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Preface

This book describes recent applications of algebraic geometry and represen-
tation theory to complexity theory. I focus on two central problems: the

complexity of matrix multiplication and Valiant’s algebraic variants of P v.
NP.

I have attempted to make this book accessible to both computer scien-
tists and geometers, and the exposition as self-contained as possible. Two
goals are to convince computer scientists of the utility of techniques from
algebraic geometry and representation theory, and to show geometers beau-
tiful, interesting, and important geometry questions arising in complexity
theory.

Computer scientists have made extensive use combinatorics, graph the-
ory, probability, and linear algebra. I hope to show that even elementary
techniques from algebraic geometry and representation theory can substan-
tially advance the search for lower, and even upper bounds in complexity
theory. I believe such additional mathematics will be necessary for further
advances on questions discussed in this book as well as related complex-
ity problems. Techniques are introduced as needed to deal with concrete
problems.

For geometers, I expect that complexity theory will be as good a source
for questions in algebraic geometry as has been modern physics. Recent work
has indicated that subjects such as Fulton-McPherson intersection theory,
the Hilbert scheme of points, and the Kempf-Weyman method for computing
syzygies all have something to add to complexity theory. In addition, com-
plexity theory has a way of rejuvenating old questions that had been nearly
forgotten but remain beautiful and intriguing: questions of Hadamard, Dar-
boux, Liiroth, and the classical Italian school. At the same time, complexity
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b'e Preface

theory has brought different areas of mathematics together in new ways: for
instance combinatorics, representation theory and algebraic geometry all
play a role in understanding the coordinate ring of the orbit closure of the
determinant.

This book evolved from several classes I have given on the subject: a
spring 2013 semester course at Texas A&M, summer courses at: Scuola
Matematica Inter-universitaria, Cortona (July 2012), CIRM, Trento (June
2014), U. Chicago (IMA sponsored) (July 2014), KAIST, Deajeon (Au-
gust 2015), and Obergurgul, Austria (September 2016), a fall 2016 semester
course at Texas A&M, and most importantly, a fall 2014 semester course at
UC Berkeley as part of the semester-long program, Algorithms and Com-
plexity in Algebraic Geometry, at the Simons Institute for the Theory of
Computing.

Since I began writing this book, even since the first draft was completed
in fall 2014, the research landscape has shifted considerably: the two paths
towards Valiant’s conjecture that had been considered the most viable have
been shown to be unworkable, at least as originally proposed. On the other
hand, there have been significant advances in our understanding of the ma-
trix multiplication tensor. The contents of this book are the state of the art
as of January 2017.

Prerequisites. Chapters 1-8 only require a solid background in linear alge-
bra and a willingness to accept several basic results from algebraic geometry
that are stated as needed. Nothing beyond [Shal3a] is used in these chap-
ters. Because of the text [Lanl2], I am sometimes terse regarding basic
properties of tensors and multi-linear algebra. Chapters 9 and 10 contain
several sections requiring further background.

Layout. All theorems, propositions, remarks, examples, etc., are numbered
together within each section; for example, Theorem 1.3.2 is the second num-
bered item in Section 1.3. Equations are numbered sequentially within each
Chapter. I have included hints for selected exercises, those marked with the
symbol ©® at the end, which is meant to be suggestive of a life preserver.
Exercises are marked with (1),(2), or (3), indicating the level of difficulty.
Important exercises are also marked with an exclamation mark, sometimes
even two, e.g., (1!!) is an exercise that is easy and very important.

Acknowledgments. Numerous people have given me help with this book
over the years. These include Malek Abdesselam, Harold Boaz, Emmanuel
Briand, Michel Brion, Peter Biirgisser, Klim Efremenko, Skip Garibaldi,
Josh Grochow, Jesko Hiittenhain, Anthony Iarrobino, Suil Kang, Pascal
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Koiran, Shrawan Kumar, Laurent Manivel, Maximilliano Mella, Ketan Mul-
muley, Giorgio Ottaviani, Victor Pan, Gregory Pearlstein, Kristian Ranes-
tad, Nick Ryder, Anna Seigal, Alistair Sinclair, Anne Shiu, Jerzy Weyman,
Avi Wigderson, Ryan Williams, Virginia Vassilevaska Williams, and Les
Valient. I am especially indebted to Markus Blaser, Jarek Buczynski and
Mateusz Michalek, Michael Forbes and Amir Shpilka, and Christian Iken-
meyer, respectively for help with Chapters 5,10,7, and 9. The book was
helped tremendously by Fulvio Gesmundo, who gave a careful reading and
corrections to the entire text.

I also thank all the students in the classes I have given, the organizers
of the various summer courses, as well as my collaborators. Finally I thank
the Simons center for hosting the fall 2014 semester program Algorithms and
Complezity in Algebraic Geometry, for an inspiring semester where the first
draft of this book was completed.






Chapter 1

Introduction

A dramatic leap for signal processing occurred in the 1960s with the im-
plementation of the fast Fourier transform, an algorithm that surprised the
engineering community with its efficiency.! Is there a way to predict the
existence of such fast unexpected algorithms? Can we prove when they do
not exist? Complexity theory addresses these questions.

This book is concerned with the use of geometry towards these goals. I
focus primarily on two central questions: the complexity of matrix multipli-
cation and algebraic variants of the famous P versus NP problem. In the
first case, a surprising algorithm exists and it is conjectured that even bet-
ter algorithms exist. In the second case, it is conjectured that no surprising
algorithm exists.

In this chapter I introduce the main open questions discussed in this
book, establish notation that will be used throughout the book, and intro-
duce fundamental geometric notions.

1.1. Matrix multiplication

Much of scientific computation amounts to linear algebra, and the basic
operation of linear algebra is matrix multiplication. All operations of linear
algebra— solving systems of linear equations, computing determinants, etc.—
use matrix multiplication.

ITo this day, it is not known if there is an even more efficient algorithm than the FFT. See
[Val77, Lok08, KLPSMNO09, GHIL)|.

1



2 1. Introduction

1.1.1. The standard algorithm. The standard algorithm for multiplying
matrices is row-column multiplication: Let A, B be 2 x 2 matrices

11 1 31
_ (a1 a9 _ (b1 by
a=(h ) =0 0)

Remark 1.1.1.1. While computer scientists generally keep all indices down
(to distinguish from powers), I use the convention from differential geometry
that in a matrix X, the entry in the i-th row and j-th column is labeled xz

N

The usual algorithm to calculate the matrix product C = AB is

1 2
¢l = aib] + ayb?,

¢y = albl + adb3,

C% == bl + a2b
C% = b2 + CZQbQ

It requires 8 multiplications and 4 additions to execute, and applied to n xn
matrices, it uses n? multiplications and n® — n? additions.

This algorithm has been around for about two centuries.

In 1968, V. Strassen set out to prove the standard algorithm was optimal
in the sense that no algorithm using fewer multiplications exists (personal
communication). Since that might be difficult to prove, he set out to show
it was true at least for 2 x 2 matrices — at least over Zs. His spectacular
failure opened up a whole new area of research:

1.1.2. Strassen’s algorithm for multiplying 2 x 2 matrices using 7
scalar multiplications [Str69]. Set

(1.1.1) I = (al +ad) (b} +63),
IT = (af + a3)by,
IT1 = ai (b — b3)
IV = a3(—bl +b%)
(af + a3)b3
(—a1 + af)(by + by),
(ay — a3)(b3 + b3),

-<
I



1.1. Matrix multiplication 3

Exercise 1.1.2.1: (1) Show that if C' = AB, then
=141V -V +VII,
A=II+1V,
s =IIT+7V,
cs=T+II1—-IT+VI.

This raises questions:

(1) Can one find an algorithm that uses just six multiplications?
(2) Could Strassen’s algorithm have been predicted in advance?
(3) Since it uses more additions, is it actually better in practice?
(4)

This algorithm was found by accident and looks ad-hoc. Is there
any way to make sense of it? E.g., is there any way to see that it
is correct other than a brute force calculation?

(5) What about algorithms for n x n matrices?

I address question (4) in §1.1.15, and the others below, with the last
question first:

1.1.3. Fast multiplication of n x n matrices. In Strassen’s algorithm,
the entries of the matrices need not be scalars - they could themselves be
matrices. Let A, B be 4 x 4 matrices, and write

11 1 2l
_ (a1 Gy _ (b1 by
a= () = 0)

where aé»,b; are 2 X 2 matrices. One may apply Strassen’s algorithm to
get the blocks of C = AB in terms of the blocks of A, B performing 7
multiplications of 2 x 2 matrices. Since one can apply Strassen’s algorithm
to each block, one can multiply 4 x 4 matrices using 72 = 49 multiplications
instead of the usual 43 = 64.

If A, B are 2% x 2% matrices, one may multiply them using 7% multi-
plications instead of the usual 8*. If n is not a power of two, enlarge the
matrices with blocks of zeros to obtain matrices whose size is a power of
two. Asymptotically, by recursion and block multiplication one can multi-
ply n x n matrices using approximately n'°22(7) ~ n28! multiplications. To
see this, let n = 2% and write 7% = (2¥)%, so a = log, 7.

1.1.4. Regarding the number of additions. The number of additions in
Strassen’s algorithm also grows like n?8!, so this algorithm is more efficient
in practice when the matrices are large. For any efficient algorithm for
matrix multiplication, the total complexity is governed by the number of
multiplications; see [BCS97, Prop. 15.1]. This is fortuitous because there
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is a geometric object, tensor rank, discussed in §1.1.11 below, that counts
the number of multiplications in an optimal algorithm (within a factor of
two), and thus provides a geometric measure of the complexity of matrix
multiplication.

Just how large a matrix must be in order to obtain a substantial sav-
ings with Strassen’s algorithm (size about two thousand suffice) and other
practical matters are addressed in [BB].

1.1.5. An even better algorithm? Regarding question (1) above, one
cannot improve upon Strassen’s algorithm for 2 x 2 matrices. This was first
shown in [Win71]. T will give a proof, using geometry and representation
theory, of a stronger statement in §8.3.2. However for n > 2, very little
is known, as discussed below and in Chapters 2-5. What is known is that
better algorithms than Strassen’s exist for n x n matrices when n is large.

1.1.6. How to predict in advance? The answer to question (2) is yes!
In fact it could have been predicted 100 years ago.

Had someone asked Terracini in 1913, he would have been able to pre-
dict the existence of something like Strassen’s algorithm from geometric
considerations alone. Matrix multiplication is a bilinear map (see §1.1.9).
Terracini would have been able to tell you, thanks to a simple parameter
count (see §2.1.6), that even a general bilinear map C* x C* — C* can be
executed using seven multiplications, and thus, fixing any ¢ > 0, one can
perform any bilinear map C* x C* — C* within an error of ¢ using seven
multiplications.

1.1.7. Big/Little O etc. notation. For functions f, g of a real variable
(or integer) x:

f(z) = O(g(z)) if there exists a constant C' > 0 and z( such that
|f(z)] < Clg(z)| for all x > x,

— TaE [f(@)] _
f(z) =o(g(x)) if limy_,0 g = 0

(
f(x) = Q(g(x)) if there exists a constant C' > 0 and xg such that
)| for all = > =z,

z) = w(g(x)) if if im0 J?Efﬁ%‘l =0, and
z) = O(g(2)) if f(z) = O(g(z)) and f(z) = Q(g(2))-

1.1.8. The exponent of matrix multiplication. The following quantity
is the standard measure of the complexity of matrix multiplication:



1.1. Matrix multiplication )

Definition 1.1.8.1. The exponent w of matrix multiplication is
w = inf{h € R | n X n matrices can be multiplied using
O(n") arithmetic operations}

where inf denotes the infimum.

By Theorem 1.1.11.3 below, Strassen’s algorithm shows w < log,(7) <
2.81, and it is easy to prove w > 2. Determining w is a central open problem
in complexity theory. After Strassen’s work it was shown in 1978 that w <
2.7962 [Pan78], then w < 2.7799 [Bin80] in 1979, then w < 2.55 [Sch81]
in 1981, then w < 2.48 [Str87] in 1987, and then w < 2.38 [CW90] in 1989,
which might have led people in 1990 to think a resolution was near. However,
then nothing happened for over twenty years, and the current “world record”
of w < 2.373 [Wil, Gal, Sto| is not much of an improvement since 1990.
These results are the topic of Chapter 3.

If one is interested in multiplying matrices of reasonable size, only the
algorithm in [Pan78] is known to beat Strassen’s. This “practical” exponent
is discussed in Chapter 4.

The above work has led to the following astounding conjecture:
Conjecture 1.1.8.2. w = 2.

That is, it s conjectured that asymptotically, it is nearly just as easy to
multiply matrices as it is to add them!

Although I am unaware of anyone taking responsibility for the con-
jecture, most computer scientists I have discussed it with expect it to be
true. (For example, multiplying n-bit integers is possible in near linear time
O(nlog(n)), which is almost as efficient as adding them.)

I have no opinion on whether the conjecture should be true or false
and thus discuss both upper and lower bounds for the complexity of matrix
multiplication, focusing on the role of geometry. Chapters 2 and 5 are
dedicated to lower bounds and Chapters 3 and 4 to upper bounds.

1.1.9. Matrix multiplication as a bilinear map. I will use the notation
M(n,m,l) . Cnxm oy mel N (Cn><l

for matrix multiplication of an n X m matrix with an m x 1 matrix, and
write M<n> = M(n,n,n)~

Matrix multiplication is a bilinear map, that is, for all X;, X € C**™,
Y;,Y € Cc™x1 and aj,b; € C,
Mnmpy (a1 X1+ a2X2,Y) = a1 My m 1y (X1,Y) + aaMp ) (X2,Y), and
M1y (X, 01Y1 + 02Ya) = b1 My 1 1y (X, Y1) + ba Mgy i 1y (X, Y2).
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The set of all bilinear maps C® x CP — C°¢ is a vector space. (In our
case a = nm, b = ml, and ¢ = In.) Write ay,...,a, for a basis of C* and
similarly for C?,C¢. Then T : C2 x CP — C° is uniquely determined by its
action on basis vectors:

Cc

(1.1.2) T(ai,bj) = Ztijkck.
k=1

That is, the vector space of bilinear maps C?* x CP — C¢, which I will
denote by C**®CP*®C®, has dimension abc. (The notation C**®@CP*®C®
is motivated in §2.1.) If we represent a bilinear map by a three-dimensional
matrix, it may be thought of as taking two column vectors and returning a
third column vector.

1.1.10. Ranks of linear maps. I use the notation C* for the column
vectors of height a and C?* for the row vectors.

Definition 1.1.10.1. A linear map f : C® — CP has rank one if there exist
a € C** and w € CP such that f(v) = a(v)w. (In other words, every rank
one matrix is the product of a row vector with a column vector.) In this
case I write f = a®w. The rank of a linear map h : C® — CP is the smallest
r such that A may be expressed as a sum of r rank one linear maps.

Given an a x b matrix X, one can always change bases, i.e., multiply X
on the left by an invertible a x a matrix and on the right by an invertible
b x b matrix to obtain a matrix with some number of 1’s along the diagonal
and zeros elsewhere. The number of 1’s appearing is called the rank of the
matrix and it is the rank of the linear map X determines. In other words,
the only property of a linear map C? — CP that is invariant under changes
of bases is its rank, and for each rank we have a normal form. This is not
surprising because the dimension of the space of such linear maps is ab, we
have a2 parameters of changes of bases in C? that we can make in a matrix
representing the map, and a? + b? > ab.

1.1.11. Tensor rank. For bilinear maps C2 x CP — C© we are not so lucky
as with linear maps, as usually abc > a? + b? + c?, i.e., there are fewer free
parameters of changes of bases than the number of parameters needed to
describe the map. This indicates why the study of bilinear maps is vastly
more complicated than the study of linear maps.

Nonetheless, there are properties of a bilinear map that will not change
under a change of basis. The most important properties for complexity are
tensor rank and tensor border rank. Tensor border rank is defined in §1.1.12
below. Tensor rank is a generalization of the rank of a linear map. Tensor
rank is defined properly in §2.1.3. Informally, a bilinear map T has tensor
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rank one if it can be computed with one multiplication. More precisely,
T has tensor rank one if in some coordinate system the multi-dimensional
matrix representing it has exactly one nonzero entry. This may be expressed
without coordinates:

Definition 1.1.11.1. T € C**®CP*®CC has tensor rank one if there exist
row vectors o € C2*, 3 € CP* and a column vector w € C® such that
T(u,v) = a(u)f(v)w. T has tensor rank r if it can be written as the sum
of r rank one tensors but no fewer, in which case we write R(T) = r. Let

60 = &E’a’b’ . denote the set of bilinear maps in C2*®@CP*®CC of tensor rank
at most r.

Remark 1.1.11.2. The peculiar notation 6° will be explained in §4.7.1. For
now, to give an idea where it comes from: o, = o,(Seg(P*~1 x PP~1 xPe~1))
is standard notation in algebraic geometry for the r-th secant variety of the
Segre variety, which is the object we will study. The hatted object 6, denotes
its cone in affine space and the 0 indicates the subset of this set consisting
of tensors of rank at most r.

The following theorem shows that tensor rank is a legitimate measure
of complexity:

Theorem 1.1.11.3. (Strassen [Str69], also see [ BCS97, §15.1] )
w=1inf{r € R | R(M<n>) =0(n")}.

wte€) arithmetic opera-

That is, n X n matrices may be multiplied using O(n
tions if and only if the tensor rank of My, is O(n“"*).

Our goal is thus to determine, for a given r, whether or not matrix
multiplication lies in &9 .
1.1.12. How to use algebraic geometry to prove lower bounds for
the complexity of matrix multiplication? Algebraic geometry deals
with the study of zero sets of polynomials. By a polynomial on the space
of bilinear maps C*" ®CP*®C®, T mean a polynomial in the coefficients 7%,
i.e., in abc variables. In §1.1.14 I describe a plan to use algebraic geometry
to prove upper complexity bounds. A plan to use algebraic geometry for
lower bounds is:

Plan to show M, 1) € 60 via algebraic geometry.

e Find a polynomial P on the space of bilinear maps C*™ x C™! —
C™ such that P(T) =0 for all T € &Y.

e Show that P(Mpy m1)) # 0.
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Chapters 2 and 5 discuss techniques for finding such polynomials, using
algebraic geometry and representation theory, the study of symmetry in
linear algebra.

1.1.13. Representation theory. Representation theory is the systematic
study of symmetry. We will primarily be concerned with properties of bi-
linear maps, tensors, polynomials, etc. that are invariant under changes of
bases. Representation theory will facilitate the study of these properties. It
has been essential for proving lower bounds for the complexity of M.

Let V be a complex vector space of dimension v. (I reserve the notation
CV for the column vectors with their standard basis.) Let GL(V') denote the
group of invertible linear maps V' — V', and I write GLy for GL(CY). If we
have fixed a basis of V, this is the group of invertible v x v matrices. If G is
a group and p: G — GL(V) is a group homomorphism, we will say G acts
on V and that V is a G-module. The image of u is called a representation
of G.

For example, the permutation group on n elements &,, acts on C" by

U1 Vo—1(1)

Un Vg—1 (n)

where o € G,, is a a permutation. That is, the image of &,, in GL,, is the
set of permutation matrices. (The inverse is used so that for a vector v,
o(t0) = (o7)v.)

A group action is irreducible if there does not exist a proper subspace
U C V such that u(g)u € U for all w € U and g € G.

The action of &, on C™ is not irreducible since the line spanned by
el + -+ -+ en is preserved by &,,. Note that the subspace spanned by e; —
€a,...,€e] — ey is also preserved by G,,. Both these subspaces are irreducible
S,,-modules.

The essential point is: the sets X, such as X = 6% ¢ C2P¢, for which we
want polynomials that vanish at the points of X, are invariant under the
action of groups:

Definition 1.1.13.1. A set X C V is invariant under a group G C GL(V)
ifforallz € X and all g € G, g(z) € X. Let Gx C GL(V) denote the group
preserving X, the largest subgroup of GL(V') under which X is invariant.

When one says that an object has symmetry, it means the object is
invariant under the action of a group.
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In the case at hand, X = 62 C V = A®B®C. Then 6? is invariant
under the action of the group GL(A) x GL(B) x GL(C) in GL(V), i.e., this
image lies in Go.

Recall that an ideal [ in a ring R is a vector subspace such that for all
Peland Q€eR, PQel.

Definition 1.1.13.2. For a set X C V, we will say a polynomial P vanishes
on X, if P(z) =0 for all z € X. The set of all polynomials vanishing on X
forms an ideal in the space of polynomials on V', called the ideal of X and
denoted I(X).

If a polynomial P is in the ideal of X, then the polynomial g(P) will
also be in the ideal of X for all ¢ € Gx. That is:

The ideal of polynomials vanishing on X is a Gx-module.

The systematic exploitation of symmetry is used throughout this book:
to study the ideals of varieties such as &, via their irreducible components in
Chapter 2, to find new decompositions of the matrix multiplication tensor
in Chapter 4, to find normal forms e.g., to prove the state of the art lower
bound for the complexity of matrix multiplication in Chapter 5, and to define
the only restricted model where an exponential separation of the permanent
from the determinant is known in Chapter 7. Chapter 8 is dedicated to
representation theory, and Chapters 9 and 10 approach problems in algebraic
geometry using representation theory.

1.1.14. How to use algebraic geometry to prove upper bounds for
the complexity of matrix multiplication? Based on the above discus-
sion, one could try:

Plan to show My, o) € 60 with algebraic geometry.

e Find a set of polynomials { P;} on the space of bilinear maps C™™ x
C™! — C™ such that T € 60 if and only if P;(T) = 0 for all j.

e Show that Pj(My m1) = 0 for all j.

This plan has a problem: Consider the set S = {(w,2) € C? | z = 0,w #
0}, whose real picture looks like the z-axis with the origin removed:

€ )

Any polynomial P € I(5), i.e., any P that evaluates to zero at all points
of S, will also be zero at the origin.

€

A 3
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Exercise 1.1.14.1: (1!) Prove the above assertion.

Just as in this example, the zero set of the polynomials vanishing on 6

is larger than 69 when 7 > 1 (see §2.1.5) so one cannot certify membership

in 60 via polynomials, but rather its Zariski closure which I now define:

Definition 1.1.14.2. The Zariski closure of a set S C V, denoted S, is the
set of u € V such that P(u) = 0 for all P € I(S). A set S is said to be

Zariski closed or an algebraic variety if S = 5, i.e., S is the common zero
set of a collection of polynomials.

In the example above, S = {(w,2) € C? | z = 0}.
When U = C*@CP*®C¢, let 6, := 60 denote the Zariski closure of the
set of bilinear maps of tensor rank at most r.

We will see that for almost all a, b, ¢, and r, 6 C &,. The problem with
the above plan is that it would only show My, € ;.

Definition 1.1.14.3. T € C2®CP®C® has border rank r if T € &, and
T & 6,—1. In this case we write R(T") = r.

For the study of the exponent of matrix multiplication, we have good
luck:

Theorem 1.1.14.4 (Bini [Bin80], see §3.2).
w = inf{T eR ’ E(M<n>) = O(TLT)}

That is, although we may have R(My)) < R(Myy), they are not dif-
ferent enough to effect the exponent. In other words, as far as the exponent
is concerned, the plan does not have a problem.

For n = 2, we will see that R(Myy) = R(M)) = 7. It is expected that
for n > 2, R(M)) < R(M(yy). For n = 3, we only know 15 < R(M3)) <
20 and 19 < R(M3)) < 23. In general, we know R(My)) > 3n* — o(n), see
§2.6, and R(My)) > 2n* — [logy(n)] — 1, see §5.4.5.

1.1.15. Symmetry and algorithms. In this subsection I mention three
uses of symmetry groups in the study of algorithms.

I first address the question raised in §1.1.2: Can we make sense of
Strassen’s algorithm (1.1.1)7 Just as the set 6, has a symmetry group, the
point My m, ny also has a symmetry group that includes GLy X GLm X GLy.
(Do not confuse this with G Ly, X GLmn X G Ly acting on ClmgCmngCnl
which preserves 60.) If we let this group act on Strassen’s algorithm for M, (2)s
in general we get a new algorithm that also computes M. But perhaps
the algorithm itself has symmetry.
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It does, and the first step to seeing the symmetry is to put all three
vector spaces on an equal footing. A linear map f : A — B determines a
bilinear form A x B* — C by (a,8) — B(f(a)). Similarly, a bilinear map
A x B — C determines a trilinear form A x B x C* — C.

Exercise 1.1.15.1: (2!) Show that M, considered as a trilinear form, is
(X,Y,Z) — trace(XYZ) ®

Since trace(XY Z) = trace(YZX), we see that G, also includes a
cyclic Zs-symmetry. In Chapter 4 we will see that Strassen’s algorithm is
invariant under this Zs-symmetry!

This hints that we might be able to use geometry to help find algorithms.
This is the topic of Chapter 4.

For tensors or polynomials with continuous symmetry, their algorithms
come in families. So to prove lower bounds, i.e., non-existence of a family
of algorithms, one can just prove non-existence of a special member of the
family. This idea is used to prove to the state of the art lower bound for
matrix multiplication presented in §5.4.5.

1.2. Separation of algebraic complexity classes

In 1955, John Nash (see [NR16, Chap. 1]) sent a letter to the NSA regard-
ing cryptography, conjecturing an exponential increase in mean key com-
putation length with respect to the length of the key. In a 1956 letter to
von Neumann (see [Sip92, Appendix]) Godel tried to quantify the appar-
ent difference between intuition and systematic problem solving. Around
the same time, researchers in the Soviet Union were trying to determine if
“brute force search” was avoidable in solving problems such as the famous
traveling salesman problem where there seems to be no fast way to find
a solution, but any proposed solution can be easily checked, see [Tra84].
(The problem is to determine if there exists a way to visit, say, twenty cities
traveling less than a thousand miles. If I claim to have an algorithm to
do so, you just need to look at my plan and check the distances.) These
discussions eventually gave rise to the complexity classes P, which models
problems admitting a fast algorithm to produce a solution, and NP which
models problems admitting a fast algorithm to verify a proposed solution.
The famous conjecture P #= NP of Cook, Karp, and Levin is that these
two classes are distinct. They also showed that many important problems
are complete in NP, and hence that resolving the P versus NP question
has practical importance for understanding whether these problems can be
routinely computed. See [Sip92] for a history of the problem and [NR16,
Chap. 1] for an up to date survey.
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The transformation of this conjecture to a conjecture in geometry goes
via algebra:

1.2.1. From complexity to algebra. The P v. NP conjecture is gener-
ally believed to be out of reach at the moment, so there have been weaker
conjectures proposed that might be more tractable. One such comes from a
standard counting problem discussed in §6.1.1. This variant has the advan-
tage that it admits a clean algebraic formulation that I now discuss.

L. Valiant [Val79] conjectured that a sequence of polynomials for which
there exists an “easy” recipe to write down its coefficients should not neces-
sarily admit a fast evaluation. He defined algebraic complexity classes that
are now called VP and VNP, respectively the sequences of polynomials
that are “easy” to evaluate, and the sequences whose coefficients are “easy”
to write down (see §6.1.3 for their definitions), and conjectured:

Conjecture 1.2.1.1 (Valiant [Val79]). VP # VNP.

For the precise relationship between this conjecture and the P # NP
conjecture, see [BCS97, Chap. 21]. Analogously with the original conjec-
ture, many natural polynomials are complete in VNP and hence resolving
VP versus VNP is important for understanding the computability of these
natural polynomials in practice.

Many problems from graph theory, combinatorics, and statistical physics
(partition functions) are in VNP. A good way to think of VNP is as the
class of sequences of polynomials that can be written down “explicitly”.

Most problems from linear algebra (e.g., inverting a matrix, computing
its determinant, multiplying matrices) are in VP.

Valiant also showed that a particular polynomial sequence, the perma-
nent (perm,,), is complete for the class VNP in the sense that VP # VNP if
and only if (perm,,) ¢ VP. As explained in §6.1.1, the permanent is natural
for computer science. Although it is not immediately clear, the permanent
is also natural to geometry, see §6.6.2. The formula for the permanent of an
n X n matrix z = (z°

7) is:

(1.2.1) perm,,(x) := Z xi(l) S T
Ueen
Here &,, denotes the group of permutations of {1,...,n}.

How would one show there is no fast algorithm for the permanent? First
we need a precise class of algorithms to consider. To this end, in §6.1.3 I de-
fine algebraic circuits, which is the standard class of algorithms for comput-
ing a polynomial studied in algebraic complexity theory, and their size, which
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is a measure of the complexity of the algorithm. Let circuit-size(perm,,) de-
note the size of the smallest algebraic circuit computing perm,,. Valiant’s
hypothesis 1.2.1.1 may be rephrased as:

Conjecture 1.2.1.2 (Valiant [Val79)]). circuit-size(perm,,) grows faster than
any polynomial in n.

1.2.2. From algebra to algebraic geometry. As with our earlier discus-
sion, to prove lower complexity bounds for the permanent, one could work
as follows:

Let S"CY denote the vector space of all homogeneous polynomials of
degree n in N variables, so perm,, is a point of the vector space St If we
write an element of S"CY as p(y1,...,yn) = D o<iy <<y <N Ctng gy
then we may view the coefficients ¢''»+# as coordinates on the vector space
S"CN. We will look for polynomials on our space of polynomials, that is,
polynomials in the coefficients ¢/,

Plan to show (perm,,) € VP, or at least bound its circuit size by r,
with algebraic geometry.

e Find a polynomial P on the space SnC" such that P(p) = 0 for
all p € S"C"* with circuit-size(p) < r.

e Show that P(perm,,) # 0.

By the discussion above on Zariski closure, this may be a more difficult
problem than Valiant’s original hypothesis: we are not just trying to exclude
perm,, from having a circuit, but we are also requiring it not be “near” to
having a small circuit. I return to this issue in §1.2.5 below.

1.2.3. Benchmarks and restricted models. Valiant’s hypothesis is ex-
pected to be extremely difficult, so it is reasonable to work towards partial
results. Two types of partial results are as follows: First, one could attempt
to prove the conjecture under additional hypotheses. In the complexity lit-
erature, a conjecture with supplementary hypotheses is called a restricted
model. For an example of a restricted model, one could restrict to circuits
that are formulas (the underlying graph is a formula, see Remark 6.1.5.2).
The definition of a formula coincides with our usual notion of a formula.
Restricted models are discussed in Chapter 7. Second, one can fix a com-
plexity measure, e.g., circuit-size(perm,,), and prove lower bounds for it. I
will refer to such progress as improving benchmarks.

1.2.4. Another path to algebraic geometry. The permanent resembles
one of the most, perhaps the most, studied polynomial, the determinant of
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an n X n matrix x = (x;)

(1.2.2) dety(z) = Y sgn(o)x) ) 2.
O’GGn

Here sgn(o) denotes the sign of the permutation o. The determinant, de-
spite its enormous formula of n! terms, can be computed very quickly, e.g.,
by Gaussian elimination. (See §6.1.3 for a division-free algorithm.) In par-
ticular (det,) € VP. It is not known if det,, is complete for VP, that is,
whether or not a sequence of polynomials is in VP if and only if it can be
reduced to the determinant in the sense made precise below.

Although
a b a —b
perm, <c d> = detq <c d ) ,

Marcus and Minc [MMS61], building on work of Pdlya and Szegd (see
[Gat8T]), proved that one could not express perm,,(y) as a size m de-
terminant of a matrix whose entries are affine linear functions of the m;
when m > 2. This raised the question that perhaps the permanent of an
m X m matrix could be expressed as a slightly larger determinant, which
would imply VP = VNP. More precisely, we say p(y!,...,y™) is an
affine linear projection of q(z*, ..., z), if there exist affine linear functions
z%(y) = 2%(y',...,yM) such that p(y) = q(z(y)). For example,

0 0 0 0 y§ v o

yp 1
Y5 1
(1.2.3) permgy(y) = detr y% 1
v, v 0 1
y3 0 w7 1
0 ¥ ¥ 1

This formula is due to B. Grenet [Grell], who also generalized it to express
perm,, as a determinant of size 2 — 1, see §6.6.3.

Valiant conjectured that one cannot do much better than this:

Definition 1.2.4.1. Let p be a polynomial. Define the determinantal com-
plexity of p, denoted dec(p), to be the smallest n such that p is an affine
linear projection of the determinant.

Valiant showed that for any polynomial p, dc(p) is finite but possibly
larger than circuit-size(p), so the following conjecture is possibly weaker
than Conjecture 1.2.1.2.

Conjecture 1.2.4.2 (Valiant [Val79]). dc(perm,,) grows faster than any
polynomial in m.
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The state of the art, obtained with classical differential geometry, is
dc(perm,,) > %2, due to Mignon and Ressayre [MRO4]. An exposition of
their result is given in §6.4.

1.2.5. Geometric Complexity Theory. The “Zariski closed” version of
Conjecture 1.2.4.2 is the flagship conjecture of Geometric Complexity Theory
(GCT) and is discussed in Chapters 6 and 8. To state it in a useful form,
first rephrase Valiant’s hypothesis as follows:

Let End(C"") denote the space of all linear maps C* — C", which
acts on S"C" under the action L - p(x) := p(LT (z)), where z is viewed as a

column vector of size n?, L is an n® x n? matrix, and T denotes transpose.
(The transpose is used so that Ly - (Lg - p) = (L1Lg) - p.) Let

End(C")-p={L-p| L € End(C")}.

Define an auxiliary variable £ € C! so /"™ perm,, € SnCm*+1, Consider
any linear inclusion cmi+l - o (e.g., with the Mat,,xm in the upper left
hand corner and ¢ in the (m + 1) x (m + 1) slot and zeros elsewhere in the
space of n X n matrices), so we may consider "~ perm,, € SnC™*. Then

(1.2.4) de(perm,,) <n <= (" ™perm,, € End(C"Q) - dety, .

This situation begins to resemble our matrix multiplication problem: we
have an ambient space S"C™ (resp. (C™)®3 for matrix multiplication), a
subset End(C™") - det,, (resp. 67, the tensors of rank at most r), and a
point £"~™ perm,, (resp. My,) and we want to show the point is not in
the subset. Note one difference here: the dimension of the ambient space is
exponentially large with respect to the dimension of our subset. As before,
if we want to separate the point from the subset with polynomials, we are
attempting to prove a stronger statement.

Definition 1.2.5.1. For p € SYCM, let dc(p) denote the smallest n such

that ¢m~dp € End(C"?) - dety, the Zariski closure of End(C™) - det,. Call
dc the border determinantal complexity of p.

Conjecture 1.2.5.2. [MSO01] dc(perm,,) grows faster than any polynomial
in m.

For this problem, we do not have an analog of Bini’s theorem 1.1.14.4
that promises similar asymptotics for the two complexity measures. In this
situation Mulmuley [Mul] conjectures that there exist sequences of polyno-
mials (p,) such that dc(p,,) grows like a polynomial in m but dc(p,,) grows
faster than any polynomial. Moreover, he speculates that this gap explains
why Valiant’s hypothesis is so difficult.
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Representation theory indicates a path towards solving Conjecture 1.2.5.2.
To explain the path, I introduce the following terminology:

Definition 1.2.5.3. A polynomial p € S"CY is characterized by its sym-
metries if, letting G, := {g € GLy | g-p = p}, for any ¢ € S"CY with
G4 2 Gy, one has p = A\g for some A € C.

There are two essential observations:

e End(C") - det,, = GL,2 - det,, that is, the variety End(C"*) - det,,
is an orbit closure.

e det,, and perm,, are characterized by their symmetries.

In principle representation theory (more precisely, the Peter-Weyl The-
orem, see §8.6) gives a description of the polynomials vanishing on an orbit
closure modulo the effect of the boundary. (It describes the ring of reg-
ular functions on the orbit.) Unfortunately for the problem at hand, the
approach to Valiant’s conjecture via the Peter-Weyl theorem, outlined in
[MS01, MSO08]|, was recently shown [IP15, BIP16] to be not viable as
proposed. Nevertheless, the approach suggests several alternative paths that
could be viable. For this reason, I explain the approach and the proof of its
non-viability in Chapter 8.

Unlike matrix multiplication, progress on Valiant’s hypothesis and its
variants is in its infancy. To gain insight as to what techniques might work,
it will be useful to examine “toy” versions of the problem - these questions
are of mathematical significance in their own right and lead to interesting
connections between combinatorics, representation theory, and geometry.
Chapter 9 is dedicated to one such problem, dating back to Hermite and
Hadamard, to determine the ideal of the Chow wvariety of polynomials that
decompose into a product of linear forms.

1.3. How to find hay in a haystack: the problem of
explicitness

A “random” bilinear map b : C™ x C™ — C™ will have tensor rank around
mTQ, see §4.7 for the precise rank. (In particular, the standard algorithm for
matrix multiplication already shows that it is pathological as a tensor as
nd << @) On the other hand, how would one find an explicit tensor of

tensor rank around mTZ? This is the problem of finding hay in a haystack?.
Our state of the art for this question is so dismal that there is no known
explicit bilinear map of tensor rank 3m, in fact the highest rank of an explicit
tensor known (modulo the error term) is for matrix multiplication [Lan14]:

2This phrase is due to Howard Karloff
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R(Myy) > 3n%—o(n?). Other explicit sequences Ty, : C™ x C™ — C™ with
R(Tym) > 3m — o(m) were found in [Zuil5] and the largest known rank
tensor, from [AFT11], has R(Tm) > 3m — o(log(m)). It is a frequently
stated open problem to find explicit bilinear maps Ty, : C™ x C™ — C™
with R(7},) > (3 + ¢)m. In Chapter 5, I discuss the state of the art of
this problem and the related border rank problem, where no explicit tensor
T € CmC™eC™ with R(T) > 2m is known. Valiant’s hypothesis may
also be phrased in this language: exhibiting an explicit polynomial sequence
that is provably difficult to compute would be sufficient to prove Valiant’s
hypothesis (a random sequence is provably difficult).

1.4. The role of algebraic geometry

Recent research (e.g., [Gall6, BB14]) has shown that in order to prove
super-linear lower bounds on tensor rank or border rank, thanks to the cac-
tus variety, one must deal with subtle questions regarding zero dimensional
schemes. The work [GKKS13a] indicates that questions regarding the ge-
ometry of syzygies could play a role in the resolution of Valiant’s hypothesis.
Chapter 10 introduces these topics and others from algebraic geometry and
representation theory, and explains their role in complexity theory. It is
written as an invitation to algebraic geometers with expertise in these areas
to work on questions in complexity theory.






Chapter 2

The complexity of
Matrix multiplication
I: first lower bounds

In this chapter I discuss lower complexity bounds for tensors in general and
matrix multiplication in particular. The two basic measures of complexity
are rank and border rank. 1 begin, in §2.1, by defining tensors and their rank.
I motivate the definition of border rank with the story of the discovery by
Bini et. al. of approximate algorithms for a reduced matrix multiplica-
tion tensor and then give its definition. Next, in §2.2 I present Strassen’s
equations. In order to generalize them, I present elementary definitions and
results from mutli-linear algebra and representation theory in §2.3, includ-
ing the essential Schur’s lemma. 1 then, in §2.4 give Ottaviani’s derivation
of Strassen’s equations that generalizes to Koszul flattenings, which are also
derived. In §2.5, I show a 2n? — n lower bound for the border rank of M, (n)-
This border rank lower bound is exploited to prove a 3n% — o(n?) rank lower
bound for My, in §2.6. The current state of the art is a 2n* — [logy(n)] — 1
lower bound for the border rank of My, which is presented in §5.4.5, as it
requires more geometry and representation theory than what is covered in
this chapter.

2.1. Matrix multiplication and multi-linear algebra

To better understand matrix multiplication as a bilinear map, I first review
basic facts from multi-linear algebra. For more details on this topic, see
[Lan12, Chap. 2].
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2.1.1. Linear algebra without coordinates. In what follows it will be
essential to work without bases, so instead of writing CV, I use V' to denote
a complex vector space of dimension v.

The dual space V* to a vector space V' is the vector space whose elements
are linear maps from V to C:

V*:i={a:V — C| «is linear}.

This notation is consistent with the notation of CV for column vectors and
CV* for row vectors because if in bases elements of V' are represented by
column vectors, then elements of V* are naturally represented by row vectors
and the map v — «(v) is just row-column matrix multiplication. Given a
basis v1, ..., vy of V, it determines a basis o', ...,V of V* by af(vj) = d;,
called the dual basis.

Let V*®W denote the vector space of all linear maps V. — W. Given
a € V*and w € W define a linear map aQw : V. — W by a®w(v) := a(v)w.
In bases, if « is represented by a row vector and w by a column vector, a®w
will be represented by the matrix wa. Such a linear map is said to have
rank one. Define the rank of an element f € V*®QW to be the smallest r
such f may be expressed as a sum of r rank one linear maps.

Recall from Definition 1.1.14.2, that a variety is the common zero set of
a collection of polynomials.

Definition 2.1.1.1. A variety Z C V is reducible if it is possible to write
Z = Z1 U Zy with Z1, Z5 nonempty varieties. Otherwise it is irreducible.

Definition 2.1.1.2. A property of points of an irreducible variety Z C W
is general or holds generally if the property holds on the complement of a
proper subvariety of Z.

A general point of a variety Z C V is a point not lying on some explicit
Zariski closed subset of Z. This subset is often understood from the context
and so not mentioned.

The complement to the zero set of any polynomial over the complex
numbers has full measure, so properties that hold at general points hold
with probability one for a randomly chosen point in Z.

Theorem 2.1.1.3 (Fundamental theorem of linear algebra). Let V, W be
finite dimensional vector spaces, let f : V' — W be a linear map, and let Ay
be a matrix representing f. Then



2.1. Matrix multiplication and multi-linear algebra 21

(1)
rank(f) = dim f(V)
= dim(span{columns of A})
= dim(span{rows of A¢})
= dim V — dim ker f.

In particular rank(f) < min{dim V, dim W}.
(2) For general f € V*@W, rank(f) = min{dim V,dim W}.

(3) If a sequence of linear maps f; of rank r has a limit fy, then
rank(fo) <.

(4) rank(f) < r if and only if, in any choice of bases, the determinants
of all size r + 1 submatrices of the matrix representing f are zero.

Note that assertion 4) shows that the set of linear maps of rank at most
r forms an algebraic variety. Although we take it for granted, it is really
miraculous that the fundamental theorem of linear algebra is true. I explain
why in §2.1.5.

Exercise 2.1.1.4: (1!) Prove the theorem. ©

Exercise 2.1.1.5: (1) Assuming V is finite dimensional, write down a canon-
ical isomorphism V — (V*)*. ®

Many standard notions from linear algebra have coordinate free defini-
tions. For example: A linear map f : V — W determines a linear map
ff o W* — V* defined by f7(B8)(v) := B(f(v)) for all v € V and g € W*.
Note that this is consistent with the notation V*@W ~ W®V*, being in-
terpreted as the space of all linear maps (W*)* — V*, that is, the order
we write the factors does not matter. If we work in bases and insist that
all vectors are column vectors, the matrix of f7 is just the transpose of the
matrix of f.

Exercise 2.1.1.6: (1) Show that we may also consider an element f €
V*®@W as a bilinear map by : V- x W* — C defined by bs(v, 8) := B(f(v)).

2.1.2. Multi-linear maps and tensors. The space VW is called the
tensor product of V with W. More generally, for vector spaces Ai,..., A,
define their tensor product A1®---®A, to be the space of n-linear maps
A x - x AY — C, equivalently the space of (n — 1)-linear maps A} x -+ X
Af | — Ay etc.. When Ay == A, =V, write V" =V ---QV.

Let aj € A; and define an element a1® - -- ®a, € A1®---®A, to be the
n-linear map

G® - Ran(al,...,a") = al(a1) - a"(an).
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Exercise 2.1.2.1: (1) Show that if {a;j | 1 < s; < aj}, is a basis of Aj,
then {a]'®---®a" | 1 < s; < a;} is a basis of 41®---®A,. In particular
d1m(A1® cee ®An) =aj---a,. ©

Remark 2.1.2.2. One may identify A;® - - - ® A,, with any re-ordering of the
factors. When I need to be explicit about this, I will call the identification
the re-ordering isomorphism.

Example 2.1.2.3 (Matrix multiplication). Let x¢, y2, zi' respectively be
bases of A = C™ B = C™! C = C?, then the standard expression of
matrix multiplication as a tensor is

n m 1
(2.1.1) Mimn = > _ Y. >_ sheyies.
=1 a=1u=1

Exercise 2.1.2.4: (2) Write Strassen’s algorithm out as a tensor. ®

2.1.3. Tensor rank. An element T € A1®---®A, is said to have rank
one if there exist a; € A; such that T' = a1® - - - ®ay,.

I will use the following measure of complexity:

Definition 2.1.3.1. Let T € A;® - - - ®A,,. Define the rank (or tensor rank)
of T to be the smallest r such that 7" may be written as the sum of r rank
one tensors. Write R(T) = r. Let 6) C A1®---®A, denote the set of
tensors of rank at most r.

For bilinear maps, tensor rank is comparable to all other standard mea-
sures of complexity on the space of bilinear maps, see, e.g., [BCS97, §14.1].

By (2.1.1) we conclude R(My, m1y) < nml. Strassen’s algorithm shows
R(M3,59y) < 7. Shortly afterwards, Winograd [Win71] showed R(M 35 2y) =
7.

2.1.4. Another spectacular failure. After Strassen’s failure to prove
the standard algorithm for matrix multiplication was optimal, Bini et. al.
[BLRB8O]| considered the reduced matriz multiplication operator

M5 =21@(y1©2] + 13021) + 30 (Y7 Q2 + y3827) + 110(Y1®2 + Y3023)

€ C’eC'eC*.

obtained by setting the a3 entry for M, (2) to zero. The standard presentation
shows R(M(;)d) < 6. Bini et. al. attempted to find a rank five expression
for M <7"25>d. They searched for such an expression by computer. Their method
was to minimize the norm of M <Tze>d minus a rank five tensor that varied (see

§4.6 for a description of the method), and their computer kept on producing
rank five tensors with the norm of the difference getting smaller and smaller,
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but with larger and larger coefficients. Bini (personal communication) told
me about how he lost sleep trying to understand what was wrong with his
computer code. This went on for some time, when finally he realized there
was nothing wrong with the code: the output it produced was a manifestation
of the phenomenon Bini named border rank [Bin80], which was mentioned
in the introduction in the context of finding polynomials for upper rank
bounds.

The expression for the tensor M&efl that their computer search found
was essentially

(2.1.2) Mgt = lim %[(w% + tr])®(ys + ty3) @21
+ (27 + ta1) @Y1 ®(21 + t23)
— 20y, ((21 + 27) + t23)
—21@((y1 +y2) + ty})©z1
+ (23 + 2)@(ya + ty7)® (21 +t23)].
The rank five tensors found by Bini et. al. were the right hand side of

(2.1.2) (without the limit) for particular small values of ¢.

In what follows I first explain why border rank is needed in the study of
tensors and then properly define it.

2.1.5. The Fundamental theorem of linear algebra is false for ten-
sors. Recall the fundamental theorem of linear algebra from §2.1.1.3.

Theorem 2.1.5.1. If T' € C™@C™®C™ is general, i.e., outside the zero set
of a certain finite collection of polynomials (in particular outside a certain

set of measure zero), then R(T') > (;ﬁ:é .

Tensor rank can jump up (or down) under limits.
The first assertion is proved in §4.7.1. To see the second assertion, at
least when r = 2, consider
1
T(t) = g[a1®b1®cl — ((11 + ta2)®(b1 + tb2)®(cl + tCQ)]
and note that

}gr(l) T(t) = a1®b1®co + a1®ba®c1 + as®b1®cq

which has rank three.
Exercise 2.1.5.2: (1) Prove R(a;®b1®c2 + a1®@b2®c1 + a2@b1®c1) = 3. ©

Remark 2.1.5.3. Physicists call the tensor a1 ®b1®co+a1@bs®@c1+a2@b1 Qcy
the W-state so I will sometimes denote it Ty state-



24 2. Lower bounds for matrix multiplication

To visualize why rank can jump up while taking limits, consider the
following picture, where the curve represents the points of 69. Points of 69
(e.g., the dots limiting to the dot labeled T') are those on a secant line to 69,
and the points where the rank jumps up, such at the dot labeled T, are those
that lie on a tangent line to 69. This phenomena fails to occur for matrices
because for matrices, every point on a tangent line is also on an honest
secant line. Thus in some sense it is a miracle that rank is semi-continuous
for matrices.

al®bl®cl

Our situation regarding tensor rank may be summarized as follows:

e The set 69 is not closed under taking limits. I will say a set that is
closed under taking limits is Fuclidean closed.

e It is also not Zariski closed, i.e., the zero set of all polynomials
vanishing on ¥ includes tensors that are of rank greater than r.

Exercise 2.1.5.4: (2) Show that the Euclidean closure (i.e., closure under
taking limits) of a set is always contained in its Zariski closure. ®

The tensors that are honestly “close” to tensors of rank r would be
the Euclidean closure, but to deal with polynomials as proposed in §1.1.12-
1.1.14, we need to work with the potentially larger Zariski closure.

Often the Zariski closure is much larger than the Euclidean closure. For
example, the Zariski closure of Z C C is C, while Z is already closed in the
Euclidean topology.

For the purposes of proving lower bounds, none of this is an issue, but
when we discuss upper bounds, we will need to deal with these problems. For
now, I mention that with 6% we have good luck: the Zariski and Euclidean
closures of 60 coincide, so our apparently different informal uses of the term
border rank coincide. I present the proof in §3.1.6.
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Remark 2.1.5.5. This coincidence is a consequence of a standard result in
algebraic geometry that the computer science community was unaware of.
As a result, it ended up being re-proven in special cases, e.g., in [Lic84, ?7].

2.1.6. Border rank. Generalizing the discussion in §1.1.11, 6, = 07 4, 0--.A,,
denotes the Zariski (and by the above discussion Euclidean) closure of 62,
and the border rank of T € A1®---®A,,, denoted R(T), is the smallest r
such that T' € ,. By the above discussion, border rank is semi-continuous.

Exercise 2.1.6.1: (1) Write down an explicit tensor of border rank r in
C'®C"®C" with rank greater than r. ®

Border rank is easier to work with than rank for several reasons. For
example, the maximal rank of a tensor in C™®C™®C™ is not known in

general. In contrast, the maximal border rank is known to be (g”ﬂi:%] for
all m # 3, and is 5 when m = 3 [Lic85]. In particular Strassen’s algorithm
could have been predicted in advance with this knowledge. The method of
proof is a differential-geometric calculation that dates back to Terracini in

the 1900’s [Ter11], see §4.7.1 for a discussion.
Exercise 2.1.6.2: (1) Prove that if T € AQB®C and T' := T|arxp/xcr

(here T is being considered as a trilinear form) for some A’ C A*, B’ C B*,
C' C C*, then R(T) > R(T") and R(T) > R(T"). ®

Exercise 2.1.6.3: (1) Let T; € A;®B;®C;, 1 < j,k,1 < s. Consider
T @ ©Ts € (9,4)®(®rBy)@(0,C;) Show that R(&;T;) < S5 R(T})
and R(®,T;) < 37 R(T;).

Exercise 2.1.6.4: (1) Let T € A;0B;®C;, 1 < j,k, 1 <s. Let A =®;A,,
B = ®;Bi, and C = ®;C}, consider T1® ---®Ts € AQB®C. Show that
R(®;_,Ti) < II;_,R(T), and R(®;_,T;) <11} R(T;)

2.1.7. Our first lower bound. GivenT € A®B®C, write T € AQ(B®C)
and think of 7" as a linear map T4 : A* — B®C. I will write T'(A*) C B&C
for the image.

Proposition 2.1.7.1. R(T) > rank(Ty4).

Exercise 2.1.7.2: (1!) Prove Proposition 2.1.7.1. ®

Say dimensions a, b, ¢ are unbalanced if any of the inequalities a > bc,
b > ac, ¢ > ab hold, and otherwise that they are balanced.

Permuting the three factors, and assuming the dimensions are balanced,
we have equations for 6, agpgc for 1 < max{a —1,b —1,c — 1}, namely
the size r + 1 minors of the linear maps T4, T, Tc.

Definition 2.1.7.3. A tensor T' € AQBRC' is concise if the maps Ta, Tp
and T¢ are all injective.
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Exercise 2.1.7.4: (2!) Find a choice of bases such that

M(n)A(A*) =

2

where z = (z7) is n X n, i.e., the image in the space of n? x n? matrices is

block diagonal with all blocks the same.
Exercise 2.1.7.5: (1) Show that R(My,) > n”.

Exercise 2.1.7.6: (1) Show R(Mm n,1)) = R(M(mn1y) = mnand R(My, 1 1y) =
R(M(m,m)) = m.

Exercise 2.1.7.7: (1!) Let b = ¢ and assume T4 is injective. Show that if
T(A*) is simultaneously diagonalizable under the action of GL(B) x GL(C)
(i.e., there exists g € GL(B) x GL(C) such that for any basis ol,..., a® of
A*| the elements g - T(al),...,g - T(a?) are all diagonal) then R(T) < b,
and therefore if T'(A*) is the limit of simultaneously diagonalizable subspaces
then R(T) < b.

2.2. Strassen’s equations

It wasn’t until 1983 [Str83] that the first non-classical equations were found
for tensor border rank. These equations had been found in the related
settings of partially symmetric tensors in 1877 by Fram-Toeplitz and 1977
by Barth [Toe77, Bar77], and in the completely symmetric case in 1858
by Aronhold [Aro58]. See [Ott07] for a history. Here they are:

2.2.1. A test beyond the classical equations. The classical equations
just used that BRC is a vector space. To extract more information from
Ty, we examine its image in B®C, which we will view as a space of linear
maps C* — B. If dimensions are balanced, T" is concise and has minimal
border rank max{a, b, c}, the image should be special in some way - how?
Assume b = ¢ so the image is a space of linear maps between two vector
spaces of the same dimension. (If b < ¢, just restrict to some C® c C*.) If
R(T) = b, then T'(A*) will be spanned by b rank one linear maps.

Lemma 2.2.1.1. If a = b = ¢ and T4 is injective, then R(T) = a if and
only if T'(A*) is spanned by a rank one linear maps.

