊗W )S .

Theorem 8.6.3.1. Let G be a reductive group and let V be a G-module.
Then

(1) The commutator EndG(V ) is a semi-simple algebra.

(2) The isotypic components of G and EndG(V ) in V coincide.



242 8. Representation theory and its uses in complexity theory

(3) Let U be one such isotypic component, say for irreducible represen-
tations A ofG and B of EndG(V ). Then, as aG×EndG(V )-module,

U = A⊗B,

as an EndG(V )-module

B = HomG(A,U),

and as a G-module

A = HomEndG(V )(B,U).

In particular, mult(A, V ) = dimB and mult(B, V ) = dimA.

Example 8.6.3.2. Below we will see that EndGL(V )(V
⊗d) = C[Sd]. As

an S3 × GL(V )-module, we have the decomposition V ⊗3 = ([3]⊗S3V ) ⊕
([2, 1]⊗S21V )⊕ ([1, 1, 1]⊗Λ3V ) which illustrates Theorem 8.6.3.1.

To prove the theorem, we will need the following lemma:

Lemma 8.6.3.3. For W ⊂ V a G-submodule and f ∈ HomG(W,V ), there
exists a ∈ EndG(V ) such that a|W = f .

Proof. Consider the diagram

End(V ) −→ Hom(W,V )
↓ ↓

EndG(V ) −→ HomG(W,V )

The vertical arrows are G-equivariant projections, and the horizontal ar-
rows are restriction of domain of a linear map. The diagram is commuta-
tive. Since the vertical arrows and upper horizontal arrow are surjective, we
conclude the lower horizontal arrow is surjective as well. �

Proof of Theorem 8.6.3.1. I first prove (3): The space HomG(A, V ) is
an EndG(V )-module because for s ∈ HomG(A, V ) and a ∈ EndG(V ), the
composition as : A→ V is still a G-module map. We need to show (i) that
HomG(A, V ) is an irreducible EndG(V )-module and (ii) that the isotypic
component of A in V is A⊗HomG(A, V ).

To show (i), it is sufficient to show that for all nonzero s, t ∈ HomG(A, V ),
there exists a ∈ EndG(V ) such that at = s. Since tA and sA are isomor-
phic G-modules, by Lemma 8.6.3.3, there exists a ∈ EndG(V ) extending an
isomorphism between them, so a(tA) = sA, i.e., at : A → sA is an isomor-
phism. Consider the isomorphism S : A → sA, given by a 7→ sa, so S−1at
is a nonzero scalar c times the identity. Then ã := 1

ca has the property that
ãt = s.

To see (ii), let U be the isotypic component of A, so U = A⊗B for some

vector space B. Let b ∈ B and define a map b̃ : A→ V by a 7→ a⊗b, which
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is a G-module map where the action of G on the target is just the action
on the first factor. Thus B ⊆ HomG(A, V ). Any G-module map A→ V by
definition has image in U , so equality holds.

(3) implies (2).

To see (1), note that EndG(V ) is semi-simple because if the irreducible
G × EndG(V )-components of V are Ui, then EndG(V ) = ⊕i EndG(Ui) =
⊕i EndG(Ai⊗Bi) = ⊕i End(Bi). �

8.6.4. Matrix coefficients. For affine algebraic reductive groups, one can
obtain all their (finite dimensional) irreducible representations from the ring
of regular functions on G, denoted C[G]. Here G is an affine algebraic
variety, i.e., a subvariety of CN for some N , so C[G] = C[x1, . . . , xN ]/I(G).

Exercise 8.6.4.1: (1!) Show that GLn is an affine algebraic subvariety of

Cn2+1 with coordinates (xij , z) by considering the polynomial z detn(xij)−1.

Thus C[GL(W )] may be defined to be the restriction of polynomial func-

tions on Cn2+1 to the subvariety isomorphic to GL(W ). (For a finite group,
all complex-valued functions on G are algebraic, so this is consistent with
our earlier notation.) If G ⊂ GL(W ) is defined by algebraic equations, this
also enables us to define C[G] because G ⊂ GL(W ) is a subvariety. In this
section and the next, we study the structure of C[G] as a G-module.

Let G be an affine algebraic group. Let ρ : G → GL(V ) be a finite
dimensional representation of G. Define a map iV : V ∗⊗V → C[G] by
iV (α⊗v)(g) := α(ρ(g)v). The space of functions iV (V ∗⊗V ) is called the
space of matrix coefficients of V .

Exercise 8.6.4.2: (1)

i) Show iV is a G×G-module map.

ii) Show that if V is irreducible, iV is injective. }

iii) If we choose a basis v1, . . . , vv of V with dual basis α1, . . . , αv, then
iV (αi⊗vj)(g) is the (i, j)-th entry of the matrix representing ρ(g)
in this basis (which explains the name “matrix coefficients”).

iv) Compute the matrix coefficient basis of the three irreducible rep-
resentations of S3 in terms of the standard basis {δσ | σ ∈ S3}.

v) Let G = GL2C, write g =

(
a b
c d

)
∈ G, and compute the matrix

coefficient basis as functions of a, b, c, d when V = S2C2, S3C2 and
Λ2C2.

Theorem 8.6.4.3. Let G be an affine algebraic group and let V be an
irreducible G-module. Then iV (V ∗⊗V ) equals the isotypic component of
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type V in C[G] under the action L and the isotypic component of V ∗ in
C[G] under the action R.

Proof. It suffices to prove one of the assertions, consider the action L. Let
j : V → C[G] be a G-module map under the action L. We need to show
j(V ) ⊂ iV (V ∗⊗V ). Define α ∈ V ∗ by α(v) := j(v)(IdG). Then j(v) =
iV (α⊗v), as j(v)g = j(v)(g · IdG) = j(gv)(IdG) = α(gv) = iV (α⊗v)g. �

8.6.5. Application to representations of finite groups. Theorem 8.6.4.3
implies:

Theorem 8.6.5.1. Let G be a finite group, then as a G×G-module under
the action (L,R) and as an algebra,

(8.6.1) C[G] =
⊕
i

Vi⊗V ∗i

where the sum is over all the distinct irreducible representations of G.

Exercise 8.6.5.2: (1!) Let G be a finite group and H a subgroup. For
the homogeneous space G/H, show that C[G/H] =

⊕
i V
∗
i ⊗(Vi)

H as a G-
module under the action L.

8.6.6. The algebraic Peter-Weyl Theorem. Theorem 8.6.5.1 general-
izes to reductive algebraic groups. The proof is unchanged, except that one
has an infinite sum:

Theorem 8.6.6.1. Let G be a reductive algebraic group. Then there are
only countably many non-isomorphic finite dimensional irreducibleG-modules.
Let Λ+

G denote a set indexing the irreducible G-modules, and for λ ∈ Λ+
G, let

Vλ denote the irreducible module associated to λ. Then, as a G×G-module

C[G] =
⊕
λ∈Λ+

G

Vλ⊗V ∗λ .

Corollary 8.6.6.2. Let H ⊂ G be a closed subgroup. Then, as a G-module,
the coordinate ring of the homogeneous space G/H is

(8.6.2) C[G/H] = C[G]H =
⊕
λ∈Λ+

G

Vλ⊗(V ∗λ )H =
⊕
λ∈Λ+

G

V
⊕ dim(V ∗λ )H

λ .

Here G acts on the Vλ and (V ∗λ )H is just a vector space whose dimension
records the multiplicity of Vλ in C[G/H].

Exercise 8.6.6.3: (2!) Use Corollary 8.6.6.2 to determine C[vd(PV )] (even
if you already know it by a different method).
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8.6.7. Characters and representations of finite groups. Let ρ : G→
GL(V ) be a representation. Define a function χρ : G → C by χρ(g) =
trace(ρ(g)). The function χρ is called the character of ρ.

Exercise 8.6.7.1: (1) Show that χρ is constant on conjugacy classes of G.

A function f : G → C such that f(hgh−1) = f(g) for all g, h ∈ G is
called a class function.

Exercise 8.6.7.2: (1) For representations ρj : G → GL(Vj), show that
χρ1⊕ρ2 = χρ1 + χρ2 .

Exercise 8.6.7.3: (1) Given ρj : G → GL(Vj) for j = 1, 2, define ρ1⊗ρ2 :
G→ GL(V1⊗V2) by ρ1⊗ρ2(g)(v1⊗v2) = ρ1(g)v1⊗ρ2(g)v2. Show that χρ1⊗ρ2 =
χρ1χρ2 .

Theorem 8.6.5.1 is not yet useful, as we do not yet know what the Vi
are. Let µi : G → GL(Vi) denote the representation. It is not difficult to
show that the functions χµi are linearly independent in C[G]. (One uses

a G-invariant Hermitian inner-product 〈χV , χW 〉 := 1
|G|
∑

g∈G χV (g)χW (g)

and shows that they are orthogonal with respect to this inner-product, see,
e.g., [FH91, §2.2].) On the other hand, we have a natural basis of the
class functions, namely the δ-functions on each conjugacy class. Let Cj be
a conjugacy class of G and define δCj :=

∑
g∈Cj δg. It is straightforward to

see, via the DFT (§3.5.1), that the span of the δCj ’s equals the span of the
χµi ’s, that is the number of distinct irreducible representations of G equals
the number of conjugacy classes (see, e.g., [FH91, §2.2] for the standard
proof using the Hermitian inner-product on class functions and [GW09,
§4.4] for a DFT proof).

Remark 8.6.7.4. The classical Heisenberg uncertainty principle from physics,
in the language of mathematics, is that it is not possible to localize both
a function and its Fourier transform. A discrete analog of this uncertainty
principle holds, in that the transforms of the delta functions have large sup-
port in terms of matrix coefficients and vice versa. In particular, the relation
between these two bases can be complicated.

8.6.8. Representations of Sd. When G = Sd, we get lucky: one may
associate irreducible representations directly to conjugacy classes.

The conjugacy class of a permutation is determined by its decomposition
into a product of disjoint cycles. The conjugacy classes of Sd are in 1-1 corre-
spondence with the set of partitions of d: to a partition π = (p1, . . . , pr) one
associates the conjugacy class of an element with disjoint cycles of lengths
p1, . . . , pr. Let [π] denote the isomorphism class of the irreducible Sd-module
associated to the partition π. In summary:
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Proposition 8.6.8.1. The irreducible representations of Sd are indexed by
partitions of d.

Thus as an Sd ×Sd module under the (L,R)-action:

(8.6.3) C[Sd] =
⊕
|π|=d

[π]∗L⊗[π]R.

We can say even more: as Sd modules, [π] is isomorphic to [π]∗. This is
usually proved by first noting that for any finite group G, and any irreducible
representation µ, χµ∗ = χµ where the overline denotes complex conjugate
and then observing that the characters of Sd are all real-valued functions.
Thus we may rewrite (8.6.3) as

(8.6.4) C[Sd] =
⊕
|π|=d

[π]L⊗[π]R.

Exercise 8.6.8.2: (1) Show [d] ⊂ [π]⊗[µ] if and only if π = µ. }

Exercise 8.6.8.3: (1) Show that moreover [d] ⊂ [π]⊗[π] with multiplicity
one. }

8.7. Representations of Sd and GL(V )

In this section we finally obtain our goal of the decomposition of V ⊗d as a
GL(V )-module.

8.7.1. Schur-Weyl duality. We have already seen that the actions of
GL(V ) and Sd on V ⊗d commute.

Proposition 8.7.1.1. EndGL(V )(V
⊗d) = C[Sd].

Proof. We will show that EndC[Sd](V
⊗d) is the algebra generated by GL(V )

and conclude by the double commutant theorem. Since

End(V ⊗d) = V ⊗d⊗(V ⊗d)∗

' (V⊗V ∗)⊗d

under the re-ordering isomorphism, End(V ⊗d) is spanned by elements of the

form X1⊗ · · ·⊗Xd with Xj ∈ End(V ), i.e., elements of Ŝeg(P(End(V )) ×
· · · × P(End(V ))). The action of X1⊗ · · ·⊗Xd on v1⊗ · · ·⊗vd induced from
the GL(V )×d-action is v1⊗ · · ·⊗vd 7→ (X1v1)⊗ · · ·⊗(Xdvd). Since g ∈
GL(V ) acts by g · (v1⊗ · · ·⊗vd) = gv1⊗ · · ·⊗gvd, the image of GL(V ) in
(V⊗V ∗)⊗d lies in Sd(V⊗V ∗), in fact it is a Zariski open subset of v̂d(P(V⊗V ∗))
which spans Sd(V⊗V ∗). In other words, the algebra generated by GL(V )
is Sd(V⊗V ∗) ⊂ End(V ⊗d). But by definition Sd(V⊗V ∗) = [(V⊗V ∗)⊗d]Sd
and we conclude. �
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Theorem 8.6.3.1 and Proposition 8.7.1.1 imply:

Theorem 8.7.1.2. [Schur-Weyl duality] The irreducible decomposition of
V ⊗d as a GL(V ) × C[Sd]-module (equivalently, as a GL(V ) ×Sd-module)
is

(8.7.1) V ⊗d =
⊕
|π|=d

SπV⊗[π],

where SπV := HomSd([π], V ⊗d) is an irreducible GL(V )-module.

Note that as far as we know, SπV could be zero. (It will be zero whenever
l(π) ≥ dimV .)

Exercise 8.7.1.3: (2) Show that as a GL(E)×GL(F )-module, Sd(E⊗F ) =⊕
|π|=d SπE⊗SπF . This is called the Cauchy formula. }

8.7.2. Explicit realizations of representations of Sd and GL(V ). By
Theorem 8.6.5.1 we may explicitly realize each irreducible Sd-module via
some projection from C[Sd]. The question is, which projections?

Given π we would like to find elements cπ ∈ C[Sd] such that C[Sd]cπ is
isomorphic to [π]. I write π instead of just π because the elements are far
from unique; there is a vector space of dimension dim[π] of such projection
operators by Theorem 8.6.5.1, and the overline signifies a specific realization.
In other words, the Sd-module map RMcπ : C[Sd]→ C[Sd], f 7→ fcπ should
kill all SR

d -modules not isomorphic to [π]R, and the image should be [π]L⊗z
for some z ∈ [π]R. If this works, as a bonus, the map cπ : V ⊗d → V ⊗d

induced from the Sd-action will have image SπV⊗z ' SπV for the same
reason, where SπV is some realization of SπV and z ∈ [π].

Here are projection operators for the two representations we understand
well:

When π = (d), there is a unique up to scale c
(d)

and it is easy to see

it must be c
(d)

:=
∑

σ∈Sd δσ, as the image of RMc
(d)

is clearly the line

through c
(d)

on which Sd acts trivially. Note further that c
(d)

(V ⊗d) = SdV

as desired.

When π = (1d), again we have a unique up to scale projection, and its
clear we should take c

(1d)
=
∑

σ∈Sd sgn(σ)δσ as the image of any δτ will be

sgn(τ)c
(1d)

, and c
(1d)

(V ⊗d) = ΛdV .

The only other representation of Sd that we have a reasonable under-
standing of is the standard representation π = (d− 1, 1) which corresponds
to the complement of the trivial representation in the permutation action
on Cd. A basis of this space could be given by e1− ed, e2− ed, . . . , ed−1− ed.
Note that the roles of 1, . . . , d− 1 in this basis are the “same” in that if one
permutes them, one gets the same basis, and that the role of d with respect
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to any of the other ej is “skew” in some sense. To capture this behavior,
consider

c
(d−1,1)

:= (δId − δ(1,d))(
∑

σ∈Sd−1[d−1]

δσ)

where Sd−1[d− 1] ⊂ Sd is the subgroup permuting the elements {1, . . . , d−
1}. Note that c

(d−1,1)
δτ = c

(d−1,1)
for any τ ∈ Sd−1[d − 1] so the image is

of dimension at most d = dim(C[Sd]/C[Sd−1]).

Exercise 8.7.2.1: (2) Show that the image is d− 1 dimensional.

Now consider RMc
(d−1,1)

(V ⊗d): after re-orderings, it is the image of the

composition of the maps

V ⊗d → V ⊗d−2⊗Λ2V → Sd−1V⊗V.

In particular, in the case d = 3, it is the image of

V⊗Λ2V → S2V⊗V,

which is isomorphic to S21V , as was mentioned in in §4.1.5.

Here is the general recipe to construct an Sd-module isomorphic to [π]:
fill the Young diagram of a partition π of d with integers 1, . . . , d from top
to bottom and left to right. For example let π = (4, 2, 1) and write:

(8.7.2)

1 4 6 7
2 5
3

Define Sπ′ ' Sq1 × · · · ×Sqp1
⊂ Sd to be the subgroup that permutes

elements in each column and Sπ is the subgroup of Sd that permutes the
elements in each row.

Explicitly, writing π = (p1, . . . , pq1) and π′ = (q1, . . . , qp1), Sq1 permutes
the elements of {1, . . . , q1}, Sq2 permutes the elements of {q1+1, . . . , q1+q2}
etc.. Similarly, Sπ ' Sp1 × · · · × Sp` ⊂ Sd is the subgroup where Sp1

permutes the elements {1, q1 + 1, q1 + q2 + 1, . . . , q1 + · · ·+ qp1−1 + 1}, Sp2

permutes the elements {2, q1 + 2, q1 + q2 + 2, . . . , q1 + · · ·+ qp1−1 + 2} etc..

Define two elements of C[Sd]: sπ :=
∑

σ∈Sπ δσ and aπ :=
∑

σ∈Sπ′
sgn(σ)δσ.

Fact: Then [π] is the isomorphism class of the Sd-module C[Sd]aπsπ. (It
is also the isomorphism class of C[Sd]sπaπ, although these two realizations
are generally distinct.)

Exercise 8.7.2.2: (1) Show that [π′] = [π]⊗[1d] as Sd-modules. }

The action on V ⊗d is first to map it to Λq1V⊗ · · ·⊗Λqp1V , and then
the module SπV is realized as the image of a map from this space to
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Sp1V⊗ · · ·⊗Spq1V obtained by re-ordering then symmetrizing. So despite
their original indirect definition, we may realize the modules SπV explicitly
simply by skew-symmetrizations and symmetrizations.

Other realizations of SπV (resp. highest weight vectors for SπV , in fact
a basis of them) can be obtained by letting Sd act on RMcπV

⊗d (resp. the
highest weight vector of RMcπV

⊗d).

Example 8.7.2.3. Consider c
(2,2)

, associated to

(8.7.3)

1 3
2 4

which realizes a copy of S(2,2)V ⊂ V ⊗4. It first maps V ⊗4 to Λ2V⊗Λ2V and

then maps that to S2V⊗S2V . Explicitly, the maps are

a⊗b⊗c⊗c 7→ (a⊗b− b⊗a)⊗(c⊗d− d⊗c) = a⊗b⊗c⊗d− a⊗b⊗d⊗c− b⊗a⊗c⊗d+ b⊗a⊗d⊗c
7→ (a⊗b⊗c⊗d+ c⊗b⊗a⊗d+ a⊗d⊗c⊗b+ c⊗d⊗a⊗b)
− (a⊗b⊗d⊗c+ d⊗b⊗a⊗c+ a⊗c⊗d⊗b+ d⊗c⊗a⊗b)
− (b⊗a⊗c⊗d+ c⊗a⊗b⊗d+ b⊗d⊗c⊗a+ c⊗d⊗b⊗a)

+ (b⊗a⊗d⊗c+ d⊗a⊗b⊗c+ b⊗c⊗d⊗a+ d⊗c⊗b⊗a)

Exercise 8.7.2.4: (2) Show that a basis of the highest weight space of
[2, 1]⊗S21V ⊂ V ⊗3 is v1 = e1 ∧ e2⊗e1 and v2 = e1⊗e1 ∧ e2. Let Z3 ⊂ S3 be
the cyclic permutation of the three factors in V ⊗3 and show that ωv1±ω2v2

are eigenvectors for this action with eigenvalues ω, ω2, where ω = e
2πi
3 .

8.8. The program of [MS01, MS08]

Algebraic geometry was used successfully in [Mul99] to prove lower bounds
in the “PRAM model without bit operations” (the model is defined in
[Mul99]), and the proof indicated that algebraic geometry, more precisely
invariant theory, could be used to resolve the P v. NC problem (a cousin
of permanent v. determinant). This was investigated further in [MS01,
MS08] and numerous sequels. In this section I present the program out-
lined in [MS08], as refined in [BLMW11].

Independent of its viability, I expect the ingredients that went into the
program of [MS01, MS08] will play a role in future investigations regarding
Valiant’s conjecture and thus are still worth studying.

8.8.1. Preliminaries. LetW = Cn2
. Recall C[D̂etn] := Sym(SnW ∗)/I(Detn),

the homogeneous coordinate ring of the (cone over) Detn. This is the space

of polynomial functions on D̂etn inherited from polynomials on the ambient
space.
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Since I(Detn) ⊂ Sym(SnW ∗) is a GL(W )-submodule, and since GL(W )
is reductive, we obtain the following splitting as a GL(W )-module:

Sym(SnW ∗) = I(Detn)⊕ C[D̂etn].

In particular, if a module SπW
∗ appears in Sym(SnW ∗) and it does not

appear in C[D̂etn], it must appear in I(Detn).

Now consider

C[GL(W ) · detn] = C[GL(W )/Gdetn ] = C[GL(W )]Gdetn .

There is an injective map

C[D̂etn]→ C[GL(W ) · detn]

given by restriction of functions. The map is an injection because any func-
tion identically zero on a Zariski open subset of an irreducible variety is
identically zero on the variety.

Corollary 8.6.6.2 in principle gives a recipe to determine the modules in
C[GL(W ) · detn], which motivates the following plan:

Plan : Find a module SπW
∗ not appearing in C[GL(W )/Gdetn ] that does

appear in Sym(SnW ∗).

By the above discussion such a module must appear in I(Detn).

Definition 8.8.1.1. An irreducible GL(W )-module SπW
∗ appearing in

Sym(SnW ∗) and not appearing in C[GL(W )/Gdetn ] is called an orbit oc-
currence obstruction.

The precise condition a module must satisfy in order to not occur in
C[GL(W )/Gdetn ] is explained in Proposition 8.8.2.2. The discussion in §8.4
shows that in order to be useful, π must have a large first part and few parts.

One might object that the coordinate rings of different orbits could coin-
cide, or at least be very close. Indeed this is the case for generic polynomials,
but in GCT one generally restricts to polynomials whose symmetry groups
characterize the orbit in the sense of Definition 1.2.5.3. We have seen in §6.6
that both the determinant and permanent polynomials are characterized by
their stabilizers.

Corollary 8.6.6.2 motivates the study of polynomials characterized by
their stabilizers: if P ∈ V is characterized by its stabilizer, then G · P is
the unique orbit in V with coordinate ring isomorphic to C[G · P ] as a G-
module. Thus one can think of polynomial sequences that are complete for
their complexity classes and are characterized by their stabilizers as “best”
representatives of their class.
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Remark 8.8.1.2. All GL(W )-modules S(p1,...,pw)W may be graded using
p1 + · · ·+ pw as the grading. One does not have such a grading for SL(W )-
modules, which makes their use in GCT more difficult. In [MS01, MS08],
it was proposed to use the SL(W )-module structure because it had the
advantage that the SL-orbit of detn is already closed. The disadvantage
from the lack of a grading appears to outweigh this advantage.

8.8.2. The coordinate ring of GLn2 · detn. Write Cn2
= E⊗F , with

E,F = Cn. I first compute the SL(E) × SL(F )-invariants in Sπ(E⊗F )
where |π| = d = δn. Recall from §8.7.1 that by definition, SπW = HomSd([π],W⊗d).
Thus

Sπ(E⊗F ) = HomSd([π], E⊗d⊗F⊗d)

= HomSd([π], (
⊕
|µ|=d

[µ]⊗SµE)⊗(
⊕
|ν|=d

[ν]⊗SνF ))

=
⊕

|µ|=|ν|=d

HomSd([π], [µ]⊗[ν])⊗SµE⊗SνF

The vector space HomSd([π], [µ]⊗[ν]) simply records the multiplicity of SµE⊗SνF
in Sπ(E⊗F ). The numbers kπ,µ,ν = dim HomSd([π], [µ]⊗[ν]) are called Kro-
necker coefficients.

Exercise 8.8.2.1: (2) Show that

kπ,µ,ν = HomSd([d], [π]⊗[µ]⊗[ν]) = mult(SπA⊗SµB⊗SνC, Sd(A⊗B⊗C)).

In particular, kπ,µ,ν is independent of the order of π, µ, ν.

Recall from §8.1.5 that SµE is a trivial SL(E) module if and only if
µ = (δn) for some δ ∈ Z. Thus so far, we are reduced to studying the
Kronecker coefficients kπ,δn,δn . Now take the Z2 action given by exchanging
E and F into account. Write [µ]⊗[µ] = S2[µ] ⊕ Λ2[µ]. The first module
will be invariant under Z2 = S2, and the second will transform its sign
under the transposition. So define the symmetric Kronecker coefficients
skπµ,µ := dim(HomSd([π], S2[µ])).

We conclude:

Proposition 8.8.2.2. [BLMW11] Let W = Cn2
. The coordinate ring of

the GL(W )-orbit of detn is

C[GL(W ) · detn] =
⊕
d∈Z

⊕
π | |π|=nd

(SπW
∗)⊕sk

π
dndn .

While Kronecker coefficients were studied classically (if not the sym-
metric version), unfortunately very little is known about them. In the next
section I describe a geometric method used to study them.
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8.9. Plethysm coefficients, Kronecker coefficients and
geometry

A basic, if not the basic problem in representation theory is: given a group
G, an irreducible G-module U , and a subgroup H ⊂ G, decompose U as
an H-module. The determination of Kronecker coefficients can be phrased
this way with G = GL(V⊗W ), U = Sλ(V⊗W ) and H = GL(V )×GL(W ).
The determination of plethysm coefficients may be phrased as the case G =
GL(SnV ), U = Sd(SnV ) and H = GL(V ).

I briefly discuss a geometric method of L. Manivel and J. Wahl [Wah91,
Man97, Man98, Man15b, Man15a] based on the Bott-Borel-Weil theo-
rem that allows one to gain asymptotic information about such decomposi-
tion problems.

The Bott-Borel-Weil theorem realizes modules as spaces of sections of
vector bundles on homogeneous varieties. The method studies sequences
of such sections. It has the properties: (i) the vector bundles come with
filtrations that allow one to organize information, (ii) the sections of the
associated graded bundles can be computed explicitly, giving one bounds
for the coefficients, and (iii) Serre’s theorem on the vanishing of sheaf co-
homology tells one that the bounds are achieved eventually, and gives an
upper bound for when stabilization occurs.

I now discuss the decomposition of Sd(SnV ).

8.9.1. Asymptotics of plethysm coefficients. We want to decompose
Sd(SnV ) as aGL(V )-module, or more precisely, to obtain qualitative asymp-
totic information about this decomposition. Note that SdnV ⊂ Sd(SnV )
with multiplicity one. Beyond that the decomposition gets complicated.
Let x1, . . . , xv be a basis of V , so ((x1)n)d is the highest highest weight
vector in Sd(SnV ).

Define the inner degree lifting map mx1 = md,m,n
x1 : Sd(SmV )→ Sd(SnV )

on basis elements by

(x
i11
1 x

i12
2 · · ·x

i1d
d ) · · · (xi

d
1

1 · · ·x
idd
d )(8.9.1)

7→ (x
i11+(n−m)
1 x

i12
2 · · ·x

i1d
d ) · · · (xi

d
1+(n−m)

1 · · ·xi
d
d
d )

and extend linearly. Here ij1 + · · ·+ ijd = m for all j.

A vector of weight µ = (q1, q2, . . . , qd) is mapped under mx1 to a vector
of weight π = (p1, . . . , pd) := µ+ (d(n−m)) = (q1 + d(n−m), q2, . . . , qd) in
Sd(SnV ).
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Define the outer degree lifting map ox1 = oδ,d,nx1 : Sδ(SnV ) → Sd(SnV )
on basis elements by
(8.9.2)
(xi1,1 · · ·xi1,n) · · · (xiδ,1 · · ·xiδ,n) 7→ (xi1,1 · · ·xi1,n) · · · (xiδ,1 · · ·xiδ,n)(xn1 ) · · · (xn1 )

and extend linearly. A vector of weight µ = (q1, q2, . . . , qd) is mapped under
ox1 to a vector of weight π = (p1, . . . , pd) := µ + ((d − δ)n) = (q1 + (d −
δ)n, q2, . . . , qd) in Sd(SnV ).

Both mx1 and ox1 take highest weight vectors to highest weight vectors,
as Lie algebra raising operators annihilate x1.

This already shows qualitative behavior if we allow the first part of a
partition to grow. More generally, one has:

Theorem 8.9.1.1. [Man97] Let µ be a fixed partition. Then mult(S(dn−|µ|,µ)V, S
d(SnV ))

is a non-decreasing function of both d and n that is constant as soon as
d ≥ |µ| or n ≥ l(µ).

More precisely, the inner and outer degree lifting maps mx1 and ox1

are both injective and eventually isomorphisms on highest weight vectors of
isotypic components of partitions (p1, . . . , pv) with (p2, . . . , pv) fixed and p1

growing.

There are several proofs of the stability. The precise stabilization is
proved by computing the space of sections of homogeneous vector bundles
on PV via an elementary application of Bott’s theorem (see, e.g., [Wey03,
§4.1] for an exposition of Bott’s theorem).

One way to view what we just did was to write V = x1 ⊕ T , so

(8.9.3) Sn(x1 ⊕ T ) =
n⊕
j=0

xn−j1 ⊗SjT.

Then decompose the d-th symmetric power of Sn(x1 ⊕ T ) and examine the
stable behavior as we increase d and n. One could think of the decomposition
(8.9.3) as the osculating sequence of the n-th Veronese embedding of PV at
[xn1 ] and the further decomposition as the osculating sequence (see, e.g.,
[IL16b, Chap. 4]) of the d-th Veronese re-embedding of the ambient space
refined by (8.9.3).

For Kronecker coefficients and more general decomposition problems the
situation is more complicated in that the ambient space is no longer projec-
tive space, but a homogeneous variety, and instead of an osculating sequence,
one examines jets of sections of a vector bundle.

8.9.2. A partial converse to Proposition 8.4.2.1.
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Proposition 8.9.2.1. [KL14] Let π = (p1, . . . , pw) be a partition of dn.
If p1 ≥ min{d(n− 1), dn−m}, then Id(Padn−m(SnW )) does not contain a
copy of SπW

∗.

Proof. The image of the space of highest weight vectors for the isotypic

component of SµW
∗ in Sd(SmW ∗) under md,m,n

x1 will be in C[Padn−m(SnW )]

because, for example, such a polynomial will not vanish on (e1)n−m[(e1)i
1
1 · · · (ed)i

1
d+

· · ·+ (e1)i
d
1 · · · (ed)i

d
d ], but if p1 ≥ d(n− 1) we are in the stability range.

For the sufficiency of p1 ≥ dn−m, note that if p1 ≥ (d−1)n+(n−m) =
dn−m, then in an element of weight π, each of the exponents i11, . . . , i

d
1 of x1

must be at least n−m. So there again exists an element of Padn−m(SnW )
such that a vector of weight π does not vanish on it. �

8.10. Orbit occurrence obstructions cannot separate Permm
n

from Detn

I present an outline of the proof [IP15, BIP16] that the program of [MS01,
MS08] cannot work as originally proposed, or even the refinement discussed
in [BLMW11]. Despite this negative news, the program has opened several
promising directions, and inspired perspectives that have led to concrete
advances such as [LR15] as described in §7.4.1.

Throughout this section, set W = Cn2
.

8.10.1. Occurrence obstructions cannot separate. The program of
[MS01, MS08] proposed to use orbit occurrence obstructions to prove
Valiant’s conjecture. In [IP15] they show that this cannot work. Fur-
thermore, in [BIP16] they prove that one cannot even use the following
relaxation of orbit occurrence obstructions:

Definition 8.10.1.1. An irreducible GL(W )-module SλW
∗ appearing in

Sym(SnW ∗) and not appearing in C[D̂etn] is called an occurrence obstruc-
tion.

The extension is all the more remarkable because they essentially prove
that occurrence obstructions cannot even be used to separate any degree m
polynomial padded by `n−m in m2 variables from

(8.10.1) MJ(vn−k(PW ), σr(vk(PW ))) = GL(W ) · [`n−k(xk1 + · · ·+ xkr )]

for certain k, r with kr ≤ n. Here MJ is the multiplicative join of §7.5.3.

First I show that the variety (8.10.1) is contained in Detn. I will use the
following classical result:
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Theorem 8.10.1.2. [Valiant [Val79], Liu-Regan [LR06]] Every f ∈ C[x1, . . . , xn]

of formula size u is a projection of detu+1. In other words f ∈ End(C(u+1)2
) ·

detu+1.

Note that the formula size of xk1 + · · ·+ xkr is at most rk.

Corollary 8.10.1.3. [BIP16] If rk < n then [`n−k(xk1 + · · · + xkr )] ∈ Detn
and thus GL(W ) · [`n−k(xk1 + · · ·+ xkr )] ⊂ Detn.

Their main theorem is:

Theorem 8.10.1.4. [BIP16] Let n > m25. Let π = (p1, . . . , p`) be a parti-
tion of dn such that ` ≤ m2 +1 and p1 ≥ d(n−m). If a copy of SπW

∗ occurs

in Sd(SnW ∗) then a copy also occurs in some C[GL(W ) · [`n−k(xk1 + · · ·+ xkr )]]
for some r, k with rk < n.

By the above discussion, this implies occurrence obstructions cannot be
used to separate the permanent from the determinant.

The proof is done by splitting the problem into three cases:

(1) d ≤
√

n
m

(2) d >
√

n
m and p1 > dn−m10

(3) d >
√

n
m and p1 ≤ dn−m10.

The first case is an immediate consequence of the prolongation property
§8.3.4: take r = d and k = m.

The second reduces to the first by two applications of Manivel’s stability
theorem:

Proposition 8.10.1.5. [BIP16, Prop. 5.2] Let |π| = dn, l(π) ≤ m2 + 1,
p2 ≤ k, m2k2 ≤ n and m2k ≤ d. If a copy of SπW occurs in Sd(SnW ), then

a copy also occurs in C[GL(W ) · [`n−k(xk1 + · · ·+ xk
m2k

)]].

Proof. For a partition µ = (m1, . . . ,ml), introduce the notation µ = (m2, . . . ,ml)

First note that the inner degree lifting map (8.9.1) md,k,n
` : Sd(SkW ∗) →

Sd(SnW ∗) is an isomorphism on highest weight vectors in this range because
d is sufficiently large, so there exists µ with |µ| = dk and π = µ. Moreover, if

vµ is a highest weight vector of weight µ, then md,k,n
` (vµ) is a highest weight

vector of weight π. Since m2k is sufficiently large, there exists ν with |ν| =
m2k2 = (m2k)k, with ν = µ such that vµ = ox1(wν), where wν is a highest

weight vector of weight ν in Sm
2k(SkW ∗). Since Im2k(σm2k(vk(PW ))) = 0,

we conclude that a copy of SνW
∗ is in C[σm2k(vk(PW ))] and then by the dis-

cussion above the modules corresponding to µ and π are respectively in the

coordinate rings ofMJ([`d−m
2k], σm2k(vk(PW ))) andMJ([`n−k], σm2k(vk(PW ))).

Since (m2k)k ≤ n, the result follows by prolongation. �
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The third case relies on a building block construction made possible by
the following exercise:

Exercise 8.10.1.6: (1!) Show that if V is a GL(W )-module and Q ∈
SλW ⊂ SdV and R ∈ SµW ⊂ SδV are both highest weight vectors, then

QR ∈ Sλ+µW ⊂ Sd+δV is also a highest weight vector.

Exercise 8.10.1.6, combined with the fact that for an irreducible variety
X, if Q,R ∈ C[X], then QR ∈ C[X] enables the building block construc-
tion assuming n > m25. I will show (Corollary 9.4.1.2) that for n even,
there exists a copy of S(nd)W in C[σd(vn(PW ))], providing one of the build-
ing blocks. The difficulty in their proof lies in establishing the other base
building block cases. See [BIP16] for the details.

Remark 8.10.1.7. In [IP15] the outline of the proof is similar, except there
is an interesting argument by contradiction: they show that in a certain
range of n and m, if an orbit occurrence obstruction exists, then the same is
true for larger values of n with the same m. But this contradicts Valiant’s
result (see §6.6.3) that if n = 4m, then `n−m permm ∈ Detn.

It is conceivably possible to carry out a modification of the program, ei-
ther taking into account information about multiplicities, or with the degree
m iterated matrix multiplication polynomial IMMm

n in place of the deter-
minant, as the latter can be compared to the permanent without padding.

8.11. Equivariant determinantal complexity

The GCT perspective of focusing on symmetry groups led to the discovery of
symmetry in Grenet’s expression for the permanent, as well as the restricted
model of equivariant determinantal complexity. In this section I first give a
geometric description of Grenet’s expressions in the IMM model, and then
outline the proof that the equivariant determinantal complexity of permm

is
(

2m
m

)
− 1.

8.11.1. Geometric description of Grenet’s expression. I now de-
scribe Grenet’s size 2m − 1 determinantal expression for permm from a
geometric perspective. The matrix AGrenet(y) in Grenet’s expression is

in block format, and taking det(ÃGrenet(y)) amounts to the matrix mul-
tiplication of these blocks (see, e.g., the expression (1.2.3) compared with
(7.3.1)), and so are more naturally described as a homogeneous iterated ma-
trix multiplication. Recall that for P ∈ SmCN , this is a sequence of matrices
M1(y), . . . ,Mm(y), with Mj of size mj−1×mj and m0 = mm = 1, such that
P (y) = M1(y) · · ·Mm(y). View this more invariantly as

Um = C Mm(y)−→ Um−1
Mm−1(y)−→ · · · → U1 = C,
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where Mj is a linear map CN → U∗j⊗Uj−1. Such a presentation is G-
equivariant, for some G ⊆ GP , if there exist representations ρj : G →
GL(Uj), with dual representations ρ∗j : G → GL(U∗j ), such that for all

g ∈ G, (ρ∗j⊗ρj+1)(g)Mj(g · y) = M(y).

Write permm ∈ Sm(E⊗F ). In the case of Grenet’s presentation, we

need each Uj to be a ΓE = (TSL(E) oSm)-module and M1(y) · · ·Mm(y) to
equal the permanent.

Let (SkE)reg denote the span of the square free monomials, which I
will also call the regular weight space. It is the span of all vectors of
weight (a1, . . . , am) with aj ∈ {0, 1} and

∑
aj

= k. This is an irreducible

ΓE-module. Note that (SmE)reg is a one-dimensional vector space, and
permm ∈ (SmE)reg⊗(SmF )reg ⊂ SmE⊗SmF ⊂ Sm(E⊗F ), which charac-
terizes permm up to scale (and the scale can be fixed e.g., by evaluating on
the identity matrix).

Note that E ⊂ Hom((SjE)reg, (S
j+1E)reg) via the composition

(8.11.1) E⊗(SjE)reg → Sj+1E → (Sj+1E)reg

where the first map is multiplication and the second projection onto the reg-
ular weight space. This inclusion is as a ΓE-module. Fix a basis f1, . . . , fm
of F . Consider the spaces Uj := (SjE)reg⊗SjF , and the inclusions E⊗fj ⊂
Hom((SjE)reg⊗SjF, (Sj+1E)reg⊗Sj+1F ) where the E side is mapped via
(8.11.1) and the F side is multiplied by the vector fj .

Taking the chain of maps from U0 to Um, by construction our output
polynomial lies in (SmE)reg⊗SmF , but the weight on the second term is
(1, . . . , 1) so it must lie in the one-dimensional space (SmE)reg⊗(SmF )reg.
Finally we check that it is indeed the permanent by evaluating on the identity
matrix.

Remark 8.11.1.1. The above construction is a symmetric cousin of a fa-
miliar construction in algebra, namely the Koszul maps:

Λ0E
∧y1−→ Λ1E

∧y2−→ Λ2E
∧y3−→ · · · ∧ym−→ ΛmE.

If we tensor this with exterior multiplication by basis vectors of F , we obtain
a SL(E)-equivariant homogeneous iterated matrix multiplication of detm ∈
ΛmE⊗ΛmF of size 2m − 1.

(Note that both the Koszul maps and (8.11.1) give rise to complexes,
i.e., if we multiply by the same vector twice we get zero.)

This IMM realization of the determinant is related to the IMM version of
Grenet’s realization of the permanent via the Howe-Young duality functor:
The involution on the space of symmetric functions (see [Mac95, §I.2]) that
exchanges elementary symmetric functions with complete symmetric func-
tions, (and, for those familiar with the notation, takes the Schur function
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sπ to sπ′) extends to modules of the general linear group. This functor ex-
changes symmetrization and skew-symmetrization. For more explanations,
see §10.4.4, where it plays a central role. I expect it will be useful for future
work regarding permanent v. determinant. It allows one to transfer knowl-
edge about the well-studied determinant, to the less understood permanent.

One can have a full Gpermm
-equivariant expression by considering the

inclusions

(8.11.2) E⊗F ⊂ Hom((SjE)reg⊗(SjF )reg, (S
j+1E)reg⊗(Sj+1F )reg).

(The transpose invariance is possible because transposing the matrices in
the sequence Mm−j is sent to MT

j and (Mm−j(y
T ))T = Mj(y).)

Exercise 8.11.1.2: (1) Show that (8.11.2) gives rise to a size
(

2m
m

)
IMM

expression for permm. }

Remark 8.11.1.3. One similarly obtains a size
(

2m
m

)
Gdetm-equivariant

IMM presentation of detm.

8.11.2. Outline of proofs of lower bounds. Recall the lower bound
theorems:

Theorem 8.11.2.1. [LR15]Assume m ≥ 3.

• edc(permm) =
(

2m
m

)
− 1 with equality given by the determinantal

expression obtained from (8.11.2).

• The smallest size ΓE-equivariant determinantal expression for permm

is 2m − 1 and is given by ÃGrenet.

Ideas towards the proofs are as follows: Write Cn2
= B⊗C. Without

loss of generality, one takes the constant part Λ of Ã to be the diagonal
matrix with zero in the (1, 1)-slot and 1’s on the remaining diagonal entries.
Then Λ determines a splitting B⊗C = (B1⊕B2)⊗(C1⊕C2) with dimB1 =
dimC1 = 1. Consider the linear part of an expression A : E⊗F → B⊗C.
We have already seen (in the proof of Theorem 6.3.4.6) the component in
B1⊗C1 (i.e., the (1, 1) slot in the matrix A(y)) must be zero. Thus in order
for the expression not to be identically zero, we must have the components
of A(y) in B1⊗C2 and B2⊗C1 nonzero (i.e., other entries in the first row and
column must be nonzero). Focus on the ΓE-equivariant case for simplicity
of exposition. As a ΓE-module, E⊗F = E⊕m. By ΓE-equivariance, B1⊗C2

must contain at least one copy of E, write the submodule as B1⊗C2,1 ' E⊕j .
For simplicity of discussion, assume j = 1. Also for simplicity, assume the
one-dimensional space B1 is a trivial ΓE-module, so C2,1 ' E as a ΓE-
module. Since ΓE is reductive, we have a splitting C2 = C2,1⊕C ′2. In order
that there is no degree two component appearing, we must have the map to
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C∗2,1⊗B∗1 be zero. The picture of what we have reduced to so far looks like
this:  0 C∗2,1⊗B∗1 ∗

B1⊗C2,1 Id ∗
∗ ? ∗

 .

Now in order that the determinant is not identically zero, the ? block
cannot be identically zero, so there must be some B2,1 ⊂ B2, such that
C∗2,1⊗B2 ' E∗⊗B2,1 contains a copy of E.

Fact: the minimum dimension of a ΓE-module M such that E ⊂ E∗⊗M
is
(
m
2

)
and the corresponding module is (up to tensoring with a one-dimensional

representation) (S2E)reg.

Remark 8.11.2.2. Were we constructing a SL(E)-equivariant regular de-
terminantal presentation of the determinant, we would need an SL(E)-
module M such that E ⊂ E∗⊗M . By the Pieri rule, the admissible M
correspond to Young diagrams with two boxes, i.e., S2E and Λ2E. Note
that dim(Λ2E) =

(
m
2

)
. This “coincidence” of dimensions is attributable to

the Howe-Young duality endofunctor.

Continuing, we need some B2,2 such that E ⊂ (S2E)∗reg⊗B2,2, and the

smallest such is B2,2 = (S3E)reg (just as in the skew case, one needs a Young
diagram with three boxes, the smallest such module is Λ3E).

One continues until arriving at B =
⊕m−1

j=0 (SjE)reg and one concludes.

Remark 8.11.2.3. In the above discussion I swept two important compli-
cations under the rug. First, we don’t really have ΓE ⊂ Gdetn,Λ, but rather a

group G ⊂ Gdetn,Λ that has a surjective map onto ΓE . This problem is dealt
with by observing that the modules for any such G can be labeled using
the labels from ΓE-modules. Second, since ΓE is not connected, we need to
allow the possibility that the Z2 ⊂ Gdetn,Λ is part of the equivariance. This
second problem is dealt with by restricting to the alternating group. For
details, see [LR15].

8.12. Symmetries of additional polynomials relevant for
complexity theory

A central insight from GCT is that polynomials that are determined by
their symmetry groups should be considered preferred representatives of
their complexity classes. This idea has already guided several results: i) the
symmetries of the matrix multiplication tensor have given deep insight into
its decompositions, ii) these symmetries were critical for proving its border
rank lower bounds, and iii) the above results on equivariant determinan-
tal complexity. We have already determined the symmetry groups of the
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determinant, permanent, and x1 · · ·xn. In this section I present the sym-
metry groups of additional polynomials relevant for complexity theory and
techniques for determining them.

Throughout this section G = GL(V ), dimV = n, and I use index ranges
1 ≤ i, j, k ≤ n.

8.12.1. The Fermat. This example follows [CKW10]. Let fermatdn :=

xd1 + · · ·+ xdn ∈ SdCn. The GLn-orbit closure of [fermatdn] is the n-th secant
variety of the Veronese variety σn(vd(Pn−1)) ⊂ PSdCn. It is clear Sn ⊂
Gfermat, as well as the diagonal matrices whose entries are d-th roots of unity.
We need to see if there is anything else. The first idea, to look at the singular
locus, does not work, as the zero set is smooth, so consider (fermatdn)2,d−2 =

x2
1⊗xd−2 + · · ·+x2

n⊗xd−2. Write the further polarization (fermatdn)1,1,d−2 as
a symmetric matrix whose entries are homogeneous polynomials of degree
d− 2 (the Hessian matrix):x

d−2
1

. . .

xd−2
n

 .

Were the determinant of this matrix GL(V )-invariant, we could proceed as
we did with en,n, using unique factorization. Although it is not, it is close
enough as follows:

Recall that for a linear map f : W → V , where dimW = dimV = n,
we have f∧n ∈ ΛnW ∗⊗ΛnV and an element (h, g) ∈ GL(W ) × GL(V )
acts on f∧n by (h, g) · f∧n = (det(h))−1(det(g))f∧n. In our case W = V ∗

so P∧n2,d−2(x) = det(g)2P∧n2,d−2(g · x), and the polynomial obtained by the
determinant of the Hessian matrix is invariant up to scale.

Arguing as in §7.1.2,
∑

j(g
j1
1 xj1)d−2 · · · (gjnn xjn)d−2 = xd−2

1 · · ·xd−2
n and

we conclude again by unique factorization that g is in Snn Tn. Composing
with a permutation matrix to make g ∈ T , we see that, by acting on the
Fermat itself, that the entries on the diagonal are d-th roots of unity.

In summary:

Proposition 8.12.1.1. Gxd1+···+xdn = Sn n (Zd)×n.

Exercise 8.12.1.2: (2) Show that the Fermat is characterized by its sym-
metries.

8.12.2. The sum-product polynomial. The polynomial

SPnr :=

r∑
i=1

Πn
j=1xij ∈ Sn(Cnr),
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called the sum-product polynomial in the CS literature, was used in our study
of depth three circuits. Its GL(rn)-orbit closure is the r-th secant variety
of the Chow variety σr(Chn(Cnr)).
Exercise 8.12.2.1: (2) Determine GSPnr and show that SPnr is character-
ized by its symmetries.

8.12.3. Further Techniques. One technique for determining GP is to
form auxiliary objects from P which have a symmetry group H that one
can compute, and by construction H contains GP . Usually it is easy to find
a group H ′ that clearly is contained in GP , so if H = H ′, we are done.

Recall that we have already used auxiliary varieties such as Zeros(P )Jac,k
and Zeros(P )∨ in determining the symmetry groups of permn and detn.

One can determine the connected component of the stabilizer by a Lie
algebra calculation: If we are concerned with p ∈ SdV , the connected com-
ponent of the identity of the stabilizer of p in GL(V ) is the connected Lie
group associated to the Lie subalgebra of gl(V ) that annihilates p. (The
analogous statement holds for tensors.) To see this, let h ⊂ gl(V ) de-
note the annihilator of p and let H = exp(h) ⊂ GL(V ) the correspond-
ing Lie group. Then it is clear that H is contained in the stabilizer as
h · p = exp(X) · p = (Id +X + 1

2XX + ...)p the first term preserves p and
the remaining terms annihilate it. Similarly, if H is the group preserv-
ing p, taking the derivative of any curve in H through Id at t = 0 gives
d
dt |t=0h(t) · p = 0.