Exercise 2.2.1.2: (2!) Prove Lemma 2.2.1.1. ®
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How can we test if the image is spanned by b rank one linear maps? If
T =a1001®c1 + - - - + aa®ba®c, with each set of vectors a basis, then

T(A*) = ] |z; € C»,
Ta

and this is the case for a general rank a tensor in C2RC2®C?. That is, the
space T'(A*) C B®C, when T has border rank a, lies in the Zariski closure of
the subspaces that, under the action of GL(B) x GL(C) are simultaneously
diagonalizable in the sense of Exercise 2.1.7.7. From this perspective our
problem becomes: determine polynomials on AQB®C that vanish of the
set of T" such that T'(A*) is diagonalizable. (The problem is more naturally
defined using the Grassmanian of Definition 2.3.3.1 below.)

A set of equations whose zero set is exactly the Zariski closure of the
set of tensors giving rise to diagonalizable spaces of matrices is not known!
What follows are some equations. (More are given in Chapter 5.) Recall
that BC = Hom(C*, B), the space of linear maps from C* to B. If instead
we had Hom(B, B) = End(B), the space of linear maps from B to itself, a
necessary condition for endomorphisms to be simultaneously diagonalizable
is that they must commute, and the algebraic test for a subspace U C
End(B) to be abelian is simple: the commutators [X;, X;] := X;X; — X; X,
must vanish on a basis Xi,..., X, of U. (I emphasize that commutators
only make sense for maps from a vector space to itself.) These degree two
equations exactly characterize abelian subspaces. We do not have maps
from a vector space to itself, but we can fix the situation if there exists
a € A* such that T'(«) : C* — B is invertible, as then we could test if the
commutators [T(a1)T ()™, T ()T ()] are zero. So we now have a test,
but it is not expressed in terms of polynomials on A® B®C, and we cannot
apply it to all tensors. These problems are fixed in §2.4.1. For now I record
what we have so far:

Proposition 2.2.1.3. Let b = ¢ and let T € AQBRC' be such that there
exists a € A* with rank(T(«)) = b, so R(T) > b. If R(T) = b, then for all
Xi1,Xo € T(A*)T(a)_l C End(B), [Xl,XQ] =0.

2.2.2. Strassen’s equations: original formulation. If T € AQB®C is
“close to” having rank a = b = ¢, one expects, using « with T'(«) invertible,
that T(A*)T(a)~! C End(B) will be “close to” being abelian. The following
theorem makes this precise:

Theorem 2.2.2.1 (Strassen). [Str83] Let T' € A B®C' and assume b = c.
Assume that there exists o € A* such that rank(T(«)) = b. Then for all
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X1, Xy € T(A)T ()™t C End(B),
R(T) > %rank([Xl,XQ]) +b.

I prove Theorem 2.2.2.1 for the case of the determinant of [X;, X3] in
§2.4.1 below and in general in §5.2.2.

We now have potential tests for border rank for tensors in C*@C™C™
uptor = %m, in fact tests for border rank for tensors in C3@C™®C™ up to
r= %m, since our test only used three vectors from A*. (I write “potential
tests” rather than “polynomial tests” because to write down the commutator

we must be able to find an invertible element in T'(A*).)
Strassen uses Theorem 2.2.2.1 to show that R(M ) > 3n:
Exercise 2.2.2.2: (2!) Prove R(My)) > 3n% ©

Exercise 2.2.2.3: (2) Show that E(M(;y) = 5 and for m > 2 that B(M{rfqu 2) =

3m — 1, where M(Iild2 2 18 My 2,2y With r1 set to zero.

A natural question arises: exchanging the roles of A, B,C we obtain
three sets of such equations - are the three sets of equations the same
or different? We should have already asked this question for the three
types of usual flattenings: are the equations coming from the minors of
T, Tg,Tc the same or different? It is easy to write down tensors where
rank(74), rank(T), rank(T¢) are distinct, however for 2 x 2 minors, two
sets of them vanishing implies the third does as well, see, §8.3.1, where
these questions are answered with the help of representation theory.

One can generalize Strassen’s equations by taking higher order commu-
tators, see [LMO8b]. These generalizations do give new equations, but they
do not give equations for border rank beyond the %b of Strassen’s equations.

An extensive discussion of Strassen’s equations and generalizations ap-
pears in [Lan12, §7.6].

2.2.3. Coming attractions: border rank bounds beyond Strassen’s
equations. The following more complicated expression gives equations for
o, for r > %b:

Let T € C°QCP®CP, write T = ag®Xg + - - - a4®X4 with X, € BeC.
Assume that rank(Xy) = b and choose bases such that Xy = Id. Consider
the following 5b x 5b matrix:
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0 (X1, Xo] [X1,X3] [X1,X4]

o xexi 0 [Xo Xy [Xe, X4

(2:2:1) = XX XaXa] 0 [Xo X
[X4,X1] [X4,X2] [X4,X3] 0

The name TA\Q is explained in §2.4.2 where the proof of the following propo-
sition also appears.
Proposition 2.2.3.1. [LO15] Let T € C’®CPRCP be as written above.
Then R(T) > ranl;T’P. If T € A®CP®CP with a > 5, one obtains the same
result for all restrictions of T to C’®CP®CP for any C°> C A*.

In particular the minors of (2.2.1) give equations up to border rank %b
for tensors in C2BRCP®CE fora>5 and b < c.

I do not know how anyone would have found (2.2.1) without using the
theory discussed in the next section. Hopefully this will motivate the theory-
adverse reader to persevere through it.

2.3. Theory needed for the generalization of Strassen’s
equations

The matrices [X7, Xs] and the right hand side of (2.2.1) are part of a se-
quence of constructions giving better lower bounds for border rank for ten-
sors. The limits of this method are lower bounds of 2b — 3. To describe
them, we will need more language from multi-linear algebra. Our first task
will be to generalize the space of skew-symmetric matrices. It will be con-
venient to generalize symmetric matrices at the same time. Before that I
present a fundamental result in representation theory.

2.3.1. Schur’s lemma. I take a short detour into elementary representa-
tion theory to prove a lemma everyone should know. Recall the definition
of a G-module from §1.1.13.

Definition 2.3.1.1. Let Wy, Wy be vector spaces, let G be a group, and let
pj : G = GL(Wj), j = 1,2 be representations. A G-module homomorphism,
or G-module map, is a linear map f : W3 — Wy such that f(pi(g) -v) =
p2(g) - f(v) for all v € W; and g € G. One also says that f is G-equivariant.
For a group G and G-modules V' and W, let Homg(V, W) C V*®W denote
the vector space of G-module homomorphisms V — W.

One says W1 and Wy are isomorphic G-modules if there exists a G-
module homomorphism W; — Wy that is a linear isomorphism.

Exercise 2.3.1.2: (1!!) Show that the image and kernel of a G-module
homomorphism are GG-modules.
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The following easy lemma is central to representation theory:

Lemma 2.3.1.3 (Schur’s Lemma). Let G be a group, let V and W be
irreducible G-modules and let f : V — W be a G-module homomorphism.
Then either f = 0 or f is an isomorphism. If further V.= W, then f = Aldy
for some constant \.

Exercise 2.3.1.4: (1!!) Prove Schur’s Lemma.

We will see numerous examples illustrating the utility of Schur’s Lemma.
I cannot over-emphasize the importance of this simple Lemma. I use it every
day of my mathematical life.

For any group G, G-module M, and irreducible G-module V', the isotypic
component of V in M is the largest subspace of M isomorphic to V™V for
some my . The integer my is called the multiplicity of V in M.

2.3.2. Symmetric and skew-symmetric tensors.

Exercise 2.3.2.1: (1) Let X be a matrix representing a bilinear form on
C™, by X(v,w) = vT Xw. Show that if X is a symmetric matrix, then
X(v,w) = X(w,v) and if X is a skew-symmetric matrix, then X (v,w) =
— X (w,v).

Recall that &, denotes the permutation group on d elements.

Definition 2.3.2.2. A tensor T € V®? is said to be symmetric if T(az, ..., 0q) =
T(ag(1), -+ Qpq)) for all ag, ..., aq € V* and all permutations o € &4, and
skew-symmetricif T(au, . .., aq) = sgn(o)T (s, - - -, Ag(ay) forall o, ..., aq €
V* and all 0 € G4. Let STV C V¥ (resp. A%V C V®?) denote the space of
symmetric (resp. skew-symmetric) tensors.

The spaces A%V and S?V are independent of a choice of basis in V. In
particular, the splitting

(2.3.1) V2 = §%V @ A2V

of the space of matrices into the direct sum of symmetric and skew symmetric
matrices is invariant under the action of GL(V') given by: for g € GL(V)
and vQw € VRV, v@w — guguw.

Introduce the notations:

T1T2 - X 1= Z To(1)DTe(2)@ - DTy (k) € SkV,
cE€Gy
and

T NTg N Nxg = Z SEN(0)T (1) DT 5(2) @+ * BT (k) € s
ceS
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respectively called the symmetric product (or simply product) of x1,...,zk
and the wedge product of x4, ..., k.

The space S¥V* may be thought of as the space of homogeneous poly-
nomials of degree k on V' (to a symmetric tensor T' associate the polynomial
Pr where Pr(v) := T(v,...,v)). Thus z1---x; may also be read as the
multiplication of z1,...,zk.

If v,...,vy is a basis of V, then v;, ® - - - ®v;, with i; € [v] :={1,...,v}
is a basis of V&4, vy -0, with 1T <4y < -+ < ig < v is a basis of Sy
and v;; A--- Ay, with 1 <141 <--- <ig < Vv is a basis of A?V. Call these
bases induced bases. If x; = (ZL']l, . ,x}’)T in the basis vy, ..., vy, then the
expression of x1 A--- Az in the induced basis is such that the coefficient of
Vip A Ay, 18

Ly Zy
det
i1 i
Ly Ly
For example, if V = C* with basis e, ..., e, then A%V inherits a basis
erNeg,...,e3 Neq. If
V1W2 — VW1
U1 w1 V1w3 — V3w
V2 w2 V1W4 — V4W1
v = , W= , then v Aw =

v3 w3 V2w3 — v3w2
V4 Wy V2W4 — V4W2

V3W4 — V4W3

Exercise 2.3.2.3: (1) Show that there is a GL(V)-module map A*V @V —
A¥1V | and more generally there are GL(V)-module maps AFV@A'V —
AV and SV @SV — SV the latter of which may be interpreted as
multiplication of polynomials.

Exercise 2.3.2.4: (1) Let & > ¢ and show that there is a GL(V)-module
map SFV*®S'V — SF¥tV*. This map has the following interpretation:
S'V may be interpreted as the homogeneous linear differential operators of
order t on the space of polynomials S¥V*. The map is then P®D ~ D(P).
Sometimes D(P) is denoted D~ P.

Exercise 2.3.2.5: (1) Show that for £ < [ there is a GL(V)-module map,
A V*@AYV — ARV that commutes with the action of GL(V). This map
is often denoted SRY +— 51Y

Exercise 2.3.2.6: (1) Let Sym(V) = ‘]?';OSjV, AV = ;:OAjV and
Vo = EBJQO:OV@ . Show that these spaces are all naturally algebras with
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the above defined products, respectively called the symmetric, exterior and
tensor algebras.

2.3.3. The Grassmannian. Before returning to border rank, I define an
important algebraic variety that we will need for the proof of tensor rank
lower bounds:

Definition 2.3.3.1. The Grassmannian of k-planes through the origin in
Vis

(2.3.2)

G(k,V) :=P{T € A*V | Juy,..., v, € V such that T = v A---Avg} C PAFV.

The most important special case of a Grassmannian is projective space
PV = G(1,V). PV := (V\0)/ ~ where v ~ w if and only if v = Aw for
some A € C\0.

The interpretation of the Grassmannian as the space parameterizing the
Ek-planes through the origin in V' is via the correspondence [v; A -+ A vg] <>
spanf{vy, ..., vg}.

The following exercise shows that the Grassmannian is indeed an alge-
braic variety. It can be safely skipped on a first reading.

Exercise 2.3.3.2: (3) The Grassmannian is the zero set of equations parametrized
by AF=HV*@ARM+ZV* for 1 < j < min{|¥F%], %]} as follows: for p €
AF=27V* and ¢ € AF2IV* | recall Exercise 2.3.2.5, and consider T2¢ € AZV*

and T € A*V. Define P, (T) := (T¢, 'T), the evaluation of an element

of A%V* on an element of A%V. Note that these are quadratic equations

in the coefficients of T'. Show that the zero set of these equations is the
Grassmannian. ©

2.4. Koszul flattenings

2.4.1. Reformulation and proof of Strassen’s equations. Augment
the linear map Tp : B* — A®C by tensoring it with Idy4, to obtain a linear
map

Idg®Tp : AQB* — AQARC.
So far this is not interesting, but by (2.3.1) the target of this map decomposes
as a GL(A) x GL(C)-module as (A?A®C) @ (S?AxC), and we may project
onto these factors. Write the projections as:
(2.4.1) Thy =T, : A®B* — A’A®C and Tj 4 : A®B* — S2AxC.

Exercise 2.4.1.1: (1) Show that if 7' = a®b®c is a rank one tensor, then
rank(7}) = a— 1 and rank(7T3,) = a.

Exercise 2.4.1.1 implies:
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Proposition 2.4.1.2. IfR(T') < r, thanrank(7T}) < r(a—1) and rank(T 4)
ra.

The second map will not give border rank lower bounds better than
the classical equations, but the first, e.g., when a = 3, is a map from a 2b
dimensional vector space to a 2c¢ dimensional vector space, so if b < ¢ we
can get border rank bounds up to %b.

The first set is equivalent to Strassen’s equations, as I now show. If
a > 3, one can choose a three dimensional subspace A’ C A* and consider
T restricted to A’ x B* x C* to obtain equations. (This is what we did in
the case of Strassen’s equations where A’ was spanned by a, o/, ")

Let aj,as,as be a basis of A, with dual basis a!,a?,a® of A* so T €
A®B®C may be written as T = a1®X1 + aa®X2 + az®X3, where X; =
T(crj). Then T will be expressed by a 3b x 3b matrix. Ordering the basis
of A®B* by as®p%,...,a3008°, aa®p, ..., ae®6°, a1®6, ..., a1®6P, and
that of A2A®C by (a1 A a2)®cy, ..., (a1 A a2)®cp, (a1 A a3)®cy, ..., (a1 A

a3)®cp, (a2 A az)®cy, . .., (a2 A a3)®cp, we obtain the block matrix
0 X1 —-Xp
(2.4.2) Th =Xy X3 0
X, 0 Xs

Recall the following basic identity about determinants of blocked matri-
ces (see, e.g., [Pra94, Thm. 3.1.1]), assuming the block W is invertible:

(2.4.3) det ()Z( 5;) = det(W)det(X —YW~1Z2).

B _ B B X5 . X3 0
Block 242 X =07 = (-xa. 2= ()ow = (3 2)

Assume X3 = T'(a?) is invertible to obtain
(2.4.4) det T = det(X3)? det(X1 X371 X5 — X X371X))

Equation (2.4.4) shows the new formulation is equivalent to the old, at least
in the case of maximal rank. (We are only interested in the non-vanishing
of the polynomial, not its values, so we can multiply the inner matrix on the
right by X37!.) Equation (2.4.4) combined with Proposition 2.4.1.2 proves
Theorem 2.2.2.1 in this case.

Note that here we have actual polynomials on AQ BQC' (the minors of
(2.4.2)), whereas in our original formulation of Strassen’s equations we did
not. To obtain polynomials in the original formulation one uses the adjugate
matrix instead of the inverse, see [Lan12, §3.8].

IN
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Remark 2.4.1.3. Both the classical equations and Strassen’s equations are
obtained by taking minors of a matrix whose entries are linear combina-
tions of the coeflicients of our tensor. Such constructions are part of a long
tradition of finding determinantal equations for algebraic varieties discussed
further in Chapters 8 and 10. For the experts, given a variety X and a
subvariety Y C X, one way to find defining equations for Y is to find vector
bundles E, F over X and a vector bundle map ¢ : £ — F such that Y is
realized as the degeneracy locus of ¢, that is, the set of points z € X such
that ¢, drops rank. Strassen’s equations in the partially symmetric case
had been discovered by Barth [Bar77] in this context.

Remark 2.4.1.4. In §8.2 and §8.3.1, we will see two different ways of de-

riving Strassen’s equations via representation theory.

2.4.2. Definition of Koszul flattenings. The reformulation of Strassen’s
equations suggests the following generalization: let dimA = 2p + 1 and
consider

(2.4.5) TP : B*@APA — AP ARC
obtained by first taking Tp®Idpr A : B*®APA — APARARC, and then
projecting to AP*' A®C as in Exercise 2.3.2.3.
If {a;}, {bj}, {cx} are bases of A, B,C'and T' =}, ; tka;@b;®cy, then
(24.6)  TAP(BRfL A A fp) =Y t9FB(b)ai A fr A A fp®c
i7j7k
The map T;l\p is called a Koszul flattening. Note that if T' = a®b®c has
rank one, then rank(Tﬁp ) = (2;’) as the image is a A AP A®c. By linearity of
the map T Tﬁp we conclude:
Proposition 2.4.2.1. [LO15| Let T' € A B®C with dim A = 2p+1. Then
Ap
R(T) > rankz(TA )
()
P
Since the source (resp. target) has dimension (2p;r1)b (resp. (if’jll)c),
assuming b < ¢, we potentially obtain equations for &, up to

b e
g = bl
() P

Just as with Strassen’s equations (case p = 1), if dimA > 2p + 1, one
obtains the best bound for these equations by restricting to subspaces of A*
of dimension 2p + 1.

Exercise 2.4.2.2: (2) Show that if T)" : APA® B* — AP*'A®C is injective,
then 777 : AMA®B* — A9t ARC is injective for all ¢ < p. ©
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2.4.3. Koszul flattenings in coordinates. To prove lower bounds on the
rank of matrix multiplication, and to facilitate a comparison with Griesser’s
equations discussed in §5.2.2, it will be useful to view T;‘\p in coordinates.
Let dim A = 2p + 1. Write T' = ag®Xo + - - - + a2,®X>, where a; is a basis
of A with dual basis o/ and X; = T(a?). An expression of 7,7 in bases
is as follows: write ay := a;; A --- A a;, for the induced basis elements of
AP A; require that the first (p2f’1) basis vectors of APA have i; = 0, that

the second (25) do not, and call these multi-indices 0J and K. Order the
bases of APT1 A such that the first (p%fl) multi-indices do not have 0, and the

second (2]5’) do, and furthermore that the second set of indices is ordered the
same way as K is ordered, only we write 0K since a zero index is included.
The resulting matrix is of the form

0 Q
o (2 9)
where this matrix is blocked ((p%fl)b, (if)b) X ((pgfl)b, (ny)b),
Xo
R = T . s
Xo
and Q, Q have entries in blocks consisting of X, ... , X9, and zero. Thus

if Xg is of full rank and we change coordinates such that it is the identity
matrix, so is R and the determinant equals the determinant of QQ by (2.4.3).
If we order the appearances of the K multi-indices such that the j-th K is
the complement of the j-th .J in [2p], then QQ will be block skew-symmetric.
When p = 1, QQ = [X1, X»], and when p = 2 we recover the matrix (2.2.1).

In general QQ is a block skew-symmetric (p2_p1)b X (p2_p1)b matrix whose
block entries are either zero or commutators [X;, X;]. Each [X;, X;] appears

(up to sign) (2p2_ 1) times, and each block row and column contain exactly

(2p—1

9 ) nonzero blocks, so the resulting matrix is very sparse.

2.5. Matrix multiplication and Koszul flattenings

We would like to apply our new equations to matrix multiplication. In order
to do so, we first must understand the matrix multiplication tensor better
from a geometric perspective.

2.5.1. The matrix multiplication tensor from an invariant perspec-
tive. In the vector space V*®V there is a unique line such that every vector
on the line has the same matrix representative for any choice of basis (and
corresponding choice of dual basis). This line is of course C{Idy }, the scalar
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multiples of the identity map. We say C{Idy } is the unique line in V*®@V
invariant under the action of GL(V).

We have
Muyywy € (U@V)(VeW)a(W*eU) ~ U'UaV*eVeW oW.

Moreover, we know Mgy, is invariant under the action of GL(U) x
GL(V) x GL(W). The only element of U*@U@V*@V@W*@W that is in-
variant under GL(U) x GL(V) x GL(W) is up to scale Idy @ Idy ® Idyy .
Checking the scale, we conclude:

Proposition 2.5.1.1. My v, after applying the re-ordering isomorphism,
is Idy @ Idy @ Idyy.

Exercise 2.5.1.2: (1) If v1,...,vy is a basis of V and !, ..., a" is the dual
basis of V*, show that the identity map on V is Idy = Zj ol ®v;.

Exercise 2.5.1.3: (1) Use Exercise 2.5.1.2 and the coordinate presentation
of matrix multiplication to get a second proof of Proposition 2.5.1.1. This
proof also shows that My, is invariant under the action of the image of
GL(U) x GL(V) x GL(W) in GL(A) x GL(B) x GL(C).

Exercise 2.5.1.4: (1) Show that there is a canonical isomorphism (V*@W)* —
VeW* where a@uw(v®p) = a(v)B(w). Now let V = W and let Idy €
V*®@V ~ (V*®V)* denote the identity map. What is Idy (f) for f € V*@V?

©

Exercise 2.5.1.5: (1!) Show that My ) when viewed as a trilinear map
Muyyvwy : (UaV)" x (VW) x (W*aU)* — C.
is (X,Y, Z) — trace(XY Z). ®

Exercise 2.5.1.6: (1!) Using Exercise 2.5.1.5, show that My € C* RC™* RC™’
is preserved by the cyclic permutation of the factors.

Exercise 2.5.1.7: (1!) Using Exercise 2.5.1.5, show that My € C™* RC™* @C™’
is preserved by action 2®@y®z — x! @27 @y’ , where 2 is the transpose of
the n X n matrix x.

Exercise 2.5.1.8: (1) Show that Idy @ Idy € VRV*QWW™* = (VW )(VeW)*,
after re-ordering, equals Idygw .
Exercise 2.5.1.9: (1!) Using Exercise 2.5.1.8, show that My, y n @My yr vy =
M(nn’,mm’,ll’) .
A fancy proof that R(My)) > n?, which will be useful for proving
further lower bounds, is as follows: Write A = U*®V, B = V*W, C =
W*@U, so (Myy)a : A* — B®C is a map UV™* — V*@WeW*®U. This
map is, for f € A*, f — f®Idw, and thus is clearly injective. In other
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words, the map is u®v — Zk(y®wk)®(wk®u), where wy, ..., wy is a basis
of W with dual basis w!,... , w".

2.5.2. Koszul flattenings and matrix multiplication. When T = M{U,V,W}a
the Koszul flattening map is

(M) - VEW*@AP(U*eV) — APTHU*V)o(W*aU).

The presence of Idy = Idy+ implies the map factors as (M<U7{/7W>)2p =

(M<u,v,1))//\1p® Idy «, where
(2.5.1)

(Miuy 1))t VRAP(U*RV) — APTHU*RV)RU.

u
B(E'@er) A+ A (EPRep) = Y uBuPRV) A (E'®er) A A (EPDey).
s=1
where w1, ..., uy is a basis of U with dual basis u!,...,u" of U*, so Idy =
ey URUs.

As discussed above, Koszul flattenings could potentially prove a border
rank lower bound of 2n% — 3 for M ). However this does not happen, as
there is a large kernel for the maps M{l\s when p > n: Let u=v =n. and

let p = n. Then

1R (ul@V)® - - @(uPRV) — Z(uj@)v) Aulev)® - @(utev)®u; =0,
J
S0 M<An’>1 is not injective. Since My, v 1))’ is a GL(U) x GL(V)-module map,
by Schur’s lemma 2.3.1.3, ker(M/\%) C VRA®(U*®V) C VErHloU*®n must

(m)
be a submodule. It is clearly symmetric in V and skew in U*, so the kernel

must contain the irreducible submodule APU*®S™+1V/.

Now consider the case p = n — 1. I claim (M<nyn71>);\1n_1 is injective.
The following argument is due to L. Manivel. Say X1®vi 4+ -+ + Xn®uvy €
ker(M<n,n71>);\1n_1, ie.,

Z[Xl A (u*@v1) + -+ X A (0¥ ®vy)|@us = 0.

S
Then for each s, each term in the brackets must be zero.
Lemma 2.5.2.1. Let A be a vector space, let Xq,...,X; € A1A, and let
ai,...,ar € A be linearly independent. Then if X1 Aay+---+ X Aap =0,
we may write each X; = Zle Yi; A\ a; for some Y;; € ATLA.
Exercise 2.5.2.2: (2) Prove Lemma 2.5.2.1.0

Exercise 2.5.2.3: (2) Show that ker(My, » 1)) = APU*®@S™1V. ©
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Remark 2.5.2.4. This is a special case of the generalized Cartan Lemma,
see [IL16b, §A.1]. With the aid of representation theory one can more
precisely describe the Yj;. (For those familiar with the notation, use the
sequence 0 — Sy 1q-1A — ATA®A — ATTTA - 0.)

Returning to the proof of injectivity when p = n — 1, taking s = 1, we
have X; = YY) 14 A (u'®a;), so each term in X is divisible by (u'®ay)
for some %, but then taking s = 2, each term in X is divisible by (u?®a;)
for some [. Continuing, if p < n we run out of factors, so there cannot be a
kernel. In summary:

Proposition 2.5.2.5. When p < n, the map (M<n’n71>)f4p is injective.

At this point one would like to say that if some T"P is injective, then
restricting to a generic A’ C A*, the map T"P|pparop+ : APARB* —
APH A’'®C would still be injective. Unfortunately I do not know how to
prove this, because a priori T"\P|xp 415+ injects into [APTLA'@C|B[AP A'®(A/A)RC],
and it is not clear to me whether for generic A’ it must remain injective when
one projects to the first factor. What follows are two proofs that this is
indeed the case for (M, <n’n,1>);\1n_1. The first is combinatorial. It has the ad-
vantages that it is elementary and will be used to prove the 2n% —[log, n] —1
lower bound of §5.4.5. The second is geometrical. It has the advantage of
being shorter and more elegant.
Theorem 2.5.2.6. [LO15] Let n < m. Then

E(M(m,n,l)) > w
m

In particular R(Myy)) > 2n® —n.

I prove the case n = m and leave the general case to the reader. We need

to find A’ € A* of dimension 2n — 1 such that, setting A= AJA+ ~ A
(M<n,n,1>|A’®B*®C*)gn_1 is injective.

First proof. Define the projection
(2.5.2) ¢:A—C!
(2.5.3) 1’; = €ipj—1-

Let es := €5, A--- ANes, ,, where S = {s1,...,sn—1} C [2n — 1]. The

map (M<n7n7]_>’A/®B*®C*)/I%n_1 is

esRuy — Z o(u @uy) A es@uj = Z ejtk—1 N es@u;.
J J

Index a basis of the source by pairs (S, k), with k& € [n], and the target by
(P,1) where P C [2n — 1] has cardinality n and [ € [n].
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What follows is an ordering of the basis vectors in the target such that
the resulting matrix is upper-triangular. Then we just need to show that
each diagonal element of the matrix is nonzero to conclude. Unfortunately
the order on (P, 1) is a little complicated because e.g., if the I’s are ordered
sequentially, then to get a diagonal matrix, the P’s must be given an order
in the opposite direction.

Define an order relation on the target basis vectors as follows: For (P, 1)
and (Pa,l2), set [ = min{ly,l2}, and declare (P1,l1) < (Py,l2) if and only if

(1) In lexicographic order, the set of [ minimal elements of P; is strictly
after the set of I minimal elements of P5 (i.e. the smallest element
of P, is smaller than the smallest of P; or they are equal and the
second smallest of P, is smaller or equal etc. up to I-th), or

(2) the [ minimal elements in P; and P» are the same, and [ < lo.

(3) the [ minimal elements in P, and P, are the same, Iy = l2, and the

set of n—1 tail elements of P; are after the set of n —1 tail elements
of P2.

The third condition is irrelevant - any breaking of a tie for the first two will
lead to an upper-triangular matrix. Note that ({n,...,2n — 1},1) is the
minimal element for this order and ([n],n) is the maximal element. Note
further that

ent1 A ANeap—1QUn > en A -+ Aean_1Q0U]

i.e., that
{n+1,....2n—1},n) —» ({n,...,2n — 1},1),

so ({n+1,...,2n—1},n) will be our first basis element for the source. The
order for the source is implicitly described in the proof.

Work by induction: the base case that ({n,...,2n — 1},1) is in the
image has been established. Let (P,l) be any basis element, and assume
all (P',l") with (P’,l") < (P,l) have been shown to be in the image. Write
P = (p1,...,pn) with p; < pi+1. Consider the image of (P\{p;},1+p; — 1)
which is

3 (W QU1 1) A epy gy Suj = > Cpi—+5 N EP\{p} EUj-
j {li=l+pi g P\{pi}}

Taking j = [ we see (P, 1) is among the summands. If j < [, the contribution
to the summand is a (P’, j) where the first j terms of P’ equal the first of P,
so by condition (2), (P’,j) < (P,1). If j > [, the summand is a (P”, j) where
the first [ — 1 terms of P and P” agree, and the [-th terms are respectively
pr and p; — 1 + j so by condition (1) (P”,j) < (P,1). O
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To illustrate, consider the first seven terms when n = 3:
(345,1), (345, 2), (345, 3), (245,1), (235,1), (234, 1), (245, 2),

where the order did not matter for the triple (245,1), (235,1), (234,1). We
have

(45,3) — (345,1)
(35,2) — (345,2)
(34,3) > (345,3)
(45,2) — (245,1) + (345 2)
(35,2) — (235,1) + (345,3)
(34,2) — (234,1)
(25,3) — (245, 2).

Second proof. For this proof take u = n < v = m. Take a vector space
E of dimension 2, and fix isomorphisms U ~ S 1E, Vo~ Sm=1p* . Let
Al = gmin=2px o gn-lprxeem-1lp* — UoV*, and set A = A/A’+. This
turns out to be the same projection operator as in the previous proof.
Our map is
Anfl(SeranE)@SnflE N An(SeranE)@SmflE*
m-—1 4
QiA--AQua®f = Y (FA)AQLA- A Qu1®hy
§=0
where b/ = 27y™~I=1 and h; is the dual basis vector.

Recall the contraction map from Exercise 2.3.2.4, for a > j:
S°E x SPE* — S*PE
(f,9) g2 f

In the case f = I for some [ € E, then g=1* = g(1)I*# (here g(I)
denotes g, considered as a polynomial, evaluated at the point [), so that
g-1* =0 if and only if [ is a root of g.

Consider the transposed map, and relabeling E as E* (they are isomor-
phic as SL(E) ~ SLy modules):

ADNT .
(M mmlagurev)y;)"

Sm—lE*®AnSm+n—2E - Sn—1E®An—ISm+n—2E

®(f1 /\fn HZ Z ngfz ®f1 fz/\fn
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The map ((M<1,m,n>|A’®U*®V*)gp)T is surjective: Let l“*1<2§>(l?"m_2 A
S NIRRT € guelpe ANl gmAn-2 [ with | ]; € E. Such elements span
the target so it will be sufficient to show any such element is in the image.
Assume first that [ is distinct from the /;. Since n < m, there is a polynomial
g € S™~LE* which vanishes on 1, ... ,l,_1 and is nonzero on . Then, up to
a nonzero scalar, g (I 2 A ... APERTZ A IMAN=2) 1aps to our element.

The condition that [ is distinct from the /; may be removed by taking
limits, as the image of a linear map is closed. ([l

In §2.6.2 we will need the following extension:

Proposition 2.5.2.7. For 2p < n — 1 there exist A’ C URV™ of dimension
2p + 1 such that, setting A = A/(A’)*,

(M(n,n,l>‘A’®V®U*)2p : V®APA — Ap+1A®U

is injective. A general choice of A’ will have this property.

Proof. Consider A’ as a subspace of S?*2FE C A* as in the proof above.
Take A’ spanned by £2%727%mg ... ,e%;;f—amng, where all the 4p + 2
points £, m; are in general position, and o < n — 1 will be chosen below.
I show the transposed map is surjective. The target of the transposed map
is spanned by vectors of the form A@#22=27m% A -+ A eg;‘*?*amgp where
{s1,...,8p} =5 C [2p+ 1]. The kernel of the map (¢22~2~*m% )n_1n_1 :
Sn-1p* — §P~1F has dimension n — a — 1. Since the points were chosen in
general linear position, the intersection of the p kernels will have codimension
p(a+1). In order to imitate the proof above, we need this intersection to be
non-empty, so require p(a+1) < n. Now consider some (E?H_Q_am?‘)n,l,n,l
for j & S restricted to the intersection of the kernels. Again since the points
were chosen in general linear position, it will be injective, so its image will
have dimension n — p(a + 1). We have p + 1 such maps, and again by
general position arguments, the images will be transverse. Thus as long as
(p+1)(n—p(a+1)) > n, the span of these p+ 1 images will be all of S™E.
Thanks to the hypothesis on p, the three inequalities on « are compatible,
and we can select any « in the admissible range. Thus every h®€§‘f*2*amg‘l A
o AZRT2mem will be the image under (Mg p 1) |A'®V®U*);\§p of

D g @I Y A (2R A A 2Ry
Jgs

for some g; € Sn-lpx,
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Write A = A/A'". Define

(2.5.4)
P2p+1 : G(2p + 1, A*) —C

A= det(Mpnm)laeprec)y : APARB* — AP ARC).

The above argument shows that P, y1 is not identically zero for all 2p <
n — 1, but since it is a polynomial, it is not zero on a general A’. ([l

2.5.3. Why didn’t we get a better bound? The above result begs the
question: did we fail to get a better bound because this is the best bound
Koszul flattenings can give, or is there something pathological about matrix
multiplication that prevented the full power of Koszul flattenings? That
is, perhaps the Koszul flattenings for C™@C™C™ could be trivial beyond
border rank 2m — y/m. This is not the case:

Theorem 2.5.3.1. [Lan15b] The maximal minors of the Koszul flattening
TP« APCPHe(C2+2)* — APHIC2PHIQC%+2 give nontrivial equations
for 6, C C*T@C?**T2®C? *2, the tensors of border rank at most r in
CPHleC?PT2C%>*2 up tor =4p+ 1.

For C™®@C™®C™, this implies that when m is even (resp. odd), the
equations are nontrivial up tor = 2m — 3 (resp. r = 2m — 5).

Exercise 2.5.3.2: (2!) Prove the theorem. ®

2.6. Lower bounds for the rank of matrix multiplication

2.6.1. The results. Most tensors have rank equal to border rank, in the
sense that the set of tensors of rank greater than r in &, is a proper subvari-
ety, in particular, a set of measure zero in 6. I expect matrix multiplication
to have larger rank than border rank when n > 2 because of its enormous
symmetry group, as explained in Chapter 4.

The key to the rank lower bound is that our proof of the border rank
lower bound used equations of relatively low degree because of the factor-
ization (M<n>);\‘p = (M<n7n71>);\‘p® Idy, so we were considering minors of a
size (2nn_1)n matrix instead of a size (2nr1_1)n2 matrix. I will show that if a
low degree polynomial is nonzero on My, and My, has an optimal rank
decomposition My, = E;zl a;®b;®cj, then the polynomial is already zero
on a subset of the summands. This is a variant of the substitution method
discussed in §5.3.

Theorem 2.6.1.1. [MR13| Let p < n be a natural number. Then

p 2 2p 2p—2
2.6.1) R(Mpnm)> (1+—— —(2 - 2)n.
(26.1) R(Mnnm) > (14 —7)nm +n ((p+1> <p_1>+ )n
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When n = m,

(262) R(Mp) >3- — )’ (2( 2P ) — (QP_ 2) +2)n.

p+1 p+1 p—1

For example, when p = 1 one recovers Blaser’s bound of %nQ —3n. When
p = 3, the bound (2.6.2) becomes 1ln? — 26n, which improves Bléser’s for
n > 132. A modification of the method also yields R(M ) > Sn? — 7n.
See [MR13, Lan14] for proofs of the modifications of the error terms.

I give a proof of a 3n* — o(n?) lower bound for R(My,):
Theorem 2.6.1.2. [Lan14] Let 2p < n — 1. Then

2 1 9 1
R(M<H,n,m>) > ;_:_1 nm+n2 _ (2p+ 1)( p;— >n

To see this implies R(M ) > 3n% — o(n?), take p = log(log(n)).

2.6.2. Proof of Theorem 2.6.1.2. We will need a few facts from algebraic
geometry before the proof.

The following standard Lemma, also used in [Bl403], appears in this
form in [Lan12, Lemma 11.5.0.2]:

Lemma 2.6.2.1. Given a polynomial P of degree d on C?, there exists a
subset of basis vectors {e;,,...,e;,} such that P |<e¢1,...,e¢d> is not identically
Zero.

In other words, there exists a coordinate subspace C* C C? such that
C4 ¢ Zeros(P).

The lemma follows by simply choosing the basis vectors from a degree
d monomial that appears in P. For example, Lemma 2.6.2.1 implies that
a surface in P3 defined by a degree two equation cannot contain six lines
whose pairwise intersections span P3.

Recall the Grassmannian G(k, A) from Definition 2.3.3.1.

Lemma 2.6.2.2. Let A be given a basis. For k,d satisfying dk < dim A
and a nonzero homogeneous polynomial P of degree d on A*A that is not
in I(G(k,A)), there exist dk basis vectors of A such that, denoting their
dk-dimensional span by A, P restricted to G(k, A) is not identically zero.

Proof. Consider the map f : A*F — G(k,A) given by (ai,...,ax) — a1 A
-+ Aag. Then f is surjective. Take the polynomial P and pull it back by f.
Here the pullback f*(P) is defined by f*(P)(a1,...,ax) := P(f(a1,...,ax)).
The pullback is of degree d in each copy of A. (I.e., fixing k — 1 of the aj,
it becomes a degree d polynomial in the k-th.) Now apply Lemma 2.6.2.1 k
times to obtain dk basis vectors such that the pulled back polynomial is not
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identically zero restricted to their span A, and thus P restricted to G(k, A)
is not identically zero. O

Remark 2.6.2.3. The bound in Lemma 2.6.2.2 is sharp, as give A a ba-
sis a1, ...,as and consider the polynomial on A¥A with coordinates z! =

x% ... % corresponding to the vector Y ;zfa;, A+ Aay,:

P o— gk gkt 2k d—1)k+1,....dk

oo _
Then P restricted to G(k, (ai,...,aqx)) is non-vanishing but there is no
smaller subspace spanned by basis vectors on which it is non-vanishing.

Proof of Theorem 2.6.1.2. Say R(My, nmy) = 7 and write an optimal
expression

.
(2.6.3) Minm = Y a4;®b;®c;.
j=1

I will show that the Koszul-flattening equation is already nonzero restricted
to a subset of this expression for a judicious choice of A C A of dimension
2p+1 with p < n—1. Then the rank will be at least the border rank bound
plus the number of terms not in the subset. Here are the details:

Recall the polynomial P,y from (2.5.4). It is a polynomial of degree
(ngl)nm > nm, so at first sight, e.g., when m ~ n, Lemma 2.6.2.2 will be
of no help because dk > dim A = n?, but since

(M(n,n,m)|A/®B*®C*)gp = (Mmn,) |A’®V®U*)i\ip® Idyy=,
we actually have P = P™, where

P:G(2p+1,A) —=C

A det((Mig iyl aover) s APAQV — AP ARD).

Hence we may work with P which is of degree ( n which will be less

2p;—1)
than n? if p is sufficiently small. Since (Mnnm))a : A" — B®C is injective,
some subset of the a; forms a basis of A. Lemma 2.6.2.2. implies that there
exists a subset of those basis vectors of size dk = (2pp+1)n(2p + 1), such
that if we restrict to terms of the expression (2.6.3) that use only a; whose
expansion in the fixed basis has nonzero terms from that subset of dk basis
vectors, calling the sum of these terms M’, we have R(M') > %nm. Let
M" be the sum of the remaining terms in the expression. There are at
least a — dk = n? — (2p;1)n(2p + 1) of the a; appearing in M"” (the terms

corresponding to the complementary basis vectors). Since we assumed we
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had an optimal expression for M,  m), we have

R(M<n,n,m>) = R(M/) + R(M”)

2p+1 9 2p+1)
> nm+ n° —(2p+1 n|.
> 2 b 24 1) (P

O

The further lower bounds are obtained by lowering the degree of the
polynomial by localizing the equations. An easy such localization is to set
Xo = Id which reduces the determinant of (2.4.7) to that of (2.2.1) when p =
2 and yields a similar reduction of degree in general. Further localizations
both reduce the degree and the size of the Grassmannian, both of which
improve the error term.






Chapter 8

The complexity of
Matrix Multiplication
II: asymptotic upper
bounds

This chapter discusses progress towards the astounding conjecture that asymp-
totically, the complexity of multiplying two n X n matrices is nearly the
same as the complexity of adding them. I cover the main advances in upper
bounds for the exponent of matrix multiplication beyond Strassen’s original
discovery in 1969: the 1979 upper bound w < 2.78 of Bini et. al., the 1981
bound w < 2.55 of Schonhage, the 1987 bound w < 2.48 of Strassen, and
the Coppersmith-Winograd 1990 bound w < 2.38, emphasizing a geometric
perspective. I mention recent “explanations” as to why progress essentially
stopped in 1990 from [AFLG15]. In Chapter 4, I discuss other potential
paths for upper bounds, and present Pan’s 1978 w < 2.79 [Pan78], which
was the first bound to beat Strassen’s and is still (along with its slight modi-
fications) the only decomposition other than Strassen’s to be implementable
in practice.

The exponent w of matrix multiplication is naturally defined in terms of
tensor rank:

w:=inf{T € R | R(Mp,) = O(n")}.

See [BCS97, §15.1] for a the proof that tensor rank yields the same exponent
as other complexity measures.
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The above-mentioned conjecture is that w = 2. One does not need to
work asymptotically to get upper bounds on w: Proposition 3.2.1.1 states
that for all n, R(M <n>) > n*. The only methods for proving upper bounds
on R(M ) for any fixed n that have been used effectively are to find explicit
rank decompositions, and very few of these are known.

As T explain in §3.2, Bini et. al. showed that one may also define the
exponent in terms of border rank, namely (see Proposition 3.2.1.10)

w=inf{T € R | R(My)) = O(n")}.

Again, we do not need to work asymptotically to get upper bounds on w
using border rank. Theorem 3.2.1.10 states that for all n, E(M<n>) > nv.
In order to make the transition from rank to border rank, we will need a
basic result in algebraic geometry. Because of this, I begin, in §3.1 with
some basic facts from the subject. However, the only methods for proving
upper bounds on R(Myy,y) for any fixed n that have been used effectively
are to find explicit border rank decompositions, and very few of these are
known.

A small help is that we may also use rectangular matrix multiplication
to prove upper bounds on w: Proposition 3.2.1.10 states that for all 1, m, n,

E(M<m,n,l)) > (lmn)%
But again, our knowledge of border rank is scant.

To improve the situation, one needs techniques that enable one to avoid
dealing with tensors beyond the small range we have results in. After the
work of Bini et. al., all upper bounds on w are obtained via tensors other
than M(l,m,n)~

The next advance in upper bounds, due to Schonhage (Theorem 3.3.3.1)
and described in §3.3, is more involved: it says it is sufficient to prove upper
bounds on sums of disjoint matrix multiplications.

To go beyond this, Strassen had the idea to looks for a tensor T €
ARB®C, that has special combinatorial structure rendering it easy to study,
that can be degenerated into a collection of disjoint matrix multiplications.

The inequalities regarding w above are strict, e.g., there does not exist
n with R(Myy) equal to n®. (This does not rule out R(Myy) equal to 2n®
for all n.) Strassen looked for sequences Ty € AN@Bn®Cy that could be
degenerated into sums @fg\{) M 1, (Ny,m; (N)n;(v)) With the border rank of the
sums giving upper bounds on w. This is Strassen’s “laser method” described
in §3.4.

More precisely, to obtain a sequence of disjoint matrix multiplication
tensors, one takes a base tensor T and degenerates the tensor powers T®N ¢
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(A®M@(B®N)@(C®N). Strassen’s degeneration is in the sense of points in
the GL(A®N) x GL(B®N) x GL(C®N)-orbit closure of TN,

After Strassen, all other subsequent upper bounds on w use what I will
call combinatorial restrictions of T®N for some “simple” tensor T, where
entries of a coordinate presentation of T®V are just set equal to zero. The
choice of entries to zero out is subtle. I describe these developments in §3.4.

In addition to combinatorial restrictions, Cohn et. al. exploit a geomet-
ric change of basis when a tensor is the multiplication tensor of an algebra
(or even more general structures). They use the discrete Fourier transform
for finite groups (and more general structures) to show that the multipli-
cation tensor in the Fourier basis (and thus in any basis) has “low” rank,
but nevertheless in the standard basis admits a combinatorial restriction to
a “large” sum of matrix multiplication tensors. I discuss this approach in
§3.5.

The proofs in this chapter make essential use of the property from Ex-
ercise 2.5.1.9:

(301) M(l,m,n) ®M<1’,m’,n/> = M(ll/,mm’,nn/)

where for tensors T' € AQB®C and T' € A/@B'®C’, T®T' is considered as
a tensor in the triple tensor product (ARA")R(BRB')@(CRC").

3.1. Facts and definitions from algebraic geometry

Standard references for this material are [Har95, Mum95, Shal3a]. The
first is very good for examples, the second and third have clean proofs, with
the proofs in the second more concise.

Several results from this section will be used repeatedly in this book:
that the linear projection of a projective variety is a projective variety (The-
orem 3.1.4.1), that projective varieties of complementary dimension must
intersect (Theorem 3.1.5.1), and that the Zariski and Euclidean closures of
certain sets agree (Theorem 3.1.6.1).

3.1.1. Projective varieties. Varieties in a vector space V defined by ho-
mogeneous polynomials are invariant under rescaling. For this, and other
reasons, it will be convenient to work in projective space (Definition 2.3.3.1).
Write 7 : V\0 — PV for the projection map. For X C PV, write 7—(X) U
{0} = X c V,and n(y) = [y]. If X C V is a variety, I will also refer
to X C PV as a variety. The zero set in V' of a collection of polynomials
on V is called an affine variety and the image in PV of the zero set of a
collection of homogeneous polynomials on V' is called a projective variety.
For subsets Z C V, PZ C PV denotes its image under =. If P € S4V*
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is an irreducible polynomial, then its zero set Zeros(P) C PV is an irre-
ducible variety, called a hypersurface of degree d. For a variety X C PV,
Iy(X) := {P € S%W* | X C Zeros(P)} denotes the ideal of X in degree d,
and [(X) = ®qlq(X) C Sym (V™) is the ideal of X.

We will be mostly concerned with varieties in spaces of tensors (for the
study of matrix multiplication) and spaces of polynomials (for geometric
complexity theory).

3.1.2. Examples of varieties.

(1) Projective space PV C PV.

(2) The Segre variety of rank one tensors

o1 = Seg(PA; x --- x PA,)
=P{T € A1®---®A, | Jaj € Aj such that T = a1® - ®a,} CP(A1®---®A,).

(3) The Veronese variety
vg(PV) =P{P € SV | P = 2% for some z € V} c PS?V.
(4) The Grassmannian
G(k,V) :=P{T € A*V | Ju1,..., v, € V such that T = v A---Avg} C PAFV.
(5) The Chow variety
Chg(V) :=P{P € SV | Ju1,...,vq € V such that P = v; ---vg} C PSV.

By definition, projective space is a variety (the zero set of no equations).

Exercise 3.1.2.1: (2) Show that Seg(PA; x --- x PA,) is the zero set of
the size two minors of the flattenings A7 — A1®@- - ®A;® - @Ay, for 1 <
Jj<n.

To get equations for vg(PV), given P € SV, consider the flattening
Pgq:V*— S4=1V defined by % — %—1;. For example when d = 4, v = 2
and P = Z?:o piz'y?~?, the matrix representing Py 3 is

(3.1.1) <p4 ps- P2 pl)

p3 p2 P1 Po

and v4(P!) is the zero set of the 6 size two minors of this matrix.

Exercise 3.1.2.2: (1) Show that vy(PV) is the zero set of the size two
minors of the flattening V* — S4-1V.

We saw equations for the Grassmannian in §2.6.2.

Exercise 3.1.4.2 will show that it is not necessary to take the Zariski
closure when defining the Chow variety. Equations for the Chow variety are
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known, see §9.6. However generators of the ideal of the Chow variety are
not known explicitly- what is known is presented in Chapter 9.

3.1.3. Dimension via tangent spaces. Informally, the dimension of a va-
riety is the number of parameters needed to describe it locally. For example,
the dimension of PV is v — 1 because in coordinates on the open neighbor-
hood where x; # 0, points of PV have a unique expression as [1,za, ..., zy],
where x9, ...,z are free parameters.

I first define dimension of a variety via dimensions of vector spaces.
Define the affine tangent space to X C PV at [z] € X, T, X = TMX cV,
to be the span of the tangent vectors z/(0) to analytic curves x(¢) on X
with 2(0) = z, and note that this is independent of the choice of (nonzero)
z € [z]. A point z € X is defined to be a smooth point if dim T}, X is constant
for all y in some neighborhood of =x.

The dimension of an irreducible variety X C V is the dimension of the
tangent space at a smooth point of X. If z is a smooth point, dim X =
dimX — 1 =dim7,X — 1. If z is not a smooth point, it is called a singular
point and we let X, C X denote the singular points of X. A variety of
dimension one is called a curve.

Remark 3.1.3.1. The above definitions of smooth points and dimension
implicitly assumes that X is a reduced variety. A hypersurface {P = 0} is
reduced if when one decomposes P into irreducible factors P = pi* - - - p?r,
that all a; = 1. For example {¢"~™ perm,, = 0} is not reduced when
n—m > 1. The definition of dimension in §3.1.5 below avoids this problem.
For a definition of singular points that avoids this problem, see §6.3.1.

Exercise 3.1.3.2: (2) Show that dim{det,, = 0}sing = n? — 4.

If a Zariski open subset of a variety is given parametrically, then one
can calculate the tangent space to the variety via the parameter space. For
example Seg(PA x PB x PC) may be thought of as the image of the map

Ax Bx(C— AQBRC

(a,b,c) = a®bXc,

S0 to compute T[a@)b@dSeg(PA x PB x PC), take curves a(t) C A with
a(0) = a and similarly for B,C, then %]tzoa(t)@)b(t)@c(t) = d®bRc +
a®b' ®@c + a®bc by the Leibnitz rule. Since a’ can be any vector in A and
similarly for b, ¢’ we conclude

Tlawbog Seg(PA x PB x PC) = A®b®c + a®@B®c + a@b®C.

The right hand side spans a space of dimension a+b+c—2, so dim(Seg(PA x
PB xPC))=a+b+c—3.
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I can now pay off two debts: in §2.1.1, I asserted that the fundamental
Theorem of linear algebra is something of a miracle, and in Theorem 2.1.5.1
I asserted that a general tensor in C™®C™®C™ has tensor rank around mTz

A general point of oy is of the form [a1®b;®c1 + aa®by®ca], and a
general tangent vector at that point is of the form a;®b;®dc| + a1®V) ®c1 +
a)@b1®c1 4+ aa@ba@cky + as@byRcs + ab,®ba®ca, hence

T{a, @61 ®c1+a2@bo®c2] 02 =
a1Rb1RC 4+ a1@B®c + ARb1®c1 + aa@by®@C + a2 @B®cy + ARba®c

so that dim oy < 2(dim(Seg(PA x PB x PC')) + 2 — 1 (and equality clearly
holds if a, b, ¢ > 3) and similarly dim o, < r(dim(Seg(PAxPBxPC))+r—1.
The first chance this has to be the entire ambient space is when this number
isabc — 1. When a = b = ¢ = m, this means r > 3::7;, paying the second
debt.
For the first,
T[a1®b1+a2®b2]02,A®B = span{a1®b] + a] @by + a2 @b + a5 Qb }
= A®span{by, bs} + span{ai,as}®@B

and this space has dimension 2dim Seg(PA x PB), instead of the expected
2dim Seg(PA x PB) + 1. This accounts for the upper semi-continuity of
matrix rank which fails for tensor rank: any point on a tangent line, i.e., a

point of the form a’®b+ a®l’ is also transparently on a secant line, i.e., the
sum of two rank one matrices.

Exercise 3.1.3.3: (1) Compute T[:Ed]’l)d(PV).

3.1.4. Noether normalization. Consider the curve {zy = 1} C C2:

If we project the curve onto the z-axis, we get the set {x € C | z # 0},
which, as was discussed in §1.1.14, is not Zariski closed.

One of the many wonderful things about projective space is that the
projection of an algebraic variety to a hyperplane is still an algebraic variety.
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€

A 3

I remind the reader that unless mentioned otherwise, I work exclusively over
the complex numbers, because the next theorem is false over R:

Theorem 3.1.4.1. If X C PW is a variety, L C W is a subspace with
PL N X = (), and one considers the projection map p : W — W/L, then
Pp(X) Cc P(W/L) is also a variety.

Theorem 3.1.4.1 is part of the Noether normalization theorem (see, e.g.,
[Shal3a, §1.5.4] or [Mum95, §2C]). It is proved via elimination theory. In
addition to failing in affine space, this projection property fails over R: the
curve in RP? given by 22 + 22 — y? = 0 when projected from [1,0,0] is not
a real algebraic variety. (It consists of RP!\{[0,1]}.)

Exercise 3.1.4.2: (1) Show that if W = V®? and L is the G L(V')-complement,
to SV in V®4, taking p : V&4 — V®4/[ ~ SV then p(Seg(PV x --- x
PV)) = Chq(V). Conclude the closure is not needed in the definition of the
Chow variety. ©

The ideal of the projection of a variety from a coordinate point is ob-
tained by eliminating that coordinate from the equations in the ideal. For
example, give S*C? coordinates (p4, p3, p2, p1, po) as above and project from
po. Eliminating po from the equations

Pap2 — p§, Pbap1 — P2P3, P4Po — P1P3, P3P1 — p%, pb2po — p%
gives the ideal generated by

Papo — p1P3, pg - Pzzlplyp? - pgp3-

Exercise 3.1.4.3: (2) What equations does one get when projecting from
p3? Give a geometric explanation why the answer is different. (A complete
answer to this question is beyond what we have covered, I am just asking
for some equations.) ®

Remark 3.1.4.4. Since elimination theory doesn’t care which point one
projects from, one can even project from a point on a variety. The resulting
“map” is not defined at the point one projects from, but the Zariski closure
of the image of the points where it is defined at is well defined. This is an
example of a rational map.

Exercise 3.1.4.5: (2) What ideal does one get when projecting v4(P!) from
pa? (A complete answer to this question is beyond what we have covered, I
am just asking for some equations.) ®

As long as X does not surject onto PV/L, we can continue projecting it
to smaller and smaller projective spaces.
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If X C PV is a projective variety and f : X — Y C PV is given by N+1
homogeneous polynomials on V', then f is an example of a reqular map. If
X c CM and Y ¢ CV are affine varieties, a regular map f : X — Y is one
given by N polynomials p1,...,py on CM, such that (pi(z),...,pn(z)) €Y
for all z € X. For the definition of a regular map, see see, e.g. [Shal3a,
§1.2.3]. If X C CV is an affine variety, C[X] := C[z1,...,2n]/I(X) denotes
the space of regular functions on X.

Exercise 3.1.4.6: (1) If X, Y are affine varieties and f : X — Y is a regular
map, show that one gets a map f* : C[Y] — C[X], called the induced
pullback map, and that f* is injective if f is surjective.

Theorem 3.1.4.1 generalizes to:

Theorem 3.1.4.7. (see, e.g., [Shal3a, §5.2, Thm. 1.10]) If X is a projec-
tive variety and f : X — Y is a regular map, then f(X) is Zariski closed.

Exercise 3.1.4.8: (1) Show that if X is irreducible and f : X — Y is
regular, then f(X) is irreducible. ®

3.1.5. Dimension via projection. The dimension of X C PV is also the
largest integer n such that there exists a surjective linear projection onto a
P, In this case the surjective projection X — P(V/C¢) may be chosen to
be finite to one. The integer ¢ = v — 1 — n is called the codimension of X
in PV. Noether normalization implies that a general linear space PL will
satisfy dim(X NPL) = v — 1 —n — dimPL. In particular, the intersection
of X with a general linear space of dimension ¢+ 1 will be a finite number
of points. This number of points is called the degree of X.

A consequence of this more algebraic definition of dimension is the fol-
lowing result:
Theorem 3.1.5.1. Let X,Y C PV (resp. X,Y C CV) be irreducible pro-
jective (resp. affine) varieties.

Then any non-empty component Z of X N'Y has dimZ > dim X +
dimY — N.

Moreover, in the projective case, if dim X +dimY — N > 0, then XNY #

For the proof, see, e.g., [Shal3a, §1.6.4].

3.1.6. Zariski and Euclidean closure. Recall from §1.1.14.2 that the
Zariski closure of a set can be larger than the Euclidean closure. Neverthe-
less, the following theorem, proved using Noether normalization, shows that
in our situation, the two closures agree:

Theorem 3.1.6.1. Let Z C PV be a subset. Then the Euclidean closure of
Z is contained in the Zariski closure of Z. If Z contains a Zariski open subset
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of its Zariski closure, then the two closures coincide. The same assertions
hold for subsets Z C V.

A proof that uses nothing but Noether normalization is given in [Mum95,
Thm. 2.33]. I present a proof using the following basic fact: for every irre-
ducible algebraic curve C' C PV there exists a smooth algebraic curve C' and
a surjective algebraic map 7 : C' — C that is one-to-one over the smooth
points of C. (More precisely, 7 is a finite map as defined in §9.5.1.) See,
e.g., [Shal3a, §1.2.5.3] for a proof. The curve C is called the normalization
of C.

The theorem will follow immediately from the following Lemma:

Lemma 3.1.6.2. Let Z C PV be an irreducible variety and let Z° C Z be
a Zariski open subset. Let p € Z\Z°. Then there exists an analytic curve
C(t) such that C(t) € Z° for all t # 0 and lim;_,o C(t) = p.

/

Proof. Let ¢ be the codimension of Z and take a general linear space PL C
PV of dimension ¢ + 1 that contains p. Then PL N Z will be a possibly
reducible algebraic curve containing p. Take a component C of the curve
that contains p. If p is a smooth point of the curve we are done, as we
can expand a Taylor series about p. Otherwise take the the normalization
7 : C — C and a point of 7~!(p), expand a Taylor series about that point
and compose with 7 to obtain the desired analytic curve. O

3.2. The upper bounds of Bini, Capovani, Lotti, and Romani

3.2.1. Rank, border rank, and the exponent of matrix multiplica-
tion.

Proposition 3.2.1.1. [Bin80] For alln, R(My)) > n“, ie., w < log R(M(r))

log(n)
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Proof. By the definitions of the exponent and O, there exists a constant
C, such that CR(My,y) > n® for all n. By (3.0.1) and Exercise 2.1.6.3,

R(Mpry) < R(Mpy)*. Say R(My) = r. Then Cr¥ > (n*)*, ie., CFr >
n%. Now let k£ go to infinity, we get r > n*. O

Remark 3.2.1.2. The calculation in the proof of Proposition 3.2.1.1 is
typical in the upper bound literature and will show up several times in this
chapter: one has an initially hazardous constant (in this case C') that gets
washed out asymptotically by taking high tensor powers of M.

Proposition 3.2.1.3. For all 1,m,n, (lmn)% < R(Mmny), e, w <
3IOgR'(]w<m,n,l>)
log(mnl)

Exercise 3.2.1.4: (2) Prove Proposition 3.2.1.3. ®

Remark 3.2.1.5. The inequalities in Propositions 3.2.1.1 and 3.2.1.3 are
strict, see Theorem 3.3.3.5.

To show that w may also be defined in terms of border rank, introduce
a sequence of ranks that interpolate between rank and border rank.

We say Ry (T) < r if there exists an expression
1
(3.2.1) T= liil’(l) e—h(a1(6)®b1(e)®cl(e) + -+ a, ()b (6)®cr (€))

where a;(€),b;(€), cj(e) are analytic functions of e.

Proposition 3.2.1.6. R(7T") < r if and only if there exists an h such that
Rh(T) <r.

Proof. We need to show R(7") < r implies there exists an h with Ry, (T") < r.
Since Seg(PA x PB x PC) is just the product of three projective spaces,
every curve in Seg(PA x PB x PC) is of the form [a(t)®b(t)®c(t)] for
some curves a(t) C A etc., and if the curve is analytic, the functions
a(t),b(t), c(t) can be taken to be analytic as well. Thus every analytic curve
in 0¥(Seg(PA x PB x PC)) may be written as [>5=1 aj(t)®@b;(t)@c;(t)] for
some analytic curves a;(t) C A etc. Since the Euclidean and Zariski closures
of 6¥ agree by Theorem 3.1.6.1, we conclude that if T € &,., then Ry(T) < r
for h equal to the order of first nonzero term in the Taylor expansion of

21 @i (8)®b;(t)@c; (t). O
Proposition 3.2.1.7. If Ry (T) < r, then R(T) < r(hf) < rh?.

Proof. Write T as in (3.2.1). Then T is the coefficient of the €" term of
the expression in parentheses. For each summand, there is a contribution of
Zaﬂﬂ_vzh(eo‘aa)@)(eﬁb/@»)@(ﬁq) which consists of (hgz) terms. O

Remark 3.2.1.8. In fact R(T") < r(h + 1), see Exercise 3.5.3.3.
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Exercise 3.2.1.9: (1) Show that for T € A®B®C, if Ry(T) < r, then
Ryu(T®V) <N where T®V is considered as an element of the triple tensor
product (A®M)®(B*N)@(C®N).

Theorem 3.2.1.10. [Bini, [Bin80]] For all , m,n, w < M
g(mnl)

Proof. Write 7 = R(Myny)- Set N = mnl. We have Ry,(Myy) < r* for

some h and thus R(M k) < 3% (hk)?, which implies

(N9 < 19 (hk)?,
SO
N¥ < 13(hk)*.
Letting k£ — oo gives the result. O

3.2.2. Bini et. al’s algorithm. Recall from §2.1.4 that R(M&id) <5.
Exercise 3.2.2.1: (1) Use that E(M&e)d) < 5 to show R(M353y) < 10.
More generally, show that if E(M(rile 2>) = r and E(M{;ﬁ 9 2>) =1/, then

setting n =m+m' =1, R(M,29) <7 +1".@

Using Proposition 3.2.1.10 we conclude:
Theorem 3.2.2.2. [BCRL79] w < 2.78.

3.3. Schonhage’s upper bounds

The next contribution to upper bounds for the exponent of matrix multi-
plication was Schonhage’s discovery that the border rank of the sum of two
tensors in disjoint spaces can be smaller than the sum of the border ranks,
and that this failure could be exploited to prove further upper bounds on
the exponent. This result enables one to prove upper bounds with tensors
that are easier to analyze because of their low border rank. Before giving
Schonhage’s bounds, I begin with geometric preliminaries on orbit closures.

3.3.1. Orbit closures. Orbit closures will play a central role in our study
of GCT. They also play a role in the work of Schénhage and Strassen on
matrix multiplication.

When r < a; for 1 <i <n, o.(Seg(PA; x---xPA,)) is an orbit closure:
Let a;!j, 1 < aj < aj, be a basis of A, then

or(Seg(PA; x --- x PAy,))
=GL(A1) x -+ x GL(Ay) - [ai® - ®@a} + -+ af® - ®al)]| CP(A1®- - ®A,).
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Write Mg; = > j=10;0bj®c; € C'@C'®C" where {a;}, {b;}, {c;} are
bases. This tensor is sometimes called the unit tensor. Then

(33.1)  or(Seg(P"! x P! x PTT) = GLy x GLy x GLy - [My].

Exercise 3.3.1.1: (2) Let V be a G-module and let v,w € V. Show that
weG -vifandonly if G-w C G -v.

Proposition 3.3.1.2. If T" € GL(A) x GL(B) x GL(C)-T C A®B®C,
then R(T") < R(T).

Exercise 3.3.1.3: (1) Prove Proposition 3.3.1.2. ®

Definition 3.3.1.4. If 7" € GL(A) x GL(B) x GL(C)-T C A®B®C, we

say T" is a degeneration of T.

Consider the orbit closure of the matrix multiplication tensor

By Exercise 3.3.1.1, we may rephrase our characterization of border rank
as, taking inclusions A, B,C C CT,
R(Myy) <7 & [Myy] € 0,(Seg(PA x PB x PC))
& GLy x GLy X GLy - [Mi)] C 07(Seg(P"™" x P! x P'1))

= GLT % GLT % GLT . [M<n>] C GL’I‘ X GLT‘ X GLT . [M?i;]

3.3.2. Schonhage’s example. Recall from Exercise 2.1.7.6 that E(M<17m7n>) =
mn and R(My11)) = N. Recall the notation from §2.1.6 that if 71 €
A1®B1®CT and Ty € As®Bo®Co, we define the tensor T3 & To € (A1
A2)@(B1®B2)®(C1®C2). (In Exercise 5.3.1.6 you will show that R(M ; m ny®
M(N,l,l)) =mn + N)

Theorem 3.3.2.1 (Schonhage [Sch81]). Set N = (n — 1)(m — 1). Then

R(M (1 mpn) ® M(n1,1y) = mn + 1.

Proof. By conciseness, we only need to show R(Mmn) © M(n1,1)) <
mn + 1. Write

m n
Mmny = D> 2i®Y;®z 5,
i=1 j=1

m—1n—-1

M<N7171> = Z qu,v@)yu,v@)z.

u=1 v=1
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Then
1 —1n-1
M(l,m,n) D M(N,l 1) = 1111(1) 2 Z Z (Ty + t200) D (Yo + tYuw)@(2 + t2zuv)
u=1 v=1

-1
+ Z wu@(yn + t — Z yuv))®(z + tzzun)
u=1 v

n—1
+) (@m =Y T)) By (2 + 12 2my)

=1 u

+ $m®yn®(z + tQZmn) - (Z sz)@(Z ys)®z]
% s
[l
For a discussion of the geometry of this limit, see [Lan12, §11.2.2].

3.3.3. Schonhage’s asymptotic sum inequality. To develop intuition
how an upper bound on a sum of matrix multiplications could give an upper
bound on a single matrix multiplication, say we knew E(Mé‘fl‘i) < r with
s < n®. Then to compute M2y we could write M2y = Mn)@Myy. At
worst this is evaluating n? disjoint copies of M ). Now group these n3

disjoint copies in groups of s and apply the bound to obtain a savings.
Here is the precise statement:
Theorem 3.3.3.1. [Sch81] [Schénhage’s asymptotic sum inequality] For
all 1;; m;,n;, with 1 <i < s:
S S
Z(minili)§ = E(@ M(mi,nulﬁ)'
i=1 i=1
The main step of the proof, and an outline of the rest of the argument
is given below.

Remark 3.3.3.2. A similar result (also proven in [Sch81]) holds for the
border rank of the multiplication of matrices with some entries equal to zero,
where the product m;n;l; is replaced by the number of multiplications in
the naive algorithm for the matrices with zeros.

Here is a special case that isolates the new ingredient (following [B1413]):

Lemma 3.3.3.3.
R(M))
nv < [
s

In particular, sn* < E(Mg‘i)
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Proof. Let r = E(Mffé) It is sufficient to show that for all N,

(3.3.2) R(M?S ) < ( "1V

as then, since trivially R(M<@§V>) R(M,ny) > (n™M)¥, we have

@V)* < [£1%s

ie.,
n < [“]s%
S
and the result follows letting N — oo.

I prove (3.3.2) by induction on N. The hypothesis is the case N = 1.
Assume (3.3.2) holds up to N and observe that
M<635V+1> = Mai@Mth)
Now R(M(}) < r implies M3 € GLY®- M7 by Equation (3.3.1), so
Mis®@Myyy € GL<3 - MT @My Thus R(M v 41y) < R(MT@M ).
Recall that Mfff@M(nN) = M?’L}w. Now

B(Mgfjm )<R

where the last inequality follows from the induction hypothesis. O

The general case of Theorem 3.3.3.1 essentially follows from the above
lemma and arguments used previously: one first takes a high tensor power
of the sum, then switches to rank at the price of introducing an h that
washes out in the end. The new tensor is a sum of products of matrix
multiplications that one converts to a sum of matrix multiplications. One
then takes the worst term in the summation and estimates with respect to
it (multiplying by the number of terms in the summation), and applies the
lemma to conclude.

Corollary 3.3.3.4. [Sch81] w < 2.55.

Proof. Applying Theorem 3.3.3.1 to R(M 1 m n)®M((m—1)(n-1),1,1)) = mMn+
1 gives
(mn)3 + (m—1)(n—1))5 <mn+1
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and taking m = n = 4 gives the result. (]

In [CW82] they prove that for any tensor T that is a direct sum of
disjoint matrix multiplications, if R(7T") < r, then there exists N such that
R(T ® M(n,1,1y) <7+ 1. This, combined with our earlier arguments using
R, to bridge the gap between rank and border rank asymptotically, implies
the inequality in Theorem 3.3.3.1 is strict:

Theorem 3.3.3.5. [CW82] For all ;, m;,n;, with 1 <1i <s:

S

Z(mlnzll)% < E(@ M(mi,ni,li>)'
=1

=1

In particular, for all n, R(My,) > n®, so one cannot determine w from
My for any fixed n.

3.4. Strassen’s laser method

3.4.1. Introduction. Recall our situation: we don’t understand rank or
even border rank in the range we would need to prove upper bounds on w via
My, so we showed upper bounds on w could be proved first with rectangu-
lar matrix multiplication, then with sums of disjoint matrix multiplications
which had the property that the border rank of the sum was less than the
sum of the border ranks, and the border rank in each case was determined
via an explicit decomposition.

We also saw that to determine the exponent by such methods, one
would need to deal with sequences of tensors. Strassen’s laser method is
based on taking high tensor powers of a fixed tensor, and then degenerat-
ing it to a disjoint sum of matrix multiplication tensors. Because it deals
with sequences, there is no known obstruction to determining w exactly via
Strassen’s method.

Starting with Strassen’s method, all attempts to determine w aim at best
for a Pyrrhic victory in the sense that even if w were determined by these
methods, they would not give any indication as to what would be optimally
fast matrix multiplication for any given size matrix.

3.4.2. Strassen’s tensor. Consider the following tensor

q
(3.4.1) Tsrr =Y ao®b;®c; + a;@b®c; € CIRCIHMRCY.
j=1

Exercise 5.3.1.7 will show that R(Tsrr) = 2¢, so (3.4.1) is an optimal rank
expression. Nevertheless, R(Tsrr) = ¢+ 1. To see why one could expect
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this, consider the ¢ points ag®by®c;. The tensor Tsrg is a sum of tangent
vectors to these ¢ points:

q
1
Torr =) _lim ~[(ap + ta;)®(bo + thy)®c; — ao@bo@c;]
j=1

Note that the sum ) j ap®bo®c; is also a rank one tensor, which leads one
to the expression:

1|
%gl(l) n z;(ao + taj)®(b0 + tbj)®0j — ap®by®(c1 + -+ + Cq)
j:
showing the border rank is at most ¢ 4+ 1, but since the tensor is concise,
we obtain equality. Geometrically, the original ¢ points all lie on the linear

space [ag®by®C?] C Seg(PA x PB x PC).

Now consider Tsrp = Tsrr®0(Tsrr)®0?(Tsrr) where o is a cyclic
permutation of the three factors. Group triples of spaces together to consider
Torr € cala+1)? gala+)? a@+)? . We have the upper bound E(TSTR) <
(q+1)3.

Write aqgy 1= an®ag®a, and similarly for b’s and ¢’s. Then, omitting
the ®’s:

(3.4.2)
q
Tstr = § (aijobojrcior + aijibojicioo + aijobookCiji + ijrbookCijo
ijk=1

+ agjobijrCior + aojkbijrcioo + aojobiokcijk + aojrbiokcijo)

We may think of Tsrr as a sum of eight terms, each of which is a
M, mn) with Imn = ¢3, e.g., the first is Zg,j,k:l aijobojkCior = M09
the second Mg ,qy ete.. (I will say terms of volume ¢®.) Were they all
disjoint expressions, we could use the asymptotic sum inequality to conclude
8¢ < (¢+1)? and for small ¢ we would see w < 2. Of course this is not the
case, but we can try to zero out some of the variables to keep as many of
these eight terms as possible. For example if we set c;oo, book, bijk, Cijk all to
zero, we are left with two disjoint matrix multiplications and we conclude
2¢* < (¢ + 1)3. This is best when ¢ = 15, giving w < 2.816, which is not so
interesting.

At this point enters a new idea: since we are dealing with border rank,
we have greater flexibility in degeneration than simply zero-ing out terms.
By taking limits, we will be able to keep three terms! To explain this, I need
to take another detour regarding orbit closures.
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3.4.3. All tensors of border rank L%nﬂ are degenerations M.

Theorem 3.4.3.1 (Strassen [Str87]). Set r = |2n?| and choose a linear
embedding C" C C™*. Then

o (Seg(P' x P"1 X P"1)) € GLp2 X GLy2 X GLp2 - [My],

ie.,

GL, x GL, x GL, - [Mff;] C GLp2 X GLy2 X GLyz2 - [M ).
Proof. The proof will be by a very simple degeneration: let T4 € GL(A) =
GL,> denote the diagonal n? x n? matrices. I will show
M} CTAXTE x TC - M.

Write z;; for a basis of A etc., so My = Z”k TijQYjrPzki. We want to
kill off as few terms as possible such that in the remaining terms, each basis
vector appears in at most one monomial. That is if we have x;; appearing,
then there should be a unique ky = k(%, j), such that the only term surviving
in )L 2 QUi®@zki 1S @Yk, ®@2ky;. We should view this more symmetri-
cally, fixing some integer h and requiring that the only terms appearing are
of the form x;;®y;r®zx; where ¢ + j + k = h. To do this, look for curves

Tij — ta(i’j)xij
i o O FD

so that a+++v =0 when i+j+k = h and a+ 5+~ > 0 when i+j+k # h,

as then
n

Set A =i+ j + k. We could satisfy the requirements on «, 3, by requiring
a+B+v=(h—N?=h>—2)h+ )\
Take

1 h
a:§(i2+j2)+2ij+(§—i—j)h

1 , .k .
B= 5K +5%) +2kj+ (3 — k= j)h
:%(i2+k2)+2ik+(g—i—k)h.

Y
Exercise 3.4.3.2: (1) Verify that a + 8+~ = (h — \)2.
(2

Exercise 3.4.3.3: (2) Show that the best value of h is h = [32] + 1 which
yields 7 = [2n?] to finish the proof.
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O

Remark 3.4.3.4. This degeneration is more complicated than setting linear
combinations of variables to zero because there are values of i, j, k where one
of o, 3,7 is negative. To avoid negative terms for the curves in A, B, C, we
could add 7 to each of «, 3,7 and then divide the entire entire expression
by 3.

Call degenerations that only use the diagonal matrices toric degenera-
tions.

Corollary 3.4.3.5. Every tensor in C2P@C3®C2™ arises as a toric degen-
eration of M y.

Proof. As mentioned in §2.1.6, the maximum border rank of any tensor
3 3 3

in C2"@C2"®C:2" is at most %nQ, and any tensor of border rank %nz is a

degeneration of M y,. O

Remark 3.4.3.6. Theorem 3.4.3.1 may be interpreted as saying that one
can degenerate M, to a tensor that computes L%nzj independent scalar
multiplications. If we have any tensor realized as M, ®T, the same degen-
3.2
eration procedure works to degenerate it to M ?;L“n J®T.
3.4.4. A better bound using the toric degeneration. Now we return
to the expression (3.4.2). There are four kinds of A-indices, 50, ijk, 050
and 0jk. To emphasize this, and to suggest what kind of degeneration to
perform, label these with superscripts [11], [21], [12] and [22]. Label each of
the B and C indices (which come in four types as well) similarly to obtain:
q
= . [11],[11] [11] [21],[11] [12] [11],[12] [21] [21],[12] [22]
Tsrr = Z (@350 bojk Ciok, T @ik PojkCioo T %ijo PookCijk + @ik PookCijo
t,5,k=1
[12],[21] [11] [22],[21] [12] [12],[22] [21] [22],[22] [22]

+ agjobik Ciow T @0jk0isk Gioo T %050 biok Ciji T @ik iok Cijo )-
This expression has the structure of block 2 x 2 matrix multiplication. Think
of it as a sum of ¢ 2 x 2 matrix multiplications. Now use Theorem 3.4.3.1
to degenerate each 2 x 2 matrix multiplication to a sum of 3 disjoint terms.
Namely, following the recipe that the three indices must add to 4, we keep
all terms al®tpltulcls] where s+t + u = 4, namely we degenerate T'srr to

q
[21],[11] [12] (11],[12] [21] [12],[21] [11]
Z @ik 0k Cioo T @ijo bookCije T @000k Ciok -
o=
The asymptotic sum inequality implies 3¢* < (g + 1), which gives the best

bound on w when ¢ = 7, namely w < 2.642, which is still not as good as
Schonhage’s bound.
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3.4.5. Strassen’s bound. We do better by using the standard trick of this
chapter: taking a high tensor power of Tsrg, as Tg’TA]g contains (2N )2 matrix
multiplications M<1’m,n>, all with Imn = ¢3V, and again by Theorem 3.4.3.1
we may keep %QQN of them. The asymptotic sum inequality applied to the
degenerated tensor gives

Taking N-th roots and letting N tend to infinity, the % goes away and we
obtain

2¢ < (q+1)°.
Finally, the case ¢ = 5 implies:
Theorem 3.4.5.1. [Str87] w < 2.48 .

3.4.6. Asymptotic rank. The above discussion suggests the introduction
of yet another complexity measure for tensors: given T' € AQ BRC, we can
consider T®N ¢ A®N@B®N®C®N and this construction played a central
role in Strassen’s laser method to prove upper bounds for the complexity of
matrix multiplication via auxiliary tensors.

Definition 3.4.6.1. The asymptotic rank R(T) of a tensor T € AR BRC,
is

R(T) := infy[R(T®N)]~.

Exercise 3.4.6.2: (1) Show that in the definition, one can replace the infi-
mum by limy_,+ by using Lemma 3.4.7.2 below.

Exercise 3.4.6.3: (2) Show that R(T) < R(T). ®

Since Mg;“ = M qky, we have R(M<2>) =2,
Conjecture 3.4.6.4. [Str91] Let T € CM@C™®C™ be concise. Then

R(T) = m.
Note that, If Conjecture 3.4.6.4 holds for T' = My, this would imply
w = 2.

More subtly, if the conjecture holds for 7., 2 introduced in §3.4.9 below,
then w = 2, see [BCS97, Rem. 15.44].

3.4.7. Degeneracy value. I now formalize what we did to get Strassen’s
bound. The starting point is if a tensor 7' degenerates to €;_, M, (Li,m;,n;)s
then Zle(limini)% < R(T'), and more generally we worked with degener-
ations of T®N as well. Informally define the degeneracy value of T to be the
best upper bound on w we can get in this manner. More precisely:
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Definition 3.4.7.1. Let T € A®B®C. Fix N > 1 and p € [2,3]. Define
Vp‘?\?e”(T) to be the maximum of )7 , (;m;n;)5 over all degenerations of
TN to @i, M, ;. n,;) over all choices of s,1;, m;, n; and define the degen-

eracy value of T to be Vi (T) := supy Vpdf\?en(T)%.

The asymptotic sum inequality implies V,I%°"(T) < R(T), or in other
words, if Vpdege”(T) > R(T), then w < p.

The supremum in the definition can be replaced by a limit, thanks to
Fekete’s lemma, since the sequence log(Vp(f?\?e”(T)) is super-additive:

Lemma 3.4.7.2 (Fekete’s Lemma). For every super-additive sequence {a,}7 4
(ie. anim > ap + ap), the limit lim, o, 5 exists (possibly +oc) and is
equal to sup 7.

Exercise 3.4.7.3: (3) Prove Fekete’s Lemma.

Fekete’s lemma implies 3 log Vpdf\?e"(T) tends to a limit. See [AFLG15]
for details.

There is also an analogue of the asymptotic sum inequality for degener-
acy value:

Theorem 3.4.7.4. 35_ VI (T;) < R(®;_,T)).

The proof is similar to the proof of the asymptotic sum inequality. It is
clear that VI (T\@Ty) > VI (T))@VI9°"(Ty). To show VI¥“(Ty &
Ty) > VI () + V49" (Ty) one expands out V9" (T} & Ty), the result
is a sum of products with coefficients, but as with the asymptotic sum
inequality, one can essentially just look at the largest term, and as N tends
to infinity, the coefficient becomes irrelevant after taking N-th roots.

Thus tensors of low border rank with high degeneracy value give upper
bounds on w. The problem is that we have no systematic way of estimating
degeneracy value. For an extreme example, for a given r the tensor of border
rank r with the highest degeneracy value is M g; as all border rank r tensors

are degenerations of it.

In subsequent work, researchers restrict to a special type of value that
is possible to estimate.

3.4.8. The value of a tensor. Let End(A) x End(B) x End(C) act on
A®B®C by the action inherited from the GL(A) x GL(B) x GL(C) action
(not the Lie algebra action). Then for all X € End(A) x End(B) x End(C)
and T € A@B®C, we have R(X - T) < R(T) and R(X - T) < R(T) by
Exercise 2.1.6.2.

Definition 3.4.8.1. One says T restricts to T' if T’ € End(A) x End(B) x
End(C) - T.
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Definition 3.4.8.2. For T' € AQB®C, N > 1 and p € [2, 3] define Vpr?\?tr(T)
to be the maximum of y 7, (limini)g over all restrictions of 7% to @3_, My, my n;)

and define the restriction value of T to be V" (T) := supy V[:%?”(T)%.

I emphasize that the degeneration used by Strassen is more general than
restriction.

Coppersmith-Winograd and all subsequent work, use only the following
type of restriction:

Definition 3.4.8.3. Let A, B, C be given bases, so write them as C2, CP, C°®.
We say T € C2@CP®RCE combinatorially restricts to T" if T restricts to T”
by setting some of the coordinates of T' to zero.

The condition that T € C2®CP®CC admits a combinatorial restriction
to the matrix multiplication tensor M , ny may be phrased as follows (fol-
lowing [CUO3]): write aq, bg, ¢, for the given bases of A, B,C and write
T=5%2, Zgzl 2221 t%PYa,@bg@c,. Then T € C2@CPRCE combinato-
rially restricts to M m ny means that there exist injections

a:[l] x [m] — [a]
8 ¢ [m] x [n] = [b)
7 ] x I = [c]
such that

(i) BGE) (ki) _ J1 i=d =7 k=¥
(3:43) ! {O otherwise '

One can similarly phrase combinatorial restriction to a sum of disjoint
matrix multiplication tensors.

Definition 3.4.8.4. For T € C2®CP®C®, N > 1 and p € [2,3] define
Vo, n(T) to be the maximum of Zle(limini)g over all combinatorial re-
strictions of T®V to ©;_1 M1, m;n;) and define the combinatorial value
(or walue for short, since it is the value used in the literature) of T' to be

V,(T) := limy 00 V, x (T)¥. (The limit is shown to exist in [DS13].)
Note that the values satisfy Vpdegen > VPT“”’ > V,. As with all the values
we have
e V,(T) is a non-decreasing function of p,
o V,(T) <R(T).
Thus if V,(T) > R(T), then w < p.

Combinatorial value can be estimated in principle, as for each N, there
are only a finite number of combinatorial restrictions. In practice, the tensor
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is presented in such a way that there are “obvious” combinatorial degener-
ations to disjoint matrix multiplication tensors and at first, one optimizes
just among these obvious combinatorial degenerations. However, it may be
that there are matrix multiplication tensors of the form };ao®b;®c; as
well as tensors of the form ag®byp®c, where k is not in the range of j. Then
one can merge these tensors to a0®(zj b;j®c; + bp®cy) to increase value
because although formally speaking they were not disjoint, they do not in-
terfere with each other. (The value increases as e.g., ¢¥ +1¥ < (¢+7)*.) So
the actual procedure is to optimize among combinatorial restrictions with
merged tensors.

3.4.9. The Coppersmith-Winograd tensors. Coppersmith and Wino-
grad apply Strassen’s laser method, enhanced with merging, using combi-
natorial restrictions to the following two tensors:

The “easy Coppersmith-Winograd tensor”:

(3.4.4) Ty := Za()@b ®cj +a;@by@cj +a;@bj@cy € CITeCI M orit!
7j=1

Proposition 5.5.1.1 will imply R(T} cy) = 2¢ + 1 so the above expression is
not optimal. We also have

Proposition 3.4.9.1. R(Tcw) = q + 2.
Proof. Consider the second derivatives of a curve in the Segre: Let z(t) =
a(t)@b(t)®c(t), write 2’ for 2/(0) and similarly for all derivatives. Then

7" = (d"@b®c + a@b"@c + a2bRc") + 2(a’' @V @c + d/ bR + a2t @)

so if we begin with the base point ag®by®cg, each term in the summand for
T4 cw 1is a term of the second kind. The terms in the first parenthesis are
ordinary tangent vectors. Thus take g curves beginning at ag®byRcy, we
can cancel out all the terms of the first type with a single vector to obtain
the resulting border rank ¢ + 2 expression:

q

1
Ty cw —%g% o) zzl(ao + taj)®(bo + tbj)®(00 + tcj)
J:

ao—i-tZa] bo-i—th Co—i—thj (¢ — 1)ap®bp®cy.

Exercise 3.4.9.2: (2) Show that R(7y cw) > g + 2 so that equality holds.
]
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A slightly more complicated tensor yields even better results: Let

(3.4.5)

Tyow == Z(a()@bj@Cj + a;®by®c;j + &j®bj®co)
=1
+ ag®by®cq i1 + A®by10C + ag11®b®c € CIH2RCIT?RCIT?

and call T, cw the Coppersmith- Winograd tensor.

Exercise 3.4.9.3: (2) Show the Coppersmith-Winograd tensor also has bor-
der rank ¢ + 2 by modifying the curves used to obtain Ty cy. ©

Now suggestively re-label T, cy as we did with Strassen’s tensor:

(3.4.6)

q
Toow = (et ed! + aﬁ”@bé‘”@o&” gl
7j=1

[0} 2]

to see that T, cw is the sum of 3 matrix multiplications of volume ¢?, and 3
of volume 1, all non-disjoint. To get more interesting matrix multiplications,
consider T(f%w, but this time, instead of double superscripts, simply add the
superscripts.

q
22, = 3" lletZod? + alloplled + dlei@ed) + dleiled? 1 dlehecd]
F

+dPeled) + d@eiled + (Pepledl + o ebl ]

T Z Ao q+1®b[o®0[ I+l ®b[1] [1] +a! ®b[1] [O] 0 t+a 13 ®b[o]®c[ ]

q+1,0 q+1,5 @j.q+1
1 3 0 1
+aéi1j®b” col + ) @bliedy]
4 0 0 0 3 1 0 1 3
+all, o otedd + alleb?, edl + depled, |
0 0 0 0
1l ]®b[i1q+1®c[ } [ 1®b[ ] Hl,qﬂ-

Now we have non-disjoint matrix multiplications of volumes ¢?, ¢ and 1.
®N

Thus when we zero-out terms to get disjoint matrix multiplications in (ngw) ,
in order to optimize value, we need to weight the ¢ terms more than the ¢
terms etc..

As mentioned above, one can obtain better upper bounds with merging.
One needs to make a choice how to merge. Coppersmith and Winogrand
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group the C2”-variables
Al) — { a[O]}
Al = {alo,%]}

(2] _
A {aq+1 0@ 7,] ’ao q+1}

AB — { a [3] }

q+1,3’ 4,q+1

A = {aq+1 q+1}

and similarly for ’s and ¢’s. Then

T2y = Y Aleslgc]
T+J+K=4

where e.g., Al is to be interpreted as the sum of all elements of AU, Most
of these terms are just matrix multiplications, however terms with 14142
are not:

q
Allgpllgel? = Z aleblioch |+ Z ablebhl@d? |

+ Z [1] [1}®b[1] H].
i,j=1
To this term we estimate value using the laser method, i.e., we degenerate
tensor powers of AN@BMN@CE to disjoint matrix multiplication tensors.
2 1
Coppersmith and Winograd show that it has value at least 23¢* (g% + 2)3.

Now there is an optimization problem to solve, that I briefly discuss in
§3.4.10 below.

Coppersmith and Winograd get their best result of w < 2.3755 by merg-
ing Tq®éw and then optimizing over the various combinatorial restrictions.
In subsequent work Stothers [Sto], resp Williams [Wil], resp. LeGall [Gal]
used merging with Tq Ccw resp. T8 7.CWs Tesp. T®16 and ng%v leading to
the current “world record”:

Theorem 3.4.9.4. [Gal] w < 2.3728639.

Ambainis, Filmus and LeGall [AFLG15] showed that taking higher
powers of T, cyv when ¢ > 5 cannot be used to prove w < 2.30 by this
method alone. Their argument avoids higher powers by more sophisticated
methods to account for when potential merging in higher tensor powers can
occur.

Thus one either needs to develop new methods, or find better base ten-
SOTS.

I discuss the search for better base tensors in Remark 5.5.3.4.
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3.4.10. How one optimizes in practice. To get an idea of how the
optimization procedure works, start with some base tensor T' that contains
a collection of matrix multiplication tensors My, m; n;y, 1 < @ < x that
are not disjoint. Then T®N will contain matrix multiplication tensors of
the form M,
pj € [z].
Each matrix multiplication tensor will occur with a certain multiplicity
and certain variables. The problem becomes to zero out variables in a way
that maximizes the value of what remains. More precisely, for large NN,
one wants to maximize the sum Zj K;(1,,m,; nuj)g where the surviving

1,,m,n,) Wherel, =1, ---1,, and similarly for m,, n,, where

matrix multiplication tensors are M ?Kin ) and disjoint. One then takes
g ey s

the smallest p such that 3, K;(l,, mujnuj)g > R(T") and concludes w < p.
One ingredient is the Salem-Spencer Theorem:

Theorem 3.4.10.1 (Salem and Spencer [SS42]). Given € > 0, there exists
M, ~ 92 such that for all M > M., there is a set B of M' > M'~¢ distinct
integers 0 < by < by < -+ < by < % with no three terms in an arithmetic
progression, i.e., for b;,b;,b, € B, b; + b; = 2by if and only if b; = b; = by.
In fact no three terms form an arithmetic progression mod M.

This theorem assures one can get away with only zero-ing out a rela-
tively small number of terms, so in some sense it plays the role of Strassen’s
degeneration theorem. I state it explicitly to emphasize that it is an exis-
tence result, not an algorithm. In the general case one assigns probability
distributions and optimizes using techniques from probability to determine
what percentage of each type gets zero-ed out. See [CW82] for the basic
idea and [AFLG15] for the state of the art regarding this optimization.

3.5. The Cohn-Umans program

A conceptually appealing approach to proving upper bounds on w was ini-
tiated by H. Cohn and C. Umans.

Imagine a tensor that comes presented in two different bases. In one,
the cost of the tensor is clear: it may be written as a sum of small disjoint
matrix multiplication tensors. On the other hand, in the other its value (in
the sense discussed above) is high, because it may be seen to degenerate to
good matrix multiplication tensors. Such a situation does arise in practice!
It occurs for structure tensors for the group algebra of a finite group, as
defined below. In one (the “matrix coefficient basis”), one gets an upper
bound on the rank of the tensor, and in the other (the “standard basis”)
there are many potential combinatorial degenerations and one gets a lower
bound on the value.
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I state the needed representation theory now, and defer proofs of the
statements to §8.6. I then present their method.

3.5.1. Structure tensor of an algebra. Let A be a finite dimensional
algebra, i.e., a vector space with a multiplication operation, with basis
ai,...,as and dual basis o, ..., a® Write a;a; = >, Afjak for the multi-
plication in A, where the A’fj are constants. The multiplication A x A — A
is bilinear and one defines the corresponding structure tensor of A

(3.5.1) Ty := ZAZai(X)aj@ak € A" QA*®A.
i?j7k
For example, My, is the structure tensor for the algebra of nxn-matrices
with operation matrix multiplication.

The group algebra of a finite group. Let G be a finite group and let C[G]
denote the vector space of complex-valued functions on G, called the group
algebra of G. The following exercise justifies the name:

Exercise 3.5.1.1: (1) Show that if the elements of G are gy,...,g,, then
C[G] has a basis indexed g, ..., d,,, where d4,(g;) = 6;;. Show that C[G]
may be given the structure of an algebra by defining dg,dg, = dg,9; and
extending linearly.

Thus if G is a finite group, then Tgig) = >° e 05 @0} @dgh-
Example 3.5.1.2.

Tez, = >, 07®6;6i4jmodm.:
0<i,j<m
Notice that, introducing coordinates g, ..., Zm—1 on C[Zy,], so v € C[Zy,]

may be written ) 505, one obtains a circulant matrix for Tg(z,, (C[Zn]*) C
ClZp]*QC|Zp)*:

Lo L1 Tm—1
. Tm-1 To T1 -
(852) T, (ClZal) =1 | . |z €C
I T2 i)

In what follows I slightly abuse notation and write the matrix with entries x;
rather than the form above. Note that all entries of the matrix are non-zero
and filled with basis vectors. This holds in general for the presentation of
C|[G] in the standard basis, which makes it useful for combinatorial restric-
tions.

What are R(T¢(z,,)) and R(T¢z,))? The space of circulant matrices
forms an abelian subspace, which indicates the rank and border rank might
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be minimal or nearly minimal among concise tensors. We will determine
the rank and border rank of T¢(z,,; momentarily via the discrete Fourier
transform.

3.5.2. The structure theorem of C[G]. I give a proof of the following
theorem and an explanation of the G x G-module structure on C[G] in §8.6.5.

Theorem 3.5.2.1. Let G be a finite group, then as a G X G-module,
(3.5.3) ClGl = P ViV

where the sum is over all the distinct irreducible representations of G. In
particular, if dim V; = d;, then as an algebra,

(3.5.4) ClG] ~ @ Matg,q,(C).

3.5.3. The (generalized) discrete Fourier transform. We have two
natural expressions for T¢|g), the original presentation in terms of the algebra
multiplication in terms of delta functions, the standard basis, and the matriz
coefficient basis in terms of the entries of the matrices in (3.5.4). The change
of basis matrix from the standard basis to the matrix coefficient basis is
called the (generalized) Discrete Fourier Transform (DET).

Example 3.5.3.1. The classical DFT is the case G = Z,,. The irreducible

representations of Z, are all one dimensional: py : Zy, — GLy. Let 0 € Zy,

be a generator, then pg(o)v = e“mt oy for 0 < k < m. The DFT matrix is
27i(j+k)

e )o<jk<m—1-

Proposition 3.5.3.2. R(1¢(z,,)) = R(T¢z,.)) = m-

Proof. Theorem 3.5.2.1 implies T¢(z,,] = MIm O

1 -

Compared with (3.5.2), in the matrix coefficient basis the image T¢(z,,)(C[Zm]*)
is the set of diagonal matrices:

Yo

X Y1
102, (ClZnm]") =

Ym—1
Exercise 3.5.3.3: (2) Show that if 7 € 60", then R(T) < r(h+1). ®

Exercise 3.5.3.4: (2) Obtain a fast algorithm for multiplying two polyno-
mials in one variable by the method you used to solve the previous exercise.
©
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Example 3.5.3.5. Consider &3. In the standard basis,

ro T1 T2 T3 T4 Ts
1 To T4 Ty T2 I3
T2 X5 To T4 T3 T1
xr3 T4 Ty To T1 T2
Ty X3 T1 T2 Ty X0
T5 X2 T3 X1 To T4

Ttjs;) (C[65]7) =

Here I have written an element of C[S3] as w001 +210(12) +220(13) +730(23) +
T40(123) + T50(132)- The irreducible representations of &3 are the trivial, de-
noted [3], the sign, denoted [1, 1, 1] and the two-dimensional standard repre-
sentation (the complement of the trivial in C?), which is denoted [2,1]. (See
§8.6.5 for an explanation of the notation.) Since dim[3] = 1, dim[1,1,1] =1
and dim[2,1] = 2, by Theorem 3.5.2.1 Tgjg, = ME%Q @® M), and in the
matrix coefficient basis:
Yo
Y1
* Y2 Y3
T ClGs]") =
SSECHS v
Y2 Y3
Y4 Y5

where the blank entries are zero. We conclude R(T¢(g,) <1+1+7=9.

3.5.4. Upper bounds via finite groups. Here is the main idea:

Use the standard basis to get a lower bound on the value of Teig) and
the matriz coefficient basis to get an upper bound on its cost.

Say Ttjg) expressed in its standard basis combinatorially restricts to
a sum of matrix multiplications, say ©]_1M(; m;n,)- The standard ba-
sis is particularly well suited to combinatorial restrictions because all the
coefficients of the tensor in this basis are zero or one, and all the en-
tries of the matrix Tr (g (C[G]*) are nonzero and coordinate elements. (Re-
call that all the entries of the matrix My, ny(A*) are either zero or co-
ordinate elements.) Using the matrix coefficient basis, we see Tgig =
@l _ M (d.)» Where d,, is the dimension of the u-th irreducible representation
of G. Thus E(®;=1M(1j,m]’,nj>) < E(@Z:IM(du)) and R(@jle(1j7mj7nj>) <
R(&} 1 Ma,,))-

The asymptotic sum inequality implies:
Proposition 3.5.4.1. [CU03, CU13| If T¢q) degenerates to &;_; M. m; n))
and d, are the dimensions of the irreducible representations of GG, then
Y i(myn))s < R(BI_, My,) < Sd3. In fact, Y5, (myny)s <
> dy.
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In this section I will denote the standard basis for C[G] given by the
group elements (which I have been denoting d4,) simply by g;.

Basis elements of C[G] are indexed by elements of G, so our sought-after
combinatorial restriction is of the form:

a:l] X [m] -G
f:[m] xn] =G
v:[n] x[l] = G.

X
X

Recall the requirement that t*(:7):8GE) (k1) s one if and only if i = 7,
j =13’y k=K, and is otherwise zero. Here, when considering T¢q as a
trilinear map, we have

a8 _ {1 afy =1d
0 otherwise
We want that «(i,j")B(j,k")y(k,i") = Id if and only if i = ¢/, j = j/, k =
k. To simplify the requirement, assume the maps factor to s; : [I] = G,
so : [m] = G, s3 : [n] = G, and that a(i, ) = s171(i)s2("), B, K) =
5o 1(j)s3(k') and ~y(k, ') = s37(k)s1(i'). Our requirement becomes

51 (1)s2() s (G)s3(K)s3s H(k)s1(i) =ld = i=1d', j=4, k=kK.

Let S; denote the image of s;. Our requirement is summarized in the fol-
lowing definition:

Definition 3.5.4.2. [CUO03] A triple of subsets Si,S2,S3 C G satisfies
the triple product property if for any s;, s} € Sj, shs1 7 shse T lshsy T = 1d
implies s} = s1, s5 = S2, sh = s3.

There is a corresponding simultaneous triple product property when
there is a combinatorial restriction to a collection of disjoint matrix multi-
plication tensors.

Example 3.5.4.3. [CKSUO05] Let G = (Z}? x ZX?) x Zy where Zy acts
by switching the two factors, so |G| = 2N6. Write elements of G as
[(Wh w?, W) (W, w®, wh) 7] where 0 < 4,4, k,s,t,u < N — 1, w is a prim-
itive N-th root of unity, 7 is a generator of Zs, and € € {0,1}. Set
l=m =n = 2N(N — 1). Label the elements of [n] = [2N(N — 1)] by
a triple (a,b,€) where 1 <a < N—-1,0<b< N —1and e € {0,1}, and
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define

s1:[l] = G
(a,b,€) — [(w? 1, 1)(1,wb, 1)7€]

s9:[m] - G

(a,b,€) — [(1,w® 1)(1, 1,wb)76]

s3:[n] -G
(a,b,e) — [(1, 1,w“)(wb, 1,1)7°.

As explained in [CKSUO5]|, the triple product property indeed holds
(there are several cases), so T combinatorially restricts to My (n—1))-

Now G has 2N?3 irreducible one dimensional representations and (]23) irre-
ducible two dimensional representations (see [CKSUO05]). Thus R(Mn(n-1))) <
2N3 + 8(1\;3), which is less than n? = 2N (N — 1)]? for all N > 5. Asymp-
totically this is about 1—76n3. If one applies Proposition 3.5.4.1 with N =17
(which is optimal), one obtains w < 2.9088. Note that this does not even
exploit Strassen’s algorithm, so one actually has R(My)) < 2N 34 7(]\;3),
however this does not effect the asymptotics. If one could use the failure of
additivity for border rank one potentially could do better.

While this is worse than what one would obtain just using Strassen’s
algorithm (writing 40 = 32 + 8 and using Strassen in blocks), the algorithm
is different. In [CKSUO05] they obtain a bound of w < 2.41 by such methods,
but key lemmas in their proof are almost the same as the key lemmas used
by Coopersmith-Winograd in their optimizations.

3.5.5. Further ideas towards upper bounds. The structure tensor of
C[G] had the convenient property that in the standard basis all the coeffi-
cients of the tensor are zero or one, and all entries of the matrix T¢(g) (C[G]*)
are basis vectors. In [CU13] they propose looking at combinatorial restric-
tions of more general structure tensors, where the coefficients can be more
general, but vestiges of these properties are preserved. They make the fol-
lowing definition, which is very particular to matrix multiplication:

Definition 3.5.5.1. We say T' € A®B®C, given in bases aq, bg, ¢y of
A, B, C, combinatorially supports M m n), if such that, writing 7" = > t“’ﬁﬁaa(@bg@cfy,
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there exist injections
a:[l] x [m] — [a]
f: [m] x [n] — [b]
7] x 1] = [c]

such that ¢8RV (ED) £ 0 if and only if i =i/, j = j/ and k = k. (Re-
call that 7" combinatorially restricts to M i, ) if moreover $0(6:0):B80:k) (k1) —
1 for all i, 7, k.)

T' combinatorially supports My, ny if there exists a coordinate expres-
sion of T such that, upon setting some of the coefficients in the multi-
dimensional matrix representing 7' to zero, one obtains mnl nonzero en-
tries such that in that coordinate system, matrix multiplication is sup-
ported on exactly those mnl entries. They then proceed to define the
s-rank of a tensor T”, which is the lowest rank of a tensor T that com-
binatorially supports it. This is a strange concept because the s-rank of
a generic tensor is one: a generic tensor is combinatorially supported by

T =(32;a;)®( ) bk)® (32, 1) where {a;} is a basis of A etc..

Despite this, they show that w < %ws — 1 where w; is the analog of the
exponent of matrix multiplication for s-rank. In particular, ws; = 2 would
imply w = 2. The idea of the proof is that if T combinatorially supports
My, then T®3 combinatorially degenerates to Mfflg with t = O(n?~°M).
Compare this with the situation when 7' combinatorially restricts to My,
then T®3 combinatorially restricts to M (n)®M 1,2y and thus toric degenerates

&lin?]
to M<n>4 by Theorem 3.4.3.1.






Chapter 4

The complexity of
Matrix multiplication
II1: explicit
decompositions via
geometry

One might argue that the exponent of matrix multiplication is unimportant
for the world we live in, since w might not be relevant until the sizes of the
matrices are on the order of number of atoms in the known universe. For im-
plementation, it is more important to develop explicit decompositions that
provide a savings for matrices of sizes that need to be multiplied in practice.
One purpose of this chapter is to discuss such decompositions. Another
is to gain insight into the asymptotic situation by studying the symmetry
groups that occur in the known decompositions of M. I begin, in §4.1, by
discussing generalities about decompositions: the generalized Comon con-
jecture positing that optimal decompositions with symmetry exist, a review
of Strassen’s original decomposition of My that hints that this is indeed
the case, and defining symmetry groups of decompositions. In particular,
I point out that decompositions come in families essentially parametrized
by G Mgy s and one gains insight studying the entire family rather than indi-
vidual members. In §4.2, I describe two decompositions of My, that have
appeared in the literature, a recent one by Grochow-Moore, and Pan’s 1978
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decomposition that still holds the world record for practical matrix multi-
plication in a sense I now make precise.

Introduce wyqc i to be the smallest 7 such that there exists n < k with
R(My)) <n". In contrast to the exponent there is no hidden constant. By
definition wpreek = Wprae,kr for all k' > k and for all k&, Wprack > w. If we
decide that we want to multiply unstructured matrices of size, say 10,000
but no larger, then wyrqc 10,000 Will be a more useful quantity than w. In
this regard, the best result is Pan’s decomposition (Theorem 4.2.1.1) which
implies wprae,70 < 2.79512. In comparison, using Schonhage’s order two
border rank 21 decomposition of M3, converted to a rank decomposition
of a Mgk (as discussed in §3.2.1), on needs matrices on the order of 10%°
before one beats Strassen’s 2.81. Using Bini et. al.’s order one border rank
10 decomposition for M, ; 3 converted to a rank decomposition of M (12k)
one needs matrices of size on the order of 10%°. In order to make e.g.,
Coppersmith-Winograd’s method viable, one needs matrices of size larger
than the number of atoms in the known universe (larger than 10%!).

Problem 4.0.0.1. Prove upper bounds on Wprac,1,000 OF Wprac,10,000-

This is currently an active area of research.

In §4.3, I revisit Strassen’s decomposition and give a proof of Burichenko’s
theorem [Burl4] that its symmetry group is as large as one could naively
hope it to be. In order to determine symmetry groups and determine if
different decompositions are in the same family, one needs invariants of
decompositions. These are studied in §4.4. Two interesting examples of
decompositions of M3, are given in §4.5, a variant of Laderman’s decom-
position and decomposition with Zs x Zs-symmetry from [BILR]. In §4.6
I briefly describe the alternating least squares method that has been used
to find decompositions numerically. Border rank decompositions also have
geometry associated with them. In order to describe the geometry, I give
some geometric preliminaries, including the definition of secant varieties in
§4.7. I conclude with two examples of border rank decompositions and their
geometry in §4.8 from [LRO].
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4.1. Symmetry and decompositions

4.1.1. Warm-up: Strassen’s decomposition. Strassen’s algorithm, writ-
ten as a tensor, is

(4.1.1)

e
oa) oG 8)= @) 0 5o )eho) ()0
YA OO B ) R Ay R RO GV G

A first observation is the Zs-symmetry of My, (see Exercise 2.5.1.6),
which I will call the standard cyclic symmetry, also occurs in Strassen’s
decomposition: the Zs action fixes the first term, and permutes the other
two triples of terms. This motivates the study of symmetry groups of rank
decompositions.

Exercise 4.1.1.1: (2) Show that if we change bases by

w=(y ) ectwna=(2) V) oo = (] ) ecom.

then the new decomposition of M has four terms fixed by the standard
cyclic Z3. ©®

4.1.2. Symmetry groups of tensors and their rank decompositions.
Consider Seg(PA; x --- x PA;) C P(A1®---®Ay). If all the vector spaces
have different dimensions, consider the symmetry group of the cone over the
Segre as a subgroup of GL(A1) x -+ x GL(Ag) (more precisely of GL(A;) x
- x GL(Aq)/(C*)371 because if A - -+ A\g = 1, then (A Ida,, ..., \gId4,) €
GL(Ay) x -+- x GL(Ay) acts trivially). If all dimensions are the same, con-
sider the symmetry group as a subgroup of (GL(A1)x- - -xGL(Ag)/(C*)*4=1)x
&4, where the &4 acts by permuting the factors after some isomorphism of
the A; has been chosen. One can also consider intermediate cases. For
T € (CN)®4 let

Gr = {g € (GLy*/(C")*""") x &4 | gT =T},
and for T € A1® - - ® Ay with different dimensions, define
Gr = {g € GL(A1) x -+ x GL(Aq)/(C*)**"1 | gT =T},
For a polynomial P € SV, write
Gp:={g€ GL(V) | gP = P},
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For a rank decomposition T = Z;Zl tj, define the set S := {t1,...,%,},
which I also call the decomposition. If T has a rank decomposition S and a
nontrivial symmetry group G, then given g € Gp, g-S := {gt1,...,gt.} is
also a rank decomposition of T

Definition 4.1.2.1. The symmetry group of a decomposition S is I's :=
{g € Gr ’ g-§= S} Let F:S' =I'snN (HJGL(AJ))

A guiding principle of this chapter (for which there is no theoretical
justification, but holds in several situations, see §7.1.2 and §6.6.3) is that if
T has a large symmetry group, then there will exist optimal decompositions
of T with symmetry. This even extends to border rank decompositions, as
we will see in §4.7.4.

Naively, one might think that some decompositions in a family have
better symmetry groups than others. Strictly speaking this is not correct:

Proposition 4.1.2.2. [CILO16] For g € Gr, I'y.s = gl'sg™ L.