To recover the full stabilizer from knowledge of the connected component
of the identity, we have the following observation, the first part comes from
[BGL14]:

Proposition 8.12.3.1. Let V be an irreducible GL(W )-module. Let G0
v

be the identity component of the stabilizer Gv of some v ∈ V in GL(W ).
Then Gv is contained in the normalizer N(G0

v) of G0
v in GL(W ). If G0

v is
semi-simple and [v] is determined by G0

v, then up to scalar multiples of the
identity in GL(W ), Gv and N(G0

v) coincide.

Proof. First note that for any group H, the full group H normalizes H0.
(If h ∈ H0, take a curve ht with h0 = Id and h1 = h, then take any g ∈ H,
the curve ghtg

−1 connects gh1g
−1 to the identity.) So Gv is contained in

the normalizer of G0
v in GL(W ).

For the second assertion, let h ∈ N(G0
v) be in the normalizer. We have

h−1ghv = g′v = v for some g′ ∈ G0
v, and thus g(hv) = (hv). But since [v] is

the unique line preserved by G0
v we conclude hv = λv for some λ ∈ C∗. �

Here is a lemma for those familiar with roots and weights:
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Lemma 8.12.3.2. [BGL14, Prop. 2.2] Let G0 be semi-simple and act ir-
reducibly on V . Then its normalizer N(G0) is generated by G0, the scalar
matrices, and a finite group constructed as follows: Assume we have cho-
sen a Borel for G0, and thus have distinguished a set of simple roots ∆
and a group homomorphism Aut(∆)→ GL(V ). Assume V = Vλ is the irre-
ducible representation with highest weight λ ofG0 and consider the subgroup
Aut(∆, λ) ⊂ Aut(∆) that fixes λ. Then N(G0) = ((C∗×G0)/Z)oAut(∆, λ).

For the proof, see [BGL14].

8.12.4. Iterated matrix multiplication. Let IMMk
n ∈ Sn(Ck2n) denote

the iterated matrix multiplication operator for k×k matrices, (X1, . . . , Xn) 7→
trace(X1 · · ·Xn). Letting Vj = Ck, invariantly

IMMk
n = IdV1 ⊗ · · ·⊗ IdVn ∈ (V1⊗V ∗2 )⊗(V2⊗V ∗3 )⊗ · · ·⊗(Vn−1⊗V ∗n )⊗(Vn⊗V ∗1 )

⊂ Sn((V1⊗V ∗2 )⊕ (V2⊗V ∗3 )⊕ · · · ⊕ (Vn−1⊗V ∗n )⊕ (Vn⊗V ∗1 )),

and the connected component of the identity of GIMMk
n
⊂ GL(Ck2n) is

GL(V1)× · · · ×GL(Vn).

The case of IMM3
n is important as this sequence is complete for the

complexity class VPe, of sequences of polynomials admitting polynomial
size formulas, see [BOC92]. Moreover IMMn

n is complete for the same
complexity class as the determinant, namely VQP = VPs, see [Blä01b].

The first equality in the following theorem for the case k = 3 appeared
in [dG78, Thms. 3.3,3.4] and [Bur15, Prop. 4.7] with ad-hoc proofs.

Theorem 8.12.4.1. [Ges16] GIMMk
n

= (GL×nk /C∗) o Dn, where Dn =
ZnoZ2 is the dihedral group. The Zn corresponds to cyclic permutation of
factors, and the Z2 is generated by (X1, . . . , Xk) 7→ (XT

k , . . . , X
T
1 ).

A “hands on” elementary proof is possible, see, e.g. [Bur15, Prop.
4.7]. Here is an elegant proof for those familiar with Dynkin diagrams from
[Ges16] in the special case of M〈n〉, i.e., k = n and n = 3.

Proof. It will be sufficient to show the second equality because the (C∗)×2

acts trivially on A⊗B⊗C. For polynomials, the method of [BGL14, Prop.
2.2] adapts to reducible representations. A straight-forward Lie algebra cal-

culation shows the connected component of the identity of G̃M〈n〉 is G̃0
M〈n〉

=

(C∗)×2 × PGL×3
n . As was observed in [BGL14], the full stabilizer group

must be contained in its normalizer N(G̃0
M〈n〉

), see Proposition 8.12.3.1. But

the normalizer of G̃0
M〈n〉

quotiented by G̃0
M〈n〉

is the automorphism group of

the marked Dynkin diagram for A⊕B ⊕ C, which is
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1

1

1

1

1

1

There are three triples of marked diagrams. Call each column consisting
of 3 marked diagrams a group. The automorphism group of the picture is
Z3oZ2, where the Z2 may be seen as flipping each diagram, exchanging the
first and third diagram in each group, and exchanging the first and second
group. The Z3 may be seen as cyclically permuting each group and the
diagrams within each group. �

Problem 8.12.4.2. Find equations in the ideal of GL9n · IMM3
n. Deter-

mine lower bounds for the inclusions Permm ⊂ GL9n · IMM3
n and study

common geometric properties (and differences) of Detn and GL9n · IMM3
n.

8.12.5. The Pascal determinant. Let k be even, and let Aj = Cn. De-
fine the k-factor Pascal determinant PDk,n to be the unique up to scale
element of ΛnA1⊗ · · ·⊗ΛnAk ⊂ Sn(A1⊗ · · ·⊗Ak). Choose the scale such
that if X =

∑
xi1,...,ika1,i1⊗ · · ·⊗ak,ik with aα,j a basis of Aα, then

(8.12.1)

PDk,n(X) =
∑

σ2,...,σk∈Sn

sgn(σ2 · · ·σk)x1,σ2(1),...,σk(1) · · ·xn,σ2(n),...,σk(n)

This expression, for fixed k, shows that (PDk,n) ∈ VNP.

Proposition 8.12.5.1 (Gurvits). The sequence (PD4,n) is VNP complete.

Proof. It remains to show VNP-hardness. Set xijkl = 0 unless i = j and
k = l. Then xi,σ2(i),σ3(i),σ4(i) = 0 unless σ2(i) = i and σ3(i) = σ4(i) so the
only nonzero monomials are those where σ2 = Id and σ3 = σ4. Since the
sign of σ3 is squared, the result is the permanent. �

Thus we could just as well work with the sequence PD4,n as the perma-
nent. Since detn = PD2,n, and the symmetry groups superficially resemble
each other, it is an initially appealing substitute.

It is clear the identity component of the stabilizer includes (SL(A1) ×
· · · × SL(Ak))/µn,k where µn is as in §6.6.1, and a straight-forward Lie
algebra calculation confirms this is the entire identity component. (Alterna-
tively, one can use Dynkin’s classification [Dyn52] of maximal subalgebras.)
It is also clear that Sk preserves PDn,k by permuting the factors.

Theorem 8.12.5.2 (Garibaldi, personal communication). For all k even

GPDk,n = SL×kn /µn,k oSk
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Note that this includes the case of the determinant, and gives a new
proof.

The result will follow from the following Lemma and Proposition 8.12.3.1.

Lemma 8.12.5.3. [Garibaldi, personal communication] Let V = A1⊗ · · ·⊗Ak.
The normalizer of SL×kn /µn in GL(V ) is (GL×kn /µk)oSk, where µk denotes
the kernel of the product map (C∗)×k → C∗.

Proof of Lemma 8.12.5.3. We use Lemma 8.12.3.2. In our case, the
Dynkin diagram for (∆, λ) is and Aut(∆, λ) is clearly Sk. �

...

...

...

...

.

.

.

Figure 8.12.1. Marked Dynkin diagram for V

The theorem follows.



Chapter 9

The Chow variety of
products of linear
forms

In the GCT approach to Valiant’s conjecture, one wants to understand the
GLn2-module structure of C[GLn2 · [detn]] via C[GLn2 · [detn]]. In this chap-
ter I discuss a “toy” problem that turns out to be deep, subtle and have
surprising connections with several different areas of mathematics: the or-
bit closure GLn · [x1 · · ·xn] = Chn(Cn) ⊂ PSnCn. This subject has a re-
markable history beginning over 100 years ago, with work of Brill, Gordan,
Hermite and Hadamard. The history is rife with rediscoveries and errors
that only make the subject more intriguing.

I begin, in §9.1 describing the Hermite-Hadamard-Howe map hn that
has been discovered and rediscovered numerous times. Its kernel is the ideal
of the Chow variety. I also state the main results regarding this map: the
Black-List propagation theorem and Brion’s asymptotic surjectivity theo-
rem. In §9.2 I re-derive the map from a GCT perspective that compares the
coordinate ring of the orbit to that of its closure. In §9.3 I define a map of
modules for the permutation group Sdn that contains equivalent information
to the original map. This map was originally defined in a different manner
by Black and List as a path to prove a celebrated conjecture of Foulkes that
I also explain in the section. Via a variant of this Sdn-map, I give the proof
of the Black-List propagation theorem from [Ike15], which is a geometric
reinterpretation of the proof in [McK08]. In §9.4 I illustrate the subtlety
of determining the rank of hn by explaining how a very special case of the

265



266 9. The Chow variety of products of linear forms

problem is equivalent to a famous conjecture in combinatorics due to Alon
and Tarsi. In §9.5, I give yet another derivation of the map hn via algebraic
geometry due to Brion. If one is content with set-theoretic equations for the
Chow variety, such equations were discovered over a hundred years ago by
Brill and Gordan. I give a modern presentation of these equations in §9.6. I
conclude in §9.7 with the proof of Brion’s asymptotic surjectivity theorem.
This last proof requires more advanced results in algebraic geometry and
commutative algebra, and should be skipped by readers unfamiliar with the
relevant notions.

9.1. The Hermite-Hadamard-Howe map

I begin with the first description of the ideal of Chn(V ∗), due to Hadamard
(1897).

9.1.1. The Hermite-Hadamard-Howe map and the ideal of the
Chow variety. The following linear map was first defined when dimV = 2
by Hermite (1854), and in general independently by Hadamard (1897), and
Howe (1988).

Definition 9.1.1.1. The Hermite-Hadamard-Howe map hd,n : Sd(SnV )→
Sn(SdV ) is defined as follows: First include Sd(SnV ) ⊂ V ⊗nd. Next, reorder
the copies of V from d blocks of n to n blocks of d and symmetrize the blocks
of d to obtain an element of (SdV )⊗n. Finally, thinking of SdV as a single
vector space, symmetrize the n blocks.

For example, putting subscripts on V to indicate position:

S2(S3V ) ⊂ V ⊗6 = V1⊗V2⊗V3⊗V4⊗V5⊗V6

→ (V1⊗V4)⊗(V2⊗V5)⊗(V3⊗V6)

→ S2V⊗S2V⊗S2V

→ S3(S2V )

Note that hd,n is a GL(V )-module map.
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Example 9.1.1.2. For (xy)2 = (xy)(xy) ∈ S2(S2C2), here is h2,2((xy)2):

(xy)2 =
1

4
[(x⊗y + y⊗x)⊗(x⊗y + y⊗x)]

=
1

4
[x⊗y⊗x⊗y + x⊗y⊗y⊗x+ y⊗x⊗x⊗y + y⊗x⊗y⊗x]

7→ 1

4
[x⊗x⊗y⊗y + x⊗y⊗y⊗x+ y⊗x⊗x⊗y + y⊗y⊗x⊗x]

7→ 1

4
[2(x2)⊗(y2) + 2(xy)⊗(xy)]

7→ 1

2
[(x2)(y2) + (xy)(xy)].

Exercise 9.1.1.3: (1!) Show that hd,n((x1)n · · · (xd)n) = (x1 · · ·xd)n.

Theorem 9.1.1.4 (Hadamard [Had97]). kerhd,n = Id(Chn(V ∗)).

Proof. Given P ∈ Sd(SnV ), we determine if P vanishes on Chn(V ∗). Since
Seg(vn(PV )× · · · × vn(PV )) spans (SnV )⊗d, its projection to Sd(SnV ) also
spans, so we may write P =

∑
j(x1j)

n · · · (xdj)n for some xα,j ∈ V . Let

`1, . . . , `n ∈ V ∗. Recall P is P considered as a linear form on (SnV ∗)⊗d. In
what follows I use 〈−, −〉 to denote the pairing between a vector space and
its dual.

P (`1 · · · `n) = 〈P , (`1 · · · `n)d〉

=
∑
j

〈(x1j)
n · · · (xdj)n, (`1 · · · `n)d〉

=
∑
j

〈(x1j)
n, (`1 · · · `n)〉 · · · 〈(xdj)n, (`1 · · · `n)〉

=
∑
j

Πn
s=1Πd

i=1xij(`s)

=
∑
j

〈x1j · · ·xdj , (`1)d〉 · · · 〈x1j · · ·xdj , (`n)d〉

= 〈hd,n(P ), (`1)d · · · (`n)d〉.

If hd,n(P ) is nonzero, there will be some monomial of the form (`1)d · · · (`n)d

it will pair with to be nonzero (using the spanning property in Sn(SdV ∗)).
On the other hand, if hd,n(P ) = 0, then P annihilates all points of Chn(V ∗).

�

9.1.2. Information on the rank of hd,n.

Exercise 9.1.2.1: (2) Show that hd,n : Sd(SnV )→ Sn(SdV ) is “self-dual”

in the sense that hTd,n = hn,d : Sn(SdV ∗) → Sd(SnV ∗). Conclude that hd,n
surjective if and only if hn,d is injective.
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Exercise 9.1.2.2: (1) Show that if hd,n : Sd(SnCm) → Sn(SdCm) is not

surjective, then hd,n : Sd(SnCk)→ Sn(SdCk) is not surjective for all k > m,
and that the partitions corresponding to highest weights of the modules in
the kernel are the same in both cases if d ≤ m. }

Exercise 9.1.2.3: (1) Show that if hd,n : Sd(SnCm)→ Sn(SdCm) is surjec-

tive, then hd,n : Sd(SnCk)→ Sn(SdCk) is surjective for all k < m.

Example 9.1.2.4 (The case dimV = 2). When dimV = 2, every polyno-
mial decomposes as a product of linear factors, so the ideal of Chn(C2) is
zero. We recover the following theorem of Hermite:

Theorem 9.1.2.5 (Hermite reciprocity). The map hd,n : Sd(SnC2) →
Sn(SdC2) is an isomorphism for all d, n. In particular Sd(SnC2) and Sn(SdC2)
are isomorphic GL2-modules.

Often in modern textbooks (e.g., [FH91]) only the “In particular” is
stated.

Originally Hadamard thought the maps hd,n were always of maximal
rank, but later he realized he did not have a proof. In [Had99] he did
prove:

Theorem 9.1.2.6 (Hadamard [Had99]). The map h3,3 : S3(S3V )→ S3(S3V )
is an isomorphism.

Proof. By Exercise 9.1.2.2, we may assume v = 3 and x1, x2, x3 ∈ V ∗ are
a basis. Say we had P ∈ ker(h3,3) = I3(Ch3(V ∗)). Consider P restricted to
the line in P(S3V ∗) spanned by x3

1 + x3
2 + x3

3 and x1x2x3. Write P (µ, ν) :=
P (µ(x3

1 +x3
2 +x3

3)−λx1x2x3) as a cubic polynomial on P1 with coordinates
[µ, λ]. Note that P (µ, ν) vanishes at the four points [0, 1], [1, 3], [1, 3ω], [1, 3ω2]
where ω is a primitive third root of unity. A cubic polynomial on P1 van-
ishing at four points is identically zero, so the whole line is contained in
Zeros(P ). In particular, P (1, 0) = 0, i.e., P vanishes on x3

1 + x3
2 + x3

3. Since
σ3(v3(P2)) is a GL3-variety, P must vanish identically on σ3(v3(P2)). But
I3(σ3(v3(P2))) = 0, see, e.g., Corollary 8.3.4.3. (In fact σ3(v3(P2)) ⊂ PS3C3

is a hypersurface of degree four.) �

In the same paper, he posed the question:

Question 9.1.2.7. Is hd,n always of maximal rank?

Howe [How87] also investigated the map hd,n and wrote “it is reasonable
to expect” that hd,n is always of maximal rank.

Remark 9.1.2.8. The above proof is due to A. Abdesselam (personal com-
munication). It is a variant of Hadamard’s original proof, where instead of
x3

1 +x3
2 +x3

3 one uses an arbitrary cubic f , and generalizing x1x2x3 one uses
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the determinant of the Hessian det3(H(f)). Then the curves f = 0 and
det3(H(f)) = 0 intersect in 9 points (the nine flexes of f = 0) and there are
four groups of three lines going through these points, i.e., four places where
the polynomial becomes a product of linear forms.

Theorem 9.1.2.9. [BL89] [also see [McK08, Thm. 8.1] and [Ike15]] If
hd,n is surjective, then hd′,n is surjective for all d′ > d. Equivalently, if hd,n
is injective, then hd,n′ is injective for all n′ > n.

The proof is outlined in §9.3. The following two theorems were shown
by a computer calculation:

Theorem 9.1.2.10. [MN05] The map h4,4 is an isomorphism.

The results above imply hd,n is of maximal rank for all n ≤ 4 and all d.

Theorem 9.1.2.11. [MN05] The map h5,5 is not surjective.

Remark 9.1.2.12. In [MN05] they showed the map h5,5:0 defined in §9.3
below is not injective. A. Abdessalem realized their computation showed
the map h5,5 is not injective and pointed this out to them. Evidently there
was some miscommunication because in [MN05] they mistakenly say the
result comes from [Bri02] rather than their own paper.

The GL(V )-module structure of the kernel of h5,5 was determined by
M-W Cheung, C. Ikenmeyer and S. Mkrtchyan as part of a 2012 AMS MRC
program:

Proposition 9.1.2.13. [CIM17] The kernel of h5,5 : S5(S5C5)→ S5(S5C5)
consists of irreducible modules corresponding to the following partitions:

{(14, 7, 2, 2), (13, 7, 2, 2, 1), (12, 7, 3, 2, 1), (12, 6, 3, 2, 2),

(12, 5, 4, 3, 1), (11, 5, 4, 4, 1), (10, 8, 4, 2, 1), (9, 7, 6, 3)}.

All these occur with multiplicity one in the kernel, but not all occur with
multiplicity one in S5(S5C5). In particular, the kernel is not a sum of
isotypic components.

It would be interesting to understand if there is a pattern to these par-
titions. Their Young diagrams are:

, ,
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, ,

, ,

, .

While the Hermite-Hadamard-Howe map is not always of maximal rank,
it is “eventually” of maximal rank:

Theorem 9.1.2.14. [Bri93, Bri97] The Hermite-Hadamard-Howe map

hd,n : Sd(SnV ∗)→ Sn(SdV ∗)

is surjective for d sufficiently large, in fact for d ' n2
(
n+d
d

)
.

I present the proof of Theorem 9.1.2.14 in §9.5.2.

Problem 9.1.2.15 (The Hadamard-Howe Problem). Determine the func-
tion d(n) such that hd,n is surjective for all d ≥ d(n).

A more ambitious problem would be:

Problem 9.1.2.16. Determine the kernel of hd,n.

A less ambitious problem is:

Problem 9.1.2.17. Improve Brion’s bound to, say, a polynomial bound in
n.

Another apparently less ambitious problem is the following conjecture:

Conjecture 9.1.2.18 (Kumar [?]). Let n be even, then S(nn)Cn 6⊂ kerhn,n,
i.e., S(nn)Cn ⊂ C[Chn(Cn)].

Kumar conjectures further that for all d ≤ n, S(nd)Cn 6⊂ kerhd,n, i.e.,

S(nd)Cn ⊂ C[Chn(Cn)], but Conjecture 9.1.2.18 is the critical case. By
Corollary 9.2.2.2 below, when n is even, the module S(nd)Cn occurs in

Sd(SnCn) with multiplicity one.

I discuss Conjecture 9.1.2.18 in §9.4. It turns out to be equivalent to a
famous conjecture in combinatorics.
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9.2. The GCT perspective

In this section, in the spirit of GCT, I compare C[Chn(V ∗)] = C[GL(V ) · (x1 · · ·xn)]
with C[GL(V ) · (x1 · · ·xn)]. Throughout this section, assume dimV = n.

9.2.1. Application of the algebraic Peter-Weyl theorem. Let x1, . . . , xn ∈
V ∗ be a basis. Recall from §7.1.2 that the symmetry group of x1 · · ·xn is
Γn := TSLn oSn. Also recall that for any orbit, G/H, the algebraic Peter-
Weyl theorem (see §8.6) implies C[G/H] =

⊕
λ∈Λ+

G
Vλ⊗(V ∗λ )H , so

(9.2.1) C[GL(V ) · (x1 · · ·xn)] =
⊕
l(π)≤n

(SπV )⊕ dim(SπV ∗)Γn
,

where here π = (p1, . . . , pn) with pj ∈ Z satisfies p1 ≥ p2 ≥ · · · ≥ pn. (Note
that the pj are allowed to be negative.) We break up the determination
of (SπV

∗)Γn into two problems: first determine the TSLn-invariants, and
then the Sn invariants inside the TSLn-invariants. By Exercise 8.1.5.4, the
TSLn-invariants are the weight (s, . . . , s) = (sn) subspaces, so in particular
|π| = sn for some s ∈ Z. Let (SπV

∗)0 denote the space of TSLn-invariants.
The notation is chosen because this is the sl(V )-weight zero subspace.

It remains to determine (SπV
∗)Sn0 . This is not known. In the next

subsection, I relate it to another unknown quantity. Remarkably, this will
enable us to get a satisfactory answer.

9.2.2. Plethysm and the double commutant theorem. The group Sn

acts on the sl-weight zero subspace by permuting basis vectors. (This is an
example of a Weyl group action.) The following theorem is proved using the
Double Commutant Theorem 8.6.2.3.

Theorem 9.2.2.1. [Gay76] Let µ be a partition of nδ (so that (SµV )0 6= 0).
Suppose that the decomposition of (SµV )0 into irreducible Sn-modules is

(SµV )0 =
⊕
|π|=n

[π]⊕sµ,π .

Then the decomposition of Sπ(SδV ) as a GL(V )-module is

Sπ(SδV ) =
⊕
|µ|=δn

(SµV )⊕sµ,π .

In particular, for δ = 1, i.e., |µ| = n, (SµV )0 = [µ].

Corollary 9.2.2.2. For any partition π of dn,

mult(SπV, S
n(SdCn)) = mult([n], (SπCn)0).
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9.2.3. Back to the coordinate ring. Now specialize to the case of mod-
ules appearing in Sym(SnV ). Introduce the notation Mpoly ⊂ M where
M is a GL(V )-module and Mpoly is the submodule of the isotypic compo-
nents of all SπV in M where π is a partition. (I.e., here I do require the
parts of π to be non-negative. The notation is used because these are the
polynomial GL(V )-modules.) If we consider all the π’s together, Corollary
9.2.2.2 combined with Equation (9.2.1) implies the following the equality of
GL(V )-modules:

C[GL(V ) · (x1 · · ·xn)]poly =
⊕
s

Sn(SsV ).

In particular,
⊕

s S
n(SsV ) inherits a graded ring structure. We’ll return

to this in §9.5.2. If X is an irreducible affine variety and X0 ⊂ X is a Zariski
open subset (so X = X0), one has an injection

C[X]→ C[X0]

by restriction of functions. We thus have a sequence of GL(V )-module maps

C[SnV ∗]→ C[Chn(V ∗)]→ C[GL(V ) · (x1 · · ·xn)]poly =
⊕
s

Sn(SsV ),

with the first surjective and the second injective. Their composition is a
map

hn : Sym(Sn(V ))→ C[GL(V ) · (x1 · · ·xn)]poly

with kernel I(Chn(V ∗)). It should come as no surprise that in degree d, hn
is hd,n. A proof is given in §9.5. This gives us a second, GCT interpretation
of the Hadamard-Howe map.

9.3. Sdn-formulation of the Hadamard-Howe problem

I now give an interpretation of the Hadamard-Howe problem in terms of
maps of Sdn-modules.

9.3.1. The Black-List map. The dimension of V , as long as it is at least
d, is irrelevant for the GL(V )-module structure of the kernel of hd,n. In this
section assume dimV = dn.

If one restricts hd,n to the sl(V )-weight zero subspace, since the per-
mutation of basis vectors commutes with hd,n, one obtains a Sdn-module
map

(9.3.1) hd,n:0 : Sd(SnV )0 → Sn(SdV )0.

Let Sn oSd ⊂ Sdn denote the wreath product, which, by definition, is
the normalizer of S×dn in Sdn. It is the semi-direct product of S×dn with Sd,
where Sd acts by permuting the factors of S×dn , see e.g., [Mac95, p 158].
The action of the group Sn o Sd on V ⊗dn induced from the Sdn-action is
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as follows: consider V ⊗dn as (V ⊗n)⊗d, d blocks of n-copies of V , permuting
the n copies of V within each block as well as permuting the blocks. Thus
Sd(SnV ) = (V ⊗dn)SnoSd .

Notice that

(V ⊗dn)SnoSd = (
⊕
|π|=dn

[π]⊗SπV )SnoSd =
⊕
|π|=dn

[π]SnoSd⊗SπV,

so

mult(SπV, S
d(SnV )) = dim[π]SnoSd .

Unfortunately the action of Sn oSd is difficult to analyze.

In other words, recalling the discussion in §9.2.2, as a Sdn-module map,
(9.3.1) is

(9.3.2) hd,n:0 : IndSdn
SnoSd triv→ IndSdn

SdoSn triv .

Call hd,n:0 the Black-List map. Since every irreducible module appearing in

Sd(SnV ) has a non-zero weight zero subspace, hd,n is the unique GL(V )-
module extension of hd,n:0.

The above discussion shows that one can deduce the kernel of hd,n from
that of hd,n:0 and vice versa. In particular, one is injective if and only if the
other is, giving us our third interpretation of the Hadamard-Howe problem.

The map hd,n:0 was defined purely in terms of combinatorics in [BL89]
as a path to try to prove the following conjecture of Foulkes:

Conjecture 9.3.1.1. [Fou50] Let d > n, let π be a partition of dn and let
[π] denote the corresponding Sdn-module. Then,

mult([π], IndSdn
SnoSd triv) ≥ mult([π], IndSdn

SdoSn triv).

Equivalently,

(9.3.3) mult(SπV, S
d(SnV )) ≥ mult(SπV, S

n(SdV )).

Theorem 8.9.1.1 shows that equality holds asymptotically in (9.3.3), and
Theorem 9.1.2.10 shows it holds for d ≤ 4. In [CIM17] they show it also
holds for d = 5 by showing h6,5 is surjective. Conjecture 9.3.1.1 is still open
in general.

9.3.2. Outline of proof of Theorem 9.1.2.9. I prove that if hd,n−1 is
injective, then hd,n is injective. I follow the proof in [Ike15]. Write W =
E ⊕ F with dimE = d and dimF = n. Give E a basis e1, . . . , ed and
F a basis f1, . . . , fn inducing a basis of W ordered (e1, e2, . . . , fn). For a
GL(E) × GL(F )-weight α = (a1, . . . , ad), β = (b1, . . . , bn), let (W⊗dn)(α,β)

denote the (α, β) weight subspace of W⊗dn. Define the lowering map

φi,j : (W⊗dn)(α,β) → (W⊗dn)(a1,...,ai−1,(ai−1),ai+1,...,ad),β=(b1,...,(bj+1),...,bn)
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induced from the map W → W that sends ei to fj and maps all other
basis vectors to themselves. It is straight-forward to see the φi,j com-

mute. Let φd×n : (W⊗dn)(nd,(0)) → (W⊗dn)((0),dn) denote the composition of

φ1,1 · · ·φd,b restricted to (W⊗dn)(nd,(0)).

Call φd×n the McKay map.

Proposition 9.3.2.1. As Sdn-module maps, φd×n = hd,n;0, i.e., as maps of
Sdn-modules, the McKay map is equivalent to the Black-List map.

The proof is indirect, by showing that the spaces coincide and the kernels
are isomorphic Sdn-modules. More precisely:

Proposition 9.3.2.2. [Ikenmeyer, personal communication]

i) mult([π], (W⊗dn)(nd,(0))) = mult(SπW,S
d(SnW )

ii) mult([π], φd×n((W⊗dn)(nd,(0)))) = mult(SπW,hd,n(Sd(SnW )).

Ikenmeyer proves Proposition 9.3.2.2 with explicit bases of both spaces

defined via tableau. A posteriori this shows (W⊗dn)(nd,(0)) = IndSdn
SnoSd triv

as Sdn-modules and hd,n;0 = φd×n.

Now for the proof of Theorem 9.1.2.9: We need to show φd×(n−1) injective
implies φd×n is injective.

Reorder and decompose

φd×n = (φ1,1 · · ·φ1,n−1φ2,1 · · ·φd,n−1) · (φ1,n · · ·φd,n)

and call the first term the left factor and the second the right factor. Each
term in the left factor is injective by assumption. It remains to show in-
jectivity of each φi,n. I will show injectivity of φi,n restricted to each

(((n − 1)i−1, nd−i), (0n−1, i − 1)) weight space. Each of these restrictions
just involves a raising operator in the C2 with basis ei, fn, so we need to
see the lowering map ((C2)⊗n+i−1)(n,i−1) → ((C2)⊗n+i−1)(n−1,i) is injective.
Decompose

(C2)⊗n+i−1 = ⊕b
n+i−1

2
c

p2=0 Sn+i−1−p2,p2C2.

The weight (n−1, i) vector in each space may be written as (ei∧fn)⊗p2⊗(en−p2
i f i−1−p2

n ).
The lowering operator is zero on the first factor so this vector maps to

(ei ∧ fn)⊗p2⊗(en−p2−1
i f i−p2

n ) which is a basis vector in the target.

9.4. Conjecture 9.1.2.18 and a conjecture in combinatorics

For any even n, the one-dimensional module S(nd)Cd occurs with multiplicity

one in Sd(SnCd) (cf. [How87, Prop. 4.3]). Let P ∈ Snd(Cd) ⊂ Sd(SnCd)
be non-zero. Conjecture 9.1.2.18 and its generalizations may be stated as
P ((x1 · · ·xn)d) 6= 0. Our first task is to obtain an expression for P .
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9.4.1. Realization of the module. Let V = Cd. Fix a nonzero basis
element detd ∈ ΛdV .

Proposition 9.4.1.1. [KL15] Let n be even. The unique (up to scale)
element P ∈ S(nd)V ⊂ Sd(SnV ) evaluated on

x = (v1
1 · · · v1

n)(v2
1 · · · v2

n) · · · (vd1 · · · vdn) ∈ Sd(SnV ∗), for any vij ∈ V ∗,
is
(9.4.1)

〈P, x〉 =
∑

σ1,...,σd∈Sn

detd(v
1
σ1(1) ∧ · · · ∧ v

d
σd(1)) · · · detd(v

1
σ1(n) ∧ · · · ∧ v

d
σd(n)).

Proof. Let P̃ (x) denote the right hand side of (9.4.1), so P̃ ∈ (V )⊗nd. It
suffices to check that

(i) P̃ ∈ Sd(SnV ),

(ii) P̃ is SL(V ) invariant, and

(iii) P̃ is not identically zero.

Observe that (iii) follows from the identity (9.4.1) by taking vij = xi
where x1, . . . , xd is a basis of V ∗, and (ii) follows because SL(V ) acts trivially
on detd.

To prove (i), I show (ia) P̃ ∈ Sd(V ⊗n) and (ib) P̃ ∈ (SnV )⊗d to conclude.
To see (ia), it is sufficient to show that exchanging two adjacent factors in
parentheses in the expression of x will not change (9.4.1). Exchange v1

j with

v2
j in the expression for j = 1, . . . , n. Then, each individual determinant

will change sign, but there are an even number of determinants, so the right
hand side of (9.4.1) is unchanged. To see (ib), it is sufficient to show the
expression is unchanged if we swap v1

1 with v1
2 in (9.4.1). If we multiply by

n!, we may assume σ1 = Id, i.e.,

〈P̃ , x〉 =

n!
∑

σ2,...,σd∈Sn

detd(v
1
1, v

2
σ2(1), . . . , v

d
σd(1)) detd(v

1
2 ∧ v2

σ2(2) ∧ · · · ∧ v
d
σd(2)) · · · detd(v

1
n ∧ v2

σ2(n) ∧ · · · ∧ v
d
σd(n)).

With the two elements v1
1 and v1

2 swapped, we get
(9.4.2)

n!
∑

σ2,...,σd∈Sn

detd(v
1
2∧v2

σ2(1)∧· · ·∧v
d
σd(1)) detd(v

1
1∧v2

σ2(2)∧· · ·∧v
d
σd(2)) · · · detd(v

1
n∧v2

σ2(n)∧· · ·∧v
d
σd(n)).

Now right compose each σs in (9.4.2) by the transposition (1, 2). The ex-
pressions become the same. �

Corollary 9.4.1.2. The unique (up to scale) polynomial P ∈ S(nd)V ⊂
Sd(SnV ) when n is even, is nonzero on (y1)n+· · ·+(yd)

n if the yj are linearly
independent. In particular, SndV ⊂ C[σd(vn(PV ∗))] whenever dimV ≥ d.
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Proof. The monomial (y1)n · · · (yd)n appears in ((y1)n + · · · + (yd)
n)d and

all other monomials appearing pair with P to be zero. �

Now specialize to the critical case d = n and evaluate on (x1 · · ·xn)n,
where x1, . . . , xn is a basis of V ∗ such that detn(x1 ∧ · · · ∧ xn) = 1.
(9.4.3)

〈P, (x1 · · ·xn)n〉 =
∑

σ1,...,σn∈Sn

detd(xσ1(1), . . . , xσn(1)) · · · detd(xσ1(n), . . . , xσn(n)).

For a fixed (σ1, . . . , σn) the contribution will either be 0, 1 or −1. The
contribution is zero unless for each j, the indices σ1(j), . . . , σn(j) are distinct.
Arrange these numbers in an array:σ1(1) · · · σn(1)

...
σ1(n) · · · σn(n)


The contribution is zero unless the array is a Latin square, i.e., an n × n
matrix such that each row and column consists of the integers {1, . . . , n}. If
it is a Latin square, the rows correspond to permutations, and the contribu-
tion of the term is the product of the signs of these permutations. Call this
the row sign of the Latin square. The products of both the signs of the row
permutations and the column permutations is called the sign of the Latin
square:

Conjecture 9.4.1.3 (Alon-Tarsi [AT92]). Let n be even. The number of
sign −1 Latin squares of size n is not equal to the number of sign +1 Latin
squares of size n.

Conjecture 9.4.1.3 is known to be true when n = p±1, where p is an odd
prime; in particular, it is known to be true up to n = 24 [Gly10, Dri97].

On the other hand, in [Alp14, CW16] they show that the ratio of the
number of sign −1 Latin squares of size n to the number of sign +1 Latin
squares of size n tends to one as n goes to infinity.

In [HR94], Huang and Rota showed:

Theorem 9.4.1.4. [HR94, Identities 8,9] The difference between the num-
ber of row even Latin squares of size n and the number of row odd Latin
squares of size n equals the difference between the number of even Latin
squares of size n and the number of odd Latin squares of size n, up to sign.

In particular, the Alon-Tarsi conjecture holds for n if and only if the
row-sign Latin square conjecture holds for n. Thus

Theorem 9.4.1.5. [KL15] The Alon-Tarsi conjecture holds for n if and
only if S(nn)(Cn) ∈ C[Chn(Cn)].
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In [KL15] several additional statements equivalent to the conjecture
were given. In particular, for those familiar with integration over compact
Lie groups, the conjecture holds for n if and only if∫

(gij)∈SU(n)

∏
1≤i,j≤n

gijdµ 6= 0

where dµ is Haar measure.

9.5. Algebraic geometry derivation of the Hadamard-Howe
map

9.5.1. Preliminaries from algebraic geometry. In modern geometry,
one studies a space by the functions on it. The general definition of an
affine variety over C can be made without reference to an ambient space. It
corresponds to a finitely generated ring over C with no nilpotent elements
(see, e.g., [Har95, Lect. 5]), as these are the rings that are realizable as
the ring of regular functions of a subvariety of affine space. In this section
we will deal with two affine varieties that are presented to us in terms of
their rings of regular functions, the normalization of an affine variety and
the GIT quotient of an affine variety with an algebraic group action.

If R,S are rings with R ⊂ S, s ∈ S is integral over R if it satisfies a
monic polynomial with coefficients in R: sd + r1s

d−1 + · · ·+ rd = 0 for some
ri ∈ R, and S is integral over R if every element of S is integral over R.

A regular map (see §3.1.4) between affine varieties f : X → Y such that
f(X) is dense in Y is said to be finite if C[X] is integral over C[Y ] (see, e.g.
[Sha13a, §I.5.3]).

An affine variety Z is normal if C[Z] is integrally closed, that is if every
element of C(Z), the field of fractions of C[Z], that is integral over C[Z]
is in C[Z]. To every affine variety Z one may associate a unique normal
affine variety Nor(Z), called the normalization of Z, such that there is a
generically one to one finite map π : Nor(Z) → Z. If Z is smooth then
Nor(Z) = Z, and more generally π is one to one over the smooth points of
Z. For details see [Sha13a, §II.5].

Exercise 9.5.1.1: (1) Show that if Z is a G-variety, then Nor(Z) is too.

Recall from Exercise 3.1.4.6 the inclusion C[Z] → C[Nor(Z)] given by
pullback of functions. If the non-normal points of Z form a finite set, then
the cokernel of this inclusion is finite dimensional.

9.5.2. Coordinate ring of the normalization of the Chow variety.
In this section I work in affine space and follow [Bri93]. The normalization
of the (cone over the) Chow variety and its coordinate ring have a simple
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description that I now explain. The cone Ĉhn(V ∗) ⊂ SnV ∗ is the image of
the following map:

φn : V ∗×n → SnV ∗

(u1, . . . , un) 7→ u1 · · ·un.

Note that φn is GL(V )-equivariant.

For any affine algebraic group Γ and any affine Γ-variety Z, define the
GIT quotient Z // Γ to be the affine algebraic variety whose coordinate ring
is C[Z]Γ. (When Γ is finite, this is just the usual set-theoretic quotient.
In the general case two Γ-orbits will be identified under the quotient map
Z → Z//Γ when there is no Γ-invariant regular function that can distinguish
them.)

Exercise 9.5.2.1: (2!) Consider the space of n × n matrices Matn with
the action of GLn via conjugation. Give an explicit description of the map
Matn →Matn // GLn. }

Exercise 9.5.2.2: (2) Show that if Z is normal, then so is Z // Γ. }

In our case V ∗×n is an affine Γn := TSLn o Sn-variety, where a di-
agonal matrix in TSLn with entries λj acts on V ∗×n by (α1, . . . , αn) 7→
(λ1α1, . . . , λnαn). The map φn factors through the GIT quotient because it
is Γn-equivariant, giving a map

(9.5.1) ψn : V ∗×n // Γn → SnV ∗,

whose image is Ĉhn(V ∗). By unique factorization, ψn is generically one
to one. Elements of V ∗×n of the form (0, u2, . . . , un) cannot be distin-
guished from (0, . . . , 0) by Γn-invariant functions, so they are identified with
(0, . . . , 0) in the quotient, which is consistent with the fact that φn(0, u2, . . . , un) =
0.

Consider the induced map on coordinate rings:

ψ∗n : C[SnV ∗]→ C[V ∗×n // Γn] = C[V ∗×n]Γn .

For affine varieties, C[Y×Z] = C[Y ]⊗C[Z] (see e.g., [Sha13a, §2.2 Ex.1.10]),
so

C[V ∗×n] = C[V ∗]⊗n

= Sym(V )⊗ · · ·⊗Sym(V )

=
⊕

i1,...,in∈Z≥0

Si1V⊗ · · ·⊗SinV.

Taking TSLn invariants gives

C[V ∗×n]T
SL
n =

⊕
i≥0

SiV⊗ · · ·⊗SiV,
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and finally

(C[V ∗×n]T
SL
n )Sn =

⊕
i≥0

Sn(SiV ).

The map

h̃n := ψ∗n : Sym(SnV )→ ⊕i(Sn(SiV )),

respects GL-degree, so it gives rise to maps h̃d,n : Sd(SnV )→ Sn(SdV ).

Proposition 9.5.2.3. h̃d,n = hd,n.

Proof. Since elements of the form xn1 · · ·xnd span Sd(SnV ) it will be suf-
ficient to prove the maps agree on such elements. By Exercise 9.1.1.3,
hd,n(xn1 · · ·xnd ) = (x1 · · ·xd)n. On the other hand, in the algebra C[V ∗]⊗n,
the multiplication is (f1⊗ · · ·⊗fn) } (g1⊗ · · ·⊗gn) = f1g1⊗ · · ·⊗fngn and
this descends to the algebra (C[V ∗]⊗n)Γn which is the target of the algebra

map h̃n, i.e.,

h̃d,n(xn1 · · ·xnd ) = ψ∗n(xn1 · · ·xnd )

= ψ∗n(xn1 )} · · ·} ψ∗n(xnd )

= xn1 } · · ·} xnd
= (x1 · · ·xd)n.

�

Proposition 9.5.2.4. ψn : V ∗×n // Γn → Ĉhn(V ∗) is the normalization of

Ĉhn(V ∗).

I prove Proposition 9.5.2.4 in §9.7. Thus we get a fourth formulation
of the Hadamard-Howe problem: Determine the cokernel of the natural
inclusion map

C[Ĉh(V ∗)]→ C[Nor(Ĉh(V ∗))].

This is equivalent to the other formulations because the cokernel of h̃n is also
the cokernel of the composition Sym(SnV )→ C[Ĉhn(V ∗)]→ C[Nor(Ĉh(V ∗))].
The proof of Proposition 9.5.2.4 and the qualitative assertion of Theorem
9.1.2.14 will hinge on exploiting that the only non-normal point of Ĉh(V ∗) is
the origin. Since it involves more advanced results from algebraic geometry,
I postpone the proofs until the end of this chapter.

9.6. Brill’s equations

Set theoretic equations of Chd(V
∗) have been known since 1894. Here is a

modern presentation elaborating the presentation in [Lan12, §8.6], which
was suggested by E. Briand.
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9.6.1. Preliminaries. Our goal is a polynomial test to determine if f ∈
SdV ∗ is a product of linear factors. We can first try to just determine if f
is divisible by a power of a linear form. The discussion in §8.4.2 will not
be helpful as the conditions there are vacuous when n −m = 1. We could
proceed as in §6.5.1 and check if `xI1 ∧ · · · ∧ `xID ∧ f = 0 where the xIj are
a basis of Sd−1V ∗, but in this case there is a simpler test to see if a given
linear form ` divides f :

Consider the map πd,d : SdV ∗⊗SdV ∗ → S(d,d)V
∗ obtained by projection.

(By the Pieri rule 8.1.3.1, S(d,d)V
∗ ⊂ SdV ∗⊗SdV ∗ with multiplicity one.)

Lemma 9.6.1.1. Let ` ∈ V ∗, f ∈ SdV ∗. Then f = `h for some h ∈ Sd−1V ∗

if and only if πd,d(f⊗`d) = 0.

Proof. Since πd,d, is linear, it suffices to prove the lemma when f = `1 · · · `d.
In that case πd,d(f⊗`d), up to a constant, is (`1 ∧ `) · · · (`d ∧ `). �

We would like a map that sends `1 · · · `d to
∑

j `
d
j⊗stuffj , as then we

could apply πd,d⊗ Id to f tensored with the result of our desired map to
obtain equations. I construct such a map in several steps.

The maps f 7→ fj,d−j send (`1 · · · `d) to
∑
|K|=j `K⊗`Kc where `K =

`k1 · · · `kj and Kc denotes the complementary index set in [d]. The `K are
monomials appearing in elementary symmetric functions and the idea is to
convert this to power sums by the conversion formula obtained from the
relation between generating functions (6.1.5):

(9.6.1) pd = Pd(e1, . . . , ed) := det


e1 1 0 · · · 0
2e2 e1 1 · · · 0

...
...

...
...

ded ed−1 ed−2 · · · e1

 .

The desired term comes from the diagonal ed1 and the rest of the terms kill off
the unwanted terms of ed1. This idea almost works- the only problem is that
our näıve correction terms have the wrong degree on the right hand side.
For example, when d = 3, näıvely using p3 = e3

1 − 3e1e2 + 3e3 would give,
for the first term, degree 6 = 2 + 2 + 2 on the right hand side of the tensor
product, the second degree 3 = 2 + 1 and the third degree zero. In general,
the right hand side of the ed1 term would have degree (d− 1)d, whereas the
ded term would have degree zero. In addition to fixing the degree mismatch,
we need to formalize how we will treat the right hand sides.

Define maps

Ej : SδV ∗ → SjV ∗⊗Sδ−1V ∗(9.6.2)

f 7→ fj,δ−j } (1⊗f j−1),
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where } is the multiplication introduced in the proof of Proposition 9.5.2.3.
The (1⊗f j−1) fixes our degree problem. If j > δ define Ej(f) = 0.

Our desired map is

Qd : SdV ∗ → SdV ∗⊗Sd(d−1)V ∗(9.6.3)

f 7→ Pd(E1(f), . . . , Ed(f)).

9.6.2. Statement and proof of Brill’s equations. Define Brill’s map

B : SdV ∗ → Sd,dV
∗⊗Sd2−dV ∗(9.6.4)

f 7→ (πd,d⊗ Id
Sd2−dV ∗)[f⊗Qd(f)].

Theorem 9.6.2.1 (Brill [Bri93], Gordan [Gor94], Gelfand-Kapranov-Zelevin-
ski [GKZ94], Briand [Bri10]). [f ] ∈ Chd(V ∗) if and only if B(f) = 0.

The proof will be by an induction argument that will require a general-
ization of Qd. Define

Qd,δ : SδV ∗ → SdV ∗⊗Sd(δ−1)V ∗(9.6.5)

f 7→ Pd(E1(f), . . . , Ed(f)).

Lemma 9.6.2.2. If f1 ∈ SδV ∗ and f2 ∈ Sd
′−δV ∗, then

Qd,d′(f1f2) = (1⊗fd1 )}Qd,d′−δ(f2) + (1⊗fd2 )}Qd,δ(f1).

Assume Lemma 9.6.2.2 for the moment.

Proof of Theorem 9.6.2.1. Say f = `1 · · · `d. First note that for ` ∈
V ∗, Ej(`

j) = `j⊗`j−1 and Qd,1(`) = `d⊗1. Next, compute E1(`1`2) =
`1⊗`2 + `2⊗`1 and E2(`1`2) = `1`2⊗`1`2, so Q2,2(`1`2) = `21⊗`22 + `22⊗`21. By
induction and Lemma 9.6.2.2,

Qd,δ(`1 · · · `δ) =
∑
j

`dj⊗(`d1 · · · `dj−1`
d
j+1 · · · `dδ).

We conclude Qd(f) =
∑

j `
d
j⊗(`d1 · · · `dj−1`

d
j+1 · · · `dd) and πd,d(`1 · · · `d, `dj ) = 0

for each j by Lemma 9.6.1.1.

Now assume B(f) = 0 and we will see [f ] ∈ Chd(V ∗). Compute Qd(f) =

(E1(f))d +
∑
µj⊗ψj where ψj ∈ Sd

2−dV ∗, µj ∈ SdV ∗ and f divides ψj for

each j because E1(f)d occurs as a monomial in the determinant (9.6.1) and
all the other terms contain an Ej(f) with j > 1, and so are divisible by f .

First assume f is reduced, i.e., has no repeated factors, then every com-
ponent of Zeros(f) contains a smooth point. Let z ∈ Zeros(f)smooth. Thus
B(f)(·, z) = πd,d(f⊗(dfz)

d) because E1(f)d = (f1,d−1)d and f1,d−1(·, z) =
dfz, and all the ψj(z) are zero. By Lemma 9.6.1.1, dfz divides f for all
z ∈ Zeros(f). But this implies the tangent space to f is constant in a neigh-
borhood of z, i.e., that the component containing z is a linear space. So
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when f is reduced, Zeros(f) is a union of hyperplanes, which is what we set
out to prove.

Finally, say f = gkh where g is irreducible of degree q and h is of degree
d− qk and is relatively prime to g. Apply Lemma 9.6.2.2:

Qd(g(gk−1h)) = (1⊗gd)}Qd,d−q(gk−1h) + (1⊗(gk−1h)d)}Qd,q(g).

A second application gives

Qd(g
kh) = (1⊗gd)} [(1⊗gd)}Qd,d−2q(g

k−2h) + (1⊗(gk−2h)d)}Qd,q(g)

+ (1⊗(gk−2h)d)}Qd,q(g)].

After k − 1 applications one obtains:

Qd(g
kh) = (1⊗gd(k−1))} [k(1⊗hd)}Qd,q(g) + (1⊗gd)}Qd,d−qk(h)]

and (1⊗gd(k−1)) will also factor out of B(f). Since B(f) is identically zero

but gd(k−1) is not, we conclude

0 = πd,d⊗ Id
Sd2−dV ∗ f⊗[k(1⊗hd)}Qd,q(g) + (1⊗gd)}Qd,d−qk(h)]

Let w ∈ Zeros(g) be a general point, so in particular h(w) 6= 0. Evaluating
at (z, w) with z arbitrary gives zero on the second term and the first implies
πd,d⊗ Id

Sd2−dV ∗(f⊗Qd,q(g)) = 0 which implies dgw divides g, so g is a linear
form. Applying the argument to each non-reduced factor of f we conclude.