Proof. Let h € T's, then ghg=t(gt;) = g(ht;) € g- S so T'ys C gl's,g7 1,
but the construction is symmetric in I'y.s and I's. O

As explained below, there may be preferred decompositions in a family
where certain symmetries take a particularly transparent form.

For a polynomial P € SV and a symmetric rank decomposition P =
04+ ... + ¢4 for some ¢; € V (also called a Waring decomposition), and
g € Gp C GL(V), the same result holds with S = {¢¢,... ¢}

In summary, decompositions come in dim(Gr)-dimensional families, and
each member of the family has the same abstract symmetry group.

4.1.3. Symmetries of My,y. Let PGL(U) denote GL(U)/C*, where C* =
{Mdy | A € C*}. This group acts on PU, as well as on U*®U. The first
action is clear, the second because the action of GL(U) on a®u is ag™'®@gu
so the scalars times the identity will act trivially.

In §2.5.1 we saw that PGLX3 x (ZgxZs) C GM,,,- 1 emphasize that this
Zs is not contained in either the &3 permuting the factors or the PGL(A) x
PGL(B) x PGL(C) acting on them.

Proposition 4.1.3.1. [dG78, Thms. 3.3,3.4] Gy, = PGL}® X (Z3 X Z3).
A proof is given in §8.12.4.

4.1.4. The Comon conjecture and its generalization.

Conjecture 4.1.4.1 (P. Comon [Com02]). If T € SCN c (CN)®¢, then
there exists an optimal rank decomposition of T' made from symmetric ten-
sors.
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After being initially greeted with skepticism by algebraic geometers
(Comon is an engineer), the community has now embraced this conjecture
and generalized it.

Question 4.1.4.2. [Generalized Comon Conjecture] [BILR] Let T € (CV)®4
be invariant under some I' C &4. Does there exist an optimal rank decom-
position § of T satisfying I' C I'g?

I use the following special case as a working hypothesis:

Conjecture 4.1.4.3. [BILR] If R(Myy,) = r, then there exists a rank r
decomposition of My, that has standard cyclic symmetry.

4.1.5. Decomposition of A®3 under Zs. In order to search for stan-
dard cyclic Z3 decompositions of M,y we need to understand the GL(A)-
decomposition of A®3.

Exercise 4.1.5.1: (1!) Verify that the cyclic Z3 acts trivially on both S3A
and A3A.

Proposition 4.1.5.2. Let Z3z C &3 act on A®3 by cyclically permuting
factors. Then
(A®3) 2 = S3A @ A3A.
Proposition 4.1.5.2 is proved in Exercise 8.7.2.4.
Thus if we are searching for cyclic Zs-invariant decompositions for My,

. . . . 6 2
the size of our search space is cut down from n® dimensions to % di-
mensions.

It is easy to write down the decomposition of My, € S3A @ A3A into
its symmetric and skew-symmetric components:
1 1
trace(XY Z) =5 [trace(XY Z) + trace(Y X Z)] + B [trace(XY Z) — trace(Y X Z)]
. S A
=: M<n>(X, Y, Z)+ M<n)(X,Y, Z)
Exercise 4.1.5.3: (1) Verify that the first term in brackets lives in S A and

second lives in A3A.

Remark 4.1.5.4. In [CHI'| we show that the exponent of M(i) is the
same as that of M. Since M <€1 ) is a polynomial, this suggests one can use
further tools from algebraic geometry (study of cubic hypersurfaces) in the

attempt to determine the exponent.

4.2. Two decomposition families of M, of rank < n?

Call a subset of points {[a1],. .., [a,|} of PA a pinning set if the stabilizer of
this set in PGL(A) is finite and no subset of the points has a finite stabilizer.
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If we choose vector representatives for the [a;] call it a framed pinning. For
example, if the subset contains a collection of a+1 elements in general linear
position, it is a pinning set, and a4+ 1 is the minimal cardinality of a pinning
set. Call such a pinning set a standard pinning.

A standard pinning determines (;) points in PA* obtained by intersect-
ing sets of a — 2 hyperplanes coming from the standard pinning points.

4.2.1. Pan’s decomposition family. Pan’s 1978 decomposition still holds
“world record” for practical matrix multiplication.

Let n = 2m. Let Z3 denote the standard cyclic permutation of factors.
Introduce the notation1 =147+ m, = j+m. Write x; = ui®vj, y; = vi®wj,
z§ = wi®uj. Let ZQU be generated by op which is the exchange u’ < u',
(which also sends u; ¢ u;) and define Z) and ZY similarly, with generators
oy,ow. Let Z3 be generated by the product of the generators, so o acts
by: l‘; > ak, y} oy, z; 2.

Because of the cyclic Z3 symmetry, it will be convenient to identify the
three spaces and I will use m; for all three. In what follows, indices are to
be considered mod n.

For a finite group I' C GLy X GLy X GLy X G5, introduce the notation

(4.2.1) (z@yR2)r ==Y g (x@ye2).
gel

Let Z7 denote the standard transpose 2@y®z +— y! @27 ®2T and let Z;l
denote the transpose-like symmetry obtained by composing the standard
transpose symmetry with oy .
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Theorem 4.2.1.1. [Pan78] With notations as above My equals

(4.2.2)
> (@t +ad) g
(4.2.3)
_ Z ((:1:; — ), —|—x§’)®(—m§» +x%+a:§)®(a:§+1:{€ —xf)>zgxz3
(i,,k)0<i<j<k<m—1
(4.2. 4)
. m_l . .
3 Gmaelm - sl + (6 4 o) — et + 2
1,7=0 k=0
(4.2. 5)
m—-1 ) . .
+ Z [(m — 6ip)at + > [(@f + ) — i (2 + 1)) zg xzs <23
i,j=0 k=0

Note that the terms (4.2.2),(4.2.4),(4.2.5) are My, plus “garbage” terms.
The second summation eliminates the garbage terms. Call the decomposi-
tion Span-

Remark 4.2.1.2. According to Burichenko (announced in [Burl5, Thm
1.1]) T'sp,, = Gm X Zy x Gs.

Exercise 4.2.1.3: (2) Show that the number of triples (7, j, k) with 0 <37 <
j<k<m-1is 2(m® — m) and conclude that Pan’s decomposition is of
rank n? + 6n% — gn

Exercise 4.2.1.4: (1) Show that when n = 70, Pan’s decomposition has
rank 143,240 and conclude that wprqc,70 < 2.79512.

4.2.2. The Grochow-Moore decompositions. The group G, acts ir-
reducibly on C™ (see §1.1.13 for the action and §8.7.2 for the proof), and
the induced action on C™®C™ has a unique trivial representation, namely
Idcn, see Exercise 8.6.8.3.

Exercise 4.2.2.1: (1) Show any 7' € (U*@V)(V*@W)(W*®U) that is
acted on trivially by GEil, where the first copy acts on U, U* the second on
V,V* and the third on W, W*, is up to scale M.

Let u',..., 4™ € U* be a framed pinning normalized so that u' +

4Pt =0, with (“H) induced points u;; := Uln41)\ {35} for ¢ < j, with

normalizations: uw = 0, and u'(uz) = 1, v'(up;) = —1. Adopt the
notation uj; := —u;j, s0 u; = 0.
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Given a framed pinning, define a dual framed pinning w1, ..., un+1 of U

by requiring
; 1 i=y
u'(u;) = { 1. }
! —n 1F]

Exercise 4.2.2.2: (1) When n = 2 compute the dual pinning to (é) , <0> , <_1>.
©

Exercise 4.2.2.3: (1) Show that with the above normalizations u;; = u; —

uj.

Exercise 4.2.2.4: (1) Show that with the above normalizations Idy =

| ijll U Qu;.

Proposition 4.2.2.5. [GM16| Notations as above. Then

3 n+1

n ; : k
M(n) = (n+1) ij;_luz’l)j@?)]wk@w Uj.

Proof. Note that the right hand side is invariant under 6§i1 so it is some
constant times My,). To check the constant is correct, evaluate the right
hand side on, e.g., Id§3. O

Proposition 4.2.2.5 gives a rank (n + 1)? decomposition of My, so at
first glance it does not appear interesting. However, it is used to prove the
following theorem:

Theorem 4.2.2.6. [GM16] Let u',... ,u™*! € U* be a framed pinning
with induced vectors u;; € U as above, and choose identifications U ~V ~
W to obtain inherited pinnings and induced vectors. The following is a rank

n3 — n+ 1 decomposition of My, call it Sgar, with T'sg,, D Gy X Zs.

3

3 n j j k

My =1d35° — (n - 1) E w0 @07 W QW ug;
i,j,k€[n+1] and distinct

Proof. First, notice that
Z uzvij®vjwjk®wkuki = Z u’vij®vjwjk®wkuki
1,j,k€n+1] and distinct i,j,k€n+1]

because v;; = 0. By Exercise 4.2.2.3 we may write v;; = v; — v; One then
expands out, using Exercise 4.2.2.4 and Proposition 4.2.2.5 to conclude. [J

Theorem 4.2.2.6 gives another perspective on Strassen’s decomposition
family for M ).
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4.3. Strassen’s decomposition revisited

Let Str denote the Strassen decomposition of My).

4.3.1. The Strassen family. As discussed above, decompositions are best
studied in families. In the case of My, there is a unique family:

Theorem 4.3.1.1. [dG78| The set of rank seven decompositions of M ) is
the orbit GM<2> - Str.

The proof follows from a careful analysis of every possible decomposition,
taking into account that an element a®b®c is not just a triple of vectors,
but a triple of endomorphisms C? — C2, and the analysis is via the possible
triples of ranks that can appear.

In preparation for studying the Strassen family of decompositions, write

(4.3.1) u = (é) . Uy = <(1)> ut = (1,0), u* = (0,1)

and set v; = w; = u; and v/ = w’ = u/.

Strassen’s decomposition becomes

(4.3.2) M) =(v1u! + v2u?)@(w1v! + wov?)@(urw! + ugw?)
+ (vut @wa (vl — v @(ur + ug)w?)z,

+ (vau@w; (v¥ — o1 @(uy + uz)wh)z,.

From this presentation we transparently recover much of the entire

Strassen family, namely by letting wuq,ue, v, ve, and wi,ws be arbitrary
bases, with dual basis vectors denoted with superscripts. We obtain a
family parametrized by PGL(U) x PGL(V) x PGL(W), and since the
decomposition (4.3.2) is manifestly Zs-invariant, the only potential addi-
tional decompositions arise from applying a transpose symmetry such as
rRyRz — T @27 @y, Call such a transpose symmetry convenient.
:1 and u? = (1,-1)
and similarly for v,w, then the matrices in Exercise 4.1.1.1 respectively
correspond to the permutations (2,3), (1,3) and (1,2). The matrix in the
first term of the decomposition that one obtains from Exercise 4.1.1.1 also
corresponds to a permutation. Which one?

Exercise 4.3.1.2: (1) Show that if we set uz =

Exercise 4.3.1.3: (2) Find a change of basis such that the first term in the

®3 )
decomposition of Exercise 4.1.1.1 becomes (LS w2> where w = e’3" and

write out the decomposition in this basis.
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Under z@y®z — 2! @2T@y”, Strassen’s decomposition is mapped to:

(4.3.3) M<2>_<(1) (1)>®3
o o) =0 1)=(0 )=
o) = oo)e (o)

Notice that this is almost Strassen’s decomposition (4.1.1)- just some the
signs are wrong. We can “fix” the problem by conjugating all the matrices

with
(0 -1
go ‘= 1 0/

Exercise 4.3.1.4: (1) Verify that acting by g;* € PGL(U) x PGL(V) x
PGL(W) takes (4.3.3) to Strassen’s decomposition.

Exercise 4.3.1.4 shows that there is a non-standard Zg C PGLQX?’ X (Zg x
Zs3) contained in I'sy,., namely the convenient transpose symmetry composed
with goxg. It also implies a refinement of deGroote’s theorem:

Proposition 4.3.1.5. [Burl4, CILO16] The set of rank seven decompo-
sitions of My is PGLS? - Str.

With the expression (4.3.2), notice that if we exchange u; <> w2 and
u! < u?, the decomposition is also preserved by this Zs C PGLQX?’, with
orbits (4.3.2) and the exchange of the triples. So we see ['sg. D Zo X (ZgXZs),
where the first Zs is diagonally embedded in PGL;s.

Although the above description of the Strassen family of decompositions
for Moy is satisfying, it becomes even more transparent with a projective
perspective. With the projective perspective, we will see that ['sy. is even
larger.

4.3.2. My viewed projectively. That all rank 7 decompositions of My,
are obtained via PGL2X3 suggests using a projective perspective. The group
PGL; acts simply transitively on triples of distinct points of P'. So to fix
a decomposition in the family, select a pinning (triple of points) in each
space. I focus on PU. Call the points [u1], [us], [ug]. Then these determine
three points in PU*, [u't], [u?!], [u?t]. Choose representatives wuy,ug,us
satisfying u; 4+ uo + ug = 0. I could have taken any linear relation, it just
would introduce coefficients in the decomposition. I take the most symmetric
relation to keep all three points on an equal footing. Similarly, fix the scales
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on the u/ by requiring v/ (u;j_1) = 1 and w/*(u;j41) = —1, where indices
are considered mod Zs, so us11 = w1 and uj_1 = us.

In comparison with what we had before, letting the old vectors be hat-
ted, 41 = w1, Ug = ug, 4! = u?+, and @? = —u't. The effect is to make the
symmetries of the decomposition more transparent. Our identifications of
the ordered triples {u1,u2,us} and {v1,v9,v3} determines a linear isomor-
phism ag : U — V, and similarly for the other pairs of vector spaces. Note
that ag = vj®uj+u‘ + vj+1®uj+ﬂ for any j = 1,2, 3.

Then

(4.3.4) M9y = ap®bo®cy
+ (v )@ (wsv' )@ (ugw?h))z,

+ (1)@ (wer )@ (ugw? )z,

Here, to make the terms shifted by Zg live in the proper space, one must
act by ag, by, co appropriately, e.g., to shift viu?- to the second slot, one
takes bovl’LLQLao_l.

With this presentation, taking ag = by = ¢y = 1d, the diagonally embed-
ded G5 C PGLQXS acting by permuting the indices transparently preserves
the decomposition, with two orbits, the fixed point ag®by®cy and the orbit
of (v1u?*1)@(w3v' )@ (ugw3+). The action on each of U, V, W is the standard
irreducible two dimensional representation.

We now see I'sy D &3 % (Z3 % Zs), with &3 C I's,,.. With a little more
work, one sees that equality holds:

Theorem 4.3.2.1. [Burl4] The symmetry group I'sy, of Strassen’s decom-
position of My is (&3 x Z3) x Ly C PGLS® % (Z3 x Lg) = Gy, -

Remark 4.3.2.2. One can prove Strassen’s decomposition is indeed matrix
multiplication simply by the group invariance, see [CILO16].

4.4. Invariants associated to a decomposition of M,

Given two decompositions of My, how can we determine if they are in the
same family? Given one, how can we determine its symmetry group? These
questions are related, as a necessary condition for two decompositions to be
in the same family is that they have isomorphic symmetry groups. I first
define invariants S, that are subsets of points in P(A®Q B®C'). Keeping
track of the cardinalities of these sets dates at least back to [JM86]. I then
further define subsets Sy C PU, Sy C PU* that give more information.
I describe further invariants associated to a decomposition via graphs. 1
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then discuss the sets Sy, Sf; in more detail: it turns out that the collec-
tion of points themselves has geometry that is also useful for distinguishing
decompositions and determining symmetry groups.

4.4.1. Invariants of decompositions of My,. Let M, = Z;-:l tj be a

rank decomposition for My, and write t; = a;®@b;®c;. Let r; := (rank(a;), rank(b;), rank(c;)),
and let r; denote the unordered triple. The following proposition is clear:

Proposition 4.4.1.1. [BILR] Let S be a rank decomposition of M. Par-

tition S by unordered rank triples into disjoint subsets: {5’171,1, 5’1,1,2, e S’nnn}

Write the corresponding ordered triplets as {S1.1.1,81,1,2,51.2,15 -+, Snnn}-

Then I's preserves each 557,5,“ and ng preserves each Sg ¢ 4.

We can say more about rank one elements: If a € U*®V and rank(a) =
1, then there are unique points [u] € PU* and [v] € PV such that [a] = [u®v].
So given a decomposition § of My, define Sy~ C PU* and Sy C PU to
correspond to the U* and U elements appearing in Sy 1,1. Then I's preserves
the sets Sy and Sy+ up to projective equivalence.

I will say a decomposition has a transpose-like Zo invariance if it is in-
variant under a Zs such as 2®@y®z — 21 @z @y’ composed with an element
of PGL(U) x PGL(V) x PGL(W).

Exercise 4.4.1.2: (1) Show that if a decomposition of M, is cyclic Z;3-
invariant and also has a transpose-like Zo-invariance, then Sy and Sy» have
the same cardinality.

4.4.2. A graph. Define a bipartite graph ZGgs, the incidence graph where
the top vertex set is given by elements in Sy« and the bottom vertex set
by elements in Sy. Draw an edge between elements [u] and [v] if they
are incident, i.e., u(v) = 0. Geometrically, [v] belongs to the hyperplane
determined by [u] (and vice-versa). One can weight the vertices of this
graph in several ways, the simplest (and in practice this has been enough)
is just by the number of times the element appears in the decomposition.
Let I'zgs C G M denote the automorphism group of ZGs, so I's C T'zgy,
and if we take the triple of incidence graphs, we get a similar inclusion for
I's. See the examples in §4.5.1 and §4.5.2.

If a decomposition is Zj3 invariant, the incidence graphs form V, V* and

from W, W* are isomorphic, and otherwise they give additional information.

Given a Zgs-invariant decomposition, a necessary condition for it to also
have a transpose-like Zs symmetry is that there is an isomorphism of the
bipartite graph swapping the sets of (weighted) vertices.

In practice (see the examples below) the incidence graph has been enough
to determine the symmetry group I's, in the sense that it cuts the possible
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size of the group down and it becomes straight-forward to determine I'g
from I'zg;.

Remark 4.4.2.1. In [BILR] a second graph, called the pairing graph is
defined that gives further information about I'y.

4.4.3. Configurations of points in projective space. In practice, per-
haps because of the numerical methods used, the sets Sy, and Sy have
been relatively small. It is not surprising that they each are spanning sets.
Usually they have come from configurations in a sense I now describe. For
P!, a configuration is simply a triple of points and the triple of points they
determine in the dual vector space. For example Strassen’s decomposition
is built from a configuration. The higher dimensional analog of such pairs
of triples is more complicated.

I emphasize that the decompositions of [BILR| were found by numerical
searches, without distinguishing any configurations. However in most cases,
we were able to give a simple description of the vectors appearing in the
decomposition in terms of a configuration. This bodes well for future work.

I restrict the discussion to P2, see [BILR] for the general case. The
group PG L3 acts simply transitively on the set of 4-ples of points in general
linear position (i.e., such that any three of them span P?).

Start with any 4-ple of points in general linear position. In the decom-
position, actual vectors will appear. Even in the decomposition, since what
will appear are vectors tensored with each other, there is only a “global
scale” for each term. Take the simplest (to write down) 4-ple, choosing the
fourth vector in order to have the linear relation uj + uyp +us +uq = 0. I'll
call this the default configuration. That is, the default configuration starts
with

1 0 0 -1
Uy = 0 , U2 = 1 , Uz = 0 , Ug = -1
0 0 1 -1

The {[u;]} determine points in the dual space by taking pairwise inter-
sections of the lines (hyperplanes) that they determine in PU*.

V12 = (070> 1)1 V13 = (07 170)7 V14 = (O, 17_1)7
vag = (—1,0,0), waq = (—1,0,1), w3y = (1,—1,0).

Here [v;;] is the line in P? (considered as a point in the dual space P?*)
through the points [u;] and [u;] in P? (or dually, the point of intersection of
the two lines [u;], [u;] in P?*). Here choices of representatives are being made.
I have made choices that will be useful for the decomposition Sgrrr 7,x7;
of §4.5.1 below.
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The v; ; in turn determine new points of intersection:

1 1 0
u3s= (1], wiz2a= (0], vg23= |1
0 1 1

which determine new points

V(12,34),(13,24) = (=1, 1, 1), v(12,34),(14,23) = (1, =1, 1), v(13.24),14,23) = (1,1, -1),

which determine new points in U, etc.., see [BILR]| for details. In practice
only vectors from the first three sets of a configuration (7 for U, 6 for V or
vice-versa) have been useful.

4.5. Cyclic Zs-invariant rank 23 decompositions of Mz,

In [BILR|] five new standard cyclic families of decompositions were found,
as well as a standard cyclic variant of Laderman’s decomposition. What
follows is one of the new decompositions and the standard cyclic variant of
Laderman’s decomposition.

4.5.1. A rank 23 decomposition of My with Z, x Z3 symmetry.
Take a configuration and let ag : U — V send u; to vj11. In the default
configuration

0 0 -1
apg = 1 0 —1
01 -1

corresponds to the generator of Z,4 that cyclically permutes indices.
Theorem 4.5.1.1. [BILR] Let u;j, vi, vijjry be as in §4.4.3. Then

®3
M<3> CLO
(u24v12130) ) 2024
®3>Z4

(u12v3)®%)7,

{
(—[u24v4 + u12v3]
(
((u12v1) @ (u23v3)@(U2404)) 74 x 75 -

Here is the incidence graph:
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Given the distribution of the frequencies of the points: (4,4,4,4,1,1) in
V,(3,3,3,3,3,3) in U*, a transpose-like symmetry is not possible. Moreover,
it is clear one cannot upgrade the Z4 to &4 since only two of the three v;;;
appear in the decomposition: vy934,v14j23 (V1324 is omitted). So, e.g., the
transposition (2,3) takes SprrLrz,xz; to a different decomposition in the
family.

Proposition 4.5.1.2. [BILR] =74 X Zg
Exercise 4.5.1.3: (2) Use the incidence graph to prove Proposition 4.5.1.2.

FSBILR,Z4 XZg3

4.5.2. Laderman’s decomposition. I now discuss a variant of Lader-
man’s rank 23 decomposition of M), which I denote Lad. According to
Burichenko [Burl5], one has a Zo x Zy C PGL(U) x PGL(V) x PGL(W)
contained in I'z,4 and the full cyclic permutation and a transpose-like Zg x Zo
also in I'z,q, acting in a twisted way. Thanks to the transpose-like symme-
try, it is better to label points in the dual space by their image under the
transpose-like symmetry rather than annihilators, to make the symmetry
more transparent. Here it is:

Points:
1 0 0 1 0
uy = O , U2 = 1 , Uz = 0 , U2 = -1 , U23 = 1
0 0 1 0 —1

v = (1,0,0), Vg = (0,1,0), vy = (0,0,1),
vi2 = (1,1,0), v23 = (0,1,1).

Note that the configuration of points in PU is

Exercise 4.5.2.1: (1) Determine the subgroup of PG L3 fixing the configu-
ration of two lines in the plane. ©®
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Figure 4.5.1. Configuration from the symmetric Laderman decomposition

Exercise 4.5.2.2: (2) What is the subgroup of your answer to Exercise
4.5.2.1 that preserves the full configuration in P? (i.e., two lines, intersecting
in a point, each with two additional marked points).

Theorem 4.5.2.3. [BILR, Lad76] Notations as above. Then

4.5.1 M gy =(ugv9)®”
4.5.2 U3U3)®3
4.5.3 u12v1)®3
4.5.4 u1012)®3

®3
UV — UIV12)

u1v3)®(ugv)@(u1v1))z,
u23v1)®(U1203) @ (U2303)) 24

u3v12) @ (u1023)®(U3v23)) 24

uv3 — U23v1)®(u1v2 — u1203)®(U3v2 — U23V3)) 7,
U23V12 + UgV3 — U1V23) D (Uv3)®(U3v2)) 7,

U12012 + UgV3 — u32)®(Uz01) @ (U1v2))7;-

The transpose-like Zs is 2Qy®z + (eayes)? @(eamea)T @ (ea2€2)T, where

€y = -1 . (Note the similarities with Strassen’s decomposition.)
1

In other words send wy < v1, us < —v9, ug < wz and then switch the

first two factors in AQ B@C'. This action performs the exchanges (4.5.3) <>

(4.5.4) and (4.5.7) <> (4.5.8), and fixes all other terms in the decomposition.
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Here is the incidence graph:

4.6. Alternating least squares (ALS) method for
decompositions

I now explain the method used to find decompositions numerically.

Let A,B,C respectively have bases {e;}, {f;}, {gr}. Given a tensor T' =
e Z;’Zl St fi®gr € AR B®C, say we have reason to believe it
has rank at most r. To find a rank r expression we could work as follows: For
1<u<r writea, =Y, Xie;, by = > qufj, and ¢, = >, Z¥ gy where the
Xt v, Z% are constants to be determined. We want >! _, a,®b,®c, =T,
ie.,

T
(4.6.1) > XiYizZE =tk
u=1

for all 4, j, k. If we restrict ourselves to real coefficients, we want

r
(462) objfn1 = Z(Z X;Yu]quj _ tijk:)Q’
ik u=1

called the objective function, to be zero. (One can obtain a similar equation
for complex coefficients by splitting all complex numbers into their real and
imaginary parts. I stick to the real presentation for simplicity of exposition.)
Now (4.6.2) is a degree six polynomial, but it is quadratic in each of the
unknown quantities. To solve in practice, one begins with an initial “guess”
of the X!, Y/, fo, e.g., chosen at random. Then one tries to minimize (4.6.2)
e.g., as a function of the X! while holding the v, ZF fixed. This is a linear
problem. Once one obtains a solution, one starts again, holding the X¢ and
Z{j fixed and solving for the Yy. Then one repeats, minimizing for the Z{f ,
and then cycling around again and again until the result converges (or fails
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to, in which case one can start again with different initial points). This
algorithm was first written down in [Bre70].

Now this procedure could “attempt” to find a border rank solution, that
is, the coefficients could go off to infinity. If one wants a rank decomposition,
one can add a penalty term to (4.6.2), instead minimizing

r

(4.6.3) objfng 1= > (Y XIYJZE 772 4 e( Y (X0)2+ (V) +(25)%)
i,j,k u=1 uvivjvk

for some € that in practice is found by trial and error.

In the literature (e.g. [Lad76, JM86, Smil3, AS13]) they prefer
coefficient values to be from a small list of numbers, ideally confined to
something like 0,41 or O,il,j:%. If the tensor in question has a large
symmetry group (as does matrix multiplication), one can use the group
action to fix some of the coeflicients to these desired values.

According to Smirnov, in [Smil3], for T' = My, (but not rectangular
matrix multiplication) the critical points of objfn; are integers in practice,
although he does not give an explanation why one would expect this to be
the case. Thus, by these heuristics, if one can obtain a decomposition with
objfn; < 1, then it will converge to zero by the ALS process, producing
either a decomposition or limit to a border rank decomposition.

4.7. Secant varieties and additional geometric language

To better discuss border rank decompositions in §4.8, I now introduce the
language of secant varieties. This language will also enable us to discuss rank
decompositions in a larger context and will arise in the study of Valiant’s
conjecture and its variants.

4.7.1. Secant Varieties. Given a variety X C PV, define the X-rank of
[p] € PV, Rx([p]), to be the smallest r such that there exist z1,...,z, € X
such that p is in the span of x1,...,x,, and the X-border rank Ry ([p]) is
defined to be the smallest r such that there exist curves (), ..., z,(t) € X
such that p is in the span of the limiting plane lim; ,o(zi(t),...,z.(1)),
where (x1(t),...,z(t)) C G(r,V) is viewed as a curve the Grassmannian.
Here and in what follows, I am assuming that for ¢t # 0, z1(¢), ..., z,(t) are
linearly independent (otherwise we are really dealing with a decomposition
of lower border rank).

Let 0,(X) C PV denote the set of points of X-border rank at most r,
called the r-th secant variety of X. (Theorem 3.1.6.1 assures us that o, (X)
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is indeed a variety.) In other words

oX)= | (...

T, ,Xr€X

where (z1,...,x,) denotes the linear span in projective space and the over-
line denotes Zariski closure. The notation is such that o1(X) = X. When
X = Seg(PA; x --- x PA,,) is the set of rank one tensors, 0,.(X) = 0.

Let X C PV be a smooth variety, and let p € 02(X). If p is not a point
of X, nor a point on an honest secant line, then p must line on some tangent
line to X, where here I take the naive definition of tangent line, namely a
point on a limit of secant lines.

Terracini’s lemma (see, e.g., [Lanl2, §5.3]) generalizes our caculation
of Tia, 0b10c1+as@benes] S€J(PA X PB x PC) of §3.1.3: if 2 = [z1 + --- + 2]
with [z;] € X general points, then T,o.(X) = > =1 T[xj]X. In particular
dimo,(X) <rdimX +r — 1.

Thus dim o, (X) < min{rdim X +r—1,v —1}, and when equality holds
we will say 0,(X) is of the expected dimension. The expected dimension is
indeed what occurs “most” of the time. For example, dim o,.(PV x PV x PV)
is the expected dimension min{3Nr + r — 1, N3 — 1} for all (r, N) except
(r,N) = (4,2) [Lic85].

4.7.2. Homogeneous varieties, orbit closures, and G-varieties. The
Segre, Veronese and Grassmannian of §3.1.2 are examples of homogeneous
varieties:

Definition 4.7.2.1. A subvariety X C PV, is homogeneous if it is a closed
orbit of some point x € PV under the action of some group G C GL(V). If
P C G is the subgroup fixing z, write X = G/P.

A variety X C PV is called a G-variety for a group G C GL(V), if for
alge Gandx e X, g-z € X.

Orbit closures (see §3.3.1) and homogeneous varieties are G-varieties.

Exercise 4.7.2.2: (1) What are the points in GL,, - (z1 - - - x,,) that are not
in GLy, - (x1---2p)?

4.7.3. The abstract secant variety. Given projective varieties Y; C PV},
one can define their Segre product Y7 x --- x Y, C Seg(PV; x --- x PV,) C
P(Vi®---®V;). Let X C PV be a variety. Consider the set

S (X)0:={(x1,...,2,2) € X*" xPV | z € span{xy,...,z,}}
C Seg(X*" x PV) c Py e+t
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and let S, (X) := S, (X)° denote its Zariski closure. (For those familiar with
quotients, it would be more convenient to deal with X (") := X*7/&,..) We
have a map 7 : S,.(X)? — PV, extending to a map 7 : S,.(X) — PV, given
by projection onto the last factor and the image is o(X) (resp. o,.(X)).
Call S, (X) the abstract r-th secant variety of X. Aslong as r < v and X
is not contained in a linear subspace of PV, dim S,(X) = rdim X +r — 1
because dim X *" = rdim X and a general set of r points on X will span a
Pt

If 0,(X) is of the expected dimension and is not all of PV, so its dimen-
sion equals that of S,(X), then for general points z € o,.(X)°, (7°)71(2)
will consist of a finite number of points and each point will correspond to a
decomposition z =21 + --- + @, for T; € j, Z € 2. In summary:
Proposition 4.7.3.1. If X" C PV and 0,(X) is of (the expected) dimension
rn+r —1 < N, then each of the points of a Zariski dense subset of o,.(X)
has a finite number of decompositions into a sum of r elements of X.

If the fiber of ¥ over 2 € ¢%(X) is k-dimensional, then there is a k-
parameter family of decompositions of z as a sum of r rank one tensors.
This occurs, for example if z € ¥ ;(X), but it can also occur for points in
or(X)\or—1(X).

For example, every point of o7(Seg(P? x P3 x P3)) = P53 has a 5 dimen-
sional family of points in the fiber, but M, has a nine dimensional family.
A general point of oo3(Seg(P® x P8 x P?)) will have a finite number of points
in the fiber, but M3y has at least a 24-dimensional fiber, in fact by [JM86],
at least a 27-dimensional fiber.

If X is a G-variety, then 0,.(X) is also a G-variety, and if 2 € ¢%(X)
is fixed by G, C G, then G, will act (possibly trivially) on (7°)~!(z), and
every distinct (up to re-ordering if one is not working with X (X’")) point in
its orbit will correspond to a distinct decomposition of 2. Let q € (7°)~!(z).
If dim(G. - q) = d,, then there is at least a d, parameter family of decom-
positions of z as a sum of r elements of X.

Remark 4.7.3.2. Note that codim(S,_1(X), Sr(X)) < dim X — 1, where
the inclusion is just by adding any point of X to a border rank r — 1
decomposition. In particular, in the case of the Segre relevant for ma-
trix multiplication, this codimension is at most 3(n? — 1). On the other
hand dim Gy, = 3(n? — 1), so by a dimension count, one might “ex-
pect” w1 (M) to intersect S,_1(X), meaning that we could keep reduc-
ing the border rank of My, all the way down to one. Of course since
Sy (Seg(PA xPB x PC')) is not a projective space, Theorem 3.1.5.1 does not

apply, but this dimension count illustrates the pathology of the tensor M.
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4.7.4. What is a border rank decomposition? Usually an X-border
rank decomposition of some v € V is presented as v = limy_o(z1(t) +
-+ + x(t)) where [z;(t)] are curves in X. In order to discuss border rank
decompositions geometrically, it will be useful to study the corresponding
curve in the Grassmannian (z1(t),...,z,(t)) C G(r,V). The geometry of
the intersection of the limiting r plane that contains v with X has useful
information.

To better understand this geometry, consider

SOX) = {([w], (1) - - -, [#r]), B) | v € (w1, ..., 2,) C E} CPVXX*"xG(r,V)

and S,(X) := S0(X).

We can stratify o,(X) and S,.(X) by the h’s of the intermediate ranks Ry,
of §3.2.1. The case h = 0 is rank. The next case h = 1 has a straight-forward
geometry.

To understand the A = 1 case, first consider the case r = 2, so v =
limy 0 3 (1 (¢)+z2(t)) for curves [z;(t)] C X. Then we must have limg_,o[z1(t)] =
lim;_,o[x2(t)], letting [x] denote this limiting point, we obtain an element of
T.X. In the case of o,(X), one needs r curves such that the points are
linearly independent for ¢ # 0 and such that they become dependent when
t = 0. This is most interesting when no subset of r—1 points becomes linearly
dependent. Then one may obtain an arbitrary point of TMX + o+ TxTX
(see [Lan12, §10.8.1]). For some varieties there may not exist r distinct
points on them that are linearly dependent (e.g., vg(P!) when d > r). An
easy way for such sets of points to exist is if there is a P*~! on the variety,
as was the case for Tsrp of §5.6. The decompositions for Mﬁﬁl% I discuss
in the next section are not quite from such simple configurations, but nearly
are. Because of this I next discuss the geometry of linear spaces on the
Segre.

4.7.5. Lines on Segre varieties. There are three types of lines on Seg(PA X
PB x PC): a-lines, which are of the form P({a1, as)®@b®c) for some a; € A,
b € B, ¢ € C, and the other two types are defined similarly and called
and v lines.

Exercise 4.7.5.1: (2) Show that all lines on Seg(PA x PB x PC') are one
of these types. ©®

Given two lines Lg, L, C Seg(PA x PB x PC)) respectively of type 3,7,
if they do not intersect, then (Lg, L,) = P3 and if the lines are general,
furthermore (Lg, Ly) N Seg(PA x PB x PC') = Lg U L,,.

However if Lg = P(a®(b1,bs)®c) and L, = P(a’®b®(c1, c2)) with b €
(b1,b2) and ¢ € (c1,c2), then they still span a P3 but (Lg, L,) N Seg(PA x
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PB x PC) = Lg U Ly U Ly, where L, = P({(a,a’)®b®c), and L, intersects
both Lg and L.

Let z,y,2z € Seg(PA x PB x PC)) be distinct points that all lie on a line
L C Seg(PA x PB x PC). Then
(4.7.1)
Ty Seg(PA x PB x PC) C (T,Seg(PA x PB x PC), T,Seg(PA x PB x PC)).

The analogous statement is true for lines on any cominuscule variety, see
[BL14, Lemma 3.3]. Because of this, it will be more geometrical to refer to
TrSeg(PA x PB x PC) := (T,Seg(PA x PB x PC), T, Seg(PA x PB x PC)),
as the choice of y, z € L is irrelevant.

Exercise 4.7.5.2: (1) Verify (4.7.1).

The matrix multiplication tensor My vy endows A, B,C' with addi-
tional structure, e.g., B = V*®W, so there are two types of distinguished
B-lines (corresponding to lines of rank one matrices), call them (3, v*)-lines
and (8,w)-lines, where, e.g., a v*-line is of the form P(a®((v!,v?)®@w)®c),
and among such lines there are further distinguished ones where moreover
both a and c also have rank one. Call such further distinguished lines special
(8,v*)-lines.

4.8. Border rank decompositions
4.8.1. M&fi)d. Here A C U*®V has dimension three.

What follows is a slight modification of the decomposition of M <’"2€>d from
[BCRLT79] that appeared in [LRO]. Call it the BC'LR-decomposition. I
label the points such that x% is set equal to zero. The main difference is
that in the original all five points moved, but here one is stationary.

—ta3) @ (—yi +t(y1 — v3)) ® 23

and
1
(4.8.1) M&eflZ}%E[pl(t)+"'+p5(t)]-

Use the notation wz = u'Qvyj, yi = v/ ®w;, and zf = wrQu;.
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Theorem 4.8.1.1. [LRO] Let EBCEE = limy_,o(p1(2), ..., ps5(t)) € G(5, A BRO).
Then EBCLR N Seg(PA x PB x PC) is the union of three lines:

Lo (8w) = 230 (VW) ® 2

Lot () = 77 @ Y5 @ (W* @ ug)

Lo = (21,23) ® Y5 ® 2.

Here Ly (g, is a special (3,w)-line, Ly (y +), is a special (7, w™)-line,
and L, is an a-line with rank one B and C points. Moreover, the C-point
of L3 p) lies in the w*-line of Ly (), the B-point of Lyj (.~ lies in
the w-line of Ly (5. and L, is the unique line on the Segre intersecting
Lis (8.w) and Loy (y+) (and thus it is contained in their span).

Furthermore, EBCLE — <M(2€>d7L12,(ﬁ,w)aLQl,(v,w*)> and

Mgt € (Tr, 5., Seg(PA X PB x PC), Ty, . .,Seg(PA x PB x PC)).

Proof. Write p; = p;(0). Then (up to sign, which is irrelevant for geometric
considerations)

p1 =03®(y3 + y7)®23

P2 =TyRY; 073

ps =ri®Yi®(25 + 23)

P4 =2{RY; Rz

ps =(a + 23)@Y;®25.
Then Lys g.) = (p1,02), Lot (vw+) = (P3,P4), and p5 € Lq.

To see there are no other points in EP¢LFNSeg(PAxPB xPC), first note
that any such point would have to lie on Seg(P(zl, %) xP(y?, y2) x P(23, 22))
because there is no way to eliminate the rank two z3®(y?®21 +y2®23) term
in M<T26>d with a linear combination of py,...,ps. Let [(szl + tz?)®(uy3 +
vy?)®(pz3 + q23)] be an arbitrary point on this variety. To have it be in the
span of p1,...,ps it must satisfy the equations sug = 0, svqg = 0, tug = 0,
tup = 0. Keeping in mind that one cannot have (s,t) = (0,0), (u,v) = (0,0),
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or (p,q) = (0,0), we conclude the only solutions are the three lines already
exhibited.

‘We have

"= 23® (Y3 + i) ® 2

(0)

0 =25 QY5 ®25 — 23 ® Y5 ® (—27 + 21)
p3(0) =23 @ y3 ® (25 + 23)

0 =23Ryi @2+ 27 @ (y —y3) ® 2

(0)

Then M<’"2@>d = (P} +py) + (p5 + p}) where p| +py € Tr,, , , Seg(PA x
PB x PC) and ps + pj € Tr,, . ., Seg(PA x PB x PC). O

Remark 4.8.1.2. By removing z} from our tensor, we lose the cyclic Zs3-
symmetry but retain a standard transpose symmetry tQ@y®z xT®zT®yT.
Similarly we lose the GL(U) x GL(V) symmetry but retain the GL(W)
action. By composing the standard transpose symmetry with another Z,
action which switches the basis vectors of W, the action swaps p1(t) + p2(t)
with p3(t) + pa(t) and Ly (5) with Loy (y+). This action fixes ps.

Remark 4.8.1.3. Note that it is important that ps lies neither on Lis (5.,
nor on Loy (y .+, so that no subset of the five points lies in a linearly de-
generate position to enable us to have tangent vectors coming from all five
points, but I emphasize that any point on the line L, not on the original lines
would have worked equally well, so the geometric object is this configuration
of lines.

4.8.2. M{;g 9y Here is the decomposition in [AS13, Thm. 2] due to Alex-
eev and Smirnov, only changing the element set to zero in their decomposi-
tion to z}. The decomposition is order two and the only nonzero coefficients

appearing are +1, :l:%.
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-1 1
(5 t'23 = Stal + 1) ® (—yi + 3 +1y1) ® (23 + t23)

1
p2(t) = (2} + 5o3) @ (uF — 13) ® (25 + 23 + t23 + 123)

p1(t)

ps(t) = (P + taf — 123 — o) © (4 + 93 + 1)) © 3
palt) = (%t%g — taf — %m% +23) @ (Y7 + 95 — tyl) ® 23
ps(t) = (—t2ad + tad — 2d) @ P @ (22 + %tz% + %tz% — t22])
m®=§m%%9®Fﬁ+ﬁ+w®®%+m@
pﬂ%ﬂ%ﬁ+ﬁ+§@®@%¢@®@%+@
pe(t) = (tr3 + 2l) @92 @ (23 + %tz; + %tz% +1222).
Then
red 1
(322) = @P1(t) + -+ ps(t)].

Remark 4.8.2.1. In [BDHM15] they prove E(Mgg 2) =8

Theorem 4.8.2.2. [LRO] Let EAS3 = limy_,q(p1(t),...,ps(t)) € G(8, A9 BRC).
Then EA53 N Seg(PA x PB x PC) is the union of two irreducible algebraic
surfaces, both abstractly isomorphic to P' x P': The first is a sub-Segre
variety:

569217(,370.)),(7,&1*) = [ZL‘%] X P(U2®W) X ]P)(W*®U3),

The second, L, is a one-parameter family of lines passing through a parametrized
curve in Segay (3w),(vw+) and the plane conic curve (which has the same
parametrization):

ClQ,(ﬁ,w),(w,w*) = P(U[s,t}éplx%(g(sy% - tyg)®(sz32) + tZ%)).

The three varieties C13 (g.u),(vw*)s S€921,(8,w),(vw*), ald Lq respectively play
roles analogous to the lines L3 (g.,), La1,(yw+), and Lq, as described below.
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Figure 4.8.1. The curve Ci3 (5,w),(y,w) With its four points, the
surface Sego1,(5,w),(v,w*), With its four points (only two of which
are visible), and the surface L, with its two points which don’t lie
on either the curve or surface Sega1,(8,u),(v,w*)-

Proof. The limit points are (up to sign):

p1=21R(y — 13)®23
ps =Ry} + 15)923
P =z10(y + 15)®23
pe =210(yi — y3)973

Ps =T5QYi®23
_ 1 2 1
P8 =T5RQY5® 23

1

P2 =(at + 522) 8 (7 — 13)®(25 + 23)
1

pr =(@1 + 522) @yt +y2)® (23 — 23)

Just as with M<’”2€>d, the limit points all lie on a Seg(P! x P! x P!), in fact
the “same” Seg(P' x P! x P!). Pictorially the Segres are:

¢l ()
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for M{59 ) and

0 =
*
S KO R G
ko ok *
for M55 . Here EA%3 N Seg(PA x PB x PC) is the union of a one-
parameter family of lines L, passing through a plane conic and a special
Pt x P Segor (5uw),(vwt) = (1) X P(0*@W) x P(W*®us) (which contains
D1,P3,P4,P6). To define the family and make the similarity with the BCLR
case clearer, first define the plane conic curve

Cha,(Bw),(yw0*) = P(Ups em T3® (sy7 — t3)® (525 + t23)).
The points ps, ps lie on this conic (respectively the values (s,t) = (1,0) and
(s,t) = (0,1)). Then define the variety

Lo :=P(Upy rjept U gept (023 + 723)@(syf — tys)@(s23 + t23)),

which is a one-parameter family of lines intersecting the conic and the special
P! x P!. The points pa, p7 lie on L, but not on the conic. Explicitly pa (resp.
pr) is the point corresponding to the values (o,7) = (1,1) and (s,t) = (1,1)
(resp. (s,t) = (1,—-1)).

The analog of L, in the M("Qe;i decomposition is L, and C13 (g w),(v.w*)
and Sego1 (8.u),(vw+) are the analogs of the lines Lig (3.4, Lot (yw+)- (A dif-
ference here is that Cia (3.) (yw+) C La-)

The span of the configuration is the span of a P? (the span of the conic)
and a P3 (the span of the P! x P!), i.e., a PS.

The proof that these are the only points in the intersection is similar to
the BCLR case. O

’yiw*

More decompositions are described geometrically in [LRO].

It would be reasonable to expect that the BCLR and Alekseev-Smirnov
decompositions generalize to all m, so that E(MZ;;‘Z 2>) < 3m — 1, which
would imply that R(My22y) < 3n+ 1 for all n.






Chapter 5

The complexity of
Matrix multiplication
IV: The complexity of
tensors and more lower
bounds

In Chapter 2 we developed equations to test the border rank of tensors. In
this chapter I explain further techniques for proving lower and upper bounds
for border rank and rank. I also discuss geometric properties that could be
useful for future investigations.

I begin, in §5.1 by making explicit the dictionary between (14-generic)
tensors in C2@C™®C™ and linear subspaces of End(C™). This enables one
to both find new ways to bound rank and border rank via linear algebra,
and to use knowledge of tensors to make progress on classical questions in
linear algebra.

While up until now I have emphasized the use of explicit polynomials
to test membership in varieties, sometimes varieties satisfy Zariski closed
conditions that are easy to describe but difficult to write as polynomials.
Some such are discussed in §5.1. Two more such conditions are discussed in
§5.2. One particularly useful such technique, the border substitution method
is discussed in detail in §5.4. In particular, it enables the 2n% — logy(n) — 1
lower bound for R(M ) presented in §5.4.5.

107
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Regarding tensor rank, the only general method for proving tensor rank
lower bounds I am aware of is the substitution method discussed in §5.3.

The best upper bounds for the exponent w were obtained with T's7r, Tew,q,
and Tow,q. What makes these tensors special? It is clear they have nice com-
binatorial properties, but do they have distinguishing geometric features? I
discuss several such geometric properties in §5.5. If such features could be
identified, one could in principle look for other tensors with the same prop-
erties and to apply the laser method to those tensors, as was proposed in
[AFLG15].

Several tensors that have been studied arise naturally as structure ten-
sors of algebras. I discuss rank and border rank lower bounds for structure
tensors of algebras in §5.6. In particular I present Blaser’s and Zuiddam’s
sequences of tensors with rank to border rank ratio approaching three.

5.1. Tensors and classical linear algebra

This section follows [LIM15].

5.1.1. 1l-genericity. How good are Strassen’s equations? We have seen
that unless there exists a € A* with T'(a) C B®C of maximal rank (or
B € B*, resp. v € C* with T(5), resp. T(7), of maximal rank), they are
essentially useless. The following definition names the class of tensors they
are useful for.

Definition 5.1.1.1. A tensor T' € ARB®C is 14-generic if there exists
a € A* with T(«a) C B®C of maximal rank, and T is 1-generic if it is 14, 15
and 1c-generic.

Fortunately M, and all tensors used to study the exponent of matrix
multiplication are 1-generic.

The 1-genericity of My, has the consequence that for the purpose of
proving R(M, <n>) < r, it would be sufficient to find a collection of polynomi-
als such that their common zero set simply contains o, (Seg(P™* 1 x P»*~1 x
IP’nz_l)) as an irreducible component, as long as all other components of the
zero set are contained in the set of non-1-generic tensors.

Say a tensor T is 14-generic, b = ¢ and Strassen’s commutators are
identically zero— can we conclude R(T) = b?

I address this question in this section and the next. I first show that
the properties of tensor rank and border rank of tensors in AQBRQC can be
studied as properties of a-dimensional linear subspaces of BRC'.
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5.1.2. The dictionary. The following standard result shows that the rank
and border rank of a tensor ' € A®B®C, may be recovered from the
subspace T'(A*) C B®C'. I present a version of it from [LM15].

Proposition 5.1.2.1. For a tensor T' € AQ BRC, R(T') equals the minimal
number of rank one elements of BQC' needed to span (a space containing)
T(A*), and similarly for the permuted statements.

Say dimT'(A*) = k. Let Z, C G(k, BQC) denote the set of k-planes in
B®C that are contained in the span of r rank one elements, so R(T") < r if
and only if T(A*) € Z,.. Then R(T) < r if and only if T(A*) € Z,.

Proof. Let T have rank r so there is an expression T = 22:1 a;Qb;R¢;.
(The vectors a; need not be linearly independent, and similarly for the b;
and ¢;.) Then T'(A*) C (b1®cq, ..., b.®c,) shows that the number of rank
one matrices needed to span T'(A*) C BRC' is at most R(T').

For the other inequality, say T'(A*) is contained in the span of rank one
elements b1®c1,...,b®c,. Let a',...,a? be a basis of A*, with dual basis
e1,...,ea of A. Then T(a%) = >1_ 2ibs®c, for some constants z%. But
then T = 3, e;@(xlbs®cs) = Y11 (3, whei)®bs@c, proving R(T) is at
most the number of rank one matrices needed to span T'(A*) C B&C.

Exercise 5.1.2.2: (1) Prove the border rank assertion.

O

5.1.3. Equations via linear algebra. All the equations we have seen so
far arise as Koszul flattenings, which all vanish if Strassen’s equations for
minimal border rank are zero, as can be seen by the coordinate expressions
(2.2.1) and the discussion in §2.4.3. Thus we have robust equations only if
T is 14, 1p or 1¢-generic, because otherwise the presence of T'(a)"2~! in the
expressions make them likely to vanish. When T is 1 4-generic, the Koszul
flattenings Tﬁp : APA®B* — APT1A®C provide measures of the failure of
T(A*)T(a)~! € End(B) to be an abelian subspace.

A first concern is that perhaps the choice of o € A* effects this failure.
The following lemma addresses that concern, at least in the case of minimal
border rank:

Lemma 5.1.3.1. [LM15] Let T € AQB®C = C*@C?*®C? be 14-generic
and assumerank (T (ap)) = a. IfT(A*)T (o)~ is abelian then T(A*)T(af) !
is abelian for any of, € A* such that rank(T'(aj)) = a.

Proof. Say T(A*)T(ap)~! is abelian, and set X; = T'(c;) T ()}, so [X1, Xo] =
0. Set X! = T(c;)T ()™t and X' = T(af,)T ()™, so [X;, X'] = 0 as
well, which implies [X;, (X’)7!] = 0. We want to show [X], X}] = 0. But
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X =X;(X")7, s0

X{ X — X5X] = X1 (X') " Xa(X') ™! — Xp(X) X (X)) !
= X X (X)) TN X)) T = XX (X)) N (X))
[X17X2]( X

O

Definition 5.1.3.2. Let a = b = ¢ and let Abely C AQB®C denote the
set of concise, 14-generic tensors such that for some (and hence any) a € A*
with T'(«) of maximal rank, T(A*)T(a)~! C End(B) is abelian. Note that
Abel 4 is not Zariski closed.

Let Diag%nd( p) C G(b,End(B)) denote the set of b-dimensional sub-
spaces that are simultaneously diagonalizable under the action of GL(B)
and let Diagg,qp) = DiagOEnd( B) denote its Zariski closure. Let a € A* be
such that T'(«) is of maximal rank, and let

Diag, = {T" € Abely | T(A*)T(a)~! € Diaggna(py} N Abely .

By definition, Diag 4 C Abel4. To what extent does equality hold? The
following proposition gives a necessary algebraic condition to be in Diag4:

Proposition 5.1.3.3. [Ger61] The set
{U € G(a,End(B)) | U is closed under composition}

is Zariski closed.

In particular, if T € AQBRC = C*@C2®C? is 1 4-generic with R(T') =
a, then for all « € A* with T(«) invertible, T(A*)T(a)™! is closed under
composition.

Proof. If uy,...,us is a basis of U, then U is closed under composition if
and only if for all u € U,

(uuj) Nup A+~ ANug =0Vl < j<a.

Let (Abelg x A*)Y = {(T,a) | rank(T(«)) = b}, and note that the map
(Abely x A*)? — G(a,End(B)), given by (T, ) — T(A*)T(a)~! is contin-
uous. The “in particular” assertion follows from this continuity because if
U e Diag%nd( B)’ then U is closed under composition. O

Exercise 5.1.3.4: (2) Show that if T'(«), T'(a/ ) are invertible and T'(A*)T'(a) ™!
is closed under composition, then T'(A*)T(a’) ! is closed under composition.
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Let End Abel4 C Abely denote the subset of tensors with T'(A)T(a)~!
closed under composition for some (and hence all) & € A* with T'(«) invert-
ible. We have

(5.1.1) Diag, C End Abely C Abely,

where the first inclusion is Proposition 5.1.3.3 and the second is by definition.
Are these containments strict?

A classical theorem states that when a = 3 the three sets are equal.
Moreover:

Theorem 5.1.3.5. [IMO05] When a < 4, Diag, = End Abel4 = Abely .

See [IMO5] for the proof, which has numerous cases.
What happens when a = 57
Proposition 5.1.3.6. [Leil6] Let Treir5 = a1®(b1®c1 + ba®ca + bz®cz +

by®cy + bsRcs5) + a2®(b1®cs + b3®Rcs) + a3s®bi®cy + a4 @ba®cy + asRba®cs,
which gives rise to the linear space

z1
I
(5.1.2) TLeit,E)(A*) = | T2 I
Tr3 X4 I
5 T2 I

Then Treir 5(A*)T (o)1 is an abelian Lie algebra, but not End-closed. Le.,
TLez’t,5 € Abely but TLez’t,5 ¢ End Abel 4.

Throughout this chapter, an expression of the form (5.1.2) is to be read
as T(x1a! + - - - z202) where al, ... o is a basis of A*.

Exercise 5.1.3.7: (1) Verify that Tpeir5(A*)T ()™t is not closed under
composition.

Thus when a > 5, End Abely C Abely. The following proposition shows
that the first containment in (5.1.1) is also strict when a > 7:

Proposition 5.1.3.8. [LM15] The tensor corresponding to

1
1
1
Tend,?(A*) = T
To+x7 T3 T4 X1
T2 3 Ts Te T
T4 T5 Te IT7 T

is in End Abel4, but has border rank at least 8.
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The proof is given in §5.2.1.

We have seen that set-theoretic equations for End Abel 4 are easy, whereas
set-theoretic equations for Diag, are not known. One might hope that if
T € End Abely, that at least R(T") should be close to a. This hope fails
miserably:

Proposition 5.1.3.9. [LM15] There exist 1 4-generic tensors in C*@C?*@C?

a2

in End Abely of border rank greater than %

Proof. Consider T such that

T
* €1
(5.1.3) T4 C | | -
k .. % "171

and set 71 = 0. We obtain a generic tensor in C*t@Cl2J@CIZ!, which will

have border greater than %2. Conclude by applying Exercise 2.1.6.2. (]

Tensors of the form (5.1.3) expose a weakness of Strassen’s equations
that I discuss further in §5.4.2. Variants of the tensors of the form (5.1.3)
are 1-generic and still exhibit the same behavior.

5.1.4. Sufficient conditions for a concise tensor to be of minimal
border rank. A classical result in linear algebra says a subspace U C
End(B) is diagonalizable if and only if U is abelian and every x € U (or
equivalently for each z; in a basis of U), is diagonalizable. This implies:

Proposition 5.1.4.1. A necessary and sufficient condition for a concise
1a-generic tensor T € ARB®C with a = b = ¢ to be of minimal rank
a is that for some basis a1, ...,as of A* with rank(T'(«1)) = b, the space
T(A)T(a1)~! C End(B) is abelian and each T'(c;)T (1)~ is diagonalizable.

Although we have seen several necessary conditions to be of minimal
border rank, the question is open in general:

Problem 5.1.4.2. [BCS97, Prob. 15.2] Classify concise tensors of minimal
border rank.

Below is a sufficient condition to be of minimal border rank.

For x € End(B), define the centralizer of x, denoted C(x), by
C(z) == {y € End(B) | [y, 2] = 0}.
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Definition 5.1.4.3. An element = € End(B) is regular if dim C(z) = b,
and it is reqular semi-simple if x is diagonalizable with distinct eigenvalues.

Exercise 5.1.4.4: (2) An m X m matrix is regular nilpotent if it is zero
except for the super diagonal where the entries are all 1’s. Show that a reg-
ular nilpotent element is indeed regular, and that its centralizer is the space
of upper-triangular matrices where the entries on each (upper) diagonal are
the same, e.g., when m = 3 the centralizer is

T Yy z
r y|lzyzeC
X

Exercise 5.1.4.5: (2) Show that dim C(x) > b, with equality if and only if
the minimal polynomial of x equals the characteristic polynomial. ®

Note that x is regular semi-simple if and only if C(x) C End(B) is a
diagonalizable subspace. In this case the eigenvalues of = are distinct.

Proposition 5.1.4.6. (L. Manivel, [LM15]) Let U C End(B) be an abelian
subspace of dimension b such that there exists x € U that is regular. Then
U € Diaggpnq(p) C G(b, End(B)).

Proof. Since the Zariski closure of the set of regular semi-simple elements
is all of End(B), for any = € End(B), there exists a curve x; of regular
semi-simple elements with lim; g x; = . Consider the induced curve in the
Grassmannian C(x¢) C G(b,End(B)). Then Cp := lim;_,o C(x;) exists and
is contained in C(z) C End(B) and since U is abelian, we also have U C
C(z). But if x is regular, then dim C(z) = dim(U) = b, so lim;_,o C(z¢), Co

and U must all be equal and thus U is a limit of diagonalizable subspaces. [

Proposition 5.1.4.6 applied to T(A)T(a)~! provides a sufficient condi-
tion for a concise 14-generic tensor T' € AQ BRQC to be of minimal border
rank. The condition is not necessary, even for 1-generic tensors, e.g., the
Coppersmith-Winograd tensor T, cw of (3.4.5), is 1-generic of minimal bor-
der rank but T, cw (A*)T, cw(a)~! does not contain a regular element for
any a € A*.

Exercise 5.1.4.7: (2) Show that the centralizer of T¢(z,,(71) from Example
3.5.1.2 is Tgyz,,](C[Zn]) to obtain a second proof that R(1¢(z,,)) = m.

Problem 5.1.4.8. Determine a criterion for U € G(b, End(B)) to be in the
closure of the diagonalizable b-planes, when U does not contain a regular
element.

5.1.5. Strassen’s equations and symmetric tensors.
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Proposition 5.1.5.1. [LM15] Let T € ARBRC = C™C™C™ be 14
and 1p generic and satisfy the A-Strassen equations. Then, after a suitable
choice of identification of A with B via bases, T is isomorphic to a tensor in

S2A®C.

In particular:

(1) After making choices of general o € A* and 3 € B*, T(A*) and
T(B*) are G Ly,-isomorphic subspaces of End(C™).

(2) If T is 1-generic, then T is isomorphic to a tensor in S3C™.

Proof. Let {a;},{b;}, {ci} respectively be bases of A, B, C, with dual bases
{ei}, {Bi}, {7} Write T = > t"*a,@b;®cy. After a change of basis in A
so that rank(7' (1)) = m and in B, C, so that it is the identity matrix, we
may assume tF = ;1 and after a change of basis B so that T'(f;) is of
full rank and further changes of bases in A, B, C, we may assume t''¥ = §;;,
as well. (To obtain t"'* = §;; only requires changes of bases in A, C, but
a further change in B may be needed to preserve tF = djk-) Identify
T(A*) C End(C™) via a!. Strassen’s A-equations then say

0=[T(a"), T(a")]p = Dt =t Wiy i o I
l

Consider when j = 1:

l
because ¢! = d;;. But this says T' € S2CmeC™,
For the last assertion, say Lp : B — A is such that Id4 @ Lg® Idc(T) €
S2A®C and Lo : C — A is such that Idy ® Idg ®Lc € S?A®B. Then
Ida ®@LpRLo(T) is in A®3) symmetric in the first and second factors as

well as the first and third. But &3 is generated by two transpositions, so
Ida ®Lp®Lo(T) € S3A. a

Thus the A, B, and C-Strassen equations for minimal border rank, de-
spite being non-isomorphic modules (see [LMO08a]), when restricted to 1-
generic tensors, all have the same zero sets.

5.2. Indirectly defined equations

This section and §5.4.1 discuss Zariski closed conditions that in principle give
rise to equations, but they are difficult to write down explicitly- to do so
systematically one would need to use elimination theory which is impossible
to implement in practice other than in very small cases. Nonetheless, for
certain tensors these conditions can be used to prove lower bounds on border
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rank, e.g., the lower bound on E(Mm)) via Griesser’s equations in §5.2.2 and
the state of the art lower bound on R(Myy) of Theorem 5.4.5.1.

5.2.1. Intersection properties.

Exercise 5.2.1.1: (2) [BCS97, Ex. 15.14] Given T' € C*®@C*®C? =
A®B®C that is concise, show that PT(A*) N Seg(PB x PC) = § implies
R(T)>a. ®

Proof of Proposition 5.1.3.8. The fact that T¢,,q7(A*) is End-closed fol-
lows by inspection. The tensor has border rank at least 8 by Exercise 5.2.1.1
as Tepa7(A*) does not intersect the Segre. Indeed, if it intersected Segre,
the vanishing of size two minors implies 1 = 24 = 0, (z2 + z7)x2 = 0 and
(v2 + 27)x7 = 0. If 29 + 27 = 0 then 23 = 0, and 22 = (22 + x7)77 = 0
and hence z2 = 0 as well and we are done. If 2o = 0 analogously we obtain
z7=0and z3 = x5 = 26 = 0. O

A complete flag in a vector space V is a sequence of subspaces 0 C V; C
Vo C--- C V4 with dim V; = j.
Proposition 5.2.1.2. [Leil6, LM15| Let T' € C?*@C2®C? = A®B®C be
concise. If R(T) = a, then there exists a complete flag A} C --- C Aa—1 C
Ay = A*, with dim A; = j, such that PT(A;) C 0j(Seg(PB x PC)).

Proof. Write T' = lim;—0 »5_; a;(t)®X;(t) where X;(t) € BC have rank
one. Since T is concise, we may assume without loss of generality that
ai(t),...,aa(t) is a basis of A for t # 0. Let al(t),...,a?(t) € A* be
the dual basis. Then take Ax(t) = span{al(t),...,a*(t)} € G(k, A*) and
Ap = limy_,0 Ag(t). Since PT*(Ax(t)) C ok (Seg(PB x PC)) the same must
be true in the limit. O

One can say even more. For example:
Proposition 5.2.1.3. [LM15] Let T' € C?@C?*®@C? = AB®C. If R(T) =
a and T(A*) N Seg(PB x PC) = [Xy] is a single point, then P(T(A*) N
Tix,)Seg(PB x PC)) must contain a P*.

Proof. Say T'(A*) were the limit of span{X;(t), ..., Xa(t)} with each X;(¢)
of rank one. Then since PT'(A*)NSeg(PB x PC) = [Xy], we must have each
X;(t) limiting to Xo. But then lim; ,qspan{Xi(t), X2(t)}, which must be
two-dimensional, must be contained in T[ xo)9eg(PB x PC) and T(A*). O

5.2.2. Griesser’s equations. The following theorem describes potential
equations for o,(Seg(PA x PB x PC)) in the range b <r < 2b — 1.

Theorem 5.2.2.1. [Gri86] Let b = c. Given a 14-generic tensor T €
A®RB®C with R(T) < r, let ag € A* be such that T(«) is invertible. For
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o € A% let X(a') = T(a/)T ()"t € End(B). Fix ay € A*. Consider the
space of endomorphisms U := {[X(a1),X (/)] : B— B | € A*} C sl(B).
Then there exists E € G(2b — r, B) such that dim(U.E) <r —b.

Remark 5.2.2.2. Compared with the minors of TQP , here one is just exam-
ining the first block column of the matrix appearing in the expression QQ
in (2.4.7), but one is apparently extracting more refined information from
it.

Proof. For the moment assume R(T) = r and T = E;Zl a;®bj®c;. Let
B = C" be equipped with basis e1, ..., e,. Define 7 : B — B by m(e;) = b;.
Let i : B — B be such that 7 oi = Idg. Choose B' C B of dimension
r — b such that B = i(B) @ B’, and denote the inclusion and projection
respectively ¢/ : B' — B and 7’ : B — B'. Pictorially:

~

B

i NN
B B

Let ag, aq, ..., aa_1 be a basis of A*. Let T' = Z;Zl a;®e;jQe; € A®QB®B*
and let X; := T'(c;)T ()"~ *. (Recall that the matrix of T'(ap)" ! is the

cofactor matrix of T'(ag).) Now in End(B) all the commutators [X;, X;] are
zero because R(T') =r. For all 2 < s <a—1, [X1, X;] =0 implies

0 = 7[X1, XJ]i
(5.2.1) = [X1, X,] + (7 X10) (' Xi) — (n X i) (7' X14)

Now take E C ker 7' X1i C B of dimension 2b — r. Then for all s, [ X1, X -
E C Image nX1i', which has dimension at most r—b because 7 X7’ : B — B

and dim B’ = r — b. The general case follows because these conditions are
all Zariski closed. ]

Proof of Theorem 2.2.2.1. Here there is just one commutator [X1, Xo]
and its rank is at most the sum of the ranks of the other two terms in
(5.2.1). But each of the other two terms is a composition of linear maps
including i’ which can have rank at most r — b, so their sum can have rank
at most 2(r — b). O

Remark 5.2.2.3. It is not known to what extent Griesser’s equations are
non-trivial. Proving non-triviality of equations, even when the equations can
be written down explicitly, is often more difficult than finding the equations.
For example, it took several years after Koszul-flattenings were discovered

to prove they were non-trivial to almost the full extent possible. Regarding

ym _ g

Griesser’s equations, it is known they are non-trivial up to r < %m+ Yo
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when m is odd, and a similar, slightly smaller bound when m is even by
Proposition 5.2.2.5 below. On the other hand the equations are trivial when
r =2b — 1 and all a, and when » = 2b — 2, and a < % + 2, in particular
a =b =4 by [Lan15b]. I do not know whether or not the equations are
trivial for r =2b — 2, a=Db and b > 4.

Griesser’s equations are most robust when T'(a;)T(cg)™! is a generic
endomorphism, which motivates the following definition:

Definition 5.2.2.4. For a 14-generic tensor T € AQB®C, define T to be
24-generic if there exist @ € A* such that T'(«) : C* — B is of maximal
rank and o/ € A* such that T'(a/)T(a)~! : B — B is regular semi-simple.

Proposition 5.1.4.6 implies that when T' € C™C™®QC™ is concise, 2 4-
generic and satisfies Strassen’s equations, then R(7) = m.

Unfortunately for proving lower bounds, My is not 24-generic. The
equations coming from Koszul flattenings, and even more so Griesser’s equa-
tions, are less robust for tensors that fail to be 24-generic. This partially
explains why M, satisfies some of the Koszul flattening equations and
Griesser’s equations (as shown below). Thus an important problem is to
identify modules of equations for o, that are robust for non-2-generic ten-
SOTS.

Proposition 5.2.2.5. [Lan15b] Matrix multiplication My fails to satisfy
Griesser’s equations for r < %nz — 1 when n is even and r < %nz + % -2
when n is odd, and satisfies the equations for all larger r.

Proof. Consider matrix multiplication My € CMQCQRC™ = A®BXC.
Recall from Exercise 2.1.7.4 that with a judicious ordering of bases, My (A*)
is block diagonal

(5.2.2)

X

where x = (x;) is n x n. In particular, the image is closed under brackets.
Choose Xo € My (A*) to be the identity. It is not possible to have X; €
My (A*) diagonal with distinct entries on the diagonal, the most generic
choice for X7 is to be block diagonal with each block having the same n
distinct entries. For a subspace E of dimension 2n%? — r = dn + e with
0 < e < n— 1, the image of a generic choice of [X7, Xo],...,[X1, Xp2_1]
applied to E is of dimension at least (d+ 1)n if e > 2, at least (d+1)n — 1
if e =1 and dn if e = 0, and equality will hold if we choose E to be,
e.g., the span of the first 2n? — r basis vectors of B. (This is because the
[X1, Xs] will span the entries of type (5.2.2) with zeros on the diagonal.) If
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. . 2 2 . .
n is even, taking 2n? — r = &+l sor = 3% — 1, the image occupies a

n724—n—1 > %2—1:7“—n2. If one takes 2n% — r =
%2, sor = %, the image occupies a space of dimension “72 = r —n?,
showing Griesser’s equations cannot do better for n even. If n is odd, taking
2n? —r = n; —5+2,s0r= % + 5 — 2, the image will have dimension
%2+% >r—n?= %2—1—%—1, and taking 2n% —r = %—%—Fl the image can

space of dimension

have dimension %2 — S+ m-1)=r— n?, so the equations vanish for this
and all larger r. Thus Griesser’s equations for n odd give Lickteig’s bound

R(Mpy) > 385 48— 1. 0

5.3. The substitution method

The following method has a long history dating back to [Pan66], see [ BCS97,
Chap. 6] and [Bl414, Chapter 6] for a history and many applications. It
is the only general technique available for proving lower bounds on tensor
rank that I am aware of. However, limit of the method is at most tensor
rank lower bounds of 3m — 1 in C™@C™®C™. (In §10.1 I will describe a
powerful method for proving lower bounds on symmetric rank.)

5.3.1. Lower bounds on tensor rank via the substitution method.
Proposition 5.3.1.1. [AFT11, Appendix B| Let T' € A®B®C. Fix a
basis ai,...,aa of A, with dual basis o,... ,a®. Write T =Y % | a; ® M;,
where M; € B® C. Let R(T) = r and My # 0. Then there exist constants
A9, ..., Aa, such that the tensor

a
T Zaj ® (Mj — \jMy) € spanfag, ..., aa }®B®C,
j=2

has rank at most r — 1. Moreover, if rank(M;) = 1 then for any choice of
Aj, R(T) is either r or r — 1.
The same assertions hold exchanging the role of A with that of B or C.

Proof. (Following [LM15].) By Proposition 5.1.2.1 there exist X1,..., X, €
Seg(PB x PC) and scalars d; such that:

r
My =) diX;.
=1

1

<t. Then the
~ 1
subspace T'((a?,...,a®)) is spanned by Xs,..., X, so Proposition 5.1.2.1

implies R(T) < r — 1. The last assertion holds because if rank(M;) = 1
then we may assume X1 = Mj, so we cannot lower the rank by more than

one. O

Since M7 # 0 we may assume di # 0 and define \; =



5.3. The substitution method

119

In practice, the method is used iteratively, with each of A, B, C playing
the role of A above, to reduce T to a smaller and smaller tensor, at each
step gaining one in the lower bound for the rank of 7. At some steps one
may project T" to a smaller space to simplify the calculation.

Example 5.3.1.2. [AFT11] Let Ty 3 € AQB®C have an expression in
bases such that, letting the columns of the following matrix correspond to
B-basis vectors and the rows to C' basis vectors,

Tofe3(A%) =

r1

Z2

T3
T4

x1

Z2

T3

I

T2

I
I
I
z1
T2 I

For the first iteration of the substitution method, start with bg € B in the
role of a; in the proposition. Write

Toft3 =b1®(a1®c1 + aa®cs + az@cr + as®cg) + ba®(a1®cp + as®ce + a3Rcg)
+ b3®(a1®cs + aa®cy) + by®(a1®cy + az®cs)
+ bs®a1®cs + bgRa1®cg + bgRa1Rce + brRa1Rcr + bg®a Rcs.

Then there exist \q,..

R(7T") + 1 where

T1

T'(A%) =

x2

x3

Zq

z1
T
I
Z2
L2
x3 Z2

I

I

xy

., A7 and a new tensor 77 € ARC'®C with R(T) >

AT1 Agwp - A7x1
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Continue removing the last three columns until we get a tensor 7" € AQC*®C
with

T
Tl
T
T
T”(A*) — +
x2 H11T1 H21T1  M31T1  H41T7
x2 H12T1  H22T1 (3271 H42T7
T3 L2 H13T1 M23T1 M3,3T1 H4,3%1
T4 T3 T2 H1,4T1  H24T1 3471  [44,4T1
Now apply the method successively to cy,...,c4 to obtain a tensor T"”

with 7"(A*) € C*®C* such that R(T,f3) > 8+R(T"”). Now project T to
the space given by x; = 0, so all the unknown constants disappear. The new
tensor cannot have rank or border rank greater than that of 7", Iterate the
method with the projection of 7" until one arrives at T'(A*) € C'®C! and
the bound R(Tyf¢3) > 84+4+42+1 = 15. In fact R(7T},3) = 15: observe that
Tofe3 (A*)Taftyg(al)_l is a projection of the centralizer of a regular nilpotent
element as in Exercise 5.3.1.8 below, which implies R(T, s 3) < 15.

On the other hand R(T,f:3) = 8, again because Ty 1 3(A*) Tppe3(at) L is
a projection of the centralizer of a regular nilpotent element, so Proposition
5.1.4.6 applies.

This example generalizes to T}, f¢ 1 € CH1eC2 2C2" of rank 2-2F — 1
and border rank 2¥. The tensor 7" above is T}, Ft.2-

Example 5.3.1.3. [AFTl]_] Let TAFT,3 = a1®(b1®01 + - 4+ bg@Cg) +
a2®(b1®cs + ba®ce + bz®@cr + ba®cg) + a3@(b1®@cr + ba®cg) + as®b1@cg +
as®bgRc1 + ag@bg@cy + ar@bg®cs + ag®@bg®cy, s0

€1 T5
T Te
1 X7
Tarr3(A®) = . s
x2 T
T2 x1
x3 T2 x

Ty T3 xT9 I
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Begin the substitution method with bg in the role of a1 in the proposition,

then project to (a8, ..., 045>l to obtain a tensor T represented by the matrix

T

T

T
€1

) T ’

€2 T
I3 xI9 I
T4 X3 Z2

and R(Tapr3) > 4+ R(T). The substitution method then gives R(T) > 14
by Example 5.3.1.2 and thus R(T4r73) > 18. This example generalizes to
TarTk € C2 12" @C2" +! of rank at least 3(2F+1)—k—4. In fact, equality
holds: in the case of T4pr 3, it is enough to consider 17 matrices with just
one nonzero entry corresponding to all nonzero entries of T4pr3(A*), apart
from the top left and bottom right corner and one matrix with 1 at each
corner and all other entries equal to 0. Moreover, as observed in [Lan15b],
for these tensors (2% + 1) +1 < R(Turrk) < 281 — k.

Exercise 5.3.1.4: (2) Prove (28 + 1) + 1 < R(Taprx) <281 — k. ©

In summary:
Proposition 5.3.1.5. The tensors Tapr), € C*HeC2 2" ! of [AFT11]
satisfy (28 +1) + 1 < R(Tapry) <228 +1) -2 -k <3(2F+1) -k —4=
R(TArT k)-
Exercise 5.3.1.6: (2) Show that for all m,n, N, R(Mj mn) © Min1,1)) =
mn + N.

Exercise 5.3.1.7: (2) Show that Strassen’s tensor from §5.6, Tsrr, =
i1 (ap®bj®c; + aj@by@c;) € CITTRCIT QCY satisfies R(TsTrq) = 29-

Exercise 5.3.1.8: (3) Show that a tensor 1" € C™@C™®C™ corresponding
to the centralizer of a regular nilpotent element satisfies R(T') =2m —1. ©®

To date, Tap7 . and its cousins are the only known examples of explicit
tensors T' € CMC™@C™ satisfying R(7') > 3m — O(log(m)). There are
several known to satisfy R(7') > 3m — O(m), e.g., M(y), as was shown in
§2.6, and Tﬁ%mte € C*"®C?" ®C?" discussed in §5.6.

Problem 5.3.1.9. [Bl414] Find an explicit tensor 7' € Cm@C™®C™ sat-
isfying R(T") > (3 + ¢)m for any € > 0.

Remark 5.3.1.10. Proposition 5.3.1.1 holds with any choice of basis, so
we get to pick [al] € PA*, as long as M; # 0 (which is automatic if T is
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A-concise). On the other hand, there is no choice of the A;, so when dealing
with T, one has to assume the A; are as bad as possible for proving lower
bounds. For this reason, it is easier to implement this method on tensors
with simple combinatorial structure or tensors that are sparse in some basis.

From a geometric perspective, we are restricting 7', considered as a tri-
linear form A* x B* x C* — C, to the hyperplane A’ C A* defined by o' +
Py Aja? = 0 and our condition is that R(T|agp-gc+) < R(T) — 1. Our
freedom is the choice of {(as, ..., aa) C A, and then A’ (which we do not get to
choose) is any hyperplane satisfying the open condition (as, ..., as)" ¢ A’

5.3.2. Strassen’s additivity conjecture. Given 77 € A;®B,®C and
Ty € As®@Ba®Cy, if one considers T1 + 715 € (A1 ® A2)R(B1 @ Bs)®(C1 & Cy),
where each A;®@B;®C} is naturally included in (A & A2)®(B1 @ B2)®(C1 &
Cy), we saw that R(T7 + T») < R(T1) + R(T%). Also recall Schénhage’s
example §3.3.2 that R(M(1 mn)y © M((n—1)(m-1),1,1)) = mn + 1 < 2mn —
m—n+1=R(Mjmn) +R(Mn-1)m-1),1,1))- Before this example was
known, Strassen made the following conjecture:

Conjecture 5.3.2.1. [Str73] With the above notation, R(T1+T>) = R(T1)+
R(T>).

Exercise 5.3.1.6 shows that despite the failure of a border rank analog of
the conjecture for M1 mn) © M(m—-1)(m-1),1,1), the rank version does hold
in this case.

While this conjecture has been studied from several different perspec-
tives, e.g. [FW84, JT86, Bsh98, CCC15b, BGL13], very little is known
about it, and experts are divided as to whether it should be true or false.

In many cases of low rank the substitution method provides the correct
rank. In light of this, the following theorem indicates why providing a
counter-example to Strassen’s conjecture would need new techniques for
proving rank lower bounds.

Theorem 5.3.2.2. [LM15] Let Th € A1®B1®CT and Ty, € Ao®Bo®Cy be
such that that R(T1) can be determined by the substitution method applied
to two of A1, B1,Cy. Then Strassen’s additivity conjecture holds for Ty ®T5,
ie., R(T1 D TQ) = R(Tl) + R(TQ)

Proof. With each application of the substitution method to elements of Ay,
By, and C1, T} is modified to a tensor of lower rank living in a smaller space
and T5 is unchanged. After all applications, 71 has been modified to zero
and 75 is still unchanged. ([

The rank of any tensor in C2®B®C can be computed using the sub-
stitution method as follows: by dimension count, we can always find either
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B € B* orvy € C*, such that T'(3) or T'(y) is a rank one matrix. In particular,
Theorem 5.3.2.2 provides an easy proof of Strassen’s additivity conjecture
if the dimension of any of Ay, By or Cy equals 2. This was first shown in
[JT86] by other methods.

5.4. The border substitution method

What follows are indirectly defined equations for border rank, in other words,
indirectly defined algebraic varieties that contain o, (Seg(PA x PB x PC)).
While we don’t have equations for these varieties, sometimes one can prove
membership or non-membership by direct arguments. The method is pri-
marily useful for tensors with symmetry, as there border rank decomposi-
tions come in families, and it suffices to prove non-membership for a conve-
nient member of a putative family.

5.4.1. The border substitution method. The substitution method may
be restated as follows:

Proposition 5.4.1.1. Let T € A®B®C be A-concise. Fix a’ < a and
A C A of dimension a'. Then

R(T) = min 4 e o, a9 anit—oy R(Taep0c) + (a - a).

Here A in the case a’ = a—1 plays the role of (as, . .., as) in Proposition
5.3.1.1. Recall that T|pgpac+ € (A/(A)H)@B&C.
More generally,
Proposition 5.4.1.2. Let T' € A®B®C' be concise. Fix a’ <a AcCA,
B C B and C C C respectively of dimensions a’, b’, and ¢’. Then
R(T) >(a—a')+ (b—b')+ (c— )
T e Ga, 4%y | A0 AL = o) BT lvesrec):
B'e G ,B*) | BNnBt=0
C'eG(d,C*) | ANnCt=0
A border rank version is as follows:

Proposition 5.4.1.3. [BL16, LM] Let T' € A®Q BRC be A-concise. Fix
a’ < a. Then

R(T) > mingega,an R(T|awpec) + (a—a').

Proof. Say R(T') = r,s0 T = lim;_,o T}, for some tensors Ty = > 7 a;(t)®b;(t)®c;(t).
Without loss of generality, we may assume aj(t),...,aa(t) form a basis
of A. Let A} = (aarq1,...,0a)" C A*. Then R(T; \A@Brec) < T —
(a — a’) by Proposition 5.4.1.1. Let A" = lim;,0 A} € G(a’, A*). Then
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T|A’®B*®C’* = limt_m ﬂ‘A;@B*@C* SO E(T‘A’®B*®C*) S r — (a — a’), i.e.,
r > R(T|agprec) + (a—a').

Corollary 5.4.1.4. [BL16] Let T' € AQ B®C' be A-concise. Then R(T') >
a — 1+ minge 4+ [0y rank(T'(a)).

The Corollary follows because for matrices, rank equals border rank, and
C'®B®C = BC.

Although our freedom in the substitution method was minor (a restric-
tion to a Zariski open subset of the Grassmannian determined by A1), it is
still useful for tensors with simple combinatorial structure. With the border
substitution method we have no freedom at all, but nevertheless it will be

useful for tensors with symmetry, as the symmetry group will enable us to
restrict to special A’.

As was the case for the substitution method, this procedure can be
iterated: write 77 = T'|argp*oc+. If Th is B-concise, apply the proposition
again with B, if not, let By C B be maximal such that T} is Bj-concise and
then apply the proposition. By successive iterations one finds:

Corollary 5.4.1.5. [LM16]| If for all A’ ¢ A*, B’ C B*,C' C C* re-
spectively of dimensions a’,b’, ¢’ one has T|aopgcr # 0, then R(T) >
a+b+c—(a'+b +c).

It is obvious this method cannot prove border rank bounds better than
a+ b+ c— 3. The actual limit of the method is even less, as I now explain.

5.4.2. Limits of the border substitution method.

Definition 5.4.2.1. A tensor T € A®B®C is (a’,b’,c)-compressible if
there exist subspaces A’ C¢ A*, B’ ¢ B*,C' C C* of respective dimen-
sions a’,b’, ¢’ such that T|ygpecr = 0, ie., there exists (A',B',C") €
G(a', A*) x G(b', B*) x G(c!,C*), such that A/@B'®C' C T+, where T+ C
(A®B®C)* is the hyperplane annihilating 7. Otherwise one says T is
(a’,b’, c’)-compression generic.

Let X (a’,b’,c’) be the set of all tensors that are (a’,b’, ¢’)-compressible.

Corollary 5.4.1.5 may be rephrased as:
Ua+b+cf(a’+b’+c')S€g(PA x PB x ]P)C) C X(a/, b/7 C/).

Proposition 5.4.2.2. [LM16] The set X (a’,b’,¢') C P(A® B®C) is Zariski
closed of dimension at most

min{abc — 1, (abc —a’b'c’ — 1) + (a—a’)a’ + (b — b")b’ + (c — ')’}
In particular, if

(5.4.1) aa’ +bb’ +cc’ < (a')2 + ()2 + (¢)* +a'b'c
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then X (a',b’,c') C P(A® B®C), so in this range the substitution methods
may be used to prove nontrivial lower bounds for border rank.

Proof. The following is a standard construction in algebraic geometry called
an incidence correspondence (see, e.g., [Har95, §6.12] for a discussion): Let

7:=
{((4,B",C"),[T)) € [G(a’, A*) x G(b', B*) x G(c’,C*)] x P(A®BxC)
| AoB'@C’ ¢ T+}
and note that the projection of Z to P(A®B®C) has image X (a’,b’,c’).
A fiber of the other projection Z — G(a’, A*) x G(b/, B*) x G(c/,C*) is
P((A’®@B'®C")*), a projective space of dimension abc — a’b’c’ — 1. Hence:
dim 7 := (abc —a'b’c’ — 1) + (a—a’)a’ + (b — b)b' + (¢ — ).

Since the map Z — X is surjective, this proves the dimension assertion.
Since the projection to P(A®B®C) is a regular map, the Zariski closed
assertion also follows. ([l

The proof and examples show that beyond this bound one expects
X(@,b',c) =P(A®B®C), so that the method cannot be used. Also note
that tensors could be quite compressible and still have near maximal bor-
der rank, a weakness we already saw with the tensor of (5.1.3) (which also
satisfies Strassen’s equations).

The inequality in Proposition 5.4.2.2 may be sharp or nearly so. For
tensors in C™MRC™RC™ the limit of this method alone would be a border

rank lower bound of 3(m — y/3m + % + %)

5.4.3. How to exploit symmetry. As mentioned above, the border sub-
stitution method is particularly useful for tensors T with a large symmetry
group G'7, as one can replace the unknown A’ by representatives of the closed
Gp-orbits in the Grassmannian. For matrix multiplication, one obtains:

Theorem 5.4.3.1. [LM]
Mgy € 0p(Seg(P 1 x PP~ 1 5 pr°-1))

if and only if there exist curves p;(t) C Seg(P™*~1 x P2°~1 x P2*~1) such that

for2 < j <, limy0p;(t) = 23Qy;®25 and My € limy,o(230y5023, pa(t), . . .

In §5.4.5, Theorem 5.4.3.1 is used to improve the lower bounds for border
rank.

In this section and the next, I explain the theory. One can also use these
methods when attempting to search for new decompositions to limit one’s

, pr(t))-
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searches for decompositions with certain normal forms. In order to discuss
these methods, I first develop language to discuss the G orbit closures in
the Grassmannian.

To simplify notation, for a tensor T € A;®...®RAk, and A C A;, write
T/A =T |AL®A§®~~-®AZG (Al/A)®A2® . QAL

Define
Byw(T) = {A € G(a', A1) | R(T/A) < p}.
Proposition 5.4.3.2. [LM16] The set B, o (T') is Zariski closed.

The proof requires some standard notions from geometry and can be
skipped on a first reading.

A vector bundle V on a variety X is a variety V equipped with a surjective
regular map 7 : V — X such that for all z € X, 7—!(z) is a vector space of
dimension v, satisfying certain compatibility conditions (in particular, local
triviality: for all z € X, there exists an open subset U containing x such
that V| ~ C¥Y x U). See [Shal3b, §6.1.2] for an algebraic definition or
[Spi79, Chap. 3 p71] for a differential-geometric definition. A section of V
is a regular map s: X — V such that mos =Idx.

Two vector bundles over the Grassmannian G(k, V') are ubiquitous: First
the tautological subspace bundle ts : S — G(k,V) where ns1(E) = E.
This is a vector subbundle of the trivial bundle with fiber V', which I denote
V. The tautological quotient bundle Tg : @ — G(k,V) has fiber 7o 1 (E) =
V/E, i.e., we have an exact sequence of vector bundles

0—-S—-V—>0—0.

All three bundles are GL(V')-homogeneous. See e.g., [Wey03, §3.3] for more
details.

For any vector bundle over a projective variety, the corresponding bundle
of projective spaces is a projective variety, and a sub-fiber bundle defined
by homogeneous equations is also projective.

Proof. Consider the bundle 7 : Q®A1®---®A4;, — G(a’, A1), where 71 (A) =
(A1/A)@Ay® - - - ®Ag. Given T, define a natural section sy : G(a’, A1) —
ORAI® - @Ay by sp(A) :=T/A. Let X C P(Q®A3® - - - ®Ay,) denote the
subvariety (that is also a sub-fiber bundle) defined by XNP((A1/A)®@As® - -- @A) =
0,(Seg(P((A1/A) x PAg x - - - x PAy)). By the discussion above, X is realiz-

able as a projective variety. Let 7 : X — G(a’, A1) denote the projectiviza-

tion of 7 restricted to X. Then B, o (T) = 7(X NPsp(G(a’, A1))). Since

the intersection of two projective varieties is a projective variety, as is the

image of a projective variety under a regular map (see Theorem 3.1.4.7), we
conclude. O
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Lemma 5.4.3.3. [LM16] Let T € A1®...®A be a tensor, let Gr C
GL(A;) x -+ x GL(Ay) denote its stabilizer and let Gi C GL(A;) denote
its projection to GL(A1). Then B, o(T) is a G1-variety.

Proof. Let g = (g1,...,9x) € Gr. Then R(T/A) = R(g-T/g - A) =
R(T/g1A). O

Recall the definition of a homogeneous variety X = G/P C PV from
Definition 4.7.2.1.

Lemma 5.4.3.4. [BL14] Let X = G/P C PV be a homogeneous variety
and let p € o0,(X). Then there exist a point xg € X and r — 1 curves
2j(t) € X such that p € limy_,o(xo,21(%), ..., 2r—1(t)).

Proof. Since p € 0,(X), there exist r curves x(t),y1(t),...,yr—1(t) € X
such that

p € imP(z(t), y1(8), -, yr-1(2))-

Choose a curve g; € G, such that g:(x(t)) = z¢o = (0) for all ¢t and gy = Id.
We have

(@), p1(t), . 1)) = g (w0, 96 - y1(t), ..., g¢ - Yr—1(t)) and

N (z(t), y1(2), -, yr—1 () = P_{%(gt_l (20,96 - y1(t)s -+ 9t - yr—1(1)))

=lm(zo, g - y1(t),- -, 9t - Yr—1(t)).
t—0

Set zj(t) = g; - y;(t) to complete the proof. O

Exercise 5.4.3.5: (1) Show that if X is a G-variety, then any orbit G - x
for x € X of minimal dimension must be Zariski closed. ©®

The following Lemma applies both to My and to the determinant poly-
nomial:

Lemma 5.4.3.6 (Normal form lemma). [LM] Let X = G/P C PV be a
homogeneous variety and let v € V' be such that G, := {g € G | g[v] = [v]}
has a single closed orbit Oy, in X. Then any border rank r decomposition
of v may be modified using G, to a border rank r decomposition with limit
plane limy_,o(x1(t), ..., x,(t)) such that there is a stationary point z1(t) = 1
Iying in Oip.

If moreover every orbit of G, N G, contains x; in its closure, we may
further assume that all other x(t) limit to x;.

Proof. I prove the second statement. By Lemma 5.4.3.4, it is sufficient to
show that we can have all points limiting to the same point x;(0).
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Work by induction. Say we have shown that xi(t),...,z4(t) all limit
to the same point 1 € Onip. It remains to show that our curves can
be modified so that the same holds for z1(t),...,24+1(t). Take a curve
ge € Gy NGy, such that lime 0 gexg+1(0) = 1. For each fixed €, acting on
the x;(t) by ge, we obtain a border rank decomposition for which g.z;(t) —
9ex1(0) = 21(0) for i < g and gexg+1(t) = gexq4+1(0). Fix a sequence €, — 0.
Claim: we may choose a sequence t,, — 0 such that

o lim;, ;o0 genxq—i-l(tn) = 21(0),

o limy, 00 < ge,x1(tn), -, ge, Tr(tn) > contains v and

e lim, ;o g, zj(tn) = 21(0) for j <gq.
The first point holds as lim¢ g gexq+1(0) = x1. The second follows as for
each fixed €, taking t, sufficiently small we may assure that a ball of radius
1/n centered at v intersects < ge,x1(tn),- - -, ge, Tr(tn) >. In the same way

we may assure that the third point is satisfied. Considering the sequence
Zi(tn) := ge,xi(t,) we obtain the desired border rank decomposition. O

Exercise 5.4.3.7: (1) Write out a proof of the first assertion in the normal
form lemma.

Applying the normal form lemma to matrix multiplication, in order to
prove [Mu] & o,(Seg(PA x PB x PC)), it is sufficient to prove it is not
contained in a smaller variety. This variety, called the greater areole is
discussed in the next section.

5.4.4. Larger geometric context. Recall that for X C PV, ¢,(X) may
be written as

or(X) = U {z e PV | ZG}iH{l}<x1(t),...,iL'r(t)>}
x;(1)CX,1<5<r -

where the union is over all curves z;(¢) in X, including stationary ones. (One
can take algebraic or analytic curves.) Remarkably, for the study of certain
points such as My, and det,, with large symmetry groups, it is sufficient to
consider “local” versions of secant varieties.

It is better to discuss Theorem 5.4.3.1 in the larger context of secant
varieties, so make the following definition:

Definition 5.4.4.1 (Greater Areole). [LM] Let X C PV be a projective
variety and let p € X. The r-th greater areole at p is

i.(X,p) = J lim(a1(t), ..., (1)) C PV.

z; () CX
z; (t)—p

Then Theorem 5.4.3.1 may be restated as:
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Theorem 5.4.4.2. [LM]
My € 0p(Seg(P™ 1 x PP~ 1 5 pr°-l))
if and only if
Mgy € 8(Seg(P¥ 1 x P71 x P71 [2loyle2d))

Exercise 5.4.4.3: (2) Show that when G/P = v,(P"°~!) is the Veronese

variety and v = det,,, Omin = vn(Seg(PE x PF)) is the unique closed Get,, -

orbit, and every orbit of Gy, (,1)n contains (x1)™ in its closure, so the

normal form lemma applies. ®

Exercise 5.4.4.4: (2) When G/P = Seg(P(U*@V)xP(V*W)QP(W*®U)) C
P(CY®CY®C™) and v = My, let

K = {[p@vereweweu] € Seg(PU*xPV xPV*xPW xPW*xPU) | u(u) = w(w) = v(v) = 0}.
Show that K is the unique closed GM<U’V’W>—orbit in Seg(PA x PB x PC),

and every orbit of GM< sloylez) contains Ti®yi®21 in its closure. (Of

U,V,W)>
course the same is true for any k € K.) ®

5.4.5. The border rank bound R(My,) > 2n® — [logy(n)] — 1.
Theorem 5.4.5.1. [LM16] Let 0 < m < n. Then

-1
w(", ")
(2n—2) :
n—1
In particular, taking w = n and m = n — [logy(n)] — 1,

R(Myy) > 20 — [logy(n)] — 1.

li(AfﬁLnﬂNﬂ >2nw —w+m — {

Proof. First observe that the “In particular” assertion follows from the
main assertion because, taking m = n — ¢, we want ¢ such that

2n—1—c
n(™, )
(2n1‘2) <1
n—1
This ratio is
m—1)---(n—c¢) ~n—cn—-1n-2n-3 n-c+l1
(2n-2)2n-3)---2n—¢) 2°'n-2n-3n-1 n—¢

so if ¢ — 1 > logy(n) it is less than one.

For the rest of the proof, introduce the following notation: a Young
diagram associated to a partition A = (A1,..., A7) is a collection of left
aligned boxes, with A; boxes in the j-th row. Label it with the upside-
down convention as representing entries in the south-west corner of an n x
n matrix. More precisely for (i,j) € A, number the boxes of A\ by pairs
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(row,column), however, number the rows starting from n, i.e. i = n is the
first row. For example

y

ERs

(5.4.2)

is labeled z = (n,1),y = (n,2),z = (m—1,1),w = (n —2,1). Let Ay =
span{u'®v; | (i,7) € A} and write M<)\n,n,w> = My n,w)/ A

The proof consists of two parts. The first is to show that for any £ < n
there exists a Young diagram A with k& boxes such that R(M ()\nnw)) <

R(M (n,n,w)) — k, and this is done by induction on k. The second is to use

Koszul flattenings to obtain a lower bound on R(M <’\n W

As usual, write My nwy € ARBRC = (U*eV)(V@W)o(W*eU)

where u = v = n.

>) for any .

Part 1) First consider the case & = 1. By Proposition 5.4.1.3 there
exists [a] € BR(M ) —1m2—1 (M n,n,w)) such that the reduced tensor drops
border rank. The group GL(U) x GL(V) x GL(W) stabilizes My n w)-
Lemma 5.4.3.3 applies with G; = GL(U) x GL(V) C GL(A). Since the
GL(U) x GL(V)-orbit closure of any [a] € PA contains [u"®uv;]|, we may
replace [a] by [u"®uv].

Now assume that E(M()\r;,n,w)) < R(Mpynwy) —k+1, where X' has k—1

!

boxes. Again by Proposition 5.4.1.3 there exists [a] € BB(M<n,n,w>)—k,nQ—k(M?n,n,m)
such that when we reduce by [a] the border rank of the reduced tensor

drops. We no longer have the full action of GL(U) x GL(V'). However,

the product of parabolic subgroups of GL(U) x GL(V'), which by definition

are the subgroups that stabilize the flags in U* and V induced by X, stabi-

lizes M <)‘I;7n7w>. In particular, all parabolic groups are contained in the Borel
subgroup of upper-triangular matrices. By the diagonal (torus) action and
Lemma 5.4.3.3 we may assume that a has just one nonzero entry outside of
A. Further, using the upper-triangular (Borel) action we can move the entry
south-west to obtain the Young diagram .

For example, when the Young diagram is (5.4.2) with n = 4, and we

want to move z} into the diagram, we may multiply it on the left and right
respectively by
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where blank entries are zero. Then z} — €2z} + e(z3 + 1) + 27 and we let
e — 0.

Part 2) Recall that for the matrix multiplication operator, the Koszul
flattening of §2.4 factors as My nw) = Minn,1y® Idw, so it will suffice to
apply the Koszul flattening to M(\mn,” € [(U*®V)/A\@V*®U. We need to
show that for all A\ of size m,

R A > 1 (n;ll——‘rlm)
—(M(n,n,l)) >22n-1 (211—1) '
n—1

This will be accomplished by restricting to a suitable A" C [(U*®V)/A\]*
of dimension 2n — 1, such that, setting A = (A’)*,

B 2n — 1 n—1+4+m
rank(M{‘n7n71>|A’®V®U*)£n > (n— 1 )n— < m—1 )’

ie.,

. A 1 n—1 +m
dimker(Mg, , y|lwever:)i" ) < ( —— >,
and applying Proposition 2.4.2.1. Since we are working in bases, we may
consider M<)‘K1 n1) € (A/A\)®@B®C in AQ B®C, with specific coordinates set
equal to 0.

Recall the map ¢ : A — C?7~! = A given by ui®vj — €j4j—1 from
(2.5.2) and the other notations from the proof of Theorem 2.5.2.6. The
crucial part is to determine how many zeros are added to the diagonal when
the entries of A are set to zero. The map (M<>‘n,n71> |A'®V®U*)gn71 is

(S,)) i=esy N+ Neg, ,@Vj — Z €jrio1 Nesy Ao Nes, @u'.

{kem]|(i.7)gA}

Recall that when working with My, 1), the diagonal terms in the matrix
were indexed by pairs [(S,7) = (P\pi, 1 +p; — 1), (P,1)], in other words that
(P\pi,1 4+ p; — 1) mapped to (P,l) plus terms that are lower in the order.
So fix (4,j) € A, we need to count the number of terms (P, i) that will not
appear anymore as a result of (¢, j) being in A. That is, fixing (i, j), we need
to count the number of (p1,...,pi—1) with p; < -+ < pj—1 <i+j—1, of

which there are (Hz'if), and multiply this by the number of (pit1,...,Pn)

with i+j—1 < pis1 < -+ < pn < 2n— 1, of which there are (** ' (=),

R [

diagonal. Hence, it is enough to prove that Z(z’,j)e)\ 9(i,7) < (

Exercise 5.4.5.2: (1) Show that 3 7", (njﬂf) = (mntff) ©)

In summary, each (i,5) € X kills g(i,j) = ( ) terms on the
n71+m)
m—1 /°
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By Exercise 5.4.5.2 and a similar calculation, we see Z?:_ITH g(i,1) =

dtig(n,j) = ("~24™). So it remains to prove that the Young diagram
that maximizes f) := Z(i?j)e 1\ 9(%,7) has one row or column. Use induction
on the size of A, the case |A\| = 1 being trivial. Note that g(n —i,j) =
g(n - j7 Z) MOI'GOVQI', g(Z7] + 1) > 9(27])

Say A = N U{(4,7)}. By induction it is sufficient to show that:
(5.4.3)

g n—1+4ij—1 n+i—j—1\/n—i+j .
g(n,w)=< no 1 )2( L] i1 =9(1,7),

where n > ij.
Exercise 5.4.5.3: (3) Prove the estimate. ®

O

5.4.6. The boundary case. The proof of Corollary 5.4.6.1 below uses
elementary properties of Chern classes and can be skipped by readers unfa-
miliar with them. Let m4 : G(a’, A*) x G(b’, B*) x G(c¢/,C*) — G(a’, A¥)
denote the projection and similarly for g, mc. Let &€ = £(a’,b/,c/) =
T4 (S4)@75(SB)®7H(Sc) be the vector bundle that is the tensor product
of the pullbacks of tautological subspace bundles S4,Sp, S¢. In each partic-
ular case it is possible to explicitly compute how many different A'®B'®C’
a generic hyperplane may contain as follows:

Corollary 5.4.6.1. [LM16]

(1) If (5.4.1) holds then a generic tensor is (&', b’, ¢)-compression generic.

(2) If (5.4.1) does not hold then rank £* < dim (G(a’, A*) x G(b’, B*) x
G(c',C*)). If the top Chern class of £* is nonzero, then no tensor
is (a’,b’, ¢’)-compression generic.

Proof. The first assertion is a restatement of Proposition 5.4.2.2.

For the second, notice that 7' induces a section T' of the vector bun-
dle & — G(a’, 4*) x G(b', B*) x G(c/,C*) defined by T(A'®B'®C") =
T|aepec- The zero locus of T is {(A’, B',C") € G(a/, A*) x G(b, B*) x
G(c/,C*) | A®B'®C" C T+}. In particular, T is non-vanishing if and only
if T is (a’,b’,c)-compression generic. If the top Chern class is nonzero,
there cannot exist a non-vanishing section. O

5.5. Geometry of the Coppersmith-Winograd tensors

As we saw in Chapter 3, in practice, only tensors of minimal, or near minimal
border rank have been used to prove upper bounds on the exponent of
matrix multiplication. Call a tensor that gives a “good” upper bound for
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the exponent via the methods of [Str87, CW90|, of high Coppersmith-
Winograd value or high CW-value for short. Ambainis, Filmus and LeGall
[AFLG15] showed that taking higher powers of Tcyw,, when ¢ > 5 cannot
prove w < 2.30 by this method alone. They posed the problem of finding
additional tensors of high value. The work in this section was motivated by
their problem - to isolate geometric features of the Coppersmith-Winograd
tensors and find other tensors with such features. However, it turned out
that the features described here, with the exception of a large rank/border
rank ratio, actually characterize them. The study is incomplete because the
CW-value of a tensor also depends on its presentation, and in different bases
a tensor can have quite different CW-values. Moreover, even determining
the value in a given presentation still involves some “art” in the choice of a

good decomposition, choosing the correct tensor power, estimating the value
and probability of each block [Wil].

5.5.1. The Coppersmith-Winograd tensors. Recall the Coppersmith-
Winograd tensors

q
(5.5.1) Tyew :i= ZCLo@bj@Cj+aj®bo®6j+aj®bj®60 € (Cq“@(Cq“@(Cq“,
j=1
and
(5.5.2)
q

Tycw == Z(a()@bj@cj + (Ij@b()@Cj + aj®bj®00)

=1

+ ap®@bo®@cyt1 + ag®by1®¢o + agr1@bp®cy € CIT2RCIT2RCIT2,

both of which have border rank g + 2.

Written as symmetrlc tensors (polynomials): Ty ¢y = o ;1 1 ?) and
Toow = z0(Xj—1 o] + ToTgs1).

Proposition 5.5.1.1. [LM15] R(T,cv) = 2¢ + 1, R(T, cw) = 2¢ + 3.

Proof. I first prove the lower bound for 7} »,,. Apply Proposition 5.3.1.1 to
show that the rank of the tensor is at least 2¢—2 plus the rank of ag®b;®cq+
a1®by®c1 + a1 ®b1®cy, which is 3. An analogous estimate provides the lower
bound for R(Tj, cw ). To show that R(T}, ) < 2¢+ 1 consider the following
rank 1 matrices, whose span contains T'(A*):

1) ¢ + 1 matrices with all entries equal to 0 apart from one entry on the
diagonal equal to 1,

2) ¢ matrices indexed by 1 <

< j < g, with all entries equal to zero apart
from the four entries (0,0), (0, ) (4,0)

,(4,7) equal to 1. O
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Exercise 5.5.1.2: (2) Using the lower bound for Tj .., prove the lower
bound for T, cw .

In §5.6 we saw that R(Ts7r4) = ¢+1, and by Exercise 5.3.1.7, R(Ts7Rr,q)

2q. Strassen’s tensor has rank nearly twice the border rank, like the Coppersmith-

Winograd tensors. So one potential source of high CW-value tensors are
tensors with a large gap between rank and border rank.

5.5.2. Extremal tensors. Let A, B,C = C?. There are normal forms for
curves in Seg(PA x PB x PC') up to order a — 1, namely

Ty = (a1+tag+- - +t2 Laa+0(t2)) R (b +tba+- - +t* 1ba+O(t*))@(c1+tea+-

and if the a;, bj, ¢; are each linearly independent sets of vectors, call the
curve general to order a — 1.

Proposition 5.5.2.1. [LM15] Let T € AQB®C = C*®C?*®C?. If there
exists a curve Ty that is general to order a such that
da_lﬂ(A*)

T(A%) = = gt eeo:

then, for suitably chosen a € A* and bases, T(A*)T(a)~! is the centralizer
of a regular nilpotent element.

Proof. Note that @hzo =q! Zi+j+k:q+3 a;®b;Rcy, i.e.,

(di)a
xq72 l‘qf?) o o :[;1 O
Lg—3 Tg—4 - I 0
T4, |
(dt)q =0 T 0
0 0
0 0

In particular, each space contains the previous ones, and the last equals

La LTa-1 ' x1

Ta—1 Ta—2 -+ x1 0
1

I 0

which is isomorphic to the centralizer of a regular nilpotent element. ([

2 e, +O(12))
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This provides another, explicit proof that the centralizer of a regular
nilpotent element belongs to the closure of diagonalizable algebras.

Note that the Coppersmith-Winograd tensor T,_o cw satisfies PT'(A*)N
Seg(PB x PC) = [X] is a single point, and P71y Seg(PB x PC) N PT(A*)
is a P22, It turns out these properties characterize it among 14-generic
tensors:

Theorem 5.5.2.2. [LM15] Let T' € A®BRC = C*®@C?*®C? be of border
rank a > 2. Assume PT(A*) N Seg(PB x PC') = [X] is a single point, and
PTix)Seg(PB x PC) D PT(A*). Then T is not 14-generic.

If

(i) PT(A*) N Seg(PB x PC') = [X] is a single point,

(i) PTxSeg(PB x PC) NPT (A*) is a P22, and

(iii) T' is 1 4-generic,

then T' is isomorphic to the Coppersmith-Winograd tensor Th_o cw .

Proof. For the first assertion, no element of IP’T[ x)9eg(PB x PC) has rank
greater than two.

For the second, I first show that 7T is 1-generic. Choose bases such
that X = b;®cy, then, after modifying the bases, the P22 must be the
projectivization of

I Trog -+ Ta-—1 0

(5.5.3) E:=

(Rank one tangent vectors cannot appear by property (i).)

Write T'(A*) = span{E, M} for some matrix M. As T is 14-generic
we can assume that M is invertible. In particular, the last row of M must
contain a nonzero entry. In the basis order where M corresponds to T'(a?),
the space of matrices T'(B*) has triangular form and contains matrices with
nonzero diagonal entries. The proof for T'(C*) is analogous, hence T is
1-generic.

By Proposition 5.1.5.1 we may assume that T'(A*) is contained in the
space of symmetric matrices. Hence, we may assume that F is as above and

M is a symmetric matrix. By further changing the bases we may assume
that M has:

(1) the first row and column equal to zero, apart from their last entries
that are nonzero (we may assume they are equal to 1),
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(2) the last row and column equal to zero apart from their first entries.

Hence the matrix M is determined by a submatrix M’ of rows and columns
2toa—1. As T(A*) contains a matrix of maximal rank, the matrix M’ must
have rank a — 2. We can change the basis a?,...,a2 ! in such a way that
the quadric corresponding to M’ equals #3+- - -+x2_;. This will also change
the other matrices, which correspond to quadrics z1z; for 1 <7 <a—1, but

will not change the space that they span. We obtain the tensor Th_2 cw .
O

5.5.3. Compression extremality. In this subsection I discuss tensors for
which the border substitution method fails miserably. In particular, al-
though the usual substitution method correctly determines the rank of the
Coppersmith-Winograd tensors, the tensors are special in that they are
nearly characterized by the failure of the border substitution method to
give lower border rank bounds.