�

Proof of Lemma 9.6.2.2. Define, for u ∈ Sym(V ∗)⊗Sym(V ∗),

∆u : Sym(V ∗)→ Sym(V ∗)⊗Sym(V ∗)

f 7→
∑
j

uj } fj,deg(f)−j .

Exercise 9.6.2.3: (2) Show that ∆u(fg) = (∆uf) } (∆ug), and that the
generating series for the Ej(f) may be written as

Ef (t) =
1

1⊗f
}∆t(1⊗f)f.

Note that (1⊗f)}s = 1⊗fs and (1⊗fg) = (1⊗f)} (1⊗g). Thus

Efg(t) = [
1

1⊗f
}∆[t(1⊗g)](1⊗f)(f)]} [

1

1⊗g
}∆[t(1⊗f)](1⊗g)(g)],

and taking the logarithmic derivative (recalling Equation (6.1.5)) we con-
clude. �

Remark 9.6.2.4. There was a gap in the argument in [Gor94], repeated in
[GKZ94], when proving the “only if” part of the argument. They assumed
that the zero set of f contains a smooth point, i.e., that the differential of
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f is not identically zero. This gap was fixed in [Bri10]. In [GKZ94] they
use G0(d,dimV ∗) to denote Chd(V

∗).

9.6.3. Brill’s equations as modules. Brill’s equations are of degree d+1

on SdV ∗. (The total degree of Sd,dV⊗Sd
2−dV is d(d+ 1) which is the total

degree of Sd+1(SdV ).) Consider the GL(V )-module map

(9.6.6) S(d,d)V⊗Sd
2−dV → Sd+1(SdV )

whose image consists of Brill’s equations. The components of the target are
not known in general and the set of modules present grows extremely fast.
One can use the Pieri formula 8.1.3.1 to get the components of the domain.
Using the Pieri formula, we conclude:

Proposition 9.6.3.1. As a GL(V )-module, Brill’s equations are multiplic-
ity free.

Exercise 9.6.3.2: (2) Write out the decomposition and show that only
partitions with three parts appear as modules in Brill’s equations. }

Not all partitions with three parts appear:

Theorem 9.6.3.3. [Gua15a] As a GL(V )-module, Brill’s equations are:

S(732)V when d = 3, and

d⊕
j=2

S(d2−d,d,j)V when d > 3.

The proof is given by explicitly writing out highest weight vectors and
determining their image under (9.6.6).

Remark 9.6.3.4. If d < v = dimV ∗, then Chd(V
∗) ⊂ Subd(S

dV ∗) so
I(Chd(V

∗)) ⊃ Λd+1V⊗Λd+1(Sd−1V ). J. Weyman (in unpublished notes
from 1994) observed that these equations are not in the ideal generated by
Brill’s equations. More precisely, the ideal generated by Brill’s equations
does not include modules SπV with l(π) > 3 in degree d+ 1, so it does not
cut out Chd(V

∗) scheme theoretically when d < v. By Theorem 9.1.2.11
the same conclusion holds for Ch5(C5) and almost certainly holds for all
Chn(Cn) with n ≥ 5.

9.7. Proofs of Proposition 9.5.2.4 and Theorem 9.1.2.14

9.7.1. Proof of Proposition 9.5.2.4.

Lemma 9.7.1.1. Let X,Y be affine varieties equipped with polynomial C∗-
actions with unique fixed points 0X ∈ X, 0Y ∈ Y , and let f : X → Y be
a C∗-equivariant morphism such that as sets, f−1(0Y ) = {0X}. Then f is
finite.
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Assume Lemma 9.7.1.1 for the moment.

Proof of Proposition 9.5.2.4. Since V ×n//Γn is normal and ψn of (9.5.1)
is regular and generically one to one, it just remains to show ψn is finite.

Write [0] = [0, . . . , 0]. To show finiteness, by Lemma 9.7.1.1, it is suffi-
cient to show ψn

−1(0) = [0] as a set, as [0] is the unique C∗ fixed point in
V ×n // Γn, and every C∗ orbit closure contains [0]. Now u1 · · ·un = 0 if and
only if some uj = 0, say u1 = 0. The TSLn-orbit closure of (0, u2, . . . , un)
contains the origin so [0, u2, . . . , un] = [0]. �

Sketch of Proof of Lemma 9.7.1.1. C[X],C[Y ] are Z≥0-graded, and the
hypothesis f−1(0Y ) = {0X} states that

C[X]/(f∗(C[Y ]>0))

is a finite dimensional vector space. We want to show that C[X] is integral
over C[Y ]. This follows from a graded version of Nakayama’s Lemma (the
algebraic implicit function theorem). �

The condition f−1(0Y ) = {0X} as sets in Lemma 9.7.1.1 says that the
only maximal ideal of C[X] containing the ideal generated by f∗C[Y ]>0 is
C[X]>0.

If R is a finitely generated ring with no nilpotents, the points of the
associated affine variety are in one to one correspondence with the maximal
ideals of R and the prime ideals correspond to the irreducible subvarieties.
For any ring R let Spec(R) denote the set of prime ideals of R, called the
affine scheme associated to R. See [Sha13b, §5.1] for an introduction.

Here are more details for the proof of Lemma 9.7.1.1 (see, e.g. [Kum13,
Lemmas 3.1,3.2], or [Eis95, p136, Ex. 4.6a]):

Lemma 9.7.1.2. Let R,S be Z≥0-graded, finitely generated domains over
C such that R0 = S0 = C, and let f∗ : R → S be an injective graded
algebra homomorphism. If S>0 is the only maximal ideal of S containing
the ideal generated by f∗(R>0), then S is a finitely generated R-module. In
particular, it is integral over R.

Proof. Let m be the ideal generated by f∗(R>0), so the radical of m equals
S>0, and in particular Sd>0 must be contained in it for all d > d0, for some
d0. So S/m is a finite dimensional vector space, and by the next lemma, S
is a finitely generated R-module. �

Lemma 9.7.1.3. Let S be as above, and let M be a Z≥0-graded S-module.
Assume M/(S>0 ·M) is a finite dimensional vector space over S/S>0 ' C.
Then M is a finitely generated S-module.
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Proof. Choose a set of homogeneous generators {x1, . . . , xn} ⊂M/(S>0·M)
and let xj ∈ M be a homogeneous lift of xj . Let N ⊂ M be the graded
S-submodule Sx1 + · · · + Sxn. Then M = S>0M + N , as let a ∈ M ,
consider a ∈ M/(S>0M) and lift it to some b ∈ N , so a − b ∈ S>0M , and
a = (a− b) + b. Now quotient by N to obtain

(9.7.1) S>0 · (M/N) = M/N.

If M/N 6= 0, let d0 be the smallest degree such that (M/N)d0 6= 0. But
S>0 · (M/N)≥d0 ⊂ (M/N)≥d0+1 so there is no way to obtain (M/N)d0 on
the right hand side. Contradiction. �

9.7.2. Proof of the qualitative assertion in Theorem 9.1.2.14.

Theorem 9.7.2.1. [Bri93] For all n ≥ 1, ψn restricts to a map

(9.7.2) ψon : (V ∗×n // Γn)\[0]→ SnV ∗\0

such that ψo∗n : C[SnV ∗\0]→ C[(V ∗×n // Γn)\[0]] is surjective.

Corollary 9.7.2.2. [Bri93] The Hermite-Hadamard-Howe map

hd,n : Sd(SnV )→ Sn(SdV )

is surjective for d sufficiently large.

Proof of Corollary. Theorem 9.7.2.1 implies hd,n = (ψ∗n)d is surjective for
d sufficiently large, because the cokernel of ψ∗n is supported at a point and
thus must vanish in large degree. �

The proof of Theorem 9.7.2.1 will give a second proof that the kernel of
ψ∗n equals the ideal of Chn(V ∗).

Proof of Theorem 9.7.2.1. Since ψn is C∗-equivariant, we can consider
the quotient map to projective space

ψ
n

: ((V ∗×n // Γn)\[0])/C∗ → (SnV ∗\0)/C∗ = PSnV ∗

and show that ψ∗
n

is surjective. Note that ((V ∗×n // Γn)\[0])/C∗ is GL(V )-

isomorphic to (PV ∗)×n/Sn, as

(V ∗×n // Γn)\[0] = (V ∗\0)×n/Γn

and Γn × C∗ = (C∗)×n oSn. So we may write

ψ
n

: (PV ∗)×n/Sn → PSnV ∗.

It will be sufficient to show ψ∗
n

is surjective on affine open subsets that cover
the source and target. Let w1, . . . , wv be a basis of V ∗ and consider the
affine open subset of PV ∗ given by elements where the coordinate on w1

is nonzero, and the corresponding induced affine open subsets of (PV ∗)×n
and PSnV ∗, call these (PV ∗)×n1 and (PSnV ∗)1. I will show that the algebra
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of Sn-invariant functions on (PV ∗)×n1 is in the image of (PSnV ∗)1. The
restriction of the quotient by Sn of (PV ∗)×n composed with ψ

n
to these

open subsets in coordinates is(
(w1 +

v∑
s=2

x1
sws), . . . , (w1 +

v∑
s=2

xvsws)

)
7→

n∏
i=1

(w1 +
v∑
s=2

xisws).

The coefficients appearing on the right hand side are the elementary multi-
symmetric polynomials (also called the elementary symmetric vector polyno-
mials). These generate the algebra of multi-symmetric polynomials, i.e., the
algebra of Sn-invariant functions in the n sets of variables (xis)i=1,...,n. For
a proof see [Wey97, §II.3] or [GKZ94, §4, Thm. 2.4]. The proof proceeds
by first showing the power sum multi-symmetric polynomials generate the
algebra and then showing one can express the power sum multi-symmetric
polynomials in terms of the elementary ones. �

Note that the proof also shows that (PV ∗)×n/Sn is isomorphic to Chn(V ∗)
as a projective variety, which is also shown in [GKZ94, §4 Thm. 2.2].

For any orbit closure G · v in affine space (where v ∈ V and V is a G-
module), we always have an inclusion C[Nor(G · v)] ⊆ C[G · v]poly because
G · v is also a Zariski open subset of the normalization, as it is contained in
the smooth points of G · v. In our situation C[Nor(Ĉhn(V ∗)] = C[GL(V ) ·
(x1 · · ·xn)]poly. This gives a second proof that ψ∗n = hn.

Remark 9.7.2.3. Given the above situation, I had asked: Under what
circumstances is C[Nor(GL(V ) · w)] = C[GL(V ) · w]poly when W is a poly-
nomial GL(V )-module, w ∈ W , and Gw is reductive? In [H0] Hüttenhain
answers this question: A simple necessary condition is that End(V ) · w =

GL(V ) · w. A necessary and sufficient condition is that for all X ∈ End(W )
such that w ∈ ker(X), the zero endomorphism lies in Gw ·X ⊂ End(W ). A
simple example where this fails is the cubic w = x3 + y3 + z3 ∈ S3C3, whose
orbit closure is the degree four hypersurface σ3(v3(P2)). By this result and
the boundary component of §6.7.1, we know that the coordinate ring of the
normalization of Detn and the polynomial part of the coordinate ring of the
orbit do not agree.

9.7.3. Proof of Brion’s quantitative theorem 9.1.2.14. We have a
ring map

(9.7.3) hn : Sym(SnV )→
⊕
i

Sn(SiV )

The proof has three steps:
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(1) Show C[Nor(Chn(V ∗))] is generated in degree at most (n−1)(v−1)
via vanishing of cohomology (Castelnuovo-Mumford regularity, see,
e.g., [Eis05, Chap. 4]).

(2) Show that hn((vn)d(n−1) ·C[Nor(Chn(V ∗))] ⊂ C[Chn(V ∗)] via a lo-
calization argument to reduce to a question about multi-symmetric
functions.

(3) Use that Zariski open subset of the polynomials of degree n in
v variables can be written as a sum of r0 n-th powers, where
r0 ∼ 1

n

(
v+n−1

n

)
(The Alexander-Hirschowitz theorem [AH95], see

[BO08] for a detailed exposition of the proof or [Lan12, Chap. 15]).

Then we conclude that for d ≥ (n− 1)(v− 1)(r0(n− 1) +n) that hd,n is
surjective.

Proof of Step 1. Recall that C[Nor(Chn(V ∗))] = (C[V ∗×n]T
SLn

)Sn so it

will be sufficient to show that C[V ∗×n]T
SLn

is generated in degree at most
(n− 1)(v − 1). This translates into a sheaf cohomology problem:

C[V ∗×n]Tn =

∞⊕
d=0

H0(PV ∗×n,OPV ∗(d)×n)

=
∞⊕
d=0

H0(PSnV ∗, proj∗OPV ∗(d)×n),

where proj : PV ∗×n → P(SnV ∗) is the projection map. We want an
upper bound on the degrees of the generators of the graded Sym(SnV )-
module associated to the sheaf proj∗O×nPV ∗ . Castelnuovo-Mumford regu-
larity [Mum66, Lect. 14] gives a bound in terms of vanishing of sheaf
cohomology groups. Here we are dealing with groups we can compute:
Hj(PV ∗×n,O(d− j)×n), and the result follows from this computation. �

Proof of Step 2. Let v = vv ∈ V \0, and let v1, . . . , vv be a basis of V ,
which may also be considered as linear forms on V ∗, so xi := vi

v makes
sense. Consider the localization of the coordinate ring of the normalization
at vn, the degree zero elements in the localization of C[Nor(Chn(V ∗))][ 1

vn ]:

C[Nor(Chn(V ∗))]vn : =
⋃
d≥0

Sn(SdV )(vn)−d

= Sn(
⋃
d≥0

(SdV )(vn)−d

= SnC[x1, . . . , xv−1] =: SnC[x]

= [(C[x])⊗n]Sn

= (C[x1, . . . , xn])Sn ,
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where xj = (x1,j , . . . , xv−1,j).

Similarly

Sym(SnV )vn =
⋃
d≥0

Sd(SnV )(vn)−d

= Sym(SnV/vn)

= Sym(
n⊕
i=1

C[x]i).

We get a localized graded algebra map hn,vn between these spaces. Hence
it is determined in degree one, where the map

n⊕
i=1

C[x]i → C[x1, . . . , xn]Sn

takes the degree at most nmonomial xa1
1 · · ·x

ad1
d−1 to the coefficient of ta1

1 · · · t
ad−1

d−1
in the expansion of

Πn
i=1(1 + xi1t1 + · · ·+ xid−1td−1)

Again we obtain elementary multi-symmetric functions which generate the
ring of multi-symmetric functions C[x1, . . . , xn]Sn . Thus hn,vn is surjective.

Moreover, if f ∈ C[x1, . . . , xn]Sn has all its partial degrees at most d,
then the total degree of f is at most dn in the xj ’s, so it is a polynomial
of degree at most dn in the elementary multi-symmetric functions. In other
words, the map

Sdn(SnV )(vn)−dn → Sn(SdV )(vn)−d

is surjective, so hn((vn)d(n−1)C[Nor(Chn(V ))] ⊂ C[Chn(V )]. �

We conclude by appeal to the Alexander-Hirschowitz theorem [AH95].



Chapter 10

Topics using additional
algebraic geometry

This chapter covers four mostly independent topics: §10.1 presents sym-
metric (Waring) rank lower bounds for polynomials, §10.2 explains limits
of determinantal methods (such as the method of partial derivatives, of
shifted partial derivatives and Koszul flattenings) for proving lower com-
plexity bounds for tensors and polynomials, §10.3 shows that the singulari-
ties of the varieties Detn and Permm

n make their study more difficult (they
are not normal varieties), and §10.4 discusses further commutative algebra
results that might be useful in future study of Valiant’s hypothesis (syzygies
of Jacobian loci of detn and permm). Other than §10.2, they can be read
independently, and §10.2 only requires §10.1.

In §10.1, I introduce the language of zero dimensional schemes to state
and prove the Apolarity Lemma, an important tool for proving symmetric
rank lower bounds. This section does not assume any algebraic geome-
try beyond what was discussed in Chapters 1-9. It will hopefully motivate
computer scientists to learn about zero dimensional schemes, and show al-
gebraic geometers interesting applications of the subject to complexity. I
introduce the cactus variety, as the apolarity method generally also proves
lower bounds on the cactus rank. In §10.2, the cactus variety is shown to
be a major obstruction to proving superlinear border rank lower bounds for
tensors: all known equations for lower bounds also give lower bounds for the
cactus variety, but tensors in Cm⊗Cm⊗Cm never have cactus border rank
above 6m.

289
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In §10.3 I present Kumar’s proof that Detn is not a normal variety.
This section also does not assume anything beyond what was introduced in
Chapters 1-9.

I conclude, in §10.4, with Lascoux’s derivation [Las78], as made explicit
by Weyman [Wey03], of the minimal free resolution of the ideal generated
by the size k minors of a matrix of indeterminants, and briefly compare it
with the ideal generated by subpermanents. The exposition indicates how
tools from commutative algebra might be helpful in proving lower bounds on
dc(permm). Parts of this section assume additional background in algebraic
geometry and representation theory.

10.1. Rank and cactus rank of polynomials

This section and the next deal with two complexity issues using zero dimen-
sional schemes: lower bounds on the symmetric rank of polynomials, and
the limits of determinantal methods for proving border rank lower bounds.
In this section I discuss lower bounds on rank. I begin, in §10.1.1 by in-
troducing the language of affine and projective schemes and defining cactus
varieties, a generalization of secant varieties. In §10.1.2 I introduce apolar-
ity as a tool for proving symmetric rank (and cactus rank) lower bounds.
The key to using apolarity is Bezout’s theorem, a classical theorem in al-
gebraic geometry. I state and prove a version sufficient for our purposes in
in §10.1.3. With this, the Ranestad-Schreyer results [RS11] on the ranks
of monomials follow, in particular, that RS(x1 · · ·xn) = 2n−1. This is pre-
sented in §10.1.4. Bezout’s theorem similarly enables Lee’s lower bounds
[Lee16] on the symmetric ranks of elementary symmetric functions, which
are tight in odd degree and presented in §10.1.5.

To facilitate the distinction between elements of Sym(V ) and Sym(V ∗),
I will use lower case letters for elements of Sym(V ) and either upper case
letters or differential operator notation for elements of Sym(V ∗), e.g., f ∈
SdV , P ∈ SeV ∗, ∂

∂xn
∈ V ∗.

10.1.1. Language from algebraic geometry. As mentioned in §9.7, affine
varieties correspond to finitely generated algebras over C with no nilpotent
elements and affine schemes similarly correspond to finitely generated rings.
Given a finitely generated algebra, the corresponding scheme is the set of
its prime ideals (endowed with a topology that generalizes the Zariski topol-
ogy for varieties). This enables us to “remember” non-reduced structures.
For example, C[x]/(x)2 defines a scheme which we think of as the origin
in A1 with multiplicity two. An affine scheme Z is zero dimensional if the
corresponding ring (called the ring of regular functions on Z) is a finite di-
mensional vector space over C. If a variety is a collection of d distinct points,
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its corresponding coordinate ring is a d-dimensional vector space. The length
or degree of a zero dimensional affine scheme is the dimension of the corre-
sponding ring as a C-vector space. If Z denotes a zero-dimensional affine
scheme, where the corresponding ring is a quotient ring of C[x1, . . . , xn], i.e.,
C[Z] = C[x1, . . . , xn]/I, we consider Z as a subscheme of the affine space
An.

A homogeneous ideal I ⊂ Sym(V ∗) is saturated if every P ∈ Sym(V ∗)
such that for all L ∈ V ∗, there exists a δ such that PLδ ∈ I satisfies
P ∈ I. A projective scheme corresponds to a graded ring S = Sym(V ∗)/I
with I a saturated homogeneous ideal (not equal to Sym(V ∗)>0) and the
associated projective scheme is the set of homogeneous prime ideals of S,
excluding ⊕d>0Sd, see, e.g., [Har77, §II.2]. The corresponding scheme is
denoted Proj(S). (I continue to use the notation Zeros(I) for the zero set
of an ideal I.) One says X = Proj(Sym(V ∗)/I) is a subscheme of PV and
writes X ⊂ PV and I is called the ideal of X. More generally, for schemes
X,Y ⊂ PV defined by ideals I(X) and I(Y ), X ⊂ Y means I(Y ) ⊂ I(X).
The support of a scheme determined by an ideal I is Zeros(I). Define the
span of X, 〈X〉 to be the linear space Zeros(I(X)1) ⊂ PV .

Definition 10.1.1.1. [BB14] Let X ⊂ PV be a projective variety and
let y ∈ PV . Define the X-cactus rank of y to be the smallest r such that
there exists a zero dimensional scheme Z ⊂ X of length r such that y ∈ 〈Z〉.
Write crX(y) = r. (The usual case of X-rank is when Z consists of r distinct
points.) Define the r-th cactus variety of X to be

kr(X) := {y ∈ PV | crX(y) ≤ r}

and define the cactus border rank of y, crX(y) to be the smallest r such that
y ∈ kr(X).

By definition crX(y) ≤ RX(y) and crX(y) ≤ RX(y), i.e., σr(X) ⊆ kr(X),
and strict inequality can occur in both cases. The cactus rank was originally
defined for polynomials in [Iar95], where it was called scheme length, and
in general in [BB14]. We will be mostly concerned with the cactus rank
of polynomials with respect to X = vd(PV ). For f ∈ SdV , write crS(f) :=
crvd(PV )(f). If Y ⊂ vd(PV ), then since the Veronese map is an embedding,
there exists a subscheme Z ⊂ PV such that Y = vd(Z). It will be more
convenient to write vd(Z) for a subscheme of vd(PV ) in what follows.

Exercise 10.1.1.2: (1!) Show that for any subscheme Z ⊂ PV , (I(Z))e =
〈ve(Z)〉⊥ ⊂ SeV ∗, where ⊥ denotes the annhilator in the dual space. In
particular, I(vd(Z))1 = I(Z)d.}

10.1.2. The apolar ideal. For f ∈ SdV , recall from §6.2 the flattening
(catalecticant) maps fj,d−j : SjV ∗ → Sd−jV given by D 7→ D(f). Define
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the annihilator of f or apolar ideal of f , fann ⊂ Sym(V ∗) by

fann :=

d⊕
j=1

ker fj,d−j ⊕
∞⊕

k=d+1

SkV ∗

= {P ∈ Sym(V ∗) | P (f) = 0}.

Given a (not necessarily homogeneous) polynomial f ∈ C[x1, . . . , xn] define
fann := {P ∈ C[ ∂

∂x1
, . . . , ∂

∂xn
] | P (f) = 0}.

Recall the notation Partials(f) := {P (f) | P ∈ Sym(V ∗)} ⊂ Sym(V ).

Exercise 10.1.2.1: (1) Show that if e < d, and P ∈ SeV ∗ satisfies P (f) 6= 0,
then there exists L ∈ V ∗ such that (LP )(f) 6= 0. Show more generally that
for any δ ≤ d− e there exists Q ∈ SδV ∗ with QP (f) 6= 0.

The following lemma is critical:

Lemma 10.1.2.2. [Apolarity Lemma] A finite subscheme Z ⊂ PV satisfies
f ∈ 〈vd(Z)〉 = Zeros(I(Z)d) if and only if I(Z) ⊆ fann. In particular,
f ∈ span{`d1, . . . , `dr} ⊂ SdV if and only if fann ⊇ I({[`1], . . . , [`r]}).

If Z satisfies the conditions of the Apolarity Lemma, we say is apolar to
f ∈ SdV .

Proof. The “if” is clear. To prove the other direction, consider I(Z)e.
When e > d, fanne = SeV ∗. When e = d, it is the hypothesis. For e < d,
let P ∈ I(Z)e. Then Sd−eV ∗ · P ⊂ I(Z)d ⊂ (fann)d, so (QP )(f) = 0 for all
Q ∈ Sd−eV ∗, which implies P (f) = 0 by Exercise 10.1.2.1, which is what we
wanted to prove. �

10.1.3. Bezout’s theorem. Given a graded ring R, define its Hilbert func-
tion HilbFk(R) := dim(Rk). If R = Sym(V ∗)/I for some homogeneous
ideal I ⊂ Sym(V ∗), then there exists a polynomial, called the Hilbert poly-
nomial of R, HilbPz(R) in a variable z such that for k sufficiently large
HilbFk(R) = HilbPk(R), see, e.g., [Sha13b, §6.4.2]. For a projective
scheme X defined by an ideal I ⊂ Sym(V ∗), one may define its dimension as
dim(X) := deg(HilbPz(Sym(V ∗)/I)), which agrees with our previous def-
inition for varieties. One writes HilbFk(X) and HilbPz(X) for the Hilbert
functions and polynomials of the coordinate ring of X.

Exercise 10.1.3.1: (1) Let X = P`−1 ⊆ PV be a linear space. Show
HilbPz(X) = 1

(`−1)!z
`−1 +O(z`−2).

Exercise 10.1.3.2: (1) Let Zeros(P ) ⊆ PV be a hypersurface of degree d.
Show HilbPz(Zeros(P )) = d

(v−2)!z
v−3 +O(zv−4).

The above exercise suggests that one may define deg(X), the degree

of a projective scheme X, to be the coefficient of zdim(X) in HilbPz(X)
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times dim(X)!, which indeed agrees with our previous definition of degree
for a projective variety (see, e.g., [Har95, Lect. 14]) and degree of a zero
dimensional scheme (in this case the Hilbert polynomial is constant).

Definition 10.1.3.3. Given an ideal I ⊂ Sym(V ∗) and G ∈ SeV ∗, say G
is transverse to I if the multiplication map

(10.1.1) Sym(V ∗)/I
·G→ Sym(V ∗)/I

given by P 7→ GP is injective.

We will need a corollary of the following classical theorem:

Theorem 10.1.3.4 (Bezout’s Theorem). Let I ⊂ Sym(V ∗) be a homoge-
neous ideal and letG ∈ SeV ∗ be transverse to I. Write HilbPz(Sym(V ∗)/I) =
d
n!z

n + O(zn−1) and assume n ≥ 1. Then HilbPz(Sym(V ∗)/(I + (G))) =
ed

(n−1)!z
n−1 +O(zn−2).

Proof. Consider the exact sequence

0→ Sym(V ∗)/I
·G→ Sym(V ∗)/I → Sym(V ∗)/(I + (G))→ 0.

This is an exact sequence of graded Sym(V ∗)-modules, i.e., for all δ, the
sequence

0→ Sδ−eV ∗/Iδ−e
·G→ SδV ∗/Iδ → SδV ∗/(I + (G))δ → 0

is exact, so

dim(SδV ∗/(I + (G))δ) = dim(Sδ(V ∗)/Iδ)− dim(Sδ−e(V ∗)/Iδ−e).

Thus

HilbPz(Sym(V ∗)/(I+(G))) = HilbPz(Sym(V ∗)/I)−HilbPz−e(Sym(V ∗)/I).

Write HilbPz(Sym(V ∗)/I) = d
n!z

n + czn−1 +O(zn−2), so

HilbPz−e(Sym(V ∗)/I) =
d

n!
(z − e)n + c(z − e)n−1 +O(zn−2),

and

HilbPz(Sym(V ∗)/(I + (G))) =
ed

(n− 1)!
zn−1 +O(zn−2).

�

Corollary 10.1.3.5. Let I ⊂ Sym(V ∗) be a homogeneous ideal defining a
zero dimensional scheme in PV , and let G ∈ SeV ∗ be transverse to I. Then
dim (Sym(V ∗)/(I(Z) + (G))) = δ deg(Z),
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Proof. First consider the 1-dimensional affine scheme defined by I(Z) in
the affine space V . To return to the projective setting (so that one can
apply Theorem 10.1.3.4), consider V ⊂ Pv as an affine open subset, e.g.,
the subset [1, x1, . . . , xv]. Then I(Z) + (G) cuts out a zero dimensional
subscheme of Pv supported at the point [1, 0, . . . , 0], and we can use Bezout’s
theorem on Pv to conclude dim

(
SD(Cv+1∗)/(I(Z) + (G))D

)
= δ deg(Z) for

D sufficiently large (Here the Hilbert polynomial is a constant.) But this
implies dim (Sym(V ∗)/(I(Z) + (G))) = δ deg(Z). �

10.1.4. Lower bounds on cactus rank.

Theorem 10.1.4.1. [RS11] Let f ∈ SdV and say fann is generated in
degrees at most δ. Then

crS(f) ≥ 1

δ
dim(Sym(V ∗)/fann) =

1

δ

d∑
j=0

rankfj,d−j =
1

δ
dim(Partials(f)).

Proof. Let f ∈ SdV and let Z ⊂ PV be a zero dimensional projective
scheme of minimal degree satisfying I(Z) ⊆ fann (i.e., f ∈ 〈vd(Z)〉), so
crS(f) = deg(Z). There exists G ∈ (fann)δ such that G is transverse to
I(Z) because in degrees e > d, (fann)e = SeV ∗, so there must be some
polynomial in the ideal transverse to I(Z), and since the ideal is generated
in degrees at most δ, there must be such a polynomial in degree δ. By
Corollary 10.1.3.5, dim (Sym(V ∗)/(I(Z) + (G))) = δ deg(Z).

Finally, dim (Sym(V ∗)/(I(Z) + (G))) ≥ dim(Sym(V ∗)/fann). �

For example, if f = xyz, then rank(f3,0) = 1, rank(f2,1) = 3, rank(f1,2) =
3, rank(f0,3) = 1, and fann is generated in degree two, so crS(xyz) ≥ 4. On

the other hand fann is generated by ∂2

(∂x)2 ,
∂2

(∂y)2 ,
∂2

(∂z)2 , and the scheme with

the ideal generated by any two of these has length four, so equality holds.

Exercise 10.1.4.2: (1) Prove that RS(x1 · · ·xn) = crS(x1 · · ·xn) = 2n−1,
which was first shown in [RS11].

Exercise 10.1.4.3: (2) Prove that more generally, for a monomial xd1
1 · · ·xdnn

with d1 ≤ d2 ≤ · · · ≤ dn, then RS(xd1
1 · · ·xdnn ) ≥ crvd(PV )(x

d1
1 · · ·xdnn ) =

(d1 + 1) · · · (dn−1 + 1). This was also first shown in [RS11]. }

Remark 10.1.4.4. L. Oeding [Oed16], using Young flattenings, has shown
RS(x1 · · ·xn) = 2n−1, and using a generalization of them, for d1 ≤ d2 ≤
· · · ≤ dn, that RS(xd1

1 · · ·xdnn ) = (d1 + 1) · · · (dn−1 + 1).

10.1.5. Waring Ranks of elementary symmetric functions. For ideals
I, J ⊂ Sym(V ∗), introduce the colon ideal

I : J := {P ∈ Sym(V ∗) | PJ ⊆ I}.
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Exercise 10.1.5.1: (1) Prove that if I, J ⊂ Sym(V ∗) are saturated homo-
geneous ideals such that Sym(V ∗)/I and Sym(V ∗)/J contain no nilpotent
elements, then I : J is the ideal of polynomials vanishing on the components
of Zeros(I) that are not contained in Zeros(J).

Exercise 10.1.5.2: (1) Show that forD ∈ Sym(V ∗), fann : D = (D(f))ann.

Theorem 10.1.5.3. [CCC+15a] For f ∈ SdV , and sufficiently general
P ∈ SeV ∗,

RS(f) ≥ 1

e
dim

(
Sym(V ∗)

fann : (P ) + (P )

)
.

Proof. Say f = `d1 + · · · + `dr is a minimal rank decomposition of f , so
by the Apolarity Lemma 10.1.2.2 fann ⊇ I({[`1], . . . , [`r]}). Take P such
that for 1 ≤ j ≤ r, P (`j) 6= 0. (Note that a Zariski open subset of SeV ∗

has this property, explaining the “sufficiently general” condition.) Let J =
I({[`1], . . . , [`r]}) : (P ), and let Proj(J) be the corresponding projective

scheme. Our choice of P insures that the multiplication map Sym(V ∗)/J
·P→

Sym(V ∗)/J is injective. To see this, say H 6∈ J and H · P ∈ J . Then
H · P 2 ∈ I({[`1], . . . , [`r]}), but I({[`1], . . . , [`r]}) is reduced so H · P ∈
I({[`1], . . . , [`r]}) which means H ∈ J . Corollary 10.1.3.5 applies to show
e · deg(Proj(J)) = dim(Sym(V ∗)/(J + (P ))).

The genericity condition also implies deg(Proj(J)) = deg({[`1], . . . , [`r]}) =
r = RS(f). Furthermore, since J ⊆ fann : (P ),

dim

(
Sym(V ∗)

fann : (P ) + (P )

)
≤ dim

(
Sym(V ∗)

J + (P )

)
and we conclude. �

Corollary 10.1.5.4. [Lee16, CCC+15a] Let f ∈ SdV be concise, and let
L ∈ V ∗\0 be arbitrary. Then

RS(f) ≥ dim

(
Sym(V ∗)

fann : (L) + (L)

)
.

Proof. The ideal I({[`1], . . . , [`r]}) is reduced and empty in degree one.
Thus L is not a zero divisor in I({[`1], . . . , [`r]}) : L, so Theorem 10.1.5.3
applies with P = L. �

Let f = ed,n ∈ SdCn be the d-th elementary symmetric function. Take

L = ∂
∂xn
∈ S1Cn∗ and apply Corollary 10.1.5.4. Exercise 10.1.5.2 implies

(ed,n)ann :
∂

∂xn
+ (

∂

∂xn
) = (

∂

∂xn
ed,n)ann + (

∂

∂xn
)

= eann,C
n

d−1,n−1 + (
∂

∂xn
),
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where eann,C
n

d−1,n−1 is the annihilator of ed−1,n−1 considered as a function of n

variables that does not involve xn. Now

Sym(Cn∗)
eann,C

n

d−1,n−1 + ( ∂
∂xn

)
' Sym(C(n−1)∗)

eann,C
n−1

d−1,n−1

.

Exercise 10.1.5.5: (1) Show that for t ≤ δ
2 , (Sym(Ck∗)/eannδ,k )t consists

of all square free monomials, so it is of dimension
(
k
t

)
. By symmetry, for

δ
2 ≤ t ≤ δ, dim((Sym(Ck∗)/eannδ,k )t) =

(
k
δ−t
)
. Finally, it is zero for t > δ.

Putting it all together:

Theorem 10.1.5.6. [Lee16] For all n, and even d,

d
2∑
j=0

(
n

j

)
−
(
n− 1
d
2

)
≤ RS(ed,n) ≤

d
2∑
j=0

(
n

j

)
.

For all n, and odd d,

RS(ed,n) =

d−1
2∑
j=0

(
n

j

)
.

Proof. Let d = 2k + 1 By Exercise 10.1.5.5 and the discussion above,

RS(ed,n) ≥ 2

d−1
2∑
j=0

(
n− 1

j

)

=

(
n− 1

0

)
+

k∑
j=1

[(
n− 1

j

)
+

(
n− 1

j − 1

)]

= 1 +

k∑
j=1

(
n

j

)

But this is the upper bound of Theorem 7.1.3.1. The even case is similar.
�

10.2. Cactus varieties and secant varieties

Recall that σr(X) ⊆ kr(X). Cactus border rank might appear to be just a
curiosity, but the cactus variety turns out to be the obstruction to proving
further lower bounds with current technology for R(M〈n〉) and places limits
on the utility of lower bound techniques arising from determinantal equa-
tions. As I explain in §10.2.1, Almost all the equations discussed in this book
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(method of partial derivatives Koszul flattenings, method of shifted partial
derivatives, etc.), are equations for the cactus variety. Thus our border rank
and symmetric border rank lower bounds are actually cactus border rank
lower bounds. The reason this is a problem is explained in §10.2.2: the
cactus varieties fill the ambient space much faster than the secant varieties.
What is particularly surprising is that the cactus analog of the greater areole
of §5.4.4 already fills the ambient space.

10.2.1. Young-flattenings and the cactus variety. Recall the variety

Flati,d−ir (V ) := P{P ∈ SdV | rank(Pi,d−i) ≤ r} from §6.2.2.

Proposition 10.2.1.1. [IK99, Thm. 5.3D] (also see [BB14]) For all r, d, i,

kr(vd(PV )) ⊆ Flati,d−ir (V ).

Proof. Say [f ] ∈ 〈vd(Z)〉 for a zero dimensional subscheme Z ⊂ PV of

degree at most r, i.e., f̂ ⊂ I(Z)⊥d . We need to show [f ] ∈ Flati,d−ir (V ).

We have f̂(SiV ∗) ⊂ I(Z)⊥d (SiV ∗). By the same argument as in the proof

of the apolarity Lemma, I(Z)⊥d (SiV ∗) ⊂ I(Z)⊥d−i. By Exercise 10.1.1.2,

I(Z)⊥d−i = 〈vd−i(Z)〉 and dim〈vd−i(Z)〉 ≤ deg(Z). �

More generally, Galcazka [Gal16] shows that for any variety X, kr(X)
is in the zero set of any equations for σr(X) arising from minors of a map
between vector bundles. In particular:

Theorem 10.2.1.2. [Gal16] The equations from Koszul flattenings for
σr(Seg(PA1 × · · · × PAk)) and the equations from Koszul and Hilbert flat-
tenings for σr(vd(PV )) are equations for the corresponding cactus varieties.

This “explains” limits of Young flattenings because the cactus varieties
fill the ambient space much faster than the secant varieties as I explain in
the next section.

10.2.2. Local cactus rank and the local cactus variety. Let X ⊂ PV
be a variety. Fix x ∈ X, and define the local X-cactus rank of y ∈ PV based
at x, denoted lcrX,x(y) to be the smallest r such that there exists a length
r zero dimensional scheme Z ⊂ X, with the support of Z equal to {x}, such
that y ∈ 〈Z〉.

Define the local cactus variety of X based at x to be

lkr(X,x) :=
⋃

Z⊂X, deg(Z)≤r,
support(Z)=x

〈Z〉 ⊂ PV.

Of course lkr(X,x) ⊆ kr(X). Compare the local cactus variety with the
greater areole of §5.4.4.
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Given f ∈ SdCn, define the dehomogenization fxn := f(x1, . . . , xn−1, 1) ∈
C[x1, . . . , xn−1] of f with respect to xn.

Theorem 10.2.2.1. [BR13] Let f ∈ SdCn. Then

crS(f) ≤ lcrS(f, [xdn]) ≤ dim(Partials(fxn)).

Proof. The ideal defined by (fxn)ann in C[ ∂
∂x1

, . . . , ∂
∂xn−1

] may be homog-

enized to define a homogeneous ideal in C[ ∂
∂x1

, . . . , ∂
∂xn

]. Consider the sub-

scheme of Pn−1 defined by this homogeneous ideal. It has degree equal
dim(Partials(fxn)) and support {[0, . . . , 0, 1]}. Assume f is concise. (If it
is not, just start over in the smaller space.) I next show the homogenized
(fxn)ann is contained in fann.

Let G ∈ (fxn)ann ⊂ C[ ∂
∂x1

, . . . , ∂
∂xn−1

]. Write G = G1 + · · ·+Gr, where

deg(Gj) = j. (Note that G0 = 0 in order that G(fxn) = 0.) Similarly, write
fxn = f0 + · · · + fd. Then G(fxn) = 0 says that for all e ∈ {0, . . . , d −
1},

∑
j Gj(fj+e) = 0. Let Gh be the homogenization of G, i.e., Gh =

( ∂
∂xn

)r−1G1+( ∂
∂xn

)r−2G2+· · ·+Gr. Then, since f = xdnf0+xd−1
n f1+· · ·+fd,

Gh(f) = 0

if and only if∑
e

∑
j

xd−r−en Gj(fe+j) =
∑
e

xd−r−en

∑
j

Gj(fe+j) = 0.

Thus the homogenization of (fxn)ann is contained in fann, and lcr(f, [xdn]) is
at most the degree of the scheme defined by fxn , which is dim(Partials(fxn)).

�

Corollary 10.2.2.2. SetNn,d =
∑d

j=0

(
n−1+j−1

j

)
. Then lkNn,d(vd(Pn−1), [xdn]) =

kNn,d(vd(Pn−1)) = PSdCn.

Note that Nn,d ∼ 2
(n+d d

2
e

d

)
<< 1

n

(
n+d−1

d

)
=: rn,d, the latter being the

smallest r such that σr(vd(Pn−1)) = PSdCn (except for a few exceptions
where rn,d is even larger [AH95], see [Lan12, §5.4.1] for a discussion).

So for example, if n = 2k + 1 is odd then the upper bound for cactus

rank in SnCn2
grows as 2

(
4k2+5k

k

)
' 2(2k)2k plus lower order terms, while

the border rank upper bound is:
(

4k2+6k+1
2k+1

)
/(2k + 1)2 ' (2k)4k plus lower

order terms. The even case is similar.

For S3Cn, we have the more precise result:

Theorem 10.2.2.3. [BR13] k2n(v3(Pn−1)) = PS3Cn.

Compare this with the secant variety σr(v3(Pn−1)) which equals PS3Cn

when r = rn,3 = d 1
n

(
n+2

3

)
e ∼ n2

6 .
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For tensors, the same methods show lk2(a+b+c−2)(Seg(PA×PB×PC), [a⊗b⊗c]) =
P(A⊗B⊗C) (J. Buczynski, personal communication). The precise filling r
for the cactus variety is not known. However, since for Cm⊗Cm⊗Cm it is
at most 6m − 4, one will never prove super-linear border rank bounds for
tensors with determinantal equations.

10.3. Non-normality of Detn

We have already seen that Chn(V ) is not normal, but that the coordinate
ring of the normalization, the coordinate ring of the orbit GL(V ) · [x1 · · ·xn],
and the coordinate ring of Chn(V ) are all closely related. For the determi-
nant we know far less. Not surprisingly, Detn is not normal. I explain the
proof in this section, which unfortunately is indirect, so it does not indicate
relations between the three rings. By Remark 9.7.2.3 and the boundary
component of §6.7.1, we know that the coordinate ring of the normalization
of Detn and the polynomial part of the coordinate ring of the orbit do not
agree, but we know little about their difference. Here I at least show that
the normalization is distinct from Detn.

I begin with generalities on GL(W )-orbits of points P ∈ V with closed
SL(W )-orbit. By a theorem of Kempf [Kem78, Cor. 5.1], the SL(W )-orbit
of P is closed if the SL(W )-isotropy group is not contained in any proper
parabolic subgroup of SL(W ), which is the case for the SL(W )-stabilizers
of permn and detn.

I follow [Lan15a] in this section, which gives an exposition of the results
of [Kum13].

10.3.1. Generalities on GL(W )-orbit closures. Throughout this sec-
tion I make the following assumptions and adopt the following notation:

Set up:

• V is a GL(W )-module, and P ∈ V .

• P0 := GL(W ) · P and P := GL(W ) · P respectively denote the
GL(W )-orbit and GL(W )-orbit closure of P , and ∂P = P\P0 de-
notes the boundary, which is assumed to be more than zero (oth-
erwise [P] is homogeneous).

(10.3.1) Assumptions :

(1) P ∈ V is such that the SL(W )-orbit of P is closed.

(2) The stabilizer GP ⊂ GL(W ) is reductive, which is equivalent (by a
theorem of Matsushima [Mat60]) to requiring that P0 is an affine
variety.
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This situation holds when V = SnW , dimW = n2 and P = detn or

permn as well as when dimW = rn and P = Srn :=
∑r

j=1 x
j
1 · · ·x

j
n, the

sum-product polynomial, in which case P = σ̂r(Chn(W )).

Lemma 10.3.1.1. [Kum13] Assumptions as in (10.3.1). Let M ⊂ C[P] be
a nonzero GL(W )-module, and let Zeros(M) = {y ∈ P | f(y) = 0 ∀f ∈M}
denote its zero set. Then 0 ⊆ Zeros(M) ⊆ ∂P.

If moreover M ⊂ I(∂P), then as sets, Zeros(M) = ∂P.

Proof. Since Zeros(M) is a GL(W )-stable subset, if it contains a point of
P0 it must contain all of P0 and thus M vanishes identically on P, which
cannot happen as M is nonzero. Thus Zeros(M) ⊆ ∂P. For the second
assertion, since M ⊂ I(∂P), we also have Zeros(M) ⊇ ∂P. �

Proposition 10.3.1.2. [Kum13] Assumptions as in (10.3.1). The space of

SL(W )-invariants of positive degree in the coordinate ring of P, C[P]
SL(W )
>0 ,

is non-empty and contained in I(∂P). Moreover,

(1) any element of C[P]
SL(W )
>0 cuts out ∂P set-theoretically, and

(2) the components of ∂P all have codimension one in P.

Proof. To study C[P]SL(W ), consider the GIT quotient P // SL(W ) whose

coordinate ring, by definition, is C[P]SL(W ). It parametrizes the closed

SL(W )-orbits in P, so it is non-empty. Thus C[P]SL(W ) is nontrivial.

Claim: every SL(W )-orbit in ∂P contains {0} in its closure, i.e., ∂P
maps to zero in the GIT quotient. This will imply any SL(W )-invariant
of positive degree is in I(∂P) because any non-constant function on the
GIT quotient vanishes on the inverse image of [0]. Thus (1) follows from
Lemma 10.3.1.1. The zero set of a single polynomial, if it is not empty, has
codimension one, which implies the components of ∂P are all of codimension
one, proving (2).

Let ρ : GL(W )→ GL(V ) denote the representation. It remains to show
∂P maps to zero in P // SL(W ). This GIT quotient inherits a C∗ action
via ρ(λ Id), for λ ∈ C∗. The normalization of P // SL(W ) is just the affine
line A1 = C. To see this, consider the C∗-equivariant map σ : C → P
given by z 7→ ρ(z Id) · P , which descends to a map σ : C → P // SL(W ).
Since the SL(W )-orbit of P is closed, for any λ ∈ C∗, ρ(λ Id)P does not
map to zero in the GIT quotient, so σ−1([0]) = {0} as a set. Lemma 9.7.1.1
applies so σ is finite and gives the normalization. Finally, were there a closed
nonzero orbit in ∂P, it would have to equal SL(W ) · σ(λ) for some λ ∈ C∗
since σ is surjective. But SL(W ) · σ(λ) is contained in the image of P0 in
P // SL(W ). �
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Remark 10.3.1.3. That each irreducible component of ∂P is of codimen-
sion one in P is due to Matsushima [Mat60]. It is a consequence of his
result that P0 is an affine variety if and only if the stabilizer is reductive.

The key to proving non-normality of D̂etn and ˆPermn
n is to find an

SL(W )-invariant in the coordinate ring of the normalization (which has a
GL(W )-grading), which does not occur in the corresponding graded com-
ponent of the coordinate ring of SnW , so it cannot occur in the coordinate
ring of any GL(W )-subvariety.

Lemma 10.3.1.4. Assumptions as in (10.3.1). Let V = SnW and let d be

the smallest positive GL(W )-degree such that C[P0]
SL(W )
d 6= 0. If n is even

(resp. odd) and d < nw (resp. d < 2nw) then P is not normal.

Proof. Since P0 ⊂ P is a Zariski open subset, we have the equality of
GL(W )-modules C(P) = C(P0). By restriction of functions C[P] ⊂ C[P0]

and thus C[P]SL(W ) ⊂ C[P0]SL(W ). Now P0 // SL(W ) = P0/SL(W ) ' C∗
because SL(W ) · P is closed, so C[P0]SL(W ) '

⊕
k∈ZC{zk}. Under this

identification, z has GL(W )-degree d. By Proposition 10.3.1.2, C[P]SL(W ) 6=
0. Let h ∈ C[P]SL(W ) be the smallest element in positive degree. Then
h = zk for some k. Were P normal, we would have k = 1.

But now we also have a surjection C[SnW ] → C[P], and by [How87,
Prop. 4.3a], the smallest possible GL(W )-degree of an SL(W )-invariant in
C[SnW ] when n is even (resp. odd) is wn (resp. 2wn) which would occur
in Sw(SnW ) (resp. S2w(SnW )). We obtain a contradiction. �

10.3.2. Case of P = detn and P = permn.

Theorem 10.3.2.1 (Kumar [Kum13]). For all n ≥ 3, Detn = GLn2 · [detn]

and Permn
n = GLn2 · [permn] are not normal. For all n ≥ 2m (the range of

interest), Permm
n = GLn2 · [`n−m permm] is not normal.

I give the proof for Detn, the case of Permn
n is an easy exercise. Despite

the variety Zeros(`n−m permm) being much more singular than Zeros(permn),
the proof for Permm

n is more difficult, see [Kum13].

Proof. Let C[Det0n]
SL(W )
k−GL denote the degree k GL-degree component of

C[Det0n]SL(W ) as defined in the proof of Lemma 10.3.1.4. I will show that

when n is congruent to 0 or 1 mod 4, C[Det0n]
SL(W )
n−GL 6= 0 and when n is

congruent to 2 or 3 mod 4, C[Det0n]
SL(W )
2n−GL 6= 0. Since n, 2n < (n2)n Lemma

10.3.1.4 applies.