Definition 5.5.3.1. A 1-generic, tensor T € AQB®C is said to be mai-
mally compressible if there exists hyperplanes Hqy C A*, Hg C B*, Ho C C*
such that T' ’HAXHBXHC: 0.

If T e S3A C AQA®A, T is mazimally symmetric compressible if there
exists a hyperplane Hy C A* such that T' |y, x4 xm,= 0.

Recall from Proposition 5.1.5.1 that a tensor T' € C2RC2®C? that is
1-generic and satisfies Strassen’s equations, with suitable choices of bases
becomes a tensor in S3C2.

Theorem 5.5.3.2. [LM15] Let T € S3C? be 1-generic and maximally sym-
metric compressible. Then T is one of:

(1) Ta—l,cw
(2) Ta—2,cw
(3) T =ai(a? +---a2).

In particular, the only 1-generic, maximally symmetric compressible, mini-
mal border rank tensor in C*®@C?*®C? is isomorphic to Ta_o cw -

Proof. Let a; be a basis of the line H4+ € C?. Then T = a1Q for some
Q € S?C2. By l-genericity, the rank of @ is either a or a — 1. If the rank
is a, there are two cases, either the hyperplane H4 is tangent to @, or it
intersects it transversely. The second is case (3). The first has a normal form
ai(ajaa + a2+ --- +a2_,), which, when written as a tensor, is Ta—2cw. If
@ has rank a—1, by 1-genericity, ker(Q1,1) must be in H4 and thus we may
choose coordinates such that @Q = (a3 + - - - + a2), but then T, written as a
tensor, is Ta—1,cw- O
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Proposition 5.5.3.3. [LM15] The Coppersmith-Winograd tensor To_o cw
is the unique up to isomorphism 1-generic tensor in C2C2®C? that is
maximally compressible and satisfies any of the following:

(1) Strassen’s equations
(2) cyclic Zs-invariance
(3) has border rank a.

Proof. Let a1,...,aa be a basis of A with H4 = a;* and similarly for
Hp = b+ and He = 1. Thus (allowing re-ordering of the factors A, B, C)
T=010X+0QY +c1®Z where X € BRC,Y € ARC, Z € ARB. Now no
a € H, can be such that T'(«) is of maximal rank, as for any 1, 32 € Hp,
T(a,B;) C C{c1}. So T(al), T(b),T(c') are all of rank a, where a' is the
dual basis vector to a; etc. After a modification, we may assume X has
rank a.

Let (g,h,k) € GL(A) x GL(B) x GL(C). We may normalize X = Id,
which forces g = h. We may then rewrite X, Y, Z such that Y is full rank

and renormalize )
= = g
X—v ( : da_l) ,

which forces h = k and uses up our normalizations.

Now we use any of the above three properties. The weakest is the second,
but by Zs-invariance, if X =Y, we must have Z = X =Y as well and T
is the Coppersmith-Winograd tensor. The other two imply the second by
Proposition 5.1.5.1. U

Remark 5.5.3.4. Theorem 5.5.3.2 and Proposition 5.5.3.3 were motivated
by the suggestion in [AFLG15] to look for tensors to replace the Coppersmith-
Winograd tensor in Strassen’s laser method. We had hoped to isolate geo-
metric properties of the tensor and then find other tensors with similar prop-
erties, to then test the method on. However, the properties we found, with
the exception of a large rank/border rank ratio, essentially characterized the
tensors.

5.6. Ranks and border ranks of Structure tensors of algebras

In this section I discuss ranks and border ranks of a class of tensors that
appear to be more tractable than arbitrary tensors: structure tensors of
algebras. It turns out this class is larger than appears at first glance: as
explained in §5.6.1, all tensors in AQBRC = C™mC™MRC™ that are 14
and 1p-generic are equivalent to structure tensors of algebras with unit.
In §5.6.2, I show structure tensors corresponding to algebras of the form
Clzy,...,zy]/Z, where T is an ideal whose zero set is finite, are equivalent
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to symmetric tensors and give several examples. (For those familiar with the
language, these are structure tensors of coordinate rings of zero dimensional
affine schemes, see §10.1.1.) The algebra structure can facilitate the appli-
cation of the substitution and border substitution methods, as is illustrated
in §5.6.3 and §5.6.4 respectively. In particular, using algebras of the form
Clx1,...,zy]/Z, I present examples of tensors with rank to border rank ratio
approaching three. I conclude with Blaser and Lysikov’s study of structure
tensors of algebras that have minimal border rank.

Throughout this section A denotes a finite dimensional associative alge-
bra and T4 € A*®A*®A denotes its structure tensor as discussed in §3.5.1.

5.6.1. Algebras and minimal border rank tensors. The following re-
duction theorem is due to Blaser and Lysikov:

Theorem 5.6.1.1. [BL16]| Let A, A; be algebras of dimension m with

structure tensors T'4,T4,. Then Tj C GL3 - T4, if and only if T4 C
GLm -Ta,.

Proof. Write C™ ~ A ~ A, as a vector space, so T4, T4, € C™C™xC™
Write Ty = limy—,0 T}, where Ty := (ft, gt, he) - Ty, with fy, g¢, by curves in
GLm. Let e € Adenote the identity element. Then Ty (e, y) = heTa, (fi e, g ly) =
y+ O(t). Write Ly,-1, : A — A for f; 'e considered as a linear map. Then
htht—legt_l = Id +0(t) so we may replace g; by g; := hyLys,-1,. Similarly,
using that T}(y, €) = y+ O(t), we may replace f; by f; := hi{Rj,-1., where R
is used to remind us that it corresponds to right multiplication in the algebra,
so our new curve is T4 = limyo((Rg,-1¢) "he ™1 (Lp-1) he ™ hy) - Tia, -
Finally, noting that for any linear maps X,Y € End(C™), T4(Xy,Yz) =
XTu(y, 2)Y, and taking X; = Lft—le_l, Y, = Rgt—le_l, our new action is by
htht—leRgt—le € GLm C GL;;IS. [l

Proposition 5.6.1.2. [BL16] Let T € A®B®C = C™C™®C™ be 14
and 1p generic. Then there exists an algebra A with unit such that T is
equivalent to Ty, i.e., they are in the same G L}3-orbit.

Proof. Take a € A*, f € B* with T'(«) : B* — C and T(8) : A* — C of
full rank. Give C the algebra structure c; -co := T(T(8) " te1, T(a) " teg) and
note that the structure tensor of this algebra is in the same G L}3-orbit as
T. O

Exercise 5.6.1.3: (1) Verify that the product above indeed gives C the
structure of an algebra with unit.

Combining Theorem 5.6.1.1 and Proposition 5.6.1.2, we obtain:
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Theorem 5.6.1.4. [BL16] Let T € AQBRC = C™C™®C™ be 14 and
1p generic. Take a € A*, § € B* with T(«a) € B®C,T~(5) € A®C of
full rank, and use them to construct an equivalent tensor T € C*QC*®C.
Then R(T) = m, i.e., T € GL(A) x GL(B) x GL(C) - Mg;“, if and only if
T € GL(C)- M.

Recall the Comon conjecture from §4.1.4 that posits that for symmetric
tensors, R(7) = Rs(T"). One can define a border rank version:

Conjecture 5.6.1.5. [Border rank Comon conjecture] [ BGL13] Let T €
S3C™ C (C™)®3. Then R(T) = Rg(T).

Theorem 5.6.1.4 combined with Proposition 5.1.5.1, which says that min-
imal border rank 1-generic tensors are symmetric, implies:

Proposition 5.6.1.6. The border rank Comon conjecture holds for 1-generic
tensors of minimal border rank.

5.6.2. Structural tensors of algebras of the form Clz1,...,z,]/Z. Let
Z C Clzy,...,zy] be an ideal whose zero set in affine space is finite, so that
Az = Clzy,...,2,)/Z is a finite dimensional algebra. Let {p;} be a basis
of Az with dual basis {pj} We can write the structural tensor of Az as

Tay; = Y piop;@(pipsmod).
PrpsEAL
This tensor is transparently in S?A*®.A.

Given an algebra A = A7 € S2A*®A defined by an ideal as above,
note that since T'4(1,-) € End(A) and T)4(+,1) € End(A) have full rank and
the induced isomorphism B* — C is just (A*)* — A, and similarly for the
isomorphism A* — C, and since the algebra is abelian Strassen’s equations
are satisfied, so by Proposition 5.1.5.1 there exists a choice of bases such
that T4 € S3A.

Proposition 5.6.2.1. [Michalek and Jelisiejew, personal communication]
Structural tensors of algebras of the form A = Clz1, . .., x,]/Z are symmetric
if either of the following equivalent conditions hold:

o A* = A- f for some f € A*, where for a,b € A, (a- f)(b) := f(ab).

e T4 is 1-generic.

Proof. We have already seen that if T4 is 1-generic and satisfies Strassen’s
equations, then T4 is symmetric.

The following are clearly equivalent for an element f € A*:
1) Ta(f) € A* ® A" is of full rank,
2) the pairing A ® A — C given by (a,b) — f(ab) is non-degenerate,
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3) Af = A*. O

Remark 5.6.2.2. The condition that A* = A - f for some f € A* is
called Gorenstein. There are numerous definitions of Gorenstein. One that
is relevant for Chapter 10 is that A is Gorenstein if and only if A is the

annhilator of some polynomial D in the dual space, i.e., D € (C[a%l, ey %].

Example 5.6.2.3. [Zuil5] Consider A = C[z]/(2?), with basis 1, z, so
Ty=1"01"®1 + 2" 1"z + 1"'r* Q.
Writing eg = 1%, e; = z* in the first two factors and eg = z, e; = 1 in the
third,
T4 = eg®ep®eq + e1@eg®en + eg®e1Req

That is, T4 = Twstate is a general tangent vector to Seg(PA x PB x PC).

More generally, consider A = C[x1, ..., z,]/(23,...,22), with basis z; =

Ty - Ty where 1 < i1 <--- < ill\ < n, and by convention xy = 1. Then

Ty = Z TIRTTRT 1.
1,JC[n)|INT=0

Similar to above, let ey = x7 in the first two factors and e; = zp,)\; in
the third, we obtain

Ty = Z er®e ek
TUJUK=[n],
LKL 3 g1k b

so we explicitly see T4 € S3C?".

Exercise 5.6.2.4: (2) Show that for A = Clay,...,7,)/(2%,...,22), T4

Tﬁ?}%wte, where for T € AQ B®C, consider T®" € (A®n)®(B®”)®(C®n) as
a three-way tensor.

Exercise 5.6.2.5: (2) Let A = Clx]/(2"). Show that T4(A)T4(1)~t C
End(A) corresponds to the centralizer of a regular nilpotent element, so
in particular R(74) = n and R(T4) = 2n — 1 by Exercise 5.3.1.8 and
Proposition 5.1.4.6.

12

Exercise 5.6.2.6: (2) Fix natural numbers dy, . .., dy. Let A = Clz1,...,z,]/(z%,...

Find an explicit identification A* — A that renders Ty € S3A. ®
Example 5.6.2.7. [Zuil5] Consider the tensor

Tw Statek = 01,0Q -+ - @Ak—1,000k,1+01,0Q - - - @Ak—2,0Q00k—1,1Q0k 0+ - ~+01,1R020 - - -

that corresponds to a general tangent vector to Seg(P! x- - -xP) € P((C?)®*),
(Note that Twstate = Tw State,3.) This tensor is called the generalized W -
state by physicists . Let Agn = (C[z]/(2?)®N ~ Clzy,...,zn]/ (2, ..., 2%).
Exercise 5.6.2.8: (2) Show that T4, = (Twstate,d) "
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Example 5.6.2.9 (The Coppersmith-Winograd tensor). [LM, BL16] Con-
sider the algebra
’ACVV,(] = C["L‘h s 7$q]/($’i$j’ :Ez2 - x?,x?, i F .7)
Let {1,2;,[z3]} be a basis of A, where [2?] = [:BJQ] for all j. Then
q
Thew, =1"@1* @1+ Y (1" 0rj@z; + ;01 0;)
i=1
* * 2 * AR 2 21% * 2
+ zj @z ®@[x7] + 1"Q[z7])* ®[z7] + [21]*®1* ®[z]].
Set eg = 1*, ¢; = z}, eqr1 = [23]* in the first two factors and ey = [27],
€; = Tj, eg+1 = 1 in the third to obtain

q
Tacw, =Towq = coReo@eqi1 + Y _(eo@ei®e; + e;@ep®e; + €i@e;eq)
=1

+ eo®eq+1®e + eq11®ep®eq,

so we indeed obtain the Coppersmith-Winograd tensor.

When is the structure tensor of Az of minimal border rank? Note that
if T'e CmC™®C™ is the structure tensor of an algebra A that is a degen-

eration of (Clz]/(x))®™ (whose structure tensor is Mg;“), then R(T') = m.

5.6.3. The substitution method applied to structure tensors of al-
gebras. Let A be a finite dimensional associative algebra. The radical of
A is the intersection of all maximal left ideals and denoted Rad(.A). When
A is abelian, the radical is often call the nilradical.

Exercise 5.6.3.1: (2) Show that every element of Rad(.A) is nilpotent and
that if A is abelian, Rad(.A) consists exactly of the nilpotent elements of A.
(This exercise requires knowledge of standard notions from algebra.) ®

Theorem 5.6.3.2. [B1400, Thm. 7.4] For any integers p,q > 1,

R(T4) > dim(Rad(A)P) + dim(Rad(A)?) + dim A — dim(Rad(A)PT41).
For the proof we will need the following Lemma, whose proof I skip:
Lemma 5.6.3.3. [B1400, Lem. 7.3] Let A be a finite dimensional algebra,
let U,V C A be vector subspaces such that U + Rad(A)? = A and V +

Rad(A)Y = A. Then (UV) + Rad(A)PT4~ ! = A.

Proof of Theorem 5.6.3.2. Use Proposition 5.4.1.2 with
A = (Rad(A)P)* c A%,

B = (Rad(A)))* c A*, and

C = Rad(A)Pri1 c A
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Then observe that any A’ C A\Rad(A)?, B’ C A\Rad(A)?, can play the
roles of U,V in the Lemma, so T4(A’, B') ¢ Rad(A)P*%"1. Since ¢’ C
A"\ (Rad(A)PH9—1)L | we conclude. O

Remark 5.6.3.4. Theorem 5.6.3.2 illustrates the power of the (rank) sub-
stitution method over the border substitution method. By merely prohibit-
ing a certain Zariski closed set of degenerations, we can make T4 non-
compressible. Without that prohibition, T4 can indeed be compressed in
general.

Remark 5.6.3.5. Using similar (but easier) methods, one can show that if
A is simple of dimension a, then R(T4) > 2a — 1, see, e.g., [BCS97, Prop.
17.22]. More generally, the Alder-Strassen Theorem [AS81] states that if
there are m maximal two-sided ideals in A, then R(74) > 2a —m

Theorem 5.6.3.6. [Bla0O1a] Let Ayunc,a := Clz1, ..., 2,]/(SIC") = @;l;(l) Sicr.

Then
R0 23( ) - (1) - (2 8.

Proof. Apply Theorem 5.6.3.2. Here Rad(Atrunc,a) is a vector space com-
plement to {Id} in Asryne,d, s0 it has dimension (fo) —1 and Rad(A¢ryne, d)k —
Z;i;,i SIC™ which has dimension (Zf‘f) - (zj’f) 0

In §5.6.5 we will see that any algebra Clxi,...,z,]/Z where Z is an
ideal generated by monomials, gives rise to a tensor of minimal border rank.
Thus, as was observed by Blaser:

Corollary 5.6.3.7 (Bléser, personal communication). Let d = d(n) < n be
an integer valued function of n. Then

R(T-At'runc,d )

>3 —o(n).
E(TAtrunc,d)

If d = | 5], then the error term is on the order of 1/ dim A¢unc,d-
Theorem 5.6.3.8. [Zuil5] R(T{/%,...) = 32" — o(2").

Proof. We have A = C[x1,...,,]/(z?,...,22), so the degree n — s compo-

nent of Ais A = span Ugep{@1 - @iy -+ &4, - @} = spanUgep {5552 1

Tiy i
In particular dim A, = (7).
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Note that Rad(A)™ = @;>m.A;. Recall that 377, (’;) =2". Takep=g¢q
in Theorem 5.6.3.2. We have

ez £ 0)- 3 (0

Jj=p k=2p—1
4 n n—2p+1 n
et ()5 0)
j=0 k=0

Write p = en, for some 0 < € < 1. Since Z;ZO (?) < 9(=elog(e)—(1~€) log(1—¢))n
(see §7.5.1), taking, e.g., € = % gives the result. O

Kn
Corollary 5.6.3.9. [Zuil5] % > 3 — o(1), where the right hand

. . . . —( WState)
side is viewed as a function of n.

More generally, Zuiddam shows, for Ty, ., € (C")®k:
Theorem 5.6.3.10. [Zuil5] R(T{/4, 00 1) = k27 — o(27).

Regarding the maximum possible ratio for rank to border rank, there is
the following theorem applicable even to X-rank and X-border rank:

Theorem 5.6.3.11. [BT15] Let X C PV be a complex projective variety
not contained in a hyperplane. Let Ry ., denote the maximum X-border

rank of a point in PV and Rx e, the maximum possible X-rank. Then
RX,mam S 2EX’magg'

Proof. Let U C PV be a Zariski dense open subset of points of rank exactly
R x maz- Let ¢ € PV be any point and let p be any point in U. The line L
through ¢ and p intersects U at another point p (in fact, at infinitely many
more points). Since p and p’ span L, ¢ is a linear combination of p and p/,
thus Rx(¢) < Rx(p) + Rx(p) O

Theorem 5.6.3.11 implies that the maximal possible rank of any tensor

in C"@C™®C™ is at most 2[;“;:;}, so for any concise tensor the maximal
rank to border rank ratio is bounded above by approximately sz, which is

likely far from sharp.

5.6.4. The border substitution method and tensor powers of T, 2.
Lemma 5.6.4.1. [BL16| For any tensor T} € A1®B1®C1, and any q > 2,

MiNge(Apa; )\ {0} TNk (Tew ®T1) lagBroc+) > 2ming, e 4\ o) (tank(T1 |a,0B70C0;))-

Proof. Write o = 1®ag + > 7 ef®@a; € (A®A;)* for some ag, o € A7, If

all the a; are zero for 1 < j < ¢, then Ty 4(ef®ag) is the reordering and
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grouping of
q

Z(Q@%)@Tl(ao)

i=1
which has rank (as a linear map) at least ¢-rank(73(«p)). Otherwise without
loss of generality, assume «a; # 0. Note that T¢y, 4(€f®a1) is the reordering
and grouping of

e1®eo®@T1 (o) + eg®e1 T (aq)

which has rank two, and is linearly independent of any of the other factors
appearing in the image, so the rank is at least 2 - rank (77 («)). O

Theorem 5.6.4.2. [BL16] For all ¢ > 2, consider TSy, € CltD"@CltD" gClatD)",
Then R(TS") > (¢+ 1)+ 2" — 1.

cw,q

Proof. Note that 72" = Cw7q®TC§L(Zfl). Apply the Lemma iteratively and

cw,g

use Corollary 5.4.1.4. O

Remark 5.6.4.3. As was pointed out in [BCS97, Rem. 15.44] if the as-
ymptotic rank (see Definition 3.4.6.1) of T, 2 is the minimal 3, then the
exponent of matrix multiplication is 2. The bound in the theorem does not
rule this out.

5.6.5. Smoothable ideals and tensors of minimal border rank. In
§5.6.1 we saw that classifying 14 and 1p generic tensors of minimal border
rank is equivalent to the potentially simpler problem of classifying algebras
in the GLy-orbit closure of Mga;n We can translate this further when the
algebras are of the form Clxi,...,zn]/Z for some ideal Z. The question
then becomes if 7 is a degeneration of an ideal whose zero set consists of m
distinct points (counted with multiplicity).

The degenerations of ideals have been well-studied, and we are interested
in the degeneration of the ideal of m distinct points to other ideals.

For example, the following algebras have the desired property and thus
their structure tensors are of minimal border rank (see [CEVV09)):
o dim(A) <7,
e A is generated by two elements,
e the radical of A satisfies dim(Rad(A)?/Rad(A)3?) = 1,
e the radical of A satisfies dim(Rad(.A)?/Rad(A)?) = 2, dim Rad(A)3 <
2 and Rad(A)* = 0.
An ideal Z is a monomial ideal if it is generated by monomials (in some
coordinate system). Choose an order on monomials such that if |I| > |J],

then z/ < 27/. Given f € Clzy,...,7,], define in(f) to be the lowest
monomial term of f, the initial term of f. Given an ideal Z, define its initial
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ideal (with respect to some chosen order) as (in(f) | f € Z). An ideal can
be degenerated to its initial ideal.

Proposition 5.6.5.1. [CEV V09| Monomial ideals are smoothable, so if T
is a monomial ideal then the structure tensor of Clx1, . .., xy]/Z is of minimal
border rank.

Proof. Write Z = (z'1,..., 2!s) for the ideal, where I, = (in.1,- - - sl Tal)s
and let m = dimC[zy,...,2y]/Z. Take a sequence aj,as,... of distinct
elements of C. Define

fo =T (25 — ar)(zj — ag) -+ (z5 — ag, ).
Note that in(f,) = xls. Let J be the ideal generated by the f;,. Then
in(J) O (in(f1),...,in(fs)) = Z, so dimClzy,...,zn]/J < m. But now
for any of the xzle € Z, there each fq vanishes at (aj,,,...,a1, ) € CN.

Thus J must be the radical ideal vanishing at the s points and have initial
ideal Z, so Z is smoothable. O






Chapter 6

Valiant’s hypothesis I:
permanent v.
determinant and the
complexity of
polynomials

Recall from the introduction that for a polynomial P, the determinantal
complezity of P, denoted dc(P), is the smallest n such that P is an affine
linear projection of the determinant, and Valiant’s hypothesis 1.2.4.2 that
dc(perm,,,) grows faster than any polynomial in m. In this chapter I discuss
the conjecture, progress towards it, and its Geometric Complexity Theory
(GCT) variant.

I begin, in §6.1, with a discussion of circuits, context for Valiant’s
hypothesis, definitions of the complexity classes VP and VNP, and the
strengthening of Valiant’s hypothesis of [MS01] that is more natural for
algebraic geometry and representation theory. In particular, I explain why
it might be considered as an algebraic analog of the famous P # NP con-
jecture (although there are other conjectures in the Boolean world that are
more closely related to it).

Our study of matrix multiplication indicates a strategy for Valiant’s
hypothesis: look for polynomials on the space of polynomials that vanish on
the determinant and not on the permanent, and to look for such polynomials
with the aid of geometry and representation theory. Here there is extra

147
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geometry available: a polynomial P € SV defines a hypersurface
Zeros(P) :={la] e PV* | P(a) =0} C PV™.

Hypersurfaces in projective space have been studied for hundreds of years
and much is known about them.

In §6.2 I discuss the simplest polynomials on spaces of polynomials, the
catalecticants that date back to Sylvester.

One approach to Valiant’s hypothesis discussed at several points in this
chapter is to look for pathologies of the hypersurface Zeros(det,) that per-
sist under degeneration, and that are not shared by Zeros(¢"~" perm,,).
The simplest pathology of a hypersurface is its singular set. I discuss the
singular loci of the permanent and determinant, and make general remarks
on singularities in §6.3.

I then present the classical and recent lower bounds on dc(perm,,) of
von zur Gathen and Alper-Bogart-Velasco in §6.3.4. These lower bounds
on dc(perm,,) rely on a key regularity result observed by von zur Gathen.
These results do not directly extend to the measure dc(perm,,) defined in
§6.1.6 because of the regularity result.

The best general lower bound on dc¢(perm,, ), namely dc(perm,,) > %2,
comes from local differential geometry: the study of Gauss maps. It is
presented in §6.4. This bound extends to dc(perm,,) after some work. The
extension is presented in §6.5. To better utilize geometry and representation
theory, I describe the symmetries of the permanent and determinant in §6.6.
Given P € S, let Gp := {g € GL(V) | g- P = P} denote the symmetry
group of the polynomial P.

Since det(AX B) = det(X) if A, B are n X n matrices with determinant
one, and det(XT) = det(X), writing V = E®F with E, F = C", we have a
map

(SL(E) X SL(F)) X Ly — Gdetn
where the Zo is transpose and SL(FE) is the group of linear maps with
determinant equal to one.

Similarly, letting TgL C SL(FE) denote the diagonal matrices, we have
a map

(T55 % &,) x (TEF % &,)] % Zy — Gperm,, -

In §6.6, I show that both maps are surjective.

Just as it is interesting and useful to study the difference between rank
and border rank, it is worthwhile to study the difference between dc and dc,
which T discuss in §6.7.

One situation where there is some understanding of the difference be-
tween dc and dc is for cubic surfaces: a smooth cubic polynomial P in three
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variables satisfies dc(P) = 3, and thus every cubic polynomial @ in three
variables satisfies dc(Q) = 3. I give an outline of the proof in §6.8. Finally,
although it is not strictly related to complexity theory, I cannot resist a brief
discussion of determinantal hypersurfaces - those degree n polynomials P
with dc(P) = n, which I also discuss in in §6.8.

In this chapter I emphasize material that is not widely available to com-
puter scientists, and do not present proofs that already have excellent ex-
positions in the literature, such as the completeness of the permanent for
VNP.

This chapter may be read mostly independently of chapters 2-5.

6.1. Circuits and definitions of VP and VNP

In this section I give definitions of VP and VNP via arithmetic circuits
and show (det,,) € VP. I also discuss why Valiant’s hypothesis is a cousin
of P # NP, namely I show that the permanent can compute the number of
perfect matchings of a bipartite graph, something considered difficult, while
the determinant can be computed by a polynomial size circuit.

6.1.1. The permanent can do things considered difficult. A stan-
dard problem in graph theory, for which the only known algorithms are
exponential in the size of the graph, is to count the number of perfect
matchings of a bipartite graph, that is, a graph with two sets of vertices
and edges only joining vertices from one set to the other.

Figure 6.1.1. A bipartite graph, Vertex sets are {A, B, C} and {«, 5,7}.

A perfect matching is a subset of the edges such that each vertex shares
an edge from the subset with exactly one other vertex.

To a bipartite graph one associates an incidence matrix azg, where l‘; =1
if an edge joins the vertex i above to the vertex j below and is zero otherwise.
The graph above has incidence matrix

110
011
011
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[/

o

C

Figure 6.1.2. Two perfect matchings of the graph from Figure 6.1.1.

A perfect matching corresponds to a matrix constructed from the in-
cidence matrix by setting some of the entries to zero so that the resulting
matrix has exactly one 1 in each row and column, i.e., is a matrix obtained
by applying a permutation to the columns of the identity matrix.

Exercise 6.1.1.1: (1) Show that if z is the incidence matrix of a bipartite
graph, then perm,, (x) indeed equals the number of perfect matchings.

110
For example, perms |0 1 1] =2.
011

Thus a classical problem: determine the complexity of counting the
number of perfect matchings of a bipartite graph (which is complete for the
complexity class #P, see [BCS97, p. 574]), can be studied via algebra -
determine the complexity of evaluating the permanent.

6.1.2. Circuits.

Definition 6.1.2.1. An arithmetic circuit C is a finite, directed, acyclic
graph with vertices of in-degree 0 or 2 and exactly one vertex of out-degree
0. The vertices of in-degree 0 are labeled by elements of CU {z1,...,x,},
and called inputs. Those of in-degree 2 are labeled with + or * and are
called gates. If the out-degree of v is 0, then v is called an output gate. The
size of C is the number of edges.

To each vertex v of a circuit C, associate the polynomial that is computed
at v, which will be denoted C,. In particular the polynomial associated with
the output gate is called the polynomial computed by C.

At first glance, circuits do not look geometrical, as they depend on a
choice of coordinates. While computer scientists always view polynomials
as being given in some coordinate expression, in geometry one is interested in
properties of objects that are independent of coordinates. These perspectives
are compatible because with circuits one is not concerned with the precise
size of a circuit, but its size up to, e.g., a polynomial factor. Reducing
the size at worst by a polynomial factor, we can think of the inputs to our
circuits as arbitrary affine linear or linear functions on a vector space.



6.1. Circuits and definitions of VP and VNP 151

X y

Figure 6.1.3. Circuit for (x + y)?

6.1.3. Arithmetic circuits and complexity classes.

Definition 6.1.3.1. Let d(n), N (n) be polynomials and let f,, € Clz1,. .., %N @m)]<dn)
be a sequence of polynomials. We say (f,) € VP if there exists a sequence
of circuits C, of size polynomial in n computing f,.

Often the phrase “there exists a sequence of circuits C, of size polynomial
in n computing f,” is abbreviated “there exists a polynomial sized circuit
computing (f,)”.

The class VNP, which consists of sequences of polynomials whose coef-
ficients are “easily” described, has a more complicated definition:

Definition 6.1.3.2. A sequence (f,,) is in VNP if there exists a polynomial
p and a sequence (g,) € VP such that

fn(z) = Z gn(x,€).

ec{0,1}p(n)

One may think of the class VP as a bundle over VNP where elements of
VP are thought of as sequences of maps, say g, : CN( — C, and elements
of VNP are projections of these maps by eliminating some of the variables
by averaging or “integration over the fiber”. In algebraic geometry, it is well
known that projections of varieties can be far more complicated than the
original varieties. See [Bas14] for more on this perspective.

The class VNP is sometimes described as the polynomial sequences
that can be written down “explicitly”. Mathematicians should take note
that the computer science definition of explicit is different from what a
mathematician might use. For example, as pointed out in [FS13a], roots of
unity are not explicit because using them computationally typically requires
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expanding them as a decimal with exponential precision, which is inefficient.
On the other hand, the lexicographically first function f : {0, 1}legleen]
{0,1} with the maximum possible circuit complexity among all functions
on |loglogn] bits is explicit because, while seemingly unstructured, this
function can be writtend down efficiently via brute-force. See [FS13a] for
the definition.

Definition 6.1.3.3. One says that a sequence (gm(y1,---,¥a(m))) can be
polynomially reduced to (fu(®1,...,2Zn(n))) if there exists a polynomial
n(m) and affine linear functions Xi(yi,...,yan)s---s Xn(y1,...,yn) such
that gm(yh L) yM(m)) = fn(Xl(y)a cet 7XN(n)(y))‘ A sequence (pn) is hard
for a complexity class C if (p,) can be reduced to every (f,) € C, and it is
complete for C if furthermore (p,) € C.

Exercise 6.1.3.4: (1) Show that every polynomial of degree d can be re-
duced to z?.

Theorem 6.1.3.5. [Valiant] [Val79] (perm,,) is complete for VNP.

There are many excellent expositions of the proof, see, e.g. [BCS97] or
[Gat87].

Thus Conjecture 1.2.1.1 is equivalent to:

Conjecture 6.1.3.6. [Valiant][Val79] There does not exist a polynomial
size circuit computing the permanent.

Now for the determinant:
Proposition 6.1.3.7. (det,) € VP.

Remark 6.1.3.8. det,, would be VP complete if dc(p,,) grew no faster
than a polynomial for all sequences (p,,) € VP.

One can compute the determinant quickly via Gaussian elimination: one
uses the group to put a matrix in a form where the determinant is almost
effortless to compute (the determinant of an upper triangular matrix is just
the product of its diagonal entries). However this algorithm as presented is
not a circuit (there are divisions and one needs to check if pivots are zero).
After a short detour on symmetric polynomials, I prove Proposition 6.1.3.7
in §6.1.5.

6.1.4. Symmetric polynomials. An ubiquitous class of polynomials are
the symmetric polynomials: let Sy act on CN by permuting basis ele-
ments, which induces an action on the polynomial ring Clx1,...,zx]. Let
Clz1,...,2N]%Y denote the subspace of polynomials invariant under this
action. What follows are standard facts and definitions about symmetric
functions. For proofs, see, e.g., [Mac95, §1.2].
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The elementary symmetric functions (or elementary symmetric polyno-
mials) are

(6.1.1) en =enN = en(T1,...,TN) 1= Z Ty T,
JC[N]||J|=n

If the number of variables is understood, I write e, for e, ny. They generate
the ring of symmetric polynomials. They have the generating function

N
(6.1.2) En(t) =Y en(xr,....an)t" = [[(1 + zit).
E>0 i=1

Exercise 6.1.4.1: (1) Verify the coefficient of t" in En(t) is ep n.
The power sum symmetric functions are
They also generate the ring of symmetric polynomials. They have the gen-

erating function

N

(6.1.4) Py(t) =) ppth! = %m[]‘[a — ;)74

k>1 j=1
Exercise 6.1.4.2: (2) Verify that the coefficient of t" in Py(t) is indeed
Pn,N- ©
Exercise 6.1.4.3: (2) Show that

(6.1.5) P(—t) = _?;E?

Exercise 6.1.4.3, together with a little more work (see, e.g. [Mac95, p.
28]) shows that

el 1 o - 0
262 €1 1 tee 0

(6.1.6) pn = dety,
1
nén €p—-1 €pn-2 - €]

Similarly
P 1 0 --- 0
) p2 p 2 -~ 0
(6.1.7) en = det,, S :
Pn—1 Pn-—2 oon—1

Pn Pn—1 te b1
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6.1.5. Proof of Proposition 6.1.3.7. Here is a construction of a small
circuit for the determinant that essentially appeared in [Csa76]:

The determinant of a linear map f : V — V is the product of its
eigenvalues \q,..., Ay, i.e., ey (A) = A1+ Ay

On the other hand, trace(f) is the sum of the eigenvalues of f, and more
generally, letting f* denote the composition of f with itself k times,

trace(f*) = pe(\) = AF + -+ \E,

The quantities trace(f*) can be computed with small circuits.

Exercise 6.1.5.1: (2) Write down a circuit for the polynomial A + trace(A?)
when A is an n X n matrix with variable entries.

Thus we can compute det,, via small circuits and (6.1.7). While (6.1.7) is
still a determinant, it is almost lower triangular and its naive computation,
e.g., with Laplace expansion, can be done with an O(n?3)-size circuit and
the full algorithm for computing det,, can be executed with an O(n?) size
circuit.

Remark 6.1.5.2. A more restrictive class of circuits are formulas which
are circuits that are trees. Let VP, denote the sequences of polynomials
that admit a polynomial size formula. The circuit in the proof above is not
a formula because results from computations are used more than once. It is
known that the determinant admits a quasi-polynomial size formula, that is,
a formula of size n®1°8™)  and it is complete for the complexity class VQP =
VP, consisting of sequences of polynomials admitting a quasi-polynomial
size formula see, e.g., [BCS97, §21.5] (or equivalently, a polynomial sized
“skew” circuit, see [Tod92]). It is not known whether or not the determinant
is complete for VP.

6.1.6. The Geometric Complexity Theory (GCT) variant of Valiant’s
hypothesis. Recall that when we used polynomials in the study of matrix
multiplication, we were proving lower bounds on tensor border rank rather
than tensor rank. In the case of matrix multiplication, at least as far as the
exponent is concerned, this changed nothing. In the case of determinant
versus permanent, it is not known if using polynomial methods leads to a
stronger separation of complexity classes. In any case, it will be best to
clarify the two different types of lower bounds.

I recall from §1.2 that using padded polynomials, one can rephrase
Valiant’s hypothesis as:
Conjecture 6.1.6.1. [Rephrasing of Valiant’s hypothesis| Let ¢ be a linear

coordinate on C' and consider any linear inclusion C' & cm® = (C"Q, S0 in
particular "™ perm,, € S"C"". Let n(m) be a polynomial. Then for all
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sufficiently large m,
[~ perm,,] ¢ End(C™") - [det,,(m)]-

Recall that the formulations are equivalent because if perm(y}) = det,, (A+
Zi,j Aijyij), then £ perm,, (y; ;) = detn (€A + Zm« A;jyi ;). Such an ex-
pression is equivalent to setting each entry of the nxn matrix to a linear com-
bination of the variables £, y; ;, which is precisely what the elements of rank
m? + 1 in End((C”2) can accomplish. Moreover £"~™ perm,, = X - det,, ()
for some X € End(C"") implies X has rank m?2 + 1.

Recall the following conjecture, made to facilitate the use of tools from
algebraic geometry and representation theory to separate complexity classes:
Conjecture 6.1.6.2. [MSO01] Let ¢ be a linear coordinate on C' and con-
sider any linear inclusion C' @ cm C”Q, so in particular ¢~ perm,, €
SnCM. Let n(m) be a polynomial. Then for all sufficiently large m,

(0" perm,, | & GLyz2 - [dety, ()]

Note that G L, - [det,] = End(C"*) - [det,,]. In §6.7.2 I show G L, - [det,] 2
End(C"") - [det,], so Conjecture 6.1.6.2 is a strengthening of Conjecture
6.1.6.1. It will be useful to rephrase the conjecture slightly, to highlight
that it is a question about determining whether one orbit closure is con-
tained in another. Let

Dety, := GL,2 - [det,],

and let

Perm,, := GL,2 - [{"~™ perm,,].
Conjecture 6.1.6.3. [MSO01] Let n(m) be a polynomial. Then for all suf-
ficiently large m,
Permﬁ(m) Z Detym)-

The equivalence of Conjectures 6.1.6.3 and 6.1.6.2 follows as "~ perm,,, &
Det,, implies GL,2 - """ perm,, ¢ Det,, and since Det,, is closed and both
sides are irreducible, there is no harm in taking closure on the left hand side,
as you showed in Exercise 3.3.1.1.

Both Perm.* and Det,, are invariant under GL,2 so their ideals are
GL,2-modules. To separate them, one may look for a GL,,2-module M such
that M C I[Det,] and M ¢ I[Perm]’].

In §8.8 T explain the original program to solve this conjecture. Although
that program cannot work as stated, I believe that the re-focusing of a
problem of separating complexity classes to questions in algebraic geometry
and representation theory could lead to viable paths to resolving Valiant’s
hypothesis.
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6.2. Flattenings: our first polynomials on the space of
polynomials

In this section I discuss the most classical polynomials on the space of poly-
nomials, which were first introduced by Sylvester in 1852 and called catalec-
ticants by him. They are also called flattenings and in the computer science
literature the polynomials induced by the method of partial derivatives.

6.2.1. Three perspectives on S?CM. I review our perspectives on S‘CM
from §2.3.2. We have seen SYCM is the space of symmetric tensors in
(CM)®d Given a symmetric tensor T' € SYCM, we may form a polynomial
Pr on CM* by, for v € CM*, Pr(v) := T(v,...,v). I use this identification
repeatedly without further mention.

One can also recover T' from Pr via polarization. Then (up to universal
constants) T'(vj,,...,vi,,) where 1 < i3 < ... < 4y is the coefficient of
tiy -+ tiy, in Pp(tivg + - - 4+ tyopr). See [Lanl2, Chap. 2] for details.

As was mentioned in Exercise 2.3.2.4, we may also think of SICM as
the space of homogeneous differential operators of order d on Sym(CM*) :=

< ,SICM*,
7=0

Thus we may view an element of SCM as a homogeneous polynomial
of degree d on CM*, a symmetric tensor, and as a homogeneous differential
operator of order d on the space of polynomials Sym/(CM*).

6.2.2. Catalecticants, a.k.a. the method of partial derivatives.
Now would be a good time to read §3.1 if you have not already done so.
I review a few essential points from it.

The simplest polynomials in S*CY are just the n-th powers of linear
forms. Their zero set is a hyperplane (counted with multiplicity n). Let
P € S"CN. How can one test if P is an n-th power of a linear form, P = ¢"
for some ¢ € CN?

Exercise 6.2.2.1: (1!) Show that P = (" for some ¢ € C" if and only if
dim(%, e (%—113@ =1, where z!,..., 2"V are coordinates on CV.

Exercise 6.2.2.1 is indeed a polynomial test: The dual space CN* may
be considered as the space of first order homogeneous differential operators
on S"CY, and the test is that the 2 x 2 minors of the map P CN* -

P

Sn=1CN | given by % F 5.7 are zero.

Exercise 6.2.2.1 may be phrased without reference to coordinates: recall
the inclusion S™V C V®S" 1V = Hom(V*,S""1V). For P € S"V, write
Py -1 € Hom(V*, S"~1V).

Definition 6.2.2.2. I will say P is concise if P; 1 is injective.
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In other words, P is concise if every expression of P in coordinates uses
all the variables.

Exercise 6.2.2.1 may be rephrased as: P is an n-th power of a linear
form if and only if rank(P; ,—1) = 1.

Recall that the n-th Veronese variety is
v, (PV) :={[P] € PS"V | P = {" for some ¢ € V} C P(S"V).

Exercise 6.2.2.1 shows that the Veronese variety is indeed an algebraic vari-
ety. It is homogenous, i.e., a single GL(V')-orbit.

More generally define the subspace variety
Subk(S"V) :=P{P € S"V | rank(P; ,—1) < k}.

Note that [P] € Subg(S™V) if and only if there exists a coordinate sys-
tem where P can be expressed using only k of the dim V' variables. The
subspace variety Suby(S™V) C PS™V has the geometric interpretation as
the polynomials whose zero sets in projective space are cones with a v — k
dimensional vertex. (In affine space the zero set may look like a cylin-
der, such as the surface 22 + y?> = 1 in R3.) Consider the hypersurface
Xp C P*1 cut out by restricting P to a subspace L where (P|L)1n-1 is
injective. Then points of Zeros(P) C PV* are of the form [z + y] where
r € Xp and y € Pvh-l = Pker(P; —1). See §6.4.2 for more details.

The symmetric rank of P € S"V*, R, pv)(P) = Rg(P), is the smallest
r such that P = {7 +---+ £ for £; € V. The symmetric border rank of P,
R, pv)(P) = Rg(P), is is the smallest r such that [P] € o,(v,(PV)), the
r-th secant variety of the Veronese variety (see §4.7.1). Symmetric rank will
appear naturally in the study of Valiant’s hypothesis and its variants. In the
language of §7.1, Rg(P) is essentially the size of the smallest homogeneous

Y AY-circuit computing P.

How would one test if P is the sum of two n-th powers, P = ¢} 4 ¢4 for
some {1, 0y € CN?
Exercise 6.2.2.3: (1) Show that P = ¢} + (3 for some ¢; € CV implies

dimspan{%,...,%|1§i,j§N}§2.

Exercise 6.2.2.4: (2) Show that any polynomial vanishing on all polyno-
mials of the form P = (7 + (3 for some ¢; € CV also vanishes on 2" ly.

©

Exercise 6.2.2.4 reminds us that og(v,(PV')) also includes points on tan-
gent lines.

The condition in Exercise 6.2.2.3 is not sufficient to determine member-
ship in o9(v,(PV)), in other words, oa(v,(PV)) € Suby(S™V): Consider



158 6. Valiant’s hypothesis I: Permanent v. Determinant

P = 77203, Tt has rank(Py ;1) = 2 but P ¢ 02(v,(PV)) as can be seen by
the following exercises:

Exercise 6.2.2.5: (1) Show that P = ¢} + (3 for some ¢; € CV implies
o’p
Ozt 0xI <2

Exercise 6.2.2.6: (1) Show that P = ¢ 2¢3 for some distinct ¢; € CV

implies dim span{ 321'231;]'} > 2.

dim span{

Let Py ,,—o: S2CN* — S"~2CY denote the map with image (Um%).
Vanishing of the size three minors of P; ,—1 and P ;2 are necessary and suf-
ficient conditions for P € o2(v,(PV)), as was shown in 1886 by Gundelfinger
[Gun].

More generally, one can consider the polynomials given by the minors
of the maps S¥CN* — §"=kCN | given by D + D(P). Write these maps as
Pk : SkV* — S"=kV. These equations date back to Sylvester [Syl52]
and are called the method of partial derivatives in the complexity literature,
e.g. [CKW10]. The ranks of these maps gives a complexity measure on
polynomials.

Let’s give a name to the varieties defined by these polynomials: define
FlatP™*(89V) := {P € SV | rank(Py 1) < r}.
Exercise 6.2.2.7: (1) What does the method of partial derivatives tell us
about the complexity of 1 - - - z,,, det,, and perm,, e.g., taking k = [}]? ®

Exercise 6.2.2.7 provides an exponential lower bound for the permanent
in the complexity measure of symmetric border rank Rg, but we obtain the
same lower bound for the determinant. Thus this measure will not be useful
for separating the permanent from the determinant. It still gives interesting
information about other polynomials such as symmetric functions, which we
will examine.

The variety of homogeneous polynomials of degree n that are products of
linear forms also plays a role in complexity theory. Recall the Chow variety
of polynomials that decompose into a product of linear forms from §3.1.2:

Chn(V):=P{P € S"V | P =1t L, for {; € V}.

One can define a complexity measure for writing a polynomial as a sum
of products of linear forms. The “Zariski closed” version of this condition
is membership in 0,.(Ch,(V)). In the language of circuits, Ry, (v)(P) is
(essentially) the size of the smallest homogeneous XII¥ circuit computing a
polynomial P. I discuss this in §7.5.

Exercise 6.2.2.7 gives a necessary test for a polynomial P € S"CV to be
a product of n linear forms, namely rank(PL%J [%1) < (LEJ)' A question to
’ 2
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think about: how would one develop a necessary and sufficient condition to
show a polynomial P € S"CV is a product of n linear forms? See §9.6 for
an answer.

Unfortunately we have very few techniques for finding good spaces of
polynomials on polynomials. One such that generalizes flattenings, called
Young flattenings is discussed in §8.2.

A natural question is whether or not all flattenings are non-trivial. I
address this in §6.2.4 below after defining conormal spaces, which will be
needed for the proof.

6.2.3. Conormal spaces. Recall the definition of the tangent space to a
point on a variety X C PV or X C V, T,X C V, from §3.1.3. The conormal
space Ny X C V* is simply defined to be the annihilator of the tangent space:
N*X = (T, X)*.

Exercise 6.2.3.1: (2!) Show that in 6%(Seg(P*~! x PV~1)), the space of
u X v matrices of rank r,

Trrol(Seg(PU~t x PU71)) = {X € Matyx, | X ker(M) C Image(M)}.
Give a description of Nj,;0%(Seg(P*~! x P'71)). ®

6.2.4. All flattenings give non-trivial equations. The polynomials ob-
tained from the maximal minors of P; ;_; give nontrivial equations. In other
words, let rg = ro(i,d,v) = (Vﬁ*l). Then I claim that for ¢ < d — 1,
F lati’f__f(SdV) is a proper subvariety of PSV .

The most natural way to prove the claim would be to exhibit an explict
sequences of polynomials with maximal flatting rank. At this writing, I do
not know of any such explicit sequence. 1 give an indirect proof of the claim

below.

Problem 6.2.4.1. Find an explicit sequence of polynomials Py, € sicn
with maximal flattening rank. Can one find such an explicit sequence that
lies in VP, VP, or even VP.7

Exercise 6.2.4.2: (1) Show that if PLéJ rd is of maximal rank, then all
24012

Py, q—j, are of maximal rank.

Theorem 6.2.4.3. [Gre78, IE78] For a general polynomial P € SV, all
the maps Py, g, SkV* — S9=KV are of maximal rank.

Proof. (Adapted from [IK99].) By Exercise 6.2.4.2 it is sufficient to con-

d|_
sider the case k = L%J For each 0 <t < (V+LL§JJ 1), let
2

Gor(t) :={P € SV | rankPL%H%W =t}.
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(“Gor” is after Gorenstein, see [IK99].) Note that SV = LI;Gor(t). Since
this is a finite union there must be exactly one ¢y such that Gor(tg) = SV

a|_
We want to show that tg = (V+LL§JJ !
2
spaces as NpGor(ty) = 0 for P € Gor(ty). Now, for any t, the subspace
N3Gor(t) C SV satisfies

). I will do this by computing conormal

N:Gor(t) C N3
P (t) Pl

E3
[ N
4 Plgy,

[dwUt(Seg(PSL%JVX]P’S[g]V)) c sEvesly,
2

and NpGor(t) is simply the image of N~ oy under the multiplication
L3

1141
map SLgJV®S[%WV — 89V*. On the other hand, by Exercise 6.2.3.1,

In order for NjGor(t) to be zero, we need N}, ot to be zero (otherwise

141,141
there will be something nonzero in the image of the symmetrization map:
if d is odd, the two degrees are different and this is clear. If d is even, the
conormal space is the tensor product of a vector space with itself), which
. . . . V—H_%J—l
implies kerP(%HgJ =0, and thus ¢ty = ( 4] ) ([

Note that the maximum symmetric border rank (in all but a few known

exceptions) is [%(”gfl)], whereas flattenings only give equations up to
d|_
symmetric border rank (VH2J 1)

Bl
6.3. Singular loci and Jacobian varieties

As mentioned above, the geometry of the hypersurfaces Zeros(det,) and
Zeros(perm,,,) will aid us in comparing the complexity of the determinant
and permanent. A simple invariant that will be useful is the dimension
of the singular set of a hypersurface. The definition presented in §3.1.3 of
the singular locus results in a singular locus whose dimension is not upper
semi-continuous under degeneration. 1 first give a new definition that is
semi-continuous under degeneration.

6.3.1. Definition of the (scheme theoretic) singular locus.

Definition 6.3.1.1. Say a variety X = {P; = 0,...,P; = 0} C PV has
codimension ¢, using the definition of codimension in §3.1.5. Then x € X is
a singular point if dPy 4, ...,dP,, fail to span a space of dimension c. Let
Xsing C X denote the singular points of X. In particular, if X = Zeros(P)
is a hypersuface and € X, then x € X4 if and only if dP, = 0. Note
that X4 is also the zero set of a collection of polynomials.
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Warning: This definition is a property of the ideal generated by the
polynomials Py, ..., Ps, not of X as a set. For example every point of (w% +
---+22)? = 0 is a singular point. In the language of algebraic geometry, one
refers to the singular point of the scheme associated to the ideal generated
by {P, =0,...,P; =0}.

“Most” hypersurfaces X C PV are smooth, in the sense that {P €
PSIV | Zeros(P)sing # 0} C PSYV is a hypersurface, see, e.g., [Lanl2,
§8.2.1]. The dimension of Zeros(P)sing is a measure of the pathology of P.

Singular loci will also be used in the determination of symmetry groups.

6.3.2. Jacobian varieties. While the ranks of symmetric flattenings are
the same for the permanent and determinant, by looking more closely at the
maps, we can extract geometric information that distinguishes them.

First, for P € S™V, consider the images Py ,,_x(S*V*) C S"~*V. This
is a space of polynomials and we can consider the ideal they generate, called
the k-th Jacobian ideal of P, and the common zero set of these polynomials
is called the k-th Jacobian variety of P:

Zeros(P) acu = {la] € PV* | q(a) = 0 ¥g € Peu_n(S'V")}.

Exercise 6.3.2.1: (1) Show that Zeros(dety,) ack is op_r—1(Seg(P"! x
P"~1)), the matrices of rank at most n — k — 1.

It is not known what the varieties Zeros(perm,,)jqcr are in general. I
explicitly determine Zeros(perm,,)qem—2 in Lemma 6.3.3.4 below as it is
used to prove the symmetries of the permanent are what we expect them to
be.

6.3.3. Singularities of Zeros(perm,,). In contrast to the determinant, the
singular set of the permanent is not understood; even its codimension is not
known. The problem is more difficult because, unlike in the determinant
case, we do not have normal forms for points on Zeros(perm,,). In this
section I show that codim(Zeros(perm,,)sing) > 5.

Exercise 6.3.3.1: (1!) Show that the permanent admits a “Laplace type”
expansion similar to that of the determinant.

Exercise 6.3.3.2: (2) Show that Zeros(perm,,)sing consists of the m x m
matrices with the property that all size m — 1 sub-matrices of it have per-
manent zero.

Exercise 6.3.3.3: (1) Show that Zeros(perm,, )sing has codimension at most

2m in C™. ©

Since Zeros(permy)sing = 0, let’s start with permg. Since we will need
it later, I prove a more general result:
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Lemma 6.3.3.4. The variety Zeros(perm,,) jqc,m—2 is the union of the fol-
lowing varieties:

(1) Matrices A with all entries zero except those in a single size 2
submatrix, and that submatrix has zero permanent.

(2) Matrices A with all entries zero except those in the j-th row for
some j.

(3) Matrices A with all entries zero except those in the j-th column for
some j.

In other words, let X C Mat,,(C) denote the subvariety of matrices that
are zero except in the upper 2 x 2 corner and that 2 x 2 submatrix has zero
permanent, and let Y denote the variety of matrices that are zero except in
the first row, then

(6.3.1) Zeros(perm,, ) jac,m—2 = U c-XUo-Y.
0E(GmXCm)XZs

Here &,, x &,, acts by left and right multiplication by permutation
matrices and the Zo is generated by sending a matrix to its transpose.

The proof is straight-forward. Here is the main idea: Take a matrix with
entries that don’t fit that pattern, e.g., one that begins

a b e
* d x*

and note that it is not possible to fill in the two unknown entries and have
all size two sub-permanents, even in this corner, zero. There are just a few
such cases since we are free to act by (&, X &) X Zz C Gperm,, -

Corollary 6.3.3.5.
{perms = 0} 4ing = U c-XUg" Y.
O’E(GgXGg)MZQ
In particular, all the irreducible components of {perms = 0}gng have the
same dimension and codim({permg = 0}sjny, C®) = 6.
This equi-dimensionality property already fails for perm,: consider
izl 0 0
2 .2

r{ xz3 0 0 1,2 2.1 _ 3. 4 4.3 _

0 0 .’E% l’;l | T1Ty + 1Ty = 0, T3Ty + T3ly = 0

0 0 =3 =y
This defines a six dimensional irreducible component of {perm, = 0}4ing
which is not contained in either a space of matrices with just two nonzero

rows (or columns) or the set of matrices that are zero except for in some
3 x 3 submatrix which has zero permanent. In [vzG87] von zur Gathen
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states that all components of {perm, = 0}4;nq are either of dimension six or
eight.

Although we do not know the codimension of Zeros(perm,,, )sing, the fol-
lowing estimate will suffice for the application of von zur Gathen’s regularity
theorem 6.3.4.1 below.

Proposition 6.3.3.6 (von zur Gathen [vzG87]).

codim(Zeros(perm,, ) sing, IP’mQ_l) > 5.

Proof. I work by induction on m. Since Zeros(perms,) is a smooth quadric,
the base case is established. Let I, J be multi-indices of the same size and
let sp(I]J) denote the sub-permanent of the (m — |I|,m — |I|) submatrix
omitting the index sets (I, .J). Let C C Zeros(perm,,)sing be an irreducible
component of the singular set. If sp(i1,iz2|j1,72)|c = 0 for all (i1,1i2|j1,72),
we are done by induction as then C' C |J; ; Zeros(sp(i|j))sing. So assume
there is at least one size m — 2 subpermanent that is not identically zero on
C, without loss of generality assume it is sp(m — 1, m|m — 1, m). We have,
via permanental Laplace expansions,

0 = sp(m, m)|c
m—2 )
= ), _15p(i,m|m —1,m) +x$jé’p(m— 1,mlm—1,m)
j=1

so on a Zariski open subset of C, x%j is a function of the m? — 4 vari-

ables xf, (s,t) € {(m —1,m — 1), (m — 1,m), (m,m — 1), (m,m)}, Similar
expansions give us z/" 1, v, and z] as functions of the other variables,
so we conclude dim C' < m? — 4. We need to find one more nonzero poly-
nomial that vanishes identically on C' that does not involve the variables
g™l ™ am L 2™ to obtain another relation and to conclude dim C' <
m? — 5. Consider

sp(m — 1,m|m — 1,m)sp(m — 2,m) — sp(m — 2, m|m — 1,m)sp(m — 1,m)
—sp(m —2,m — 1lm — 1,m)sp(m, m)

= 22" 2sp(m — 2,m — 1|m — 1,m)sp(m — 2, m|m — 1,m)

. . _9
+ terms not involving ;" "7,

where we obtained the second line by permanental Laplace expansions in the
size m—1 subpermanents in the expression, and arranged things such that all
terms with x%j, o™ am~l g™ appearing cancel. Since this expression is
a sum of terms divisible by size m — 1 subpermanents, it vanishes identically
on C. But 22™ 2sp(m —2,m — 1|m — 1,m)sp(m — 2, m|m — 1,m) is not the
zero polynomial, so the whole expression is not the zero polynomial. Thus

we obtain another nonzero polynomial that vanishes identically on C' and is



164 6. Valiant’s hypothesis I: Permanent v. Determinant

not in the ideal generated by the previous four as it does not involve any of

m—1 _m m—1 ,.m
L1 Tm—1Tm T O

It is embarrassing that the following question is still open:

Question 6.3.3.7. What is codim(Zeros(perm,,,)sing)?

6.3.4. von zur Gathen’s regularity theorem and its consequences
for lower bounds.

Proposition 6.3.4.1 (von zur Gathen [vzG8T7], also see [ABV15]). Let
M > 4, and let P € S™CM be concise and satisfy codim({P = 0} sjng, CM) >
5. If P = det, oA, where A=A+ A:CM — C" is an affine linear map
with A constant and A linear, then rank(A) =n — 1.

Proof. 1 first claim that if A(y) € Zeros(dety)sing then y € Zeros(P)sing-
To see this, note that for any y € CM, the differential of P at y satisfies (by
the chain rule)

dPl, = d(det, 0A)|, = A" (d(dety)| 5,),

where I have used that d(detn)u(y) € Tz(y)@"ﬂ ~ C"* and AT : C"** —

CM” is the transpose of the differential of A. In particular, if d(det,,) |A(y) =0
then dP, = 0, which is what we needed to show.

Now by Theorem 3.1.5.1, the set
A(CM) N Zeros(det,,)sing C c

is either empty or of dimension at least dim(A(CM))4-dim(Zeros(dety,)sing) —
n? = M+ (n?> —4) —n? = M — 4. (Here A must be injective as P is concise.)
The same is true for A=1(A(CM) N Zeros(dety,)sing). But this latter set
is contained in Zeros(P)sing, which is of dimension at most M — 5, so we
conclude it is empty.

Thus for all y € CM | rank(A(y)) > n — 1. In particular rank(A(0)) >
n —1, but A(0) = A. Finally equality holds because if A had rank n, then
det(A(CM)) would have a constant term. O

Exercise 6.3.4.2: (1) Prove that any polynomial P € S¢CM with singular
locus of codimension greater than four must have dc(P) > d.

Proposition 6.3.4.3. [Cai90] Let F' C Mat,(C) be an affine linear sub-

space such that for all X € F, rank(F) > n — 1. Then dim F < (";1) + 1.

For the proof, see [Cai90]. Note that Proposition 6.3.4.3 is near optimal
as consider F the set of upper triangular matrices with 1’s on the diagonal,
which has dimension (3).

Exercise 6.3.4.4: (2) Use Proposition 6.3.4.3 to show dc(perm,,) > v/2m.
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Exercise 6.3.4.5: (2) Let Q C P""! be a smooth quadric hypersurface of
dimension n. Show that the maximum dimension of a linear projective space
contained in Q is [§]. ®

Theorem 6.3.4.6 (Alper-Bogart-Velasco [ABV15]). Let P € SICM with
d > 3 and such that codim(Zeros(P)sing, CM) > 5. Then

de(P) > codim(Zeros(P)sing, cM) +1.

Proof. Let n = dc(P). Say P = det, oA, with A= A 4+ A. By Proposition
6.3.4.1, rank(A) = n — 1, and using Gget,, we may assume A is normalized
to the matrix that is zero everywhere but the diagonal, where it has one’s
except in the (1, 1)-slot where it is zero. Expand det(A(y)) = po+p1+- - +Dn
as a sum of homogeneous polynomials. Since the right hand side equals P,
we must have p; = 0 for j < d. Then py = det(A) = 0 and p; = A}. Now
P2 =Y o A%Ai = 0 and more generally, each p; is a sum of monomials,
each of which contains an element in the first column and an element in

the first row of A. Each A; is a linear form on CM and as such, we can
consider the intersection of their kernels. Write T' = N7~ ! (ker A%) N (ker A}).
Then I' C Zeros(P)sing. Consider the A}, A{ as coordinates on C2("~1  p,
defines a smooth quadric hypersurface in P2"~1~1, By Exercise 6.3.4.5, the
maximum dimension of a linear space on such a quadric is n — 1, so the rank
of the linear map CM — C2(*=Y given by y — (Al (y),A{(y)) is at most
n — 1. But I' is the kernel of this map. We have

n —1> codim(T") > codim(Zeros(P)sing, CM)
and recalling that n = dc(P) we conclude. O

Exercise 6.3.4.7: (2) Prove that codim((perm,,)sing) = 2m when m = 3, 4.
Corollary 6.3.4.8. [ABV15] dc(perms) = 7 and dc(permy) > 9.
The upper bound for dc(perms) is from (1.2.3).

Even if one could prove codim((perm,,)sing) = 2m for all m, the above
theorem would only give a linear bound on dc(perm,,). This bound would
be obtained from taking one derivative. In the next section, I show that
taking two derivatives, one can get a quadratic bound.

6.4. Geometry and the state of the art regarding dc(perm,,)

In mathematics, one often makes transforms to reorganize information, such
as the Fourier transform. There are geometric transforms to “reorganize” the
information in an algebraic variety. Taking the Gauss image (dual variety)
of a hypersurface is one such, as I now describe.
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6.4.1. Gauss maps. A classical construction for the geometry of surfaces
in 3-space, is the Gauss map that maps a point of the surface to its unit
normal vector on the unit sphere as in Figure 3.

o

Figure 6.4.1. The shaded area of the surface maps to the shaded
area of the sphere.

This Gauss image can be defined for a surface in P? without the use of
a distance function if one instead takes the union of all conormal lines (see
§6.2.3) in P3*. Let SV C P3* denote this Gauss image, also called the dual
variety of S. One loses qualitative information in this setting, however one
still has the information of the dimension of SV.

This dimension will drop if through all points of the surface there is
a curve along which the tangent plane is constant. For example, if M is
a cylinder, i.e., the union of lines in three space perpendicular to a plane
curve, the Gauss image is a curve:

Figure 6.4.2. Lines on the cylinder are collapsed to a point.

The extreme case is when the surface is a plane, then its Gauss image is
just a point.
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6.4.2. What do surfaces with degenerate Gauss maps “look like”?
Here is a generalization of the cylinder above: Consider a curve C' C P3,
and a point p € P3. Define the cone over C with vertex p,

J(C,p):={z] €eP? |z =y +p for some y € C, P € p}.

Exercise 6.4.2.1: (1) Show that if p # v, T[ngﬂJ(C, p) = span{TyC,ﬁ}.

Thus the tangent space to the cone is constant along the rulings, and
the surface only has a curves worth of tangent (hyper)-planes, so its dual
variety is degenerate.

Exercise 6.4.2.2: (2) More generally, let X C PV be an irreducible variety
and let L C PV be a linear space. Define J(X, L), the cone over X with
vertex L analogously. Show that given x € X00th, With x € L, the tangent
space to J(X, L)V at [T + £] is constant for all £ € L.

Here is another type of surface with a degenerate Gauss map: Consider
again a curve C' C P, and this time let 7(C) C P3 denote the Zariski closure
of the union of all points on PT,C as z ranges over the smooth points of C.
The variety 7(C) is called the tangential variety to the curve C.
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Exercise 6.4.2.3: (2) Show that if y;,y2 € 7(C) are both on a tangent line
to x € C, then T, 7(C) = T}y,7(C), and thus 7(C)" is degenerate. ©

In 1910 C. Segre proved that the above two examples are the only sur-
faces with degenerate dual varieties:

Theorem 6.4.2.4. [Segl0, p. 105] Let S? C P3 be a surface with degener-
ate Gauss image. Then S is one of the following:

(1) A linearly embedded P?,

(2) A cone over a curve C,

(3) A tangential variety to a curve C.

(1) is a special case of both (2) and (3) and is the only intersection of the
two.

The proof is differential-geometric, see [IL16b, §4.3].

6.4.3. Dual varieties. If X C PV is an irreducible hypersurface, the
Zariski closure of its Gauss image will be a projective subvariety of PV*.
Gauss images of hypersurfaces are special cases of dual varieties. For an
irreducible variety X C PV, define XV C PV*, the dual variety of X, by

XV :{H € PV* ‘ 3z € Xsmooths TwX - I:I}
:{H e Pv* ‘ Jx € Xsmooth, H € ]P)N;X}

Here H refers both to a point in PV* and the hyperplane in PV it
determines.

That the dual variety is indeed a variety may be seen by considering the
following incidence correspondence:

T :={(z,H) € Xgmooth X PV* | PT, X C H} C PV x PV*
and note that its image under the projections to PV and PV* are respectively
X and XV. When X is smooth, Z = PN*X, the projectivized conormal
bundle. Both projections are surjective regular maps, so by Theorem 3.1.4.1,
XV is an irreducible variety.

Exercise 6.4.3.1: (2) Show

T ={(z,H) € PV X (XV)gmooth | PTg X"V C z} C PV x PV*

and thus (XV)Y = X. (This is called the reflezivity theorem and dates back
to C. Segre.) ®

For our purposes, the most important property of dual varieties is that
for a smooth hypersurface other than a hyperplane, its dual variety is also a
hypersurface. This will be a consequence of the B. Segre dimension formula
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6.4.5.1 below. If the dual of X C PV is not a hypersurface, one says that X
has a degenerate dual variety. It is a classical problem to study the varieties
with degenerate dual varieties.

Exercise 6.4.2.2 shows that higher dimensional cones have degenerate
dual varieties. Griffiths and Harris [GHT9] vaguely conjectured a higher
dimensional generalization of C. Segre’s theorem, namely that a variety with
a degenerate dual is “built out of” cones and tangent developables. For
example, Zeros(det,) may be thought of as the union of tangent lines to
tangent lines to ... to the Segre variety Seg(P"~! x P"~!), and we will see
that it indeed has a degenerate dual variety.

Segre’s theorem indicates that if we take the Zariski closure in PS?V* of
the set of irreducible hypersurfaces of degree d with degenerate dual varieties,
we will obtain a reducible variety. This will complicate the use of dual
varieties for Valiant’s hypothesis.

For more on dual varieties see [Lan12, §8.2].

6.4.4. Zeros(dety,)sing. As far as singularities are concerned, the determi-
nant is quite pathological: Thanks to Get,, , the determination of Zeros(dety, ) sing
is easy to describe. Any point of Zeros(det,,) is in the Gget,,-orbit of some

(6.4.1) oy = <I‘3T 8)

where 1 < r <n—1 and the blocking is (r,n —r) x (r,n — 7). The nature of
the singularity of x € Zeros(det,,) is the same as that of the corresponding
p""'

Recall that o, = 0,(Seg(P"~! x P*~1)) C P(C"®C") is the set of ma-
trices (up to scale) of rank at most 7.

The smooth points of Zeros(det,,) = 0,1 are those in the Gget,,-orbit
of pn,—1, as shown by the following exercises:

Exercise 6.4.4.1: (1) Show that d(det,),, , = dz

.
Exercise 6.4.4.2: (1) Show that Zeros(dety,)sing = on—2.
Exercise 6.4.4.3: (1) Show that o, = Zeros(dety,) jaen—r-

Exercise 6.2.3.1 implies dim o, (Seg(P*~! x P"1)) = r(u +v —71) — 1.

6.4.5. What does this have to do with complexity theory? Hav-
ing a degenerate dual variety is a pathology, and our dimension calcula-
tion below will show that if Q@ € S™CM is an irreducible polynomial such
that @ is an affine linear degeneration of an irreducible polynomial P, then
dim(Zeros(Q)") < dim(Zeros(P)V).
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To determine the dual variety of Zeros(det,,) C P(E®F'), recall that any
smooth point of Zeros(dety,) is Gget,-equivalent to

1
I . € Zeros(dety,).
0
and that

0O 0 0 0

N*  Zeros(det,) = I

Pt (detn) 0 0 00

0 0 0 =«

Since any smooth point of Zeros(det,,) can be moved to p,_1 by a change of
basis, we conclude that the tangent hyperplanes to Zeros(det,, ) are parametrized
by the rank one matrices Seg(PE*®PF*), which has dimension 2n — 2, be-
cause they are obtained by multiplying a column vector by a row vector.
Proposition 6.4.5.1 (B. Segre). Let P € SV* be irreducible and let [z] €
Zeros(P) be a general point. Then

(6.4.2) dim Zeros(P)" = rank(Py_g2(x%7?)) — 2.

Here (Pj_22(x%72)) € S?2V*, and we are computing the rank of this
symmetric matrix. In coordinates, P; 292 may be written as a symmetric
matrix whose entries are polynomials of degree d — 2 in the coordinates of
x, and is called the Hesssian.

Proof. Let z € Zeros(P) C V be a general point, so P(z) = P(z,...,z) =0
and dP, = P(z,...,z,") # 0 and take h = dP, € V*, so [h] € Zeros(P)".
Now consider a curve hy C Zeros(P)Y with hg = h. There must be a
corresponding (possibly stationary) curve z; € Ze}os(P) such that h; =
P(x,...,24,-) and thus by = (d — 1)P(292,z},-). Thus the dimension of
Ti,Zeros(P)V is the rank of Py_go(2%2) minus one (we subtract one because
we are only allowed to feed in vectors x;, that are tangent to Zeros(P)). Now
just recall that dim Z = dim 1.7 — 1. We needed z to be general to insure
that [h] is a smooth point of Zeros(P)V. O

Exercise 6.4.5.2: (1) Show that if Q € S™CM and there exists A : CM —
CN such that Q(y) = P(A(y)) for all y € CM*, then rank(Qy—22(y)) <
rank(Pr,—2.m (A(y))).

Exercise 6.4.5.3: (1) Show that every P € Suby(S?V) has dim Zeros(P)" <
k—2.

Exercise 6.4.5.4: (2) Show that o3(Chy,(C™)) ¢ Dety.
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Exercise 6.4.5.5: (2) Show that 02n+1(vn(]?"2*1)) ¢ Dety,.

Exercise 6.4.5.6: (2) Show that {z1 - @, +y1 - yn = 0} C P! is self
dual, in the sense that it is isomorphic to its own dual variety.

To show a hypersurface has a nondegenerate dual variety, it suffices to
find a point where the Hessian of its defining equation has maximal rank.

6.4.6. Permanent case. Consider the point

1-m 1 --- 1

1 1 --- 1
Yo = .

1 1 .- 1

Exercise 6.4.6.1: (1!) Show perm(yp) = 0. ®

Now compute (perm,,)m—22(yo): First note that

o 0 0 ifi=korj=I
@Tylk perm (y) = permmﬁ(y;]lf) otherwise

where y”lC is the size (m — 2) x (m — 2) matrix obtained by removing rows
i, k and columns 7, (.

Exercise 6.4.6.2: (2) Show that if we order indices y1, ...,y ya, ..., ¥, ..., Yy,
then the Hessian matrix of the permanent at yq takes the form

Q 0 R --- R
(6.4.3) Q R 0 . |,
o . U R
Q R --- R 0
where
0 m—-2 m-—2 -+ m-—2
0 1 1 m—-2 0 -2 . =2
1 0 .o
Q=(m-2) " ,R=|m-2 -2 0
R 1 . .
: : . - -2
L 0 m—2 =2 e =20

Lemma 6.4.6.3. Let ), R be invertible m x m matrices and let M be an
m? x m? matrix of the form (6.4.3). Then M is invertible.

Proof. Without loss of generality, we may assume @Q = Id,,, by multipling
on the left and right by the block diagonal matrix whose block diagonals
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are Q7 1, 1dy, ..., Id,,. Let v = (v1,...,v,)T, where v; € C™, be a vector
in the kernel. Then we have the equations

vo+ -+ vy =0,
v1 + Rvs+ -+ Rv,, =0,

v1+ Rvg+ -+ Rup—1 =0,
ie.,

UQ+"'+UTI‘L:07
Ul—R'UQZO,

v1 — Rv,, = 0.

Multiply the first line by R to conclude (m — 1)v; = 0 and hence v; = 0,
and the remaining equations imply the other v; = 0. U

Thus the permanent hypersurface Zeros(perm,,) C P™*~! has a non-
degenerate Gauss map. When one includes c™ c (C”Q, so the equation
Zeros(perm,,) becomes an equation in a space of n? variables that only uses
m? of the variables, one gets a cone with vertex pr?—m?-1 corresponding
to the unused variables, in particular, the Gauss image will have dimension
m? — 2.

If one makes an affine linear substitution X = X (Y’), by the chain rule,
the Gauss map of {det(X(Y)) = 0} will be at least as degenerate as the
Gauss map of {det(X) = 0} by Exercise 6.4.5.2. Using this, one obtains:

Theorem 6.4.6.4 (Mignon-Ressayre [MRO04)). If n(m) < mTQ, then there
do not exist affine linear functions a:;(yf), 1<i,j<n,1<s,t<msuch
that perm,,(Y) = det, (X (Y)). Le., de(perm,,) > 7.

Remark 6.4.6.5. We saw a linear lower bound by taking one derivative
and a quadratic lower bound by taking two. Unfortunately it does not
appear to be possible to improve the Mignon-Ressayre bound by taking
three derivatives.

6.5. Extension of the Mignon-Ressayre result to dc

To extend the Mignon-Ressayre theorem to dc we will need to find poly-
nomials on PS™V that vanish on the hypersurfaces with degenerate dual
varieties. This was a classically studied question whose answer was known
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only in a very few number of small cases. In this section I present an answer
to the classical question and its application to Conjecture 1.2.5.2.

6.5.1. First steps towards equations. Let P € SV* be irreducible.
Segre’s formula (6.4.2) may be restated as: dim Zeros(P)Y < k if and only
if, for all w € V,

(6.5.1) P(w) =0 = dety3(Pyoz(w ?)|r) =0VFcG(k+3,V).

Here G(k + 3,V) is the Grassmannian of (k 4 3)-planes through the origin
in V (see Definition 2.3.3.1). Equivalently, for any F' € G(k + 3,V), the
polynomial P must divide dety3(Ps_22|r) € SEFII2V* where dety3
is evaluated on the S2V* factor in S2V*®S542V*,

Thus to find polynomials on S?V* characterizing hypersurfaces with
degenerate duals, we need polynomials that detect if a polynomial P divides
a polynomial Q. Now, P € SV* divides Q € S¢V* if and only if Q €
P .S+ e,

tDPAAZPPAQ =0

where 277, is a basis of $¢~¢V (and D = (V+::§ll_1)). Let Dy qn C PSICN
denote the zero set of these equations when @ = detyy3(Py—22|F) as F
ranges over G(k +3,V).

Define Dualy gy C P(S9V*) as the Zariski closure of the set of irre-
ducible hypersurfaces of degree d in PV ~ PN~1 whose dual variety has
dimension at most k. Our discussion above implies Dualy g n C Dy q,N-

Note that

(652) [detn} c Dualzn,27n’n2 Q D2n72’n7n2.

6.5.2. The lower bound on dc(perm,,). The calculation of §6.4.6 shows
that permm_272(y6”_2) is of maximal rank. Here we don’t have perm,,, but
rather "~ perm,,.

Proposition 6.5.2.1. Let U = CM | let R € S™U* be irreducible, let ¢ be a
coordinate on L ~ C! be nonzero, let U* @& L* C CN* be a linear inclusion.

If [R] € Dymm and [R] € Du—1mum, then [("™R] € D,4n and
[t4"™R] € Dy 14N

Proof. Let wuq,...,unr, v, War4o,-..,wy be a basis of CN adapted to the
inclusions CM¥ < CM+! c CV, so (Ut = (w2, ..., wn) and (L*)+ =
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(Ui, ..., upr, War42, - .-, wN). Let ¢ = (d —m)(d —m —1). In these coordi-
nates, the matrix of ((3"™R)4_92 in (M,1,N—M —1) x (M,1,N — M —1)-
block form:

(MR 9o IR, 140
(gd—mR)d_Q’Q = fd_m_lRmel dd_m_2R 0
0 0 0

First note that detp1((¢3"™R)4_22|p) for any F € G(M + 1,CV) is
either zero or a multiple of ¢2=R. If dim Zeros(R)Y = M — 2 (the expected
dimension), then for a general F' € G(M+1,CN), detps ((¥"™R) 4_o.2|r) will
not be a multiple of (¢2~™R),_2 .2, and more generally if dim Zeros(R)" = ,
then for a general F' € G(k +2,CV), detyi2(((¥"™R)4_22|F) will not be a
multiple of ¢4"™R but for any F € G(r + 3,CY), det,3((("™R)4_22|r)
will be a multiple of £4~™R. This shows [R] € Dy_1,m ., implies [(*"™R] ¢
D—1,4N-

Exercise 6.5.2.2: (1) Show that [R] € Dy, implies [(4"™R] € Dy g -
©

O

The inclusion (6.5.2) and Proposition 6.5.2.1 imply:
Theorem 6.5.2.3. [LMR13] Permy' ¢ Ds,_3,,,2 when m < %2 In par-
ticular, dc(perm,,,) > mTQ

On the other hand, by Exercise 6.4.5.3 cones have degenerate duals, so
"M perm,, € Dyy,_9 , 2 Whenever m > "72
The next step from this perspective would be:

enfm

Problem 6.5.2.4. Find equations that distinguish cones (e.g. Zeros( perm,,) C
P"~1) from tangent developables (e.g., Zeros(det,) C P"°~1). More pre-

cisely, find equations that are zero on tangent developables but nonzero on

cones.

6.5.3. A better module of equations. The equations above are of enor-
mous degree. I now derive equations of much lower degree. Since P € SCV
divides @ € S°C¥ if and only if for each L € G(2,C"), P|r divides Q|r,
it will be sufficient to solve this problem for polynomials on C2. This will
have the advantage of producing polynomials of much lower degree.

Let d < e, let P € SC? and Q € S¢C2. If P divides @ then S¢~¢C2. P
will contain (). That is,

TP AT Y P A AP AQ = 0.
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Since dim S¢C? = e + 1, these potentially give a (efﬁﬂ) -dimensional vector

space of equations, of degree e — d + 1 in the coefficients of P and linear in
the coefficients of Q).

By taking our polynomials to be P = P|;, and @ = detyy3(Pn—22|r)|L
for F € G(k+3,V)and L € G(2, F) (or, for those familiar with flag varieties,
better to say (L, F) € Flags p1+3(V)) we now have equations parametrized
by the pairs (L, F'). Note that deg(Q) = e = (k+ 3)(d —2). These were the
polynomials that were used in [LMR13].

Remark 6.5.3.1. More generally, given P € S%C2?, Q € S°C?, one can
ask if P, have at least r roots in common (counting multiplicity). Then
P, Q having r points in common says the spaces S¢"C2?- P and S "C?-Q
intersect. That is,

TTPATTT P A AYyETTPAZTTTQ AT QA AyTTTQ = 0.

In the case r = 1, we get a single polynomial, called the resultant, which
is of central importance. In particular, the proof of Noether normalization
from §3.1.4, that the projection of a projective variety X C PW from a
point y € PW with y ¢ X, to P(W/g) is still a projective variety, relies on
the resultant to produce equations for the projection.

6.6. Symmetries of the determinant and permanent

The permanent and determinant both have the property that they are char-
acterized by their symmetry groups in the sense described in §1.2.5. I expect
these symmetry groups to play a central role in the study of Valiant’s hy-
pothesis in future work. For example, the only known exponential separation
of the permanent from the determinant in any restricted model (as defined
in Chapter 7), is the model of equivariant determinantal complezity, which
is defined in terms of symmetry groups, see §7.4.1.

6.6.1. Symmetries of the determinant.

Theorem 6.6.1.1 (Frobenius [Fro97]). Write p : GL,» — GL(S"C™) for
the induced action. Let ¢ € GL,2 be such that p(¢)(det,) = det,. Then,
identifying C™ with the space of n X n matrices,

[ gzh, or
d)(Z) - {ngh
for some g, h € GL,, with det,(g) det,(h) = 1. Here 2T denotes the trans-

pose of z.

I present the proof from [Die49] below.

Write C" = EQF = Hom(E*, F) with E, F = C". Let Z, denote the
cyclic group of order n and consider the inclusion Z,, X Z,, C GL(E)x GL(F)
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given by the n-th roots of unity times the identity matrix. Let u, denote
the kernel of the product map (Z,)*? — Z,.

Corollary 6.6.1.2. Gyet, = (SL(E) x SL(F))/ptn X Z2

To prove the Corollary, just note that the C* corresponding to det(g)
above and p,, are the kernel of the map C* x SL(E) x SL(F') — GL(EQF).

Exercise 6.6.1.3: (2) Prove the n = 2 case of Theorem 6.6.1.1. ®

Lemma 6.6.1.4. Let U C E®F be a linear subspace such that U C
Zeros(det,,). Then dimU < n? — n. The subvariety of the Grassmannian
G(n? —n, EQF) consisting of maximal linear spaces on Zeros(det,,) has two
irreducible components, call them ¥, and Y., where

(6.6.1)

Yo ={X € G(n® —n, EQF) | ker(X) = L for some L € PE*} ~ PE* and
(6.6.2)

Y5 = {X € G(n* — n, EQF) | Image(X) = H for some H € PF*} ~ PF*.
Here for f € X, f : E* — F is considered as a linear map, ker(X) means
the intersections of the kernels of all f € X and Image(X) is the span of all
the images.

Moreover, for any two distinct X; € X, j = 1,2, and Y; € Xg we have
(6.6.3) dim(X; N X5) = dim(Y; NYs) = n? — 2n, and
(6.6.4) dim(X; NY;) =n? — 2n + 1.
Exercise 6.6.1.5: (2) Prove Lemma 6.6.1.4. ©®

One can say more: each element of X, corresponds to a left ideal and
each element of Y3 corresponds to a right ideal in the space of n xn matrices.

Proof of theorem 6.6.1.1. Let ¥ = ¥, U X3. Then the automorphism
of G(n? — n,EQF) induced by ¢ must preserve Y. By the conditions
(6.6.3),(6.6.4) of Lemma 6.6.1.4, in order to preserve dimensions of inter-
sections, either every U € Y, must map to a point of ¥, in which case
every V € Y3 must map to a point of X3, or, every U € X, must map to a
point of ¥, and every V € Yz must map to a point of ¥,. If we are in the
second case, replace ¢ by ¢ o T, where T(z) = 27
preserves both ¥, and Yg.

, SO We may now assume ¢

Observe that ¢ induces an algebraic map ¢p : PE* — PE*.

Exercise 6.6.1.6: (2) Show that Ly, Lo, L3 € PE lie on a P! if and only if
then dim(Uy, N UL, NUL,) = n? — 2n, where Uy, = {X | ker(X) = L}.

In order for ¢ to preserve dim(Ur, N Ur, N Ug,), the images of the L;
under ¢z must also lie on a P!, and thus ¢p must take lines to lines (and
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similarly hyperplanes to hyperplanes). But then, (see, e.g., [Har95, §18, p.
229]) ¢g € PGL(E), and similarly, ¢ € PGL(F), where ¢p : PF* — PF*
is the corresponding map. Here PGL(E) denotes GL(E)/C*, the image of
GL(E) in its action on projective space. Write ¢p € GL(E), ¢r € GL(F)
for any choices of lifts.

Consider the map ¢ € GL(E®F) given by qz(z) = d;E_l(z)(z)gZA)F_l. The
map qg sends each U € 3, to itself as well as each V' € Xg, in particular
it does the same for all intersections. Hence it preserves Seg(PE x PF) C
P(E®F') point-wise, so it is up to scale the identity map because EQF is
spanned by points of geg(IP’E x PF). O

6.6.2. Symmetries of the permanent. Write C" = E®F. Let re .=
TE?L X &, and similarly for F. As discussed in the introduction to this
chapter, (T2 x T'F) x Zy — Gperm, » where the nontrivial element of Zy acts
by sending a matrix to its transpose. We would like to show this map is
surjective and determine its kernel. However, it is not when n = 2.

Exercise 6.6.2.1: (1) What is Gperm,? ©
Theorem 6.6.2.2. [MM62] For n > 3, Gperm, = (TF x TE) /1y 1 Zs.

Proof. I follow [Yell]. Recall the description of Zeros(perm,,).jacn—2 from
Lemma 6.3.3.4. Any linear transformation preserving the permanent must
send a component of Zeros(perm,,) jqen—2 of type (1) to another of type (1).
It must send a component C7 either to some C* or some C;. But if i # j,
C/NC* =0 and for all 4,5, dim(C* N C;) = 1. Since intersections must be
mapped to intersections, either all components C* are sent to components
Cj, or all are permuted among themselves. By composing with an element
of Zy, we may assume all the C%’s are sent to C%’s and the C;’s are sent to
Cj’s. Similarly, by composing with an element of &,, x &,, we may assume
each C; and €Y is sent to itself. But then their intersections are sent to
themselves. So we have, for all i, j,

(6.6.5) (x}) = (Njah)

for some )\2 and there is no summation in the expression. Consider the
image of a size 2 submatrix, e.g.,

1,1 1,1 31,1
Ty T A[T] A
6.6.6 173 R
(060 oA N
In order that the map (6.6.5) is given by an element of Gperm, , when (x;) €
Zeros(perm,,) jaen—2, the permanent of the matrix on the right hand side
of (6.6.6) must be zero. Using that m%x% + x%x% = 0, the permanent of the
right hand side of (6.6.6) is AjA\3zix3 +A\3M\zda? = 2ia3(AIAZ—AIAL) which
implies A1A3 —AIA? = 0, thus all the 2 x 2 minors of the matrix (A}) are zero,
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so it has rank one and is the product of a column vector and a row vector,
but then it arises from x ~ txt’ with ¢,#' diagonal, and for the permanent
to be preserved, det(t) det(t') = 1. Without loss of generality, we may insist
both determininants equal one. O

6.6.3. Grenet’s decomposition: symmetry and the best upper bound
on dc(perm,,). Recall from Chapter 4 that the symmetries of the matrix
multiplication tensor appear in the optimal and conjecturally optimal rank
expressions for it. Will the same be true for determinantal expressions of
polynomials, in particular of the permanent?

The best known determinantal expression of perm,, is of size 2™ — 1
and is due to Grenet [Grell]. (Previously Valiant [Val79] had shown there
was an expression of size 4™.) We saw (Corollary 6.3.4.8) that when m = 3
this is the best expression. This motivated N. Ressayre and myself to try
to understand Grenet’s expression. We observed the following equivariance
property:

Let G C Gperm,, I will say a determinantal expression for perm,, is
G-equivariant if given g € G, there exist n X n matrices B,C such that
AGrenet,m(9+Y) = BAgGrenet,m(Y')C or BAGrenet,m(Y)TC. In other words,
there exists an injective group homomorphism ¢ : G — Gget, such that
AGrenet,m(Y) = ¢(g)(AGrenet,m(gY))-

Proposition 6.6.3.1. [LR15]| Grenet’s expressions Acirenet : Mat,,(C) —
Mat,(C) such that perm,,(Y) = det, (Agrenet(Y)) are TE -equivariant.

For example, let

t3
Then AGrenet,3(9(t)Y) = B(t)AGrenet,3(Y)C(t), where

t3
tit3
tits
B(t) = tits and C(t) = B(t)™'

1

Exercise 6.6.3.2: (2) Determine B(g) and C(g) when g € T'¥ is the per-
mutation (1,2).

Via this equivariance, one can give an invariant description of Grenet’s
expressions:
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The space S¥E is an irreducible GL(E)-module but it is is not in gen-
eral irreducible as a Fﬁ—module. Let e1,...,e,, be a basis of E, and let
(S*E)req C SKE  denote the span of [[;c e, for I C [m] of cardinal-
ity k (the space spanned by the square-free monomials, also known as the
space of reqular weights): (S¥E),., is an irreducible I'Z -submodule of S¥E.
Moreover, there exists a unique I'Z-equivariant projection mj, from S*FE to
(S*E) eq-

For v € E, define s;(v) : (S¥E);ey — (S¥H1E),¢ to be multiplica-
tion by v followed by 7i41. Alternatively, (Sk“'lE)reg is a I'Z_-submodule
of ER(S¥E)req, and s, : E — (SkE);'feg®(Sk+1E)reg is the unique T'Z-
equivariant inclusion.

Fix abasis fi,..., fm of F*. If y = (y1,...,ym) € EQF, let (sx2f;)(y) :=
sk(Y;5)-

Proposition 6.6.3.3. [LR15] The following is Grenet’s determinantal rep-
resentation of perm,,. Let C" = Zn:_OI(SkE)reg, son = 2™ —1, and identify
SOF ~ (S™E),¢y (both are trivial T2 -modules). Set

m—1
Ao =) Hdgep),,,
k=1
and define

m—1

(6.6.7) A= Ao + Z Sk®fk+1.
k=0

Then (—1)™*! perm,, = det,, oA. To obtain the permanent exactly, replace
Id(s1py,., by (—1)m+t Id(s1 5., in the formula for Ao.

Moreover the map A is I'E -equivariant.

I prove Proposition 6.6.3.3 in §8.11.1.

Remark 6.6.3.4. In bases respecting the block decomposition induced from
the direct sum, the linear part, other than the last term which lies in the
upper right block, lies just below the diagonal blocks, and all blocks other
than the upper right block and the diagonal and sub-diagonal blocks, are
zero. This expression is better viewed as an iterated matrix multiplication

as in §7.3.1: perm(y) = (Sm-1Qfm(¥))(Sm—2@fm-1(v)) - - (S0 f1(y)).

6.7. dc v. dc

Is conjecture 6.1.6.2 really stronger than Valiant’s hypothesis 6.1.6.17 That
is, do there exist sequences (FP,,) of polynomials with dc(P,,) bounded by a
polynomial in m but dc(P,,) growing super-polynomially?
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K. Mulmuley [Mul] conjectures that this is indeed the case, and that
the existence of such sequences “explains” why Valiant’s hypothesis is so
difficult.

Before addressing this conjecture, one should at least find a sequence
P,, with dc(P,,) > dc(Py,). I describe one such sequence in §6.7.2.

6.7.1. On the boundary of the orbit of the determinant. Let W =
C" = E*®FE with E = C", and let 0,2, (Seg(PW*xPW)) C P(W*®@W) be
the endomorphisms of W of rank at most n? —1 An obvious subset of 9Det,,
is obtained by G,,2_; (Seg(PW* xPW))-det,,. Thisis GL(W) - det, [(g-gE),
the orbit closure of the determinant restricted to the traceless matrices. This
description shows it has codimension one in Det,, and is irreducible, so it is
a component of 9Det,,.

Other components can be found as follows: Let U C W be a subspace
such that det,, |y = 0 and let V' be a complement. Given a matrix M, write
M = My®My . Introduce a parameter ¢ and consider M — det, (My+tMy)
and expand out in a Taylor series. Say the first non-vanishing term is t*, then
M + det,(My, ..., My, My, ..., My) where there are k My’s, is a point
of Det,, and it is “usually” a point of dDet,. One can do more complicated
constructions by taking more complicated splittings. In all cases, the first
step is to find a subspace U C W on which the determinant is zero. It is
not hard to see that without loss of generality, one can restrict to U that
are unextendable, i.e., there does not exist any U’ D U with det,, |;» = 0.
For results on such subspaces, see, e.g., [IL99, Atk83, EH88, dSP16,
FLR85]. Unfortunately they are little understood in general. The first
interesting such example, when n is odd, is the space of skew-symmetric
matrices.

When n = 3, the unextendable subspaces have been classified by Atkin-
son [Atk83]: There are four such up to GL3 x G Ls-action, namely

S 0 S S 0 a pf
*ooxk k], 0 ’ * 0 0 ) -« 0 Y |a,ﬁ,’y€(C
000 0 0 0 -5 =y 0

Another way to study the boundary is to consider the rational map

(6.7.1) ¥ : P(End(C™)) --» Det,,
[X] — [det, o X]
One could hope to understand the components of the boundary by blowing

up the indeterminacy locus, which consists of X € End((C”Z) such that
det, |Image(X) =0.
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6.7.2. A component via the skew-symmetric matrices. The trans-
position 7 € Gyet, allows us to write C" = EQFE = S’E @ A%E, where
the decomposition is into the +1 eigenspaces for 7. For M € EQFE, write
M = Mg + My reflecting this decomposition.

Define a polynomial Py € §™(C"")* by

Pp\(M) = det,(My, ..., My, Mg).

Let Pf;(My) denote the Pfaffian (see, e.g., [Lan12, §2.7.4] for the defini-
tion of the Pfaffian and a discussion of its properties) of the skew-symmetric
matrix, obtained from M, by suppressing its ¢-th row and column. Write
MS = (Si_j)~
Exercise 6.7.2.1: (2) Show that

Py(M) = sij PEi(Mp) PE;(Ma).
1,3
In particular, Py = 0 if n is even but is not identically zero when n is odd.

Proposition 6.7.2.2. [LMR13] Py € Det,,. Moreover, GL(W) - Py is an
irreducible codimension one component gf the boundary of Det,,, not con-
tained in End(W) - [det,]. In particular de(Ppy) = n < dc(Py).

The proof of Proposition 6.7.2.2 is given in §8.5.1.
Exercise 6.7.2.3: (3) Show that

Zeros(Py)Y = P{v2 ® v Aw € S2C" @ A2C", v,w € C"} C Pt
As expected, Zeros(Py)" resembles Seg(P"~1 x Pr—1).

Remark 6.7.2.4. For those familiar with the notation, Zeros(Pp) can be
defined as the image of the projective bundle 7 : P(£) — P! where
£ = O(—1)@ Q is the sum of the tautological and quotient bundles on P"~!,
by a sub-linear system of Og(1) @ 7*O(1). This sub-linear system contracts
the divisor P(Q) C P(£) to the Grassmannian G(2,n) C PA2C™.

For large n I expect there are many components of the boundary, how-
ever, for n = 3, we have:

Theorem 6.7.2.5. [HL16] The boundary 0Det3 has exactly two irreducible
components: G'Lg - Py and G Lg - dets |(pg k), -

The proof has two parts: first they resolve (6.7.1), which can be done
with one blow-up (so in terms of a limit above, only % need show up). They
then analyze each component of Atkinson’s classification and identify the
component of the boundary it lies in.
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6.7.3. Mulmuley’s conjectures on the wildness of the boundary.
There is scant evidence for or against the conjecture of [Mul] mentioned
above. In §6.8.1 I outline the proof that all P € S3C? with smooth zero set
have dc(P) = 3 and thus for all Q € S3C3, dc(Q) = 3. In this one case,
there is a big jump between dc and dc, giving some positive news for the
conjecture:

Theorem 6.7.3.1. [ABV15] dc(23 + 2373 + x923) > 6, and thus when
n =3, dc(Py) > 6.

The second assertion follows because a:“;’ —I—x%a:g —|—acga:i is the determinant
of the degeneration of Py obtained by taking

0  xs @ xz1 0 0
MA = —XI3 0 1], Ms = 0 T4 0
—x3 —x1 O 0 0 =z

Exercise 6.7.3.2: (1) Using Theorem 6.3.4.6, prove the first assertion of
Theorem 6.7.3.1.

6.8. Determinantal hypersurfaces

This section uses more results from algebraic geometry that we have not
discussed. It is not used elsewhere and can be safely skipped.

6.8.1. All smooth cubic surfaces in P? are determinantal. Grass-
mann [Gra55] showed that all smooth cubic surfaces in P? lie in End(C?) -
dets, and thus all cubic surfaces in P? lie in Dets. I give an outline of the
proof from [BKs07, Ger89]. Every smooth cubic surface S C P? arises
in the following way. Consider P? and distinguish 6 points not on a conic
and with no three colinear. There is a four dimensional space of cubic
polynomials, say spanned by Fi,...,Fy € S3C3, that vanish on the six
points. Consider the rational map P? --» P3 defined by these polynomials,
ie. [yl = [F1(y),-..,Fi(y)], where the map is defined on P? minus the six
points and let S denote the closure of the image. (Better, one blows up
P2 at the six points to obtain a surface S and S is the image of the cor-
responding regular map from S .) Give C3 coordinates x1,z2,23. By the
Hilbert-Burch Theorem (see, e.g., [Eis05, Thm. 3.2]), there exists a 3 x 4
matrix L(z1,x2, x3), linear in x1, x9, 3, whose size three minors are the F}.
Define a 3 x 3 matrix M = M (z1,...,24) by

21
I 5
2
M|z | =L
<3
3
24

Then det(M) is the equation of S.
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Remark 6.8.1.1. The set of non-equivalent representations of a cubic as
a determinant is in one-to-one correspondence with the subsets of 6 (of the
27) lines of S that do not intersect each other, see [BKs07]. In particular
there are 72 such representations.

6.8.2. Description of the quartic hypersurfaces in P? that are de-
terminantal. Classically, there was interest in determining which smooth
hypersurfaces of degree d were expressible as a d X d determinant. The result
in the first nontrivial case shows how daunting GCT might be.

Theorem 6.8.2.1 (Letao Zhang and Zhiyuan Li, personal communication).
The variety P{P € S*C* | [P] € Dety} C PS*C* is a hypersurface of degree
640, 224.

The rest of this subsection uses more advanced language from algebraic
geometry and can be safely skipped.

The following “folklore” theorem was made explicit in [Bea00, Cor.
1.12]:
Theorem 6.8.2.2. Let U = C"*!, let P € SU, and let Z = Zeros(P) C P"
be the corresponding hypersurface of degree d. Assume Z is smooth and
choose any inclusion U C c®.

IfP e End((Cdz) - [detq], we may form a map between vector bundles
M : Opn(—1)% — Of, whose cokernel is a line bundle L — Z with the
properties:

i) H(Z,L(j)) =0for1<i<n—2andallj €Z

i) HY(X,L(-1)) = H" (X, L(j)) = 0

Conversely, if there exists L — Z satisfying properties i) and ii), then Z
is determinantal via a map M as above whose cokernel is L.

If we are concerned with the hypersurface being in Det,,, the first case
where this is not automatic is for quartic surfaces, where it is a codimension
one condition:

Proposition 6.8.2.3. [Bea00, Cor. 6.6] A smooth quartic surface is de-
terminantal if and only if it contains a nonhyperelliptic curve of genus 3
embedded in P? by a linear system of degree 6.

Proof of 6.8.2.1. From Proposition 6.8.2.3, the hypersurface is the locus
of quartic surfaces containing a (Brill-Noether general) genus 3 curve C' of
degree six. This translates into the existence of a lattice polarization

h C
h 4 6
c 6 4
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of discriminant —(42 — 62) = 20. By the Torelli theorems, the K3 surfaces
with such a lattice polarization have codimension one in the moduli space
of quartic K3 surfaces.

Let D36 denote the locus of quartic surfaces containing a genus 3 curve
C of degree six in P3* = P(S*C*). It corresponds to the Noether-Lefschetz
divisor N Lgg in the moduli space of the degree four K3 surfaces. Here
N L, denotes the Noether-Lefschetz divisor, parameterizing the degree 4 K3
surfaces whose Picard lattice has a rank 2 sub-lattice containing h with
discriminant —d. (h is the polarization of the degree four K3 surface, h? =
4.)

The Noether-Lefschetz number ngyg, which is defined by the intersection
number of N Lgg and a line in the moduli space of degree four K3 surfaces,
equals the degree of D3¢ in P34 = P(S*C4).

The key fact is that ng can be computed via the modularity of the
generating series for any integer d. More precisely, the generating series
F(q) ==Y naq?? is a modular form of level 8, and can be expressed by a
polynomial of A(q) =", ¢"°/8 and B(q) = En(—l)”q"Q/S.

The explicit expression of F'(q) is in [MP, Thm 2]. As an application,
the Noether-Lefschetz number nyg is the coefficient of the term q20/ 8 = q5/ 2
which is 640, 224. 0



Chapter 7

Valiant’s hypothesis 11:
Restricted models and
other approaches

This chapter continues the discussion of Valiant’s hypothesis and its vari-
ants. Chapter 6 described progress via benchmarks such as lower bounds
for dc(perm,, ). Another approach to these problems is to prove complexity
lower bounds under supplementary hypotheses, called restricted models in
the computer science literature. I begin, in §7.1, with a discussion of the
geometry of one of the simplest classes of shallow circuits, the X AY-circuits
whose complexity essentially measures symmetric tensor rank, and discuss
the symmetric tensor rank of the elementary symmetric polynomials. Next,
in §7.2, I discuss XII¥ circuits and their relationship to secant varieties of
the Chow variety. There are several complexity measures that are equiva-
lent to determinantal complexity, such as algebraic branching programs and
iterated matriz multiplication complerity. These are discussed in §7.3. Addi-
tional restricted models are presented in §7.4: Aravind and Joegelkar’s rank
k determinantal expressions of [AJ15], Shpilka’s restricted model [Shp02]
of depth-2 symmetric arithmetic circuits, a result of Glynn [Gly13] on a cer-
tain class of expressions for the permanent, Nisan’s non-commutative ABP’s
[Nis91], and the equivariant determinantal complexity of [LR15]. Equivari-
ant determinantal complexity is the only known restricted model that gives
an exponential separation between the permanent and determinant.

I devote §7.5 to the restricted models of shallow circuits because there
is a path to proving Valiant’s hypothesis by proving lower bounds that are
stronger than super-polynomial for them. The depth of a circuit C is the

185
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number of edges in the longest path in C from an input to its output. If a
circuit has small depth, it is called a shallow circuit, and the polynomial
it computes can be computed quickly in parallel. The section begins in
§7.5.1 with a detour for readers not familiar with big numbers as different
levels of super-polynomial growth need to be compared both for statements
and proofs. Having already discussed the geometry associated to depth 3
circuits in §7.2, I explain the geometry associated to the depth 4 and 5
circuits that arise in [GKKS13a] in §7.5.3. I discuss the tantalizing lower
bounds of [GKKS13a] in §7.6, and analyze the method of proof, shifted
partial derivatives, in detail. 1 then show that this method cannot separate
the padded permanent from the determinant.

I conclude with a brief discussion of polynomial identity testing (PIT),
hitting sets, and effective Noether normalization in §7.7. I believe these
topics are potentially of great interest to algebraic geometry.

As pointed out by Shpilka and Yehudayoff in [SY09], restricted circuits
of polynomial size only compute polynomials with “simple” structure. Thus
to understand them one needs to determine the precise meaning of “simple”
for a given restricted class, and then find an “explicit” polynomial without
such structure. One could rephrase this geometrically as restricted circuits
of a fixed size s define an algebraic variety in S"CY that is the closure of
the set of polynomials computable with a restricted circuit of size s. The
goal becomes to find an equation of that variety and an explicit polynomial
not satisfying that equation.

Recall that computer scientists always work in bases and the inputs to
the circuits are constants and variables. For homogeneous circuits, the in-
puts are simply the variables. The first layer of a ¥ AY, XIIX, or XAYXAX
circuit for a polynomial P € SICV is just to obtain arbitrary linear forms
from these variables, so it plays no role in the geometry, and at worst mul-
tiplies the circuit size by N, and often enlarges it by much less. This fact
will be used throughout this chapter.

I continue to work exclusively with homogeneous polynomials and over
the complex numbers. In particular, for a v-dimensional complex vector
space V, SV denotes the space of homogeneous polynomials of degree d on
V*.

7.1. Waring rank, depth three powering circuits and
symmetric polynomials

Recall from §6.2.2 that the symmetric tensor rank (Waring rank) of a poly-
nomial P € SV, denoted Rg(P) is the smallest r such that we may write
P = (¢4 -+ for some ¢;j € V. As explained in §7.1.1, such P admit ¥AX
circuits of size at most (v + 2). Although not directly related to Valiant’s
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hypothesis, they are a simple enough class of circuits that one can actually
prove lower bounds and they are used as the basis for further lower bound
results.

Similarly, the class of elementary symmetric polynomials is a class of
polynomials simple enough for one to prove complexity results, but rich
enough to be of interest. In §7.1.2 I discuss the elementary symmetric func-
tion e, , = @1 - - - Ty, describing its symmetry group and Waring decomposi-
tion. In §7.1.3 I discuss the Waring decompositions of elementary symmetric
polynomials in general.

Recall the notation o, (vg(PV)) =P{P € SV | P={¢+ .- -4 ¢; €V}
for the Zariski closure of the set of polynomials in PS4V of Waring rank

at most r, called the r-th secant variety of the Veronese variety, and that
R(P) denotes the smallest r such that P € o, (vq(PV)).

7.1.1. o,(vy(PV)) and LAY circuits. When one studies circuits of bounded
depth, one must allow gates to have an arbitrary number of edges coming in
to them, which is called unbounded fanin. For such circuits, multiplication
by constants is considered free.

A YA%Y circuit consists of three layers, the first of addition gates, the
second of powering gates, that map ¢ — £° (so each gate has a single input
and output), and the third a single addition gate. Such circuits are also
called diagonal depth-3 circuits, or depth three powering circuits, see, e.g.,
[Sax08].

Proposition 7.1.1.1. Say P € S?CV satisfies Rg(P) = r. Then P admits
a XAYY circuit of size r(v + 2).

Proof. We are given that P = ¢ + - + ¢4 from some ¢; € C¥. We need at
most v additions to construct each ¢;, of which there are r, so rv edges at
the first level. Then there are r powering gates, of one edge each and each of
these sends one edge to the final addition gate, for a total of rv+7r+7. 0

The following proposition bounds YAY. complexity by dc:

Proposition 7.1.1.2. Let P € S™V and let ¢ € V. Then dc(P) <
mRg(P) + 1 and de(P) < mRg(P) + 1.

Exercise 7.1.1.3: (2) Prove Proposition 7.1.1.2. ©®

7.1.2. The polynomial z; - - - z,. Consider the polynomial e, ,, ;== z1--- 2, €
S™C™ (the n-th elementary symmetric function in n variables). This simple
polynomial plays a major role in complexity theory and geometry. Its GL,-
orbit closure has been studied for over a hundred years and is discussed in
Chapter 9. In some sense it is the “weakest” polynomial known that re-
quires an exponential size X AY-circuit, which will be important in §7.7. 1
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first determine its symmetry group G which will be used several times

in what follows.

en,n?

It is clear T5L % G&,, C Ge, ., where TS denotes the diagonal matrices
with determinant one (the matrix with (A1,..., \,) on the diagonal sends z;
to A\jz;) and &,, acts by permuting the basis vectors. We need to determine
if the stabilizer is larger. Let g € GL,. Then

n n
g Cnn = Z gille T Z gajmnmjn
Jji=1 jn=1

In order that this be equal to x; - - - x,, by unique factorization of polyno-
mials, there must be a permutation ¢ € &,, such that for each k, we have
Zj giazj = AgZo(k) for some Ay € C*. Composing with the inverse of this
permutation we have gi = 6iAj, and finally we see that we must further
have A1 ---\, = 1, which means it is an element of T>%, so the original g
is an element of T7* x &,,. Thus Ge,., = T5' % &,,. By the discussion in
4.2, any Waring decomposition of e, , containing a pinning set can have
symmetry group at most &,,.

The optimal Waring decomposition of x1 - - -z, is

1
(711) X1+ Ty = m g (Hznzlfi
ce(-L1y j
1=

n
n
;)" |
=1
a sum with 2"~ ! terms. It is called Fischer’s formula in the computer
science literature because Fischer wrote it down in 1994 [Fis94]. While
similar formulas appeared earlier (e.g. formula (7.1.2) below appeared in
1934), I have not found this precise formula earlier in the literature. I give
the proof of its optimality (due to Ranestad and Schreyer [RS11]) in §10.1.2.

This decomposition transparently has an &,,_i-symmetry. Here is a
slightly larger expression that transparently has an &,,-symmetry:

n

1 n
(7.1.2) Ty e = oo Z H?:lei(Zejcl?j)

Cee{-1,1}7 j=1

This formula dates back at least to 1934, where Mazur and Orlicz [MO34]
gave it and generalizations.

Remarkably, as was realized by H. Lee [Leel6|, Fischer’s expression
already has an &,,-symmetry when n is odd.

For example:

wyr= el y+2f (e ty =2~ (@ -y + 2 (~a+y+ 2
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For an integer set I and an integer i, define

5(1,i) = {‘11 z;

When n = 2k + 1 is odd, rewrite Fischer’s formula as:
(7.1.3)
1 1] n
L1 Tn = Gy Z (=D, D)1 +6(1,2)xe+- - -+0(I,n)zy)".
ICn],|1|<k
When n = 2k is even, the situation is a little more subtle. One may
rewrite Fischer’s formula as:

(7.1.4)

1 n
R = ml > () D2y + 6(1,2)m + - + 61, n)n)

©ICn)||<k

—1)k
) ( 2) (6(I, D)y + 6(1,2)m2 + - - - + 5(I1,n)xn)"].
IC[n),|I|=k,1€l

The collection of terms in the second summation is only &,-invariant up
to sign. In the language of Chapter 4, if we write the decomposition as

S ={¢,..., 03,1}, the decomposition S is &,-invariant. Moreover, the
set {[¢1],..., [lon-1]} is &p-invariant, however the set {¢1,...,0on—1} is only

S,,—1-invariant (and &,-invariant up to sign).

Remark 7.1.2.1. Using the techniques of [RS00], Ranestad (personal com-
munication) has shown that every minimal rank decomposition of 1 - - -z,
is in the T°Fn-orbit of the the right hand side of (7.1.1), so in particular,
by Proposition 4.1.2.2 every decomposition has &,-symmetry.

7.1.3. Symmetric ranks of elementary symmetric polynomials. Here
are generalizations of the Waring expressions for e, ,, to all symmetric poly-
nomials due to H. Lee:

Theorem 7.1.3.1. [Leel6] Let d = 2k + 1 and let N > d. Then

1 N—-k—|Il-1
- —1)Hl 1,1 1,2 co8(I, N y) 2
€d,N 9d—1) Z ( ) ( k— ’I’ )(5( ) )x1+6( ) ).%'2—|— +5( ) )xN)
IC[N),|I|<K

d
In particular, for d odd, Rg(eqn) < Z}ié (]y)

This formula nearly appeared in [MO34] in 1934, but just as with Fis-
cher’s, there was a doubling of size.

Proof. Work by downwards induction, the case d = N is Fischer’s formula.
Let d < N and let Fy ; denote the right hand side of the expression.
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Observe that Fjy 4 = eqq and Fyn_1 = Fyn(x1,...,2n-1,0) up to a
constant. In particular Fyq = Fyn(x1,...,24,0,...,0) up to a constant.
The analogous statement holds setting any subset of the variables to zero.
This implies that F; y is an expression that has all the square-free monomials
in eq v appearing in it, all with the same coefficient. Moreover, there are no
other monomials appearing in Fy n as otherwise there would be a monomial
involving fewer than d variables that would appear in some specialization to
some €4 4. One concludes by checking the constant is correct. O

Lee gives a similar formula for d even.

7.2. Depth three circuits and secant varieties of the Chow
variety

In this section I discuss the depth three or XIIY circuits, which consist of
depth three formulas where the first layer of gates consist of additions, the
second of multiplications, and the last gate is an addition gate. Remarkably,
these circuits are powerful enough to potentially separate VP from VNP,
as is explained in §7.5.

There is a subtlety with these circuits: their homogeneous version, used
naively, lacks computing power. This can be fixed either by allowing inho-
mogeneous circuits, which is what is done in the computer science literature,
or with the help of padding, which I discuss in §7.2.3.

7.2.1. Secant varieties and homogeneous depth three circuits. Re-
call the Chow variety Ch,(W) C PS"W. When w = dimW > n, it is
the orbit closure GL(W) - [z1---xy,]. The set of polynomials of the form
Yoy lin---lin, where £;; € W (the sum-product polynomial in the com-
puter science literature) is denoted o%(Ch,(W)), and o,.(Chy,(W)) is the
Zariski closure in PS"W of o%(Ch,(W)), the r-th secant variety of the
Chow variety.

The relation between secant varieties of Chow varieties and depth three
circuits is as follows:

Proposition 7.2.1.1. [Lan15a] A polynomial P € S"W in o2(Ch,(W))
is computable by a homogeneous depth three circuit of size r + nr(1 + w).
If P ¢ 0%(Ch,(W)), then P cannot be computed by a homogeneous depth
three circuit of size n(r + 1) +r + 1.

Proof. In the first case, P =37, ({1, £y;) for some £s; € W. Expressed
in terms of a fixed basis of W, each /;; is a linear combination of at worst
w basis vectors, thus to create the /;; requires at worst nrw additions.
Then to multiply them in groups of n is nr multiplications, and finally to
add these together is r further additions. In the second case, at best P is in
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021 (Chyp(W)), in which case, even if each of the £,;’s is a basis vector (so no
initial additions are needed), we still must perform n(r + 1) multiplications
and r + 1 additions. (]

7.2.2. Why homogeneous depth three circuits do not appear use-
ful at first glance. Exercise 6.2.2.7 implies that in order that [det,| €

07 (Chy(C™)) we must have T(LZJ) > (LZJ)Q, ie, r > (LZJ) ~ 2" /n (see
2 2 2
§7.5.1).
By Proposition 7.2.1.1, we conclude:

Proposition 7.2.2.1. [NW97| The polynomial sequences det,, and perm,,
do not admit homogeneous depth three circuits of size 2" /n.

Remark 7.2.2.2. The proof above follows from considering partial deriva-
tives in middle degree. In [NW97] they consider all partial derivatives of
all orders simultaneously to improve the lower bound to 2".

Thus homogeneous depth three circuits at first sight do not seem that
powerful because a homogeneous depth 3 circuit of size 2" cannot compute
the determinant.

To make matters worse, consider the polynomial corresponding to iter-
ated matrix multiplication of three by three matrices IM M} € S*¥(C%). It
is complete for the class VP, of sequences with polynomial sized formulas
discussed in Remark 6.1.5.2 (see [BOC92]|), and also has an exponential
lower bound for its Chow border rank:

Exercise 7.2.2.3: (2) Use flattenings to show MM} ¢ T poly(k

) (Chi(C)).

By Exercise 7.2.2.3, sequences of polynomials admitting polynomial size
formulas do not in general have polynomial size homogeneous depth three
circuits.

7.2.3. Homogeneous depth three circuits for padded polynomials.
If one works with padded polynomials instead of polynomials (as we did
with Det,,), the power of homogeneous depth three circuits increases to the
power of arbitrary depth three circuits. The following geometric version of a
result of Ben-Or and Cleve (presented below as a Corollary) was suggested
by K. Efremenko:

Proposition 7.2.3.1. [Lan15a] Let C™*! have coordinates {,x1,...,Tm

and let e, = €pm(x1,..., %) be the k-th elementary symmetric polyno-
mial. For all k <m, (™ ey, € 0 (Chp,(CH).
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Proof. Fix an integer u € Z, recall the generating function F,, for the
elementary symmetric functions from (6.1.2), and define

1
i)

m
H x; + ul)
:Z ekm )l k.
k
The second line shows g, (x,¢) € Ch,,(C™ ). Letting u = 1,...,m, we

may use the inverse of the Vandermonde matrix to write each Km_kekm as
a sum of m points in Ch,, (C™*!) because

gu(, €) = (ul)™ Em(

1 1to...oqm mley g1(x, £)
20 2l ... om m=2ey g2(z, 0)
m® m! m' eoem,m Im ($, e)

O

Corollary 7.2.3.2. [BOC92] (™ ke, ., can be computed by a homogeneous
depth three circuit of size 3m? + m.

Proof. As remarked above, for any point of o,(Ch,(C™*!)) one gets a
circuit of size at most r + nr + rn(m + 1), but here at the first level all the
addition gates have fanin two (i.e., there are two inputs to each addition
gate) instead of the possible m + 1. O

Remark 7.2.3.3. The best lower bound for computing the ef via a X%
circuit is Q(n?) [SWO01], so Corollary 7.2.3.2 is very close to (and may well
be) sharp.

Proposition 7.2.3.4. [Lan15a] Say P € S™CM is computable by a depth
three circuit of size s. Then, for some n < s +m, £"~"™P is computable by
a homogeneous depth three circuit of size O(s?).

Proof. Start with the inhomogeneous circuit computing P. At the first
level, add a homogenizing variable ¢, so that the affine linear outputs become
linear in our original variables plus ¢, the product gates will each produce
a homogeneous polynomial. While the different product gates may produce
polynomials of different degrees, when we add them up what remains must
be a sum of homogeneous polynomials, such that when we set £ = 1, we
obtain the desired homogeneous polynomial. Say the largest power of ¢
appearing in this sum is ¢. Note that ¢ < s. For each other term there
is some other power of ¢ appearing, say ¢; for the i-th term. Then to the
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original circuit, add g — ¢; inputs to the ¢-th product gate, where each input
is £. This will not change the size of the circuit by more than ¢r < s2. Our
new homogeneous depth three circuit will output £9P. O

7.3. Algebraic branching programs

In this section I describe algebraic branching programs, a model of com-
putation with complexity equivalent to that of the determinant, as well as
two restrictions of it, one (non-commutative ABP’s) that has an exponential
lower bound for the permanent (but also for the determinant), and another
(read once ABP’s) where it is possible to carry out deterministic polynomial
identity testing as described in §7.7.

7.3.1. Algebraic branching programs and iterated matrix multi-
plication.

Definition 7.3.1.1 (Nisan [Nis91]). An Algebraic Branching Program (ABP)
over C is a directed acyclic graph I' with a single source s and a single sink
t. Each edge e is labeled with an affine linear function ¢, in the variables
{y:]1 < i < M}. Every directed path p = ejes--- e, computes the prod-
uct '), := H§:1 le; . For each vertex v the polynomial ', is defined as
Zpepw I') where Py, is the set of paths from s to v. We say that I, is
computed by I' at v. We also say that I'; s computed by I" or that I'; is the

output of T.

The size of I is the number of vertices. Let abpc(P) denote the smallest
size of an algebraic branching program that computes P.

An ABP is layered if we can assign a layer 7 € N to each vertex such that
for all 4, all edges from layer ¢ go to layer i+1. An ABP is homogeneous if the
polynomials computed at each vertex are all homogeneous. A homogeneous
ABP T is degree layered if T' is layered and the layer of a vertex v coincides
with the degree of v. For a homogeneous P let dlabpc(P) denote the smallest
size of a degree layered algebraic branching program that computes P. Of
course dlabpc(P) > abpc(P).

Definition 7.3.1.2. The iterated matriz multiplication complexity of a poly-
nomial P(y) in M variables, immc(P) is the smallest n such that there
exists affine linear maps B; : CM — Mat,(C), j = 1,...,n, such that
P(y) = trace(By(y)---Bi(y)). The homogeneous iterated matriz multi-
plication complexity of a degree m homogeneous polynomial P € S™CM,
himmec(P), is the smallest n such that there exist natural numbers nq, ..., n,
with 1 = ny, and n = ny+- - -+n,,, and linear maps A, : CM — Mat,, sn,. 1
1 < s <m, with ny41 = 1, such that P(y) = An(y) -~ A1(y).
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7.3.2. Determinantal complexity and ABP’s. Two complexity mea-
sures mqy,mo are polynomially related if for any sequence p, of polyno-
mials, there exist constants C7,Cs such that for all sufficiently large n,
mi(pn) < (M2(pa))©* and ma(pa) < (ma(pn))©2.

The following folklore theorem was stated explicitly in [IL16a] with
precise upper and lower bounds between the various complexity measures:

Theorem 7.3.2.1. [IL16a] The complexity measures dc, abpc, immc, dlabpc
and himmc, are all polynomially related.

Additional relations between different models are given in [MPO08].

Regarding the geometric search for separating equations, the advantage
one gains by removing the padding in the iterated matrix multiplication
model is offset by the disadvantage of dealing with the himmec polynomial
that for all known equations such as Young flattenings (which includes the
method of shifted partial derivatives as a special case) and equations for
degenerate dual varieties, behaves far more generically than the determinant.

Work of Mahajan-Vinay [MV97] implies:
Proposition 7.3.2.2. [IL16a] dlabpc(det,,) < %3—%—1—2 and himmc(det,,) <
md_m o9,

Remark 7.3.2.3. For m < 7, the size 2 — 1 Grenet-like expressions from
[LR15] for det,, give smaller iterated matrix multiplication expressions.
This warns us that small cases can be deceptive.

Remark 7.3.2.4. It is an important and perhaps tractable open problem to
prove an w(m?) lower bound for dc(perm,,). By the more precise version of
Theorem 7.3.2.1 in [IL16a], it would suffice to prove an w(m®) lower bound
for himme(perm,,,).

Here are the size %3 —2+2 himmc expressions for det,, when m = 3,4, 5:

2 3
Ty T 0
3 23 0 z3
— (2 3 2 3 3 2 3 1
dets(x) = (z7, x7, 23, x5, 23) | —21 —2y 0 L3
0 0 3 —z}
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Let My = (=22, —23, —af, —22, —23, —23, —23, —23, —23). Then
3 oz 23 0 0 0 0
x% x% x§ 0 0 0 0 m% x% a:% 0
x?l wi xfi 0 0 0 0 m% x§ a;é 0
—w% —37:1” —x‘ll 0 0 0 0 wi xi wi 0
dety(z) = M, 0 0 0 3 @3 ol 0 -z -2} -2} 0
0 0 0 xi :1:?1 acﬁll 0 0 0 0 x%
—x% —a:i” —x‘f —x% —x% —x% 0 0 0 0 x2
0 0 0 0 0 0 m?l —x% —x? —x‘ll —x%
—af -} -2 —23 —a} —a2p —af
Let My = (22,23, 2%, 23, 3, 23, 23, 23, 23, 23, 23, 23, 23, 22),
r3  xs a3 2y 0 0 0 0 0 0 0 0
x% :cg a:§ xg 0 0 0 0 0 0 0 0
33:21 :cf’l 3:11 aci 0 0 0 0 0 0 0 0
a:% :cg xé xg 0 0 0 0 0 0 0 0
—x% —xif —m‘ll —xi’ 0 0 0 0 0 0 0 0
0 0 0 0 a:§ mg x% xg 0 0 0 0
My = 0 0 0 0 a:% :1:% x% x% 0 0 0 0 ’
0 0 0 0 T3 x5 Ts T3 0 0 0 0
—x% —x:{’ —x‘ll —CCEl) —x% —x% —33% —xg 0 0 0 0
0 0 0 0 0 0 0 0 xi 333 xi 0
0 0 0 0 0 0 0 0 x a2 22 0
fm% 71‘:{’ flel f:c‘rl’ fx% 7$§ fxé fq:g fajg fxgl fsvg 0
0 0 0 0 0 0 0 0 0 0 0
—of —o} e —x} —af —ad —af —af —af —af —a3 o
r3 23 x3 23 0 0O 0 0 0
3 23 oz 2} 0 0 0 0 0
R S S 0 0 0 0 0
R - 0 0 0 0 0
—z3 -2} -2} -2} 0 0 0 0 0
Ms — 0 0 0 0 x% a:§ x% a:§ 0 ’
0 0 0 0 x;  xy xy Ty 0
0 , 0 , 0 , 0 . x%z x§3 $§4 a:g5 0
—r{ —xy —r7 —x] —x5; —x5 —wTy5 —x5 0
0 0 0 0 0 0 0 0 xi
0 0 0 0 0 0 0 0 x%
2 b a2 —ad —ad —ad —a) —a
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3 x oy ad 0
R S S 0
R S S 0 xd
A S = S 0 x3
My=|-2? —23 —af —2% 0 |, Ms=| 2}
0 0 0 0 3 xi
0 0 0 0 3 —z}
0 0 0 0 z?
2 3 4 5 2

—ry —I7 —T;p —Tp T

Then det5(:17) = M1M2M3M4M5.
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Then detﬁ(X) = M1M2M3M4M5M6.
Compare these with the expression from [LR15]:

3 —x3 0 3
(7.3.1) dets(z) = (z},23,23) [ 28 0 a3 3
0 ry  —x3 z3

and for dety the sizes of the matrices are 1 x 4, 4 x 6, 6 x 4, 4 x 1.

7.3.3. A classical exponential lower bound for the permanent (and
determinant). Consider a restricted model where one is not allowed to
exploit the commutativity of multiplication. Let C{yi,...,yn} denote the
ring of polynomials in the non-commuting variables y1,...,yn. Choose an
expression for a polynomial P and consider it in this larger ring. The defi-
nition of circuits is the same here, just that we cannot assume ab = ba for
expressions a and b.

Theorem 7.3.3.1. [Nis91] The degree homogeneous non-commutative ABP
complexity of det,, and perm,, are both 2™ — 1.

Proof. Choose the representations of the determinant and permanent where
the first row comes first, the second comes second, etc. Consider the degree
homogeneous ABP I' with m + 1 layers that computes det,, (or perm,,).
Keep the labels from all edges that appear before level s and set the la-
bels on all other layers to constants to see that all terms of the form
degm cgyi(l) ey (s) can be computed by taking linear combinations of
the polynomials I',,, where v is a vertex in layer s. Since these terms span
a vector space of dimension (7?) there must be at least (T) linearly inde-
pendent polynomials I';,, so there must be at least (’?) vertices on layer s.
Summing up the binomial coefficients yields the lower bound.

The Grenet determinantal presentation of perm,, [Grell] and the reg-
ular determinantal presentation of det,, of [LR15] give rise to column-
wise multi-linear iterated matrix multiplication presentations, and thus non-
commutative ABP’s, of size 2™ — 1. O

Remark 7.3.3.2. In contrast to ABP’s, for general non-commutative cir-
cuits, very little is known, see, e.g., [LMS16, HsWY10]. There are expo-
nential bounds for skew circuits in [LIMS16] (the class of circuits equivalent
in power to the determinant).

7.3.4. Read once ABP’s. Another restriction of ABP’s is that of read
once oblivious ABP’s, henceforth ROABP’s. Here the ABP is layered. The
read-once means that the edges at layer ¢ only use a variable x;. On the other
hand, the weights are allowed to be low degree polynomials in the z;. The
word oblivious means additionally that an ordering of the variables is fixed in
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advance. I return to this model in §7.7 because it is restrictive enough that
it admits explicit deterministic hitting sets for polynomial identity testing.
On the other hand, this model can efficiently simulate depth three powering
circuits.

7.4. Additional restricted models

The purpose of this section is to survey restricted models that have geometric
aspects. Each subsection may be read independently of the others.

7.4.1. Equivariant determinantal complexity. Motivated by the sym-
metry of Grenet’s expressions for the permanent discussed in §6.6.3, N.
Ressayre and 1 asked, what happens if one imposes the F,]fl—equivariance?
We found:

Theorem 7.4.1.1. [LR15] Among TI'E -equivariant determinantal expres-
sions for perm,,, Grenet’s size 2™ — 1 expressions are optimal and unique
up to trivialities.

The T'Z-equivariance is peculiar as it only makes sense for the perma-
nent. To fix this, we defined a complexity measure that could be applied to
all polynomials:

Let P € S™CM have symmetry group Gp, let A : CM — C" be the
linear part of a determinantal expression of P with constant term A. Let
Gaetn,A = Gdet,, NGA C GL,2. Note that Gp X Gget,,,a acts on CM* xCn’

by (9,h)A(y) = h- A(g™'y).
Definition 7.4.1.2. Define the symmetry group offl to be
GA = {(g7h’) € GP X Gdetn,A ‘ (gah) A= A}

Call A an equivariant determinantal expression for P if the projection from
G ; to Gp is surjective. Define edc(P) to be the smallest size of an equivari-
ant determinantal expression for P.

If G is a subgroup of Gp, we say that A is G-equivariant if G C Gj.

Note that if P is a generic polynomial of degree greater than two,
edc(P) = dc(P) because it will have a trivial symmetry group. One also
has edc(det,,) = de(dety,) because A = Id : C*° — C™ and A = 0 is an
equivariant expression.

Theorem 7.4.1.3. [LR15] There exists an equivariant determinantal ex-
pression for perm,,, of size (QnT) —1.

Theorem 7.4.1.4. [LR15| Among equivariant determinatal expressions for
perm,,, the size (27;”) —1 expressions are optimal and unique up to trivialities.
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In particular, Valiant’s hypothesis holds in the restricted model of equi-
variant expressions. To my knowledge, equivariant determinantal complexity
is the only restricted model with a known exponential separation of the per-
manent from the determinant.

Proofs are outlined in §8.11.2.

Note that (QWT) ~ 4™ g0 the size of the equivariant determinantal expres-
sions are roughly the square of the size of Grenet’s expressions. In particular,
they are polynomially related in size.

Thus, if one could show either

e there exists an optimal determinantal expression for perm,, with
some symmetry, or

e there exists an equivariant determinantal expression for perm,, of
size polynomial in dc(perm,,),

then one would have proven Valiant’s hypothesis. I write “some” symmetry,
because as is shown in the proof, full I'Z-symmetry is not needed for the
exponential lower bound. (I do not know just how large the symmetry group
needs to be to obtain an exponential bound.)

Regarding the possibility of proving either of the above, we have seen
that the optimal Waring rank expression for zj - - -z, (and more generally
odd degree elementary symmetric functions) have maximal symmetry, as
does the optimal rank expression for M ).

7.4.2. Elementary symmetric polynomial complexity. Let P € S™CF
and define the elementary symmetric complexity of P, esc(P), to be the
smallest N such that there exists a linear inclusion C¥ ¢ C" with P €
End(CY) - epn =: f’lemen%N, and €s¢(P) to be the smallest N such that
P € End(CN)-epmn = GLy - émy =: Elemen,, n. A. Shpilka [Shp02]
refers to esc(P) as the “size of the smallest depth two circuit with a sym-
metric gate at the top and plus gates at the bottom”.

For any polynomial P, esc(P) is finite. More precisely:
Proposition 7.4.2.1. [Shp02] o°(v,,(PV)) C Elemen?, ... and o, (v, (PV))

m,rm

Elemenyy, rm. In other words, if P € S%V is computable by a LAY circuit
of size r then esc(P) < rm.

Proof. Without loss of generality, assume v = r and let y1,...,y, be a
basis of V. It will be sufficient to show » yi" € Elemengmmr. Let w be a
primitive m-th root of unity. Then I claim

m—1 m—1

Zy;n - _emmm(yh_wyla_walw"7w Y1, Y2, —wWy2,..., —wW y’r’)
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To see this, evaluate the generating function:

m—1 m—1

Erm(t)(yh_wylv_walu'” y W Y1, —Y2, —wWy2,..., —wW y’r‘)

=11 II 0 —ew)
i€[r] s€[m]

=TT wem.

i€[r]

The coefficient of ¢ on the last line is — ", y™. ]

Note that dim(Elemen, rm) < r?m? while dim(o, (v, (P™71))) = rm?—
1, so the dimensions differ only by a factor of r. Contrast this with the
inclusion implied by Theorem 7.1.3.1 of Elemengn C o4(vg(PN~1) with

d
q = E]Li{) (];[ ) where the second space in general has dimension exponen-

tially larger than the first.

Regarding lower bounds for esc, Corollary 7.2.3.2 implies that esc(P)
is at least the square root of the size of the smallest depth three circuit
computing P.

Shpilka proves lower bounds for esc in the same way the first lower
bounds for determinantal complexity were found: by considering linear
spaces on the zero set Zeros(em, n) C PV L.

Theorem 7.4.2.2. [Shp02] Let L C Zeros(e,, n) C PV~1 be a linear space.
Then dim L < min(max(N —m,m — 1), %¥) — 1.

Proof. The key to the proof is the algebraic independence of the e; n (see,
e.g., [Mac95, §1.2]). Any linear space of dimension &k will have an isomorphic
projection onto some coordinate k-plane. Without loss of generality, assume
it has an isomorphic projection onto the span of the first k-coordinates, so
that L ¢ CV has equations z; = ls(z1,...,x) for kK+1 < s < N. We are
assuming e, n|; = 0.

Exercise 7.4.2.3: (1) Show that if we have two sets of variables (z,y) =
(1, oy Tk, Y1, - - -, YN—k), then e, n(2,y) = Z;”:O em—ik(x)ej Nk (Y).

By Exercise 7.4.2.3,

0=emn(z,l(x))

(7.4.1) = emp(z) + Y em_jr(@)e;n_r(l(z))
j=1

First assume k = dim L > max(N —m 4+ 1,m). Since ey, =0 if & > u,
if N —k < m the sum in (7.4.1) is from 1 to N — k.
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Let U : Clz1,...,2%] = C[z1,...,2]%* denote the symmetrization op-
erator. (Sometimes U is called a Reynolds operator.)
Exercise 7.4.2.4: (1) Show that for any functions f,g, that ¥(f + g) =
U(f) + ¥ (g).
Exercise 7.4.2.5: (1) Show that if f is a symmetric function and g is a
polynomial, then U (fg) = U(f)¥(g).

Apply ¥ to (7.4.1) to obtain

N—k

0=emi(r)+ Z em—jk(2)¥(ej(L())),

j=1

but this expresses e, 1 as a polynomial in symmetric functions of degree less

than k, a contradiction.

m+N
55 SO

Now assume dim L >
m

0= emi(®) + emnk(l(x) + Y em_jr(x)e;(U(z)).
j=1

The idea is again the same, but we must somehow reduce to a smaller space.
If we take D € {f1,...,¢ny_p}* C CV and apply it, we can eliminate the
em,N—k(£(z)) term. But if we take a general such D, we will no longer have
symmetric functions. However, one can find a D such that, if we restrict to
span of the first m — 1 coordinate vectors, call this space V,,_; ¢ C¥ c CV,
then (Deyk)|v,._, = €r—1,m—1, see [Shp02]|. Unfortunately this is still not

good enough, as letting ' = (21, ..., %m,—1) we now have
m
0=em-1m1(z) + > em_jrla)e;(¢(z")).
j=1

We could argue as before if we could eliminate the j = 1 term. A modifica-
tion of D as described in [Shp02] also satisfies D(e; x(x)) = 0. O

Thus if Zeros(P) has large linear spaces on it we obtain lower bounds
for esc(P). Recall that for a projective subspace L C PN=1 that L ¢ CV
denotes the corresponding linear subspace.

Exercise 7.4.2.6: (1) Show @sc(det,,) > 2m? — 3m.

Exercise 7.4.2.7: (1) Show that if m > %, there exists a linear space of
dimension m — 2 on Zeros(ey, n). ®

Say m is odd and N is even. Let

A

L = span{(1,-1,0,...,0),(0,0,1,—1,0,...,0),,...,(0,...,0,1,—1).
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Notice that all odd power sum functions vanish on L. When we express
em,N in terms of power sum functions, each term will contain an odd degree
power sum so we conclude e, n|; = 0. More generally:

N
Proposition 7.4.2.8. [Shp02] [attributed to Saks| There exists a plal=t ¢
Zeros(em, N), where q is the smallest integer such that g does not divide m.

Exercise 7.4.2.9: (2) Prove Proposition 7.4.2.8. ©®

Exercise 7.4.2.7 and Proposition 7.4.2.8 show that Theorem 7.4.2.2 is
close to being sharp.

The following conjecture appeared in [Shp02] (phrased differently):

Conjecture 7.4.2.10. [Shp02] There exists a polynomial r(m) such that
Or(m) (Chy (C™ ™)) ¢ Elemeny, om. One might even be able to taker(m) =
2.

The second assertion is quite strong, as when r = 1 there is containment,
and when r = 2 the left hand side has dimension about 4m and the right
hand side has dimension about 4™.

Exercise 7.4.2.11: (2) Show that oo(Ch,,(C*™)) ¢ €lemenm7%m_3.

Question 7.4.2.12. [Shp02] What is the maximal dimension of a linear
subspace L C PV~! such that L C Zeros(e,, n)?

7.4.3. Raz’s theorem on tensor rank and formula size. In this section
I explain Raz’s results that if one considers a tensor as a polynomial, lower
bounds on the tensor rank have consequences for the formula size of the
corresponding polynomial.

Definition 7.4.3.1. A polynomial P € SV is multi-linearif V=V @®---®
Vgand P € Vi®---@Vy C SUV.

The permanent and determinant may be considered as multi-linear poly-
nomials (in two different ways). In the literature, e.g., [Raz10b], they do
not insist on homogeneous polynomials, so they use the term set-multi-linear
to describe such polynomials where each monomial appearing is multi-linear
(but does not necessarily use variables from each of the Vj).

Given a tensor T' € A1® - - - ®Aq, by considering A1® - @Ay C Sd(AIEB
-+ @ Ay), we may think of T' as defining a multi-linear polynomial. When I
want to emphasize T’ as a multi-linear polynomial, I'll write Pr € S%(A; @
) Ad)-

One can compare the tensor rank of 7" with the circuit complexity of
Pr. Raz compares it with the formula complexity: He shows that super-
polynomial lower bounds for multi-linear formulas for polynomial sequences
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P,, where the degree grows slowly, imply super-polynomial lower bounds for
general formulas:

Theorem 7.4.3.2. [Razl0b| Let dim A; =n and let T;,, € A1®--- @Ay be
a sequence of tensors with d = d(n) satisfying d = O(%). If there

exists a formula of size n® for Pr,, then R(T,) < nd(1—20(©)

Corollary 7.4.3.3. [Razl0b] Let dimA; = n and let T;, € A1®--- ®Ay

be a sequence of tensors with d = d(n) satisfying d = O(%). If

R(T},) > n4(1=°(1) then there is no polynomial size formula for Pr.
These results were extended in [CKSV16].

Via flattenings, one can exhibit explicit tensors with R(7") > nlal, Using
the substitution method (see §5.3), that was improved for tensor rank to
onle) 4+ — O(dlog(n)) in [AFT11] by a construction generalizing the one
described in §5.3.1 for the case d = 3.

The idea of proof is as follows: A rank decomposition of T, viewed as
a computation of Pp, corresponds to a depth-3 multi-linear formula for Py.
Raz shows that for any polynomial sequence P, if there is a fanin-2 formula
of size s and depth § for P, then there exists a homogeneous formula of size
O((‘HZH)S) for P,,. He then shows that for any multi-linear polynomial P,
if there exists a fanin-2 formula of size s and depth 0, then there exists a
multi-linear formula of size O((6 + 2)%s) for P,.

7.4.4. Multi-linear formulas. A formula is multi-linear if the polynomial
computed by each of its sub-formulas is multi-linear. For example, Ryser’s
formula for the permanent is multi-linear. On the other hand, the smallest
known formula for the determinant is not multi-linear.

In [Raz09], Raz shows that any multi-linear arithmetic formula for
perm,, or det,, is of size nf2(") | The starting point of the proof is the method
of partial derivatives. Then Raz makes certain reductions, called random
restrictions to reduce to a smaller polynomial that one can estimate more
precisely.

7.4.5. Raz’s elusive functions and circuit lower bounds. Raz defines
the following “hay in a haystack” approach to Valiant’s hypothesis. Consider
a linear projection of a Veronese proj : PS™C*® --» P™, and let ', :=
proj o v, : P71 ——s P™ be the composition of the projection with the
Veronese map. A map f : P" — P™ is said to be (r,s)-elusive if f(P") is
not contained in the image of any such I', ;.

Recall that VNP may be thought of as the set of “explicit” polynomial
sequences.
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Theorem 7.4.5.1. [Raz10a] Let m be super-polynomial in n, and s > mis.

If there exists an explicit (s,2)-elusive f : P" — P™ then VP # VNP.

Theorem 7.4.5.2. [Raz10a] Let 7(n) = log(log(n)), s(n) = nlog(sloe(n))
m = n", and let C' be a constant. If there exists an explicit (s,r)-elusive
f:P" —P™, then VP # VNP.

By a dimension count, a general polynomial in either range will be elu-
sive.

Again, one can approach, e.g., the case where r = 2, by finding equations
for the variety of all images of projections of the quadratic Veronese, and
then finding a polynomial (point) not in the zero set.

In the same paper Raz constructs an explicit f, whose entries are mono-

mials, that requires circuits of size at least i) to compute.

7.4.6. Glynn’s Theorem on expressions for the permanent. Recall,
for P € S™CM, Rep,, vy (P) is the smallest r such that P(yi,...,ym) =

>y umzl(zg/il Asu,aYa) for some constants Ag,q. This corresponds to
the smallest homogeneous L"TI"EM circuit that computes P. If P is multi-
linear, so M = mw and we may write y, = (yio) Where 1 < i < m, 1 <
a < w, and P = Y CqalYia - Yma We could restrict to multi-linear LIIX
circuits (ML-XIIY circuits), those of the form Y . II™ (3" | As a¥ia)-

a=1

Write Rgh]:n © M)(P) for the smallest multi-linear X"IIX" circuit for such a
P. Consider multi-linear XIIX-circuit complexity as a restricted model. In

this context, we have the following theorem of D. Glynn:
Theorem 7.4.6.1. [Gly13] RghL (CM)(permm) =Rg(z1--2p) =21

Moreover, there is a one to one correspondence between Waring de-
compositions of x1 - - - x, and ML — ¥1I¥ decompositions of perm,,. The
correspondence is as follows: Constants \sj, 1 < s <r, 1< j < m satisfy

(7.4.2) vrecmm =Y (O A"

s=1 j=1
if and only if
(7.4.3) perm, , (yi;) = m! Y [[O - Asjwis)-
s=1i=1 j=1

Proof. Given a Waring decomposition (7.4.2) of x1 - - - &y, set £; = > Yji2k-
The coefficient of 27 - - - z,, in the resulting expression on the left hand side
is the permanent and the coefficient of z; - - - z,;, on the right hand side is the
right hand side of (7.4.3).
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To see the other direction, given an expression (7.4.3), I will specialize
to various matrices to show identities among the A, ; that will imply all
coefficients but the desired one on the right hand side of (7.4.2) are zero.

The coefficient of x?l gl where by + --- 4+ by, = m in (7.4.2) is
b
(bl,ir.l,bm) 2 )‘5,11 T /\g%-

Let y be a matrix where there are b; 1’s in column j and zero elsewhere.
Then unless each b; = 1, perm(y) = 0. But (7.4.3) says that 0 = perm(y) is
a nonzero constant times ) )‘2,11 e )\g’j;n. Thus all these terms are zero and
the only potential nonzero coefficient in the right hand side of (7.4.2) is the
coefficient of x1---x,,. This coeflicient is m! = (1m1) times Ag 1 Agm-
Plugging in y = Id shows 1 = m!As 1+ Ag . O

Remark 7.4.6.2. As mentioned in Remark 7.1.2.1, all rank 2™~ expres-
sions for 1 - - - a,, come from the T5Im orbit of (7.1.1), so the same holds
for size 2m~1 ML — XIIY expressions for perm,,,.

7.4.7. Rank k determinantal expressions. Restricted models with a
parameter k that converge to the original problem as k grows are particularly
appealing, as one can measure progress towards the original conjecture. Here
is one such: Given a polynomial P € S™CM and determinantal expression
A:CM 5 c, Aly) = A + Z]Ail Ajy; where A, A; are matrices, define
the rank of A to be the largest rank of the Aj’s. Note that this depends on
the coordinates up to rescaling them, but for the permanent this is not a
problem, as Gperm,, defines the coordinates up to scale.

If one could show that perm,, did not admit an expression with rank
polynomial in m, then that would trivially prove Valiant’s hypothesis.

The notation of rank of a determinantal expression was introduced in
[AJ15], as a generalization of the read of a determinantal expression, which
is the maximal number of nonzero entries of the A;. As observed by An-
derson, Shpilka and Volk (personal communication from Shpilka) as far as
complexity is concerned the measures are equivalent: if a polynomial P in n
variables admits a rank k£ determinantal expression of size s, then it admits
a read-k determinantal expression of size s + 2nk.

The state of the art regarding this model is not very impressive:
Theorem 7.4.7.1. [IL16a] The polynomial perm,, does not admit a rank
one determinantal expression over C when m > 3. In particular, perm,,

does not admit a read once regular determinantal expression over C when
m > 3.
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7.5. Shallow Circuits and Valiant’s hypothesis

In this section I discuss three classes of shallow circuits that could be used to
prove Valiant’s hypothesis. We have already seen the first, the X113 circuits.
The next is the XAYXAY circuits, which are depth five circuits where the first
layer of gates are additions, the second layer consists of “powering gates”,
where a powering gate takes f to f0 for some natural number 6, the third
layer addition gates, the fourth layer again powering gates, and the fifth layer
is an addition gate. The third is the class of depth four XIIXII circuits. 1
describe the associated varieties to these classes of circuits in §7.5.3. A
YA*YAPY circuit means the powers are respectively § and «, and other
superscripts are to be similarly interpreted.

7.5.1. Detour for those not familiar with big numbers. When deal-
ing with shallow circuits, we will have to distinguish between different rates
of super-polynomial growth, both in statements and proofs of theorems.
This detour is for those readers not used to comparing large numbers.

All these identities follow from (7.5.1), which follows from Stirling’s for-
mula, which gives an approximation for the Gamma function, e.g., for x > 0,

o(z)

[(z) =+ 2ma? e Ten

where 0 < 6(x) < 1. Stirling’s formula may be proved via complex analysis
(estimating a contour integral), see, e.g., [Ahl178, §5.2.5]. Let

He(z):=—xnz— (1 —2)In(l —x)

denote the Shannon entropy.

(7.5.1) nl 2 \/%(g)”

(7.5.2) In(n!) = nln(n) — O(In(n))
(7.5.3) <2:> > \;%

(7.5.4) In (gg) = aHe(g)n — O(Inn)
T .

Exercise 7.5.1.1: (1) Show that for 0 < x < 1, 0 < H.(z) < 1. For which
x is the maximum achieved?

Exercise 7.5.1.2: (1) Show a'°&(®) = plos(a),
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Exercise 7.5.1.3: (1!) Consider the following sequences of n:
logs(n), n, 100n, n?, n3, nlogz(n) 2[1°g2(”)]2, pVioga(n) on <2n>, nl, n".
n

In each case, determine for which n, the sequence surpasses the number of
atoms in the known universe. (It is estimated that there are between 1078
and 10%2 atoms in the known universe.)

Exercise 7.5.1.4: (1) Compare the growth of sVd and 2vdlosds,

2 n_

Exercise 7.5.1.5: (1) Compare the growth of (" T2 1) and (2)2 Com-
2 2

pare with your answer to Exercise 6.2.2.7.

7.5.2. Depth reduction theorems. A major result in the study of shal-
low circuits was [VSBR&83], where it was shown that if a polynomial of
degree d can be computed by a circuit of size s, then it can be computed by
a circuit of depth O(logdlogs) and size polynomial in s. Since then there
has been considerable work on shallow circuits. See, e.g., [GKKS17] for a
history.

Here are the results relevant for our discussion. They combine results of
[Bre74, GKKS13b, Tav15, Koi, AV08]:

Theorem 7.5.2.1. Let N = N(d) be a polynomial and let P; € S?CN be
a sequence of polynomials that can be computed by a circuit of polynomial

size s = s(d). Let S(d) := 90(+/dlog(ds) log(N))
Then:

(1) P is computable by a homogeneous XIIXII circuit of size S(d).
(2) P is computable by a XIIY circuit of size of size S(d).

(3) P is computable, by a homogeneous YAYXAY circuit of size S(d),
and both powering gates of size O(v/d).

Note that S(d) is approximately sV,

Corollary 7.5.2.2. If perm,, is not computable by one of: a homogeneous
YIIXIL circuit, a 11X circuit, or a homogeneous LAYXAY circuit of size

gu(v/mlog? ™) then VP # VNP.

Here are ideas towards the proof: In [GKKS13b| they prove upper
bounds for the size of a depth three circuit computing a polynomial, in terms
of the size of an arbitrary circuit computing the polynomial. They first apply
the work of [Koi, AV08], which allows one to reduce an arbitrary circuit
of size s computing a polynomial of degree d in N variables to a formula of
size 20Uogslogd) and depth d.
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The next step is via the iterated matrix multiplication polynomial. By
Theorem 7.3.2.1 formula size is at least as large as iterated matrix multi-
plication complexity. Say we can compute f € S™CM via m matrix multi-
plications of n x n matrices with linear entries. (Here n will be comparable
to 5.) Group the entries into groups of [%] for some a. To simplify the
discussion, assume 7* is an integer. Write

Xi Xy = (X1 X ) (Xm g - Xgm) -+ (X gy - X

Each term in parenthesis can be computed (using the naive matrix mul-
tiplication algorithm) via a XII' -circuit of size O(n'a ). After getting the
resulting matrices, we can compute the rest via a XII* circuit of size O(n®).
This reduces one to a depth four circuit of size § = 20(vVdlogdlogslogn) Thep
one can get a depth five powering circuit using (7.1.1). (An alternative, per-
haps simpler, proof appears in [Sap, Thm. 5.17].)

The new circuit has size O(S) and is of the form YAYX.AY. Finally, they
use (6.1.6) to convert the power sums to elementary symmetric functions
which keeps the size at O(S) and drops the depth to three.

7.5.3. Geometry and shallow circuits. I first rephrase the depth 3 re-
sult:

Proposition 7.5.3.1. [Lan15a] Let d = N and let P € S?CN be a
polynomial that can be computed by a circuit of size s.

Then [("~P] € 0,.(Ch,(CN*1)) with roughly rn ~ sV4, more precisely,
rn = 20( dlog(N) log(ds))_

Corollary 7.5.3.2. [GKKS13b] [("™ det,,] € 0,(Chy,(C™ 1)) wherern =
90(vmlogm)

Proof. The determinant admits a circuit of size m*, so it admits a SIIZ
circuit of size

20(\/m log(m) log(m+m*)) _ 20(\/ﬁlogm),
so its padded version lies in o, (Ch,,(C™*1)) where rn = 20(Vmlogm) ]

Corollary 7.5.3.3. [GKKS13b] If for all but finitely many m and all r,n
with rn = 2Vmloe(mw()  one has [(""™ perm,,| & o (Ch,(C™ 1)), then
there is no circuit of polynomial size computing the permanent, i.e., VP #
VNP.

Proof. One just needs to observe that the number of edges in the first layer
(which are invisible from the geometric perspective) is dominated by the
number of edges in the other layers. ([
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I now reformulate the other shallow circuit results in geometric language.
I first give a geometric reformulation of homogeneous Y AXAY. circuits As
mentioned previously, the first layer just allows one to work with arbitrary
linear forms. The second layer of a XAYAY circuit sends a linear form £
to £, i.e., it outputs points of vs(PV). The next layer consists of addition
gates, outputting sums of d-th powers, i.e., points of o, (vs(PV)). The next
layer Veronese re-embeds and multiplies (i.e. projects S%(S°V) — S§%'V)
these secant varieties to obtain points of mult(vy (o, (vs(PV)))), and the
final addition gate outputs a point of o,/ (mult((vs (o (vs(PV))))). In what
follows I will simply write o, (vs (o, (vs(PV'))) for this variety. Thus we may
rephrase Theorem 7.5.2.1(2) of [GKKS13Db] as:

Proposition 7.5.3.4. [Lanl15a] Let d = N°) and let Py € SCN be a
polynomial sequence that can be computed by a circuit of size s. Then

[Pn] € opy (v%(ar2 (vs(PN=1)))) with roughly 6 ~ /d and riry ~ sV4 more
precisely 11190 = 90(y/dlog(ds) log(N))

Corollary 7.5.3.5. [Lanl5a)] If for all but finitely many m, 6 ~ /m, and all

1, 79 such that riry = 2Vmlee(mw() "one hag [perm,,] & o, (vm/(g(arz(vg(IP’mQ*l)))),

then there is no circuit of polynomial size computing the permanent, i.e.,
VP # VNP.

Problem 7.5.3.6. Find equations in the ideal of o, (v5(cr, (vs(P™ ~1)))).

L — — —

Y. Guan [Gual5b]| has compared the flattening rank of a generic poly-
nomial in oy, (vs(or, (vs(P™ 1)) with that of the permanent and showed
that

2_
perm,, € 0y ymtosmw) (V7 (Taayitosmw (0 m(P" 1)),

Remark 7.5.3.7. The expected dimension of o,(Chy,(W)) is rmw + r —
1. If we take n and work instead with padded polynomials /"~ P, the
expected dimension of o, (Chy,(W)) is rnw+r—1. In contrast, the expected
dimension of 0, (v4—q(0,(va(PW)))) does not change when one increases the
degree, which indicates why padding is so useful for homogeneous depth
three circuits but not for YAXAY circuits.

I now describe depth four circuits in terms of joins and multiplicative
joins. Following [Lan10], for varieties X C PS*W and Y C PS*W, define
the multiplicative join of X and Y, MJ(X,Y) = {[zy] | [z] € X, [y] €
Y} € PS“MW, and define MJ(Xy,...,X}) similarly. Let MJ*(X) =
MJ(X1,...,Xk) when all the X; = X, which is a multiplicative analog
of the secant variety. Note that MJ*(PW) = Chy(W). The varieties asso-
ciated to the polynomials computable by depth k+1 formulas are of the form
Ory (MJdIﬁl (Ukaz(' - MJh (PW) T )))> and M J% (O-kal (MJdlﬁZ (O-rk73 ( - MJh (PW) e ))))
In particular, a X"TI*XTIP circuit computes (general) points of o,.(M.J* (o4 (M.J5(PW))).
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7.6. Hilbert functions of Jacobian ideals (shifted partial
derivatives) and VP v. VNP

The paper [GKKS13a], by Gupta, Kamath, Kayal, and Saptharishi (GKKS)
won the best paper award at the 2013 Conference on Computational Com-
plexity (CCC) because it came tantalizingly close to proving Valiant’s hy-
pothesis by showing that the permanent does not admit a depth four circuit
with top fanin 2°0V™)_ Compare this with Theorem 7.5.2.1 that implies
to prove VP # VNP, it would be sufficient to show that perm,, is not
computable by a homogeneous LIICWMSIIOV™) circuit with top fanin
92(v/mlog(m))

The caveat is that in the same paper, they proved the same lower bound
for the determinant. On the other hand, a key estimate they use (7.6.6) is
close to being sharp for the determinant but conjecturally far from being
sharp for the permanent.

Their method of proof is via a classical subject in algebraic geometry:
the study of Hilbert functions, and opens the way for using techniques from
commutative algebra (study of syzygies) in algebraic complexity theory. 1
begin, in §7.6.1, with a general discussion on the growth of Hilbert functions
of ideals. In §7.6.2, I outline the proof of the above-mentioned GKKS the-
orem. In §7.6.3, I show that the shifted partial derivative technique alone
cannot separated the determinant from the padded permanent. However,
more powerful tools from commutative algebra should be useful for future
investigations. With this in mind, in §10.4, I discuss additional information
about the permanent and determinant coming from commutative algebra.

7.6.1. Generalities on Hilbert functions. In what follows we will be
comparing the sizes of ideals in judiciously chosen degrees. In this section I
explain the fastest and slowest possible growth of ideals generated in a given
degree.

Theorem 7.6.1.1 (Macaulay, see, e.g., [Gre98)). Let Z C Sym(CY) be a
homogeneous ideal, and let d be a natural number. Write

(7.6.1) dim SCN /T, = (‘;i) I (C‘l‘d_—ll> - (a;)

with ag > ag—1 > -+ > as (such an expression exists and is unique). Then
(7.6.2)

. N+4+d+7-1 ag+ 7 ag—1+ T as +T
7, > — .
dim d+T—< d+7 ) [<d+7)+<d+7—1>+ +<5+r>}

See [Gre98| for a proof.
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Corollary 7.6.1.2. Let Z be a homogeneous ideal such that dimZ; >
dim §4-1CN = (N+d__q_1) for some q < d. Then
d—q
. . _ N+7174+d—q—-1
dimZy,, > dim §4-9t7CN = ( rtd—q )

Proof of Corollary. First use the identity

T G0 I ol ) B (i)

1
with a = N — 1, b = d. Write this as

<N—1+d) :Qd_i_(N—l—i-d—q).

d d—q
Set
q .
o N-1+d+7—y
Qd”";( d+7—j+1 )
By Macaulay’s theorem, any ideal Z with
N-1+d-
mm@z< * q)
d—q

must satisfy

_ N-1+d+7 N-1+d—q+r
dim Ty, > — Quir = .
im d+_( d4r ) Qat < d—q+r >

O

Gotzman [Got78] showed that if 7 is generated in degree at most d, then
equality is achieved for all 7 in (7.6.2) if equality holds for 7 = 1. This is the
slowest possible growth of an ideal. Ideals satisfying this minimal growth
exist. For example, lex-segment ideals satisfy this property, see [Gre98].
These are the ideals, say generated by K elements, where the generators
are the first K monomials in lexicographic order. For 1 < K < M, the
generators are xil, xfflxg, el xfflxK. For M+1 < K < 2M, the generators
are m‘ll_lxj,x(f_%gxs, 1<7<M,2<s<K-—-M, etc...

In general, slow growth occurs because there are syzygies among the
generators of the ideal, that is there are relations of the form P;Qq1 + --- +
P.Q), = 0, where P; € 7 and the (); are polynomials of low degree. For any
ideal, one has tautological syzygies, called the Koszul syzygies with r = 2
and Q1 = P and Q3 = — P;. Ideals which have only these syzygies grow fast.
Explicitly, the fastest possible growth of an ideal generated in degree d by
K < N generators is like that of a complete intersection: a variety X C PV
of codimension ¢ is a complete intersection if its ideal can be generated by
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¢ elements. The degree D component of an ideal generated in degree d by
K generators that grows like a complete intersection ideal has dimension

(7.6.4) Sy <K> (N e 1>

=1 J

Froberg [Fro85] conjectures ideals with this growth exist even when K >
N and Iarrobino [Iar97] conjectures further that the ideal generated by
¢4, ... 04 with the ¢; general, has this growth (this is known for K < N).

Exercise 7.6.1.3: (2) Prove directly that (7.6.4) holds for an ideal gener-
ated by ¢4, 44. ©

The study of the growth of ideals is a classical subject in algebraic ge-
ometry. The function HilbF.(Z) := dimZ; is called the Hilbert function of
the ideal Z C Sym(V).

7.6.2. Lower complexity bounds for perm,, (and det,) for depth
four circuits.

Theorem 7.6.2.1. [GKKS13a] Any SII°V™IIOWV™) circuit that com-
putes perm,, or det,, must have top fanin at least 282vm)

In other words [perm,,] & os(MJ9(oy (M J™=9(P™°~1)))), for s = 20V™)
and ¢ = O(y/m). In fact they show [perm,,| & oy(MJ4(PS™=9C™)).

Recall the Jacobian varieties from §6.3.2. The dimension of Zeros(P) jquc i
is a measure of the nature of the singularities of Zeros(P). The proof pro-
ceeds by comparing the Hilbert functions of Jacobian varieties.

If P=Q1---Qp is the product of p polynomials, and k£ < p, then Z 4. 1
will be of codimension at most k 4+ 1 because it contains Zeros(@Q;,) N ---N

Zeros(Qi, ) for all (iy,...,ix41) C [p).

Now o(MJI(PS™4C™")) does not consist of polynomials of this form,
but sums of such. With the sum of m such, we can arrive at a smooth
hypersurface. So the goal is to find a pathology of Q1 --- @), that persists
even when taking sums. (The goal is to find something that persists even
when taking a sum of 2V such!)

In this situation, the dimension of the space of partial derivatives (rank
of the flattenings) is not small enough to prove the desired lower bounds.
However, the image of the flattening map will be of a pathological nature,
in that all the polynomials in the image are in an ideal generated by a small
number of lower degree polynomials. To see this, when P = Q1 - - - Q,,, with
deg(Q;) = ¢, any first derivative is in Zj SV (Qy - Q] -+ Qp), where
the hat denotes omission. The space of k-th derivatives, when k < p, is in
Z‘lek SIFY . (Qy - - le . -ij -++Qp). In particular, it has dimension at
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most

(7.6.5) <Z> dim ST+V = (i) (V +3_ Z - 1).

More important than its dimension, is its structure: the ideal it gener-
ates, in a given degree D “looks like” the polynomials of degree D — k times
a small fixed space of dimension (Z)

This behavior is similar to the lex-segment ideals. It suggests comparing
the Hilbert functions of the ideal generated by a polynomial computable by a
“small” depth four circuit, i.e., of the form ijl Q1; - - - Qpj with the ideal
generated by the partial derivatives of the permanent, which are just the
sub-permanents. As remarked earlier, even the dimension of the zero set
of the size k subpermanents is not known in general. Nevertheless, we just
need a lower bound on its growth, which we can obtain by degenerating it
to an ideal we can estimate.

First we get an upper bound on the growth of the ideal of the Jacobian
variety of Q1 ---Qp: By the discussion above, in degree m — k + 7 it has
dimension at most

p : q—k+ry, _ (P V+T+q*k*1
(kz) dim S V = <k:)< g—k .

To get the lower bound on the growth of the ideal generated by sub-
permanents we use a crude estimate: given a polynomial f given in co-
ordinates, its leading monomial in some order (say lexicographic), is the
monomial in its expression that is highest in the order. So if an ideal is
generated by fi,..., fy in degree d, then in degree d + 7, it is of dimension
at most the number of monomials in degree d + 7 divisible by a leading
monomial from one of the f;.

If we order the variables in C™* byyi >ys > >yl >y > o> ym
then the leading monomial of any sub-permanent is the product of the el-
ements on the principal diagonal. Even working with this, the estimate
is difficult, so in [GKKS13a] they restrict further to only look at lead-
ing monomials among the variables on the diagonal and super diagonal:
{yh, . ym yd,v3, ... ym~ . Among these, they compute that the num-

ber of leading monomials of degree ¢ is (2"3_6). In our case, 6 = m — k and

D=714+m—k. Let Igermm’k C S4C™ denote the degree d component of
the ideal generated by the order k partial derivatives of the permanent, i.e.,
the k-th Jacobian variety of perm,,. In [GKKS13a], Igermm’k is denoted
(0=F perm,,,)—4_m. We have

2
. perm,, ,k > m+k m*+ 71— 2k
(7.6.6) dim I~ " > ( ok - ,
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and

det. m+k\ (m?+1—2k
. . "L? > .
(7 6 7) dim Im k+1 = < 2% ) ( T

Putting the estimates together, if we want to realize the permanent by size
s SIIPVmM BIIOGV™) circuit, we need
+k\ (m?+71—2k
(") (")
- (c\/ﬁ—l—k) (m2+7+(\/ﬁfl)k)
k

m2

(7.6.8)

Theorem 7.6.2.1 follows by setting 7 = m3 and k = em? where € is a
constant defined below. To see this, one calculates (using the estimates of
§7.5.1):

(m2+m% 5—26\/7’71)

In —m2 = —2ey/mIny/m — ey/m £ O(1)
(m2+m7 +(\éﬁ—1)5\/ﬁ)

m24ey/m
( S 2evim ) \/>26]H£+26
((C+E ")

+(cte) €

In( )+ (1 —
c+ € c+ € c+ €

)In(1 — — )]+ O(lnm)

These imply
> 1 +0(1
In(s) > evIn -+ 0(1)
so choosing € such that 46(C+6) e, yields In(s) > Q(y/m).

7.6.3. Shifted partial derivatives cannot separate permanent from
determinant. Recall the notations for a polynomial P € S™V, that If’k =
(07FP)_y4_,, is the degree d component of the ideal generated by the order
k partial derivatives of P, i.e., the degree d component of the ideal of the
k-th Jacobian variety of P.

Theorem 7.6.3.1. [ELSW16] There exists a constant M such that for all
m > M, every n > 