The SL(W )-trivial modules are (Λn
2
W )⊗s = S

(sn2 )
W . Write W =

E⊗F . We want to determine the lowest degree trivial SL(W )-module
that has a Gdetn = (SL(E) × SL(F )/µn) o Z2 invariant. We have the
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decomposition (Λn
2
W )⊗s = (

⊕
|π|=n2 SπE⊗Sπ′F )⊗s, where π′ is the conju-

gate partition to π. Thus (Λn
2
W )⊗s is the trivial SL(E) × SL(F ) module

(S(nn)E⊗S(nn)F )⊗s = S((sn)n)E⊗S((sn)n)F . Now consider the effect of the
Z2 ⊂ Gdetn with generator τ ∈ GL(W ). It sends ei⊗fj to ej⊗fi, so act-
ing on W it has +1 eigenspace {ei⊗fj + ej⊗fi | i ≤ j} and −1 eigenspace
{ei⊗fj− ej⊗fi | 1 ≤ i < j ≤ n}. Thus it acts on the one-dimensional vector

space (Λn
2
W )⊗s by ((−1)(

n
2))s, i.e., by −1 if n ≡ 2, 3 mod 4 and s is odd

and by 1 otherwise. We conclude that there is an invariant as needed for
Lemma 10.3.1.4. �

Remark 10.3.2.2. In the language of §8.8.2, in the proof above we saw

k
sn2 ,(sn)n,(sn)n

= 1, sks
n2

(sn)n,(sn)n = 1 for all s when
(
n
2

)
is even, and sks

n2

(sn)n,(sn)n =

1 for even s when
(
n
2

)
is odd and is zero for odd s.

Exercise 10.3.2.3: (2) Write out the proof of the non-normality of Permn
n.

Exercise 10.3.2.4: (2) Show the same method gives another proof that
Chn(W ) is not normal.

Exercise 10.3.2.5: (2) Show a variant of the above holds for any reductive
group with a nontrivial center (one gets a Zk-grading of modules if the center
is k-dimensional), in particular it holds for G = GL(A)×GL(B)×GL(C).
Use this to show that σr(Seg(PA×PB×PC)) is not normal when dimA =
dimB = dimC = r > 2.

10.4. The minimal free resolution of the ideal generated by
minors of size r + 1

I give an exposition of Lascoux’s computation of the minimal free resolution
of the ideals of the varieties of matrices of rank at most r from [Las78]. I
expect it will be useful for the study of Valiant’s hypothesis, as from it one
can extract numerous algebraic properties of the determinant polynomial.

I follow the exposition in [ELSW15], which is based on the presentation
in [Wey03].

10.4.1. Statement of the result. Let E,F = Cn, give E⊗F coordinates
(xij), with 1 ≤ i, j ≤ n. Let σ̂r = σ̂r(Seg(Pn−1×Pn−1)) ⊂ Cn⊗Cn = E∗⊗F ∗
denote the variety of n × n matrices of rank at most r. By “degree SπE”,
I mean |π| = p1 + · · · + pn, where π = (p1, . . . , pn). Write π + π̃ = (p1 +
p̃1, . . . , pn + p̃n).

Recall from §8.1.2 that the weight (underGL(E)×GL(F )) of a monomial

xi1j1 · · ·x
iq
jq
∈ Sq(E⊗F ) is given by a pair of n-tuples ((wE1 , . . . , w

E
n ), (wF1 , . . . , w

F
n ))

where wEs is the number of iα’s equal to s and wFt is the number of jα’s equal
to t.
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Theorem 10.4.1.1. [Las78] Let 0 → FN → · · · → F1 → Sym(E⊗F ) =
F0 → C[σ̂r]→ 0 denote the minimal free resolution of C[σ̂r]. Then

(1) N = (n− r)2, i.e., σ̂r is arithmetically Cohen-Macaulay.

(2) σ̂r is Gorenstein, i.e., FN ' Sym(E⊗F ), generated by S(n−r)nE⊗S(n−r)nF .
In particular FN−j ' Fj as SL(E)×SL(F )- modules, although they
are not isomorphic as GL(E)×GL(F )-modules.

(3) For 1 ≤ j ≤ N − 1, the space Fj has generating modules of degree
sr + j where 1 ≤ s ≤ b

√
jc. The modules of degree r + j form the

generators of the linear strand of the minimal free resolution.

(4) The generating module of Fj is multiplicity free.

(5) Let α, β be (possibly zero) partitions such that l(α), l(β) ≤ s.
Independent of the lengths (even if they are zero), write α =
(α1, . . . , αs), β = (β1, . . . , βs). The space of degree sr + j gen-
erators of Fj , for 1 ≤ j ≤ N is the module

(10.4.1) Mj,rs+j =
⊕

|α|+|β|=j−s2
l(α),l(β)≤s

S(sr+s)+(α,0r,β′)E⊗S(sr+s)+(β,0r,α′)F.

The Young diagrams of the modules are depicted in Figure 1 below.

α

β

s

r+s

β

α ’

’

r+s

π

π

w

’’

s

r+s

s

β

α

original partition π

Figure 10.4.1. Partition π and pairs of partitions (sr+s) +
(α, 0r, β′) = w · π and (sr+s) + (β, 0r, α′) = π′ it gives rise to
in the resolution (see §10.4.5 for explanations).
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(6) In particular the generator of the linear component of Fj is

(10.4.2) Mj,j+r =
⊕

a+b=j−1

= Sa+1,1r+bE⊗Sb+1,1r+aF.

Remark 10.4.1.2. The module Mj,j+r admits a basis as follows: form a
size r+j submatrix using r+b+1 distinct rows, repeating a subset of a rows
to have the correct number of rows and r+a+1 distinct columns, repeating
a subset of b columns, and then performing a “tensor Laplace expansion” as
described below.

10.4.2. The Koszul resolution. The minimal free resolution of Sym(V )>0

is given by the exact complex

(10.4.3) · · · → Sq−1V⊗Λp+2V → SqV⊗Λp+1V → Sq+1V⊗ΛpV → · · ·
The maps are given by the transpose of exterior derivative (Koszul) map
dp,q : SqV ∗⊗Λp+1V ∗ → Sq−1V ∗⊗Λp+2V ∗. Write dTp,q : Sq−1V⊗Λp+2V →
SqV⊗Λp+1V . The Pieri rule (§8.1.3) implies the GL(V )-decomposition
SqV⊗Λp+1V = S(q,1p+1)V ⊕ S(q+1,1p)V , so the kernel of dTp,q is the first

module, which also is the image of dTp+1,q−1.

Explicitly, dTp,q is the composition of polarization (Λp+2V → Λp+1V⊗V )
and multiplication:

Sq−1V⊗Λp+2V → Sq−1V⊗Λp+1V⊗V → SqV⊗Λp+1V.

For the minimal free resolution of any ideal, the linear strand will embed
inside (10.4.3).

10.4.3. Geometry of the terms in the linear strand. For T ∈ SκV⊗V ⊗j ,
and P ∈ S`V , introduce notation for multiplication on the first factor,
T · P ∈ Sκ+`V⊗V ⊗j . Write Fj = Mj · Sym(V ). As always, M0 = C.
Note that F1 = M1 · Sym(E⊗F ), where M1 = M1,r+1 = Λr+1E⊗Λr+1F ,
the size r + 1 minors which generate the ideal. The syzygies among the
elements of F1 are generated by

M2 = M2,r+2 := S1r+2E⊗S21rF ⊕ S21rE⊗S1r+2F ⊂ I(σr)r+2⊗V,
(i.e., F2 = M2 · Sym(E⊗F )) where elements in the first module may be
obtained by choosing r + 1 rows and r + 2 columns, forming a size r + 2
square matrix by repeating one of the rows, then doing a “tensor Laplace
expansion” as follows:

In the case r = 1 the highest weight vector of M2 is

S
1|12
123 : = (x1

2x
2
3 − x2

2x
1
3)⊗x1

1 − (x1
1x

2
3 − x2

1x
1
3)⊗x1

2 + (x1
1x

2
2 − x1

2x
2
1)⊗x1

3

(10.4.4)

= M12
23⊗x1

1 −M12
13⊗x1

2 +M12
12⊗x1

3,
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a tensor Laplace expansion of a 3 × 3 matrix with first row repeated. In
general M I

J will denote the minor obtained from the submatrix with indices
I, J . To see (10.4.4) is indeed a highest weight vector, first observe that it
has the correct weights in both E and F , and that in the F -indices {1, 2, 3}
it is skew and that in the first two E indices it is also skew. Finally to see
it is a highest weight vector note that any raising operator sends it to zero.
Also note that under the multiplication map S2V⊗V → S3V the element
maps to zero, because the map corresponds to converting a tensor Laplace
expansion to an actual one, but the determinant of a matrix with a repeated
row is zero.

In general, a basis of SπE⊗SµF is indexed by pairs of semi-standard
Young tableau in π and µ. In the linear strand, all partitions appearing are
hooks, a basis of Sa,1bE is given by two sequences of integers taken from
[n], one weakly increasing of length a and one strictly increasing of length
b, where the first integer in the first sequence is at least the first integer in
the second sequence.

A highest weight vector in S21rE⊗S1r+2F is

S
1|1,...,r+1
1,...,r+2 = M1,...,r+1

2,...,r+2⊗x
1
1 −M

1,...,r+1
1,3,...,r+1⊗x

1
2 + · · ·+ (−1)rM1,...,r+1

1,...,r+1⊗x
1
r+2,

a tensor Laplace expansion of a size r+2 matrix with repeated first row. The
same argument as above shows it has the desired properties. Other basis
vectors are obtained by applying lowering operators to the highest weight
vector, so their expressions will be more complicated.

Remark 10.4.3.1. If we chose a size r+2 submatrix, and perform a tensor
Laplace expansion of its determinant about two different rows, the difference
of the two expressions corresponds to a linear syzygy, but such linear syzygies
are in the span of M2. These expressions are important for comparison with
the permanent, as they are the only linear syzygies for the ideal generated
by the size r+ 1 sub-permanents, where one takes the permanental Laplace
expansion.

Continuing, F3 is generated by the module

M3,r+3 = S1r+3E⊗S3,1rF ⊕ S2,1r+1E⊗S2,1r+1F ⊕ S3,1rE⊗S1r+3F ⊂M2⊗V.

These modules admit bases of double tensor Laplace type expansions of a
square submatrix of size r + 3. In the first case, the highest weight vector
is obtained from the submatrix whose rows are the first r + 3 rows of the
original matrix, and whose columns are the first r-columns with the first
column occuring three times. For the second module, the highest weight
vector is obtained from the submatrix whose rows and columns are the first
r + 2 such, with the first row and column occuring twice. A highest weight
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vector for S3,1rE⊗S1r+3F is

S
11|1,...,r+1
1,...,r+3 =

∑
1≤β1<β2≤r+3

(−1)β1+β2M1,...,r+1

1,...,β̂1,...,β̂2,...,r+3
⊗(x1

β1
∧ x1

β2
)

=
r+3∑
β=1

(−1)β+1S
1|1,...,ir+1

1,...,β̂,...,r+3
⊗x1

β.

Here S
1|1,...,ir+1

1,...,β̂,...,r+3
is defined in the same way as the highest weight vector.

A highest weight vector for S2,1r+1E⊗S2,1r+1F is

S
1|1,...,r+3
1|1,...,r+2 =

r+3∑
α,β=1

(−1)α+βM1,...,α̂,...,r+2

1,...,β̂,...,i+2
⊗(xα1 ∧ x1

β)

=
r+3∑
β=1

(−1)β+1S1,...,r+2

1|1,...,β̂,...,r+2
⊗x1

β −
r+3∑
α=1

(−1)α+1S
1|1,...,α̂,...,r+3
1,...,r+2 ⊗xα1 .

Here S1,...,r+2

1|1,...,β̂,...,r+2
, S

1|1,...,α̂,...,r+3
1,...,r+2 are defined in the same way as the cor-

responding highest weight vectors.

Proposition 10.4.3.2. The highest weight vector of Sp+1,1r+qE⊗Sq+1,1r+pF ⊂
Mp+q+1,r+p+q+1 is

S
1p|1,...,r+q+1
1q |1,...,r+p+1 =∑
I⊂[r+q+1],|I|=q,
J⊂[r+p+1],|J|=p

(−1)|I|+|J |M
1,...,̂i1,...,̂iq ,...,(r+q+1)

1,...,ĵ1,...,ĵp,...,(r+p+1)
⊗(x1

j1 ∧ · · · ∧ x
1
jp ∧ x

i1
1 ∧ · · · ∧ x

iq
1 ).

A hatted index is one that is omitted from the summation.

Proof. It is clear the expression has the correct weight and is a highest
weight vector, and that it lies in Sr+1V⊗Λp+qV . I now show it maps to
zero under the differential.

Under the map dT : Sr+1V⊗Λp+qV → SrV⊗Λp+q+1V , the element

S
1p|1,...,r+q+1
1q |1,...,r+p+1 maps to:∑
I⊂[r+q+1],|I|=q,
J⊂[r+p+1],|J|=p

(−1)|I|+|J |

[
∑
α∈I

(−1)p+αM
1,...,̂i1,...,̂iq ,...,(r+q+1)

1,...,ĵ1,...,ĵp,...,(r+p+1)
xiα1 ⊗(x1

j1 ∧ · · · ∧ x
1
jp ∧ x

i1
1 ∧ · · · ∧ x̂

iα
1 ∧ · · · ∧ x

iq
1 )

+
∑
β∈J

(−1)βM
1,...,̂i1,...,̂iq ,...,(r+q+1)

1,...,ĵ1,...,ĵp,...,(r+p+1)
x1
jβ
⊗(x1

j1 ∧ · · · ∧ x̂
1
jβ
∧ · · · ∧ x1

jp ∧ x
i1
1 ∧ · · · ∧ x

iq
1 )]
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Fix I and all indices in J but one, call the resulting index set J ′, and consider
the resulting term∑
β∈[r+p+1]\J ′

(−1)f(β,J ′)M
1,...,̂i1,...,̂iq ,...,(r+q+1)

1,...,ĵ′1,...,ĵ
′
p−1,...,(r+p+1)

x1
β⊗(x1

j′1
∧· · ·∧x1

j′p−1
∧xi11 ∧· · ·∧x

iq
1 )

where f(β, J ′) equals the number of j′ ∈ J less than β. This term is the
Laplace expansion of the determinant of a matrix of size r+ 1 which has its
first row appearing twice, and is thus zero. �

Notice that if q, p > 0, then S
1p|1,...,r+q+1
1q |1,...,r+p+1 is the sum of terms includ-

ing S
1p|1,...,r+q
1q−1|1,...,r+p+1

⊗xr+q+1
1 and S

1p−1|1,...,r+q+1
1q |1,...,r+p ⊗x1

r+p+1. This implies the

following corollary:

Corollary 10.4.3.3 (Roberts [Rob17]). Each module Sa,1r+bE⊗Sb,1r+aF ,
where a + b = j that appears with multiplicity one in Fj,j+r, appears with
multiplicity two in Fj−1,j+r if a, b > 0, and multiplicity one if a or b is zero.
The map Fj,j+r+1 → Fj−1,j+r+1 restricted to Sa,1r+bE⊗Sb,1r+aF , maps non-
zero to both (Sa−1,1r+bE⊗Sb,1r+a−1F ) ·E⊗F and (Sa,1r+b−1E⊗Sb−1,1r+aF ) ·
E⊗F .

Proof. The multiplicities and realizations come from applying the Pieri
rule. (Note that if a is zero the first module does not exist and if b is
zero the second module does not exist.) That the maps to each of these is
non-zero follows from the observation above. �

Remark 10.4.3.4. In [Rob17] it is proven more generally that all the nat-
ural realizations of the irreducible modules in Mj have non-zero maps onto
every natural realization of the module in Fj−1. Moreover, the constants in
all the maps are determined explicitly.

10.4.4. Comparison with the ideal generated by sub-permanents.
Let E,F = Cn, V = E⊗F , let I

permn,κ
κ ⊂ Sκ(E⊗F ) denote the span of

the sub-permanents of size κ and let Ipermn,κ ⊂ Sym(E⊗F ) denote the

ideal it generates. Note that dim(I
permn,κ
κ ) =

(
n
κ

)2
. Fix complete flags

0 ⊂ E1 ⊂ · · · ⊂ En = E and 0 ⊂ F1 ⊂ · · · ⊂ Fn = F . Write SEj for the
copy of Sj acting on Ej and similarly for F .

Write TE ⊂ SL(E) for the maximal torus (diagonal matrices). Recall
from Theorem 6.6.2.2 that Gpermn

is [(TE ×SE)× (TF ×SF )]oZ2, divided
by the n-th roots of unity.

Introduce the notation S̃κ = Sκ×Sn−κ ⊂ Sn, and if π is a partition of

κ, write [̃π] = [π] × [n − κ] for the S̃κ-module that is [π] as an Sκ-module
and trivial as an Sn−κ-module. For finite groups H ⊂ G, and an H-module
W , IndGHW = C[G]⊗C[H]W is the induced G-module, which has dimension
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equal to (dimW )|G|/|H| (see, e.g, [FH91, §3.4]), and that dim[π] is given
by the hook-length formula (see, e.g., [FH91, p. 50]). These two facts give
the dimensions asserted below.

As an SEn ×SFn-module the space I
permn,κ
κ decomposes as

(10.4.5)

Ind
SEn×SFn
S̃Eκ×S̃Fκ

([̃κ]Eκ⊗[̃κ]Fκ) = ([n]E⊕[n−1, 1]E⊕· · ·⊕[n−κ, κ]E)⊗([n]F⊕[n−1, 1]F⊕· · ·⊕[n−κ, κ]F ).

The space of linear syzygies M2,κ+1 := ker(I
permn,κ
κ ⊗V → Sκ+1V ) is the

SEn ×SFn-module

M2,κ+1 = Ind
SEn×SFn
S̃Eκ+1

×S̃Fκ+1

( ˜[κ+ 1]Eκ+1
⊗[̃κ, 1]Fκ+1

⊕ [̃κ, 1]Eκ+1
⊗˜[κ+ 1]Fκ+1

).

This module has dimension 2κ
(
n
κ+1

)2
. A spanning set for it may be obtained

geometrically as follows: for each size κ + 1 sub-matrix, perform the per-
manental tensor Laplace expansion along a row or column, then perform a
second tensor Laplace expansion about a row or column and take the differ-
ence. An independent set of such for a given size κ+ 1 sub-matrix may be
obtained from the expansions along the first row minus the expansion along
the j-th for j = 2, . . . , κ + 1, and then from the expansion along the first
column minus the expansion along the j-th, for j = 2, . . . , κ+ 1.

Remark 10.4.4.1. Compare this with the space of linear syzygies for the

determinant, which has dimension 2κ(n+1)
n−κ

(
n
κ+1

)2
. The ratio of their sizes is

n+1
n−κ , so, e.g., when κ ∼ n

2 , the determinant has about twice as many linear
syzygies, and if κ is close to n, one gets nearly n times as many.

Theorem 10.4.4.2. [ELSW15] dimMj+1,κ+j =
(
n
κ+j

)2(2(κ+j−1)
j

)
. As an

SE ×SF -module,
(10.4.6)

Mj+1,κ+j = Ind
SEn×SFn
S̃Eκ+j

×S̃Fκ+j

 ⊕
a+b=j

˜[κ+ b, 1a]Eκ+j
⊗ ˜[κ+ a, 1b]Fκ+j

 .

The
(
n
κ+j

)2
is just the choice of a size κ + j submatrix, the

(
2(κ+j−1)

j

)
comes from choosing a set of j elements from the set of rows union columns.

Näıvely there are
(

2(κ+j)
j

)
choices but there is redundancy as with the choices

in the description of M2.

The proof proceeds in two steps. As described below, one first gets
“for free” the minimal free resolution of the ideal generated by SκE⊗SκF .
Write the generating modules of this resolution as M̃j . We then locate
the generators of the linear strand of the minimal free resolution of our
ideal, whose generators we denote Mj+1,κ+j , inside M̃j+1,κ+j and prove the
assertion.
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To obtain M̃j+1, use the Howe-Young endofunctor mentioned in §8.11.1.1
that comes from the involution on symmetric functions that takes the Schur
function sπ to sπ′ (see, e.g. [Mac95, §I.2]). This involution extends to
an endofunctor of GL(V )-modules and hence of GL(E) ×GL(F )-modules,
taking SλE⊗SµF to Sλ′E⊗Sµ′F (see [AW07, §2.4]). This is only true
as long as the dimensions of the vector spaces are sufficiently large, so to
properly define it one passes to countably infinite dimensional vector spaces.

Applying this functor to the resolution (10.4.1), one obtains the resolu-
tion of the ideal generated by SκE⊗SκF ⊂ Sκ(E⊗F ). The GL(E)×GL(F )-
modules generating the linear component of the j-th term in this resolution
are:

M̃j,j+κ−1 =
⊕

a+b=j−1

S(a,1κ+b)′E⊗S(b,1κ+a)′F(10.4.7)

=
⊕

a+b=j−1

S(κ+b+1,1a−1)E⊗S(κ+a+1,1b−1)F.

Moreover, by Corollary 10.4.3.3 and functoriality, the map from S(κ+b+1,1a−1)E⊗S(κ+a+1,1b−1)F

into M̃j−1,j+κ−1 is non-zero to the copies of S(κ+b+1,1a−1)E⊗S(κ+a+1,1b−1)F
in

(Sκ+b,1a−1E⊗Sκ+a+1,1b−2F )·(E⊗F ) and (Sκ+b+1,1a−2E⊗Sκ+a,1b−1F )·(E⊗F ),

when a, b > 0.

Inside SκE⊗SκF is the ideal generated by the sub-permanents (10.4.5)
which consists of the regular weight spaces (p1, . . . , pn)× (q1, . . . , qn), where
all pi, qj are either zero or one. (Each sub-permanent has such a weight,
and, given such a weight, there is a unique sub-permanent to which it cor-
responds.) The set of regular vectors in any E⊗m⊗F⊗m spans a SE ×SF -
submodule.

The linear strand of the j-the term in the minimal free resolution of the
ideal generated by (10.4.5) is thus a SE ×SF -submodule of M̃j,j+κ−1. We
claim this sub-module is the span of the regular vectors. In other words:

Lemma 10.4.4.3. [ELSW15] Mj+1,κ+j = (M̃j+1,κ+j)reg.

For the proof, see [ELSW15]. Theorem 10.4.4.2 follows because if π is a
partition of κ+ j then the weight (1, . . . , 1) subspace of SπEκ+j , considered
as an SEκ+j -module, is [π] by Theorem 9.2.2.1, and the space of regular

vectors in SπE⊗SµF is IndSE×SF
S̃Eκ+j

×S̃Fκ+j

([̃π]E⊗[̃µ]F ).

10.4.5. Proof of Theorem 10.4.1.1. The variety σ̂r admits a desingu-
larization by the geometric method of [Wey03], namely consider the Grass-
mannian G(r, E∗) and the vector bundle p : S⊗F → G(r, E∗) whose fiber
over x ∈ G(r, E∗) is x⊗F . (Although we are breaking symmetry here, it
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will be restored in the end.) The total space admits the interpretation as
the incidence variety

{(x, φ) ∈ G(r, E∗)×Hom(F,E∗) | φ(F ) ⊆ x},

and the projection to Hom(F,E∗) = E∗⊗F ∗ has image σ̂r. One also has the
exact sequence

0→ S⊗F ∗ → E∗⊗F ∗ → Q⊗F ∗ → 0,

where E∗⊗F ∗ denotes the trivial bundle with fiber E∗⊗F ∗ and Q = E∗/S is
the quotient bundle. As explained in [Wey03], letting q : S⊗F ∗ → E∗⊗F ∗
denote the projection, q is a desingularization of σ̂r, the higher direct images
Riq∗(OS⊗F ∗) are zero for i > 0, and so by [Wey03, Thms. 5.12,5.13] one
concludes Fi = Mi · Sym(E⊗F ) where

Mi =
⊕
j≥0

Hj(G(r, E∗),Λi+j(Q∗⊗F ))

=
⊕
j≥0

⊕
|π|=i+j

Hj(G(r, E∗), SπQ∗)⊗Sπ′F

One now uses the Bott-Borel-Weil theorem to compute these cohomology
groups. Homogeneous vector bundles on the Grassmannian G(r, n) are in-
dexed by sequences (k1, . . . , kn) where k1 ≥ k2 · · · ≥ kr and kr+1 ≥ kr+2 ≥
· · · ≥ kn. An algorithm for implementing the Bott-Borel-Weil theorem is
given in [Wey03, Rem. 4.1.5]: If π = (p1, . . . , pq) (where we must have
p1 ≤ n to have Sπ′F non-zero, and q ≤ n− r as rankQ = n− r), then SπQ∗
is the vector bundle corresponding to the sequence

(10.4.8) (0r, p1, . . . , pn−r).

The dotted Weyl action by σi = (i, i+ 1) ∈ Sn is

σi · (α1, . . . , αn) = (α1, . . . , αi−1, αi+1 − 1, αi + 1, αi+2, . . . , αn)

and one applies simple reflections to try to transform α to a partition until
one either gets a partition after u simple reflections, in which case the coho-
mology group Hu(G(r, E∗), SπQ∗) is equal to the module associated to the
partition one ends up with and all other cohomology groups are zero, or one
ends up on a wall of the Weyl chamber, i.e., at one step one has (β1, . . . , βn)
with some βi+1 = βi + 1, in which case there is no cohomology.

In our case, we need to move p1 over to the first position in order to
obtain a partition, which means we need p1 ≥ r + 1, and then if p2 < 2
we are done, otherwise we need to move it etc... The upshot is we can get
cohomology only if there is an s such that ps ≥ r + s and ps+1 < s + 1, in
which case we get

S(p1−r,...,ps−r,sr,ps+1,...,pn−r)E⊗Sπ′F
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contributing to Hrs(G(r, E∗), SπQ∗). Say we are in this situation, then write
(p1 − r − s, . . . , ps − r − s) = α, (ps+1, . . . , pn−r) = β′, so

(p1 − r, . . . , ps − r, sr, ps+1, . . . , pn−r) = (sr+s) + (α, 0r, β′)

and moreover we may write

π′ = (sr+s) + (β, 0r, α′)

proving Theorem 10.4.1.1. The case s = 1 gives the linear strand of the
resolution.





Hints and Answers to
Selected Exercises

Chapter 1.

1.1.15.1 In general, the trilinear map associated to a bilinear form is (u, v, γ) 7→
γ(T (u, v)). Let z∗uv denote the linear form that eats a matrix and returns

its (u, v)-th entry. Since (XY )ik =
∑

j x
i
jy
j
k, the associated trilinear map is

(X,Y, z∗uv ) 7→
∑

j x
u
j y

j
v. On the other hand, trace(XY Z) =

∑
i,j,k x

i
jy
j
kz
k
i .

Now observe that both these agree, e.g., on basis vectors.

Chapter 2.

2.1.1.4 For the second assertion, a generic matrix will have nonzero determi-
nant. For the last assertion, first say rank(f) = r′ ≤ r and let v1, . . . , vv be a
basis of V such that the kernel is spanned by the last v−r′ vectors. Then the
matrix representing f will be nonzero only in the upper r′×r′ block and thus
all minors of size greater than r′ will be zero. Next say rank(f) = s > r.
In the same manner, we see the upper right size s submatrix will have a
nonzero determinant. Taking a Laplace expansion, we see at least one size
r + 1 minor of it is nonzero. In any other choice of basis minors expressed
in the new basis are linear combinations of minors expressed in the old, so
we conclude. For the last assertion, since polynomials are continuous, if ft
is in the zero set of all size (r + 1) minors, so will its continous limit f .

2.1.1.5 v ∈ V goes to the map β 7→ β(v).

2.1.2.1 A multi-linear map is determined by its action on bases ofA∗1, . . . , A
∗
n.

2.1.2.4 See (4.1.1).

313
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2.1.5.2 Write an arbitrary rank two tensor as (α1a1+α2a2)⊗(β1b1+β2b2)⊗(γ1c1+
γ1c2) + (α′1a1 + α′2a2)⊗(β′1b1 + β′2b2)⊗(γ′1c1 + γ′1c2) where the Greek letters
are arbitrary constants and show they cannot be chosen to make the tensor
equal to a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1.

2.1.5.4 See §3.1.6.

2.1.6.1 For example, take a1⊗b1⊗c2+a1⊗b2⊗c1+a2⊗b1⊗c1+
∑r

j=3 aj⊗bj⊗cj .
2.1.6.2 If T =

∑r
i=1 ai⊗bi⊗ci, then, letting πA : A→ A/(A′)⊥ be the projec-

tion, and similarly for B,C, then TA′⊗B′⊗C′ =
∑r

i=1 πA(ai)⊗πB(bi)⊗π(ci).

2.1.7.2 First assume R(T ) = R(T ) and write T = a1⊗b1⊗c1 + · · · +
ar⊗br⊗cr. Then T (A∗) = span{b1⊗c1, . . . , br⊗cr} so R(T ) ≥ rankTA. Now
use that ranks of linear maps are determined by polynomials (the minors of
the entries) to conclude.

2.2.1.2 Say T =
∑b

j=1 aj⊗bj⊗cj and this is an optimal expression. Since

TA is injective, the aj must be a basis. Let αj be the dual basis, so T (αj) =
bj⊗cj has rank one. These span. In the other direction, say the image is
span{b1⊗c1, . . . , bb⊗cb}. then for each j there must be some αj ∈ A∗ with
T (αj) = bj⊗cj . Since TA is injective, these form a basis of A, so we must

have T =
∑b

j=1 aj⊗bj⊗cj with aj the dual basis vectors.

2.2.2.2 Use Exercise 2.1.7.4, taking three matrices in A∗, e.g. Id, a matrix
with all 1’s just below the diagonal and zero elsewhere and a matrix with
1’s just above the diagonal and zeros elsewhere.

2.3.3.2 First assume T = eI = ei1 ∧ · · · ∧ eik and take µ = eL and ζ = eJ .
Then

µ T =

{
eI\L if L ⊂ I

0 if L 6⊂ I

ζ T =

{
eJ\I if I ⊂ J

0 if I 6⊂ J

and 〈eJ\I , eI\L〉 = 0, because they have no indices in common. By linearity

we get zero for any linear combination of such eJ , eL’s so we see that G(k, V )
is in the zero set of the equations. (Any element of G(k, V ) is equivalent to
[eI ] after a change of basis and our equations are independent of the choice
of basis.)

Now for simplicity assume T = eI1 +eI2 where I1, I2 have at least two indices
different. Take ζ = eI1∪F where F ⊂ I2, F 6⊂ I1 and I2 6⊂ I1 ∪ F . Then
ζ T = eF . Take µ = eI2\F so µ T = eF . We conclude.

Any element of ΛkV not in Ĝ(k, V ) can be degenerated to be of the form
T , so we conclude in general.

2.4.2.2 Show that for X ∈ Λp−1A⊗B∗, T∧pA (a ∧X) = −a ∧ T∧p−1
A (X).
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It is sufficient to consider the case q = p − 1. Say X ∈ ker(T∧p−1
A ). Then

a ∧X ∈ ker(T∧pA ) so a ∧X = 0 for all a ∈ A. But this is not possible.

2.5.1.4 trace(f).

2.5.1.5 Use Exercise 2.5.1.2.

2.5.2.2 Extend the aj to a basis of A and consider the induced basis of
Λq+1A. Write out Xj ∧ aj with respect to the induced basis and compare
coefficients.

2.5.2.3 Use a variant of Lemma 2.5.2.1.

2.5.3.2 Apply the proof of Theorem 2.5.2.6 to M〈p,p,2〉.

Chapter 3.

3.1.4.2 By the first part of the exercise, every point on the Chow variety
is a projection of a point of the form v1⊗ · · ·⊗vd, for some vj ∈ V , but the
projection of v1⊗ · · ·⊗vd is v1 · · · vd.
3.1.4.3 The ideal is generated by p2

3 − p2p4, p
2
2 − p0p4. Note that we simply

are throwing away the polynomials with p1. The point p3, corresponding
to the polynomial x3y is on a tangent line to v4(P1), while the point p22,
corresponding to the polynomial x2y2 is not.

3.1.4.5 The ideal is generated by p2
2 − p1p3, p1p2 − p0p3, p

2
1 − p0p2.

3.1.4.8 Say f(X) = Z1 ∪ Z2 and note that X = f−1(Z1) ∪ f−1(Z2).

3.2.1.4 Recall from Exercise 2.5.1.9 that ⊗jM〈lj ,mj ,nj〉 = M〈Πj lj ,Πkmk,Πlnl〉.
Set N = nml and consider M〈N〉 = M〈m,n,l〉⊗M〈n,l,m〉⊗M〈l,m,n〉.

3.2.2.1 Consider ♥ ♥
♥ ♠
♠ ♠


3.3.1.3 Since the border rank of points in GL(A)×GL(B)×GL(C) · T

equals the border rank of T , the border rank of points in the closure cannot
increase.

3.4.9.3 Instead of the curve a0 + ta1 use a0 + ta1 + t2aq+1 and similarly for
b, c.

3.4.6.3 Use Proposition 3.2.1.7.

3.5.3.3 If Rh(T ) = R(T ), then when writing T = limt→0 T (t), we may take
t ∈ Zh+1.

3.5.3.4 If we are multiplying polynomials of degrees d1 and d2, then their
product has degree d1d2, so the answer is the same as if we were working
over Zd1d2 .

Chapter 4.
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4.1.1.1 If one uses the images of the standard basis vectors, one gets:

M〈2〉 =

(
0 −1
1 −1

)⊗3

+

(
1 0
0 0

)⊗3

+

(
0 1
0 1

)⊗3

+

(
0 0
−1 1

)⊗3

+〈
(

0 1
0 0

)
⊗
(

0 0
1 0

)
⊗
(

1 −1
1 −1

)
〉Z3 .

4.2.2.2 (1,−1
2), (−1

2 , 1), (−1
2 ,−

1
2).

4.5.2.1

∗ 0 0
∗ ∗ ∗
0 0 ∗

.

4.7.5.1 If a line goes through [a⊗b⊗c], then it must be contained in PT̂[a⊗b⊗c]Seg(PA×
PB × PC).

Chapter 5.

5.1.4.5 First note that if x is generic, it is diagonalizable with distinct eigen-
values so if x is generic, then dimC(x) = b. Then observe that dim(C(x))
is semi-continuous as the set {y | dimC(y) ≤ p} is an algebraic variety.
Alternatetively, and more painfully, compute the centralizer of elements in
Jordan canonical form.

5.2.1.1 See the proof of Proposition 5.2.1.2 in the case k = 1.

5.3.1.4 For the lower bound use Koszul flattenings, for the upper, write T
as the sum of the first AFT tensor and the remainder and bound the border
rank of each.

5.3.1.8 For the lower bound, use the substitution method. For the upper,
consider the rank decomposition of the structure tensor of C[Z2m−1], which,
using the DFT, has rank and border rank m. Show that this tensor degen-
erates to the tensor corresponding to the centralizer of a regular nilpotent
element.

5.4.3.5 G · x is a union of orbits, so the boundary is a union of orbits all of
dimension strictly less than dim(G · x).

5.4.5.2
(
n+j−2
j−1

)
= dimSj−1Cn−1 so the sum may be thought of as computing

the dimension of Sm−1Cn where each summand represents basis vectors
(monomials) where e.g., x1 appears to the power m− j.
5.4.5.3 Without loss of generality assume 2 ≤ i ≤ j. For j = 2, 3 the in-

equality is straightforward to check, so assume j ≥ 4. Prove the inequality
5.4.3 by induction on n. For n = ij the inequality follows from the combi-
natorial interpretation of binomial coefficients and the fact that the middle
one is the largest.
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We have
(
n+1−1+ij−1

ij−1

)
=
(
n−1+ij−1

ij−1

)n−1+ij
n ,

(
n+1−j+i−1

i−1

)
=
(
n−j+i−1

i−1

) n−j+i
n−j+1

and
(
n+1−i+j−1

j−1

)
=
(
n−i+j−1
j−1

)n−i+j
n−i+1 . By induction it is enough to prove that:

(10.4.9)
n− 1 + ij

n
≥ n− j + i

n− j + 1

n− i+ j

n− i+ 1
.

This is equivalent to:

ij − 1 ≥ n(i− 1)

n− j + 1
+

n(j − 1)

n− i+ 1
+

n(i− 1)(j − 1)

(n− j + 1)(n− i+ 1)
.

As the left hand side is independent from n and each fraction on the right
hand side decreases with growing n, we may set n = ij in inequality 10.4.9.
Thus it is enough to prove:

2− 1

ij
≥ (1 +

i− 1

ij − j + 1
)(1 +

j − 1

ij − i+ 1
).

Then the inequality is straightforward to check for i = 2, so assume i ≥ 3.

5.4.4.3 For any z ∈ vn(Seg(PE × PF )), Gdetn,z, the group preserving both
detn and z, is isomorphic to PE × PF , where PE , PF are the parabolic sub-
groups of matrices with zero in the first column except the (1, 1)-slot, and
z is in the Gdetn,z-orbit closure of any q ∈ vn(PW ).

5.4.4.4 Notice that fixing k = [(µ⊗v)⊗(ν⊗w)⊗(ω⊗u)] is equivalent to fixing
a partial flag in each U, V and W consisting of a line and a hyperplane
containing it. Let [a⊗b⊗c] ∈ Seg(PA× PB × PC). If [a] 6∈ Seg(PU∗ × PV )
then the orbit is not closed, even under the torus action on V or U∗ that
is compatible with the flag. So without loss of generality, we may assume
[a⊗b⊗c] ∈ Seg(PU∗ × PV × PV ∗ × PW × PW ∗ × PU). Write a⊗b⊗c =
(µ′⊗v′)⊗(ν ′⊗w′)⊗(ω′⊗u′). If, for example v′ 6= v, we may act with an
element of GL(V ) that preserves the partial flag and sends v′ to v + εv′.
Hence v is in the closure of the orbit of v′. As GM〈U,V,W 〉,k preserves v we
may continue, reaching k in the closure.

5.6.2.6 A has basis xJ := xj11 · · ·x
jn
n with 0 ≤ js < as. Let eJ be the dual ba-

sis. Then TA =
∑

is+js<as
eI⊗eJ⊗xI+J . Write x∗K = xa1−k1−1

1 · · ·xan−kn−1
n .

Then TA =
∑

is+js+ks<as
eI⊗eJ⊗eK .

5.6.3.1 Show that if n ∈ Rad(A) is not nilpotent, then there is some prime
ideal of A not containing n.

Chapter 6.

6.1.4.2 Use that 1
1−λt =

∑
j λ

jtj .

6.2.2.4 Consider limε→0
1
ε ((x+ εy)n − xn).

6.2.2.7 Respectively, taking k = bn2 c one gets the ranks are
(
n
bn

2
c
)
,
(
n
bn

2
c
)2

,

and
(
n
bn

2
c
)2

.
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6.2.3.1 N∗Mσ
0
r = kerM⊗(ImageM)⊥ = kerM⊗ kerMT ⊂ U⊗V ∗. The

second equality holds because for a linear map f : V → W , Image(f)⊥ =
ker(fT ).

6.3.3.3 The space of matrices with last two columns equal to zero is con-
tained in Z(permm)sing.

6.3.4.5 Let Q̂ ∈ S2V be the corresponding quadratic form (defined up to
scale). Take a basis e1, . . . , ev of V such that e1, . . . , ek correspond to a
linear space on Q, so Q(es, et) = 0 for 0 ≤ s, t ≤ k. But Q being smooth

says Q̂ is non-degenerate, so for each es, there must be some ef(s) with
Q(es, ef(s)) 6= 0.

6.4.2.3 Parametrize C by a parameter s and τ(C) by s and a parameter t
for the line, then differentiate.

6.4.3.1 Consider a curve ([x(t)], [H(t)]) ∈ I. Note that 〈x(t), H(t)〉 ≡ 0
where 〈·, ·〉 : V × V ∗ → C is the pairing. Now consider d

dt |t=0〈x(t), H(t)〉.
6.4.6.1 First note that permm evaluated on a matrix whose entries are all

one is m!. Then perform a permanental Laplace expansion about the first
row.

6.5.2.2 Note that ∂R
∂xi

=
∑

j
∂2R
∂xi∂xj

and now consider the last nonzero col-
umn.

6.6.1.3 In this case the determinant is a smooth quadric.

6.6.1.5 Linear spaces on a variety X through a point x ∈ X must be
contained in PT̂xX.

6.6.2.1 {perm2 = 0} is a smooth quadric.

Chapter 7.

7.1.1.3 Consider (where blank entries are zero)

det



0 x1 x2 x3

x1 `
x1 `

x2 `
x2 `

x3 `
x3 `


= `7−3(x3

1 + x3
2 + x3

3).

7.4.2.7 Take xm = xm+1 = · · · = xN = 0.

7.4.2.9 Let ω be a primitive q-th root of unity. Let x1, . . . , xN denote the
standard basis of CN . Consider the vector (1, ω, ω2, . . . , ωq−1, 0, . . . , 0) and
its shifts by zeros.

7.6.1.3 In degree d + τ , this ideal consists of all polynomials of the form

`d1Q1 + `d2Q2 with Q1, Q2 ∈ SτCn2
, which has dimension 2dim SτCn2 −
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dimSτ−(d)Cn2
because the polynomials of the form `d1`

d
2Q3 withQ3 ∈ Sτ−(d)Cn2

appear in both terms.

Chapter 8.

8.1.2.2 Say we have a weight vector z ∈ V ⊗d weight (j1, . . . , jv) with ji <
ji+1. Consider the matrix g that is the identity plus a vector with one
non-zero entry in the (i, i+ 1) slot. Then gz is a non-zero vector of weight
(j1, . . . , ji−1, ji + 1, ji+1 − 1, . . . , jv).

8.1.4.1 The weight of the one-dimensional representation det−1 is (−1, . . . ,−1).

8.1.4.2 Consider the linear form v 7→ detv(v1, . . . , vv−1, v).

8.1.5.2 g · e1 ∧ · · · ∧ ev = det(g)e1 ∧ · · · ∧ ev
8.2.1.2 By linearity, for any P1, P2, the rank of the linear map U∗ → W

associated to P1 +P2 is at most the sum of the ranks of the maps associated
to P1 and P2.

8.4.1.2 A highest weight vector of any copy of SπV
∗ is constructed skew-

symmetrizing over l(π) vectors. For the other direction, the zero set of any
P ∈ Sδ(SdCk) is a proper subvariety of SdCk.
8.5.3.4 Under the action of a basis vector in gl(E⊗F ), since it is by Leibnitz
rule, at most one variable in each monomial can be changed. So whatever
highest weight vectors appear in the tangent space, their weight can differ by
at most one in each of E,F from ((1n), (1n)). But there is only one partition
pair with this property that occurs in Sn(E⊗F ), namely (2, 1n−1), (2, 1n−1)).

8.6.8.2 We need HomSd([π]∗, [µ]) 6= 0. But [π]∗ ' [π]. By Schur’s lemma
HomSd([π], [µ]) 6= 0 if and only if [π] = [µ].

8.6.8.3 If the multiplicity were greater than one, π would not be irreducible
by Schur’s lemma

8.6.1.1 Prove an algebra version of Schur’s lemma.

8.6.4.2 If V is an irreducible G-module, then V ∗⊗V is an irreducible G×G-
module.)

8.7.1.3

Sd(E⊗F ) = [(E⊗F )⊗d]Sd

= (E⊗d⊗F⊗d)Sd

= [(⊕|π|=dSπE⊗[π]))⊗(⊕|µ|=dSµF⊗[µ]))]Sd

= ⊕|µ|,|π|=dSπE⊗SµF⊗([π]⊗[µ])Sd

Now use Exercise 8.6.8.2.

8.7.2.2 cπ′ =
∑

σ∈Sπ′
δσ
∑

σ∈Sπ sgn(σ)δσ. Now show c(1d)cπ = cπ′ .

8.11.1.2
∑m

j=0

(
m
j

)2
=
(

2m
m

)
as Λm(E ⊕ F ) =

∑
j ΛjE⊗Λm−jF .
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Chapter 9.

9.1.2.2 Highest weight vectors here correspond to partitions with at most d
parts.

9.5.2.1 The map Matn → Matn // GLn sends a matrix to the coefficients
of its characteristic polynomial, i.e., the elementary symmetric functions of
its eigenvalues.

9.5.2.2 Say P ∈ C(Nor(Z // Γ)), satifies a monic polynomial with coef-
ficients in C[Nor(Z // Γ)]. Note that C(Nor(Z // Γ)) ⊂ C(Z)Γ, and of
course C[Nor(Z // Γ)] ⊂ C[Z], so by the normality of Z, P ∈ C[Z], but
C[Nor(Z // Γ)] = C[Z] ∩ C(Z)Γ.

9.6.3.2 By the Pieri formula, one can have at most three parts. On the
other hand, Chd(C2) = PSdC2.

Chapter 10.

10.1.1.2 For P ∈ SeV ∗, P (x) = 0 is equivalent to 〈P , xe〉 = 0.

10.1.4.3 Consider R with IR = (xd1+1
1 , . . . , x

dn−1+1
n−1 ).
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G-module map, 27
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S, rank decomposition, 80
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σr(X), secant variety of X, 94

τ(C), tangential variety, 159

End AbelA, 107

EndS(V ), commutator of S in End(V ), 226

RS , 149

R̃(T ), 63

VNP, 143

VP, 143

VPe, 146

∧, 29

en,N elementary symmetric function, 144

kπ,µ,ν , Kronecker coefficients, 237
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s-rank, 75

vd(PV ), Veronese variety, 48

abstract secant variety, 95

affine linear projection, 13

affine scheme, 270

affine variety, 47

algebra, 70

algebraic Peter-Weyl theorem, 230

algebraic variety, 9

apolar ideal, 290

apolarity lemma, 290
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asymptotic rank, 63

benchmarks, 12

big O notation, 4

bilinear map, 5

Black-List map, 259

border determinantal complexity, 14
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Borel subgroup, 124, 211

Bott-Borel-Weil theorem, 238

Brill’s equations, 265

Burnside’s theorem, 227

Cartan Lemma, 35

catalecticants, 147

Cauchy formula, 225, 233
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character of representation, 230

characterized by symmetries, 15

Chow variety, 48

Brill’s equations for, 265

equations of, 252

circuit

depth of, 178

depth three, 178

diagonal depth-3, 181

homogeneous, 179

shallow, 178

circuit size, 142

class function, 230

combinatorial restriction, 47

combinatorial value, 66

commutator, 226
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for complexity class, 13

complete flag, 111

complete for complexity class, 143

complete intersection, 199

completely reducible module, 226

compressible tensor, 120

compression generic, 120

concise tensor, 23
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conjugate partition, 210

conormal space, 150

convenient transpose symmetry, 85

Coppersmith-Winograd tensor, 67
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degeneration

toric, 62

degeneration of tensor, 56
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of variety, 52
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depth three circuit, 178

desingularization, 221

determinant, 13

determinantal complexity, 13

determinantal equations, 31

DFT, 71

diagonal depth-3 circuit, 181

dimension of variety, 49

Discrete Fourier Transform, 71

dual variety, 160

reflexivity theorem, 160

dual vector space, 18

easy Coppersmith-Winograd tensor, 66

elementary symmetric function, 144

equivariant determinantal expression, 197

equivariant map, 27

Euclidean closed, 22

exponent of matrix multiplication, 4

exterior algebra, 30

fanin

unbounded, 178

Fekete’s lemma, 64

finite map, 263

flattenings, 147

formula, 146

quasi-polynomial, 146
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Grassmannian, 24, 48

Grochow-Moore decomposition, 83
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preserving a set, 8

group algebra, 70

hard for complexity class, 143
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highest weight vector, 211
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Hilbert function, 200
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homogenous circuit, 179
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input
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integral, 263
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irreducible group action, 8

irreducible variety, 18

isomorphic G-modules, 28

isotypic component, 28

Jacobian ideal, 152

Jacobian variety, 152
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for polynomial, 215

Kronecker coefficients, 237

symmetric, 238
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linear map
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matrix coefficients, 229

maximal torus, 211
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method of partial derivatives, 147

module, 7

completely reducible, 226

semi-simple, 226
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module homomorphism, 27

module map, 27

monodromy loops, 219

multi-linear depth 3 circuit, 194

multi-symmetric polynomials, 272

multiplicative join, 182

multiplicity

of irreducible submodule, 28
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normalization

of a curve, 53

objective function, 93

obstruction
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orbit occurrence, 236
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power sum function, 145

projective space, 25
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of matrix, 6
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rank decomposition

symmetry group of, 80
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rational map, 51
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read once oblivious ABP, 189
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reduction
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regular determinantal expression, 243
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regular function
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regular map, 51
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regular weight space, 170
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resultant, 166
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scheme, 152

zero dimensional, 289

Schur’s lemma, 28

secant variety, 94

abstract, 95

Segre variety, 48
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shallow circuit, 178

Shannon entropy, 179
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singular point, 49
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size

of circuit, 142
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smooth point, 49

standard basis

of group algebra, 71

standard pinning, 82

Stirling’s formula, 179

Strassen’s tensor, 60

structure tensor of an algebra, 70

subspace bundle

tautological, 121

subspace variety, 148

substitution method, 40

sum-product polynomial, 247

symmetric algebra, 30

symmetric border rank, 149

symmetric function, 144

symmetric Kronecker coefficients, 238

symmetric polynomial, 144
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symmetric subspace variety

equations of, 221

symmetric tensor, 28

symmetric vector polynomials, 272

symmetry group
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tensor
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combinatorial restriction, 65

compressible, 120
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degeneration of, 56
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symmetric, 28

symmetry group of, 79

tensor algebra, 30

tensor product, 19

tensor rank, 3, 6
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of padded polynomials, 221
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Veronese variety, 48
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W-state, 21
Waring decomposition, 80
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wreath product, 258
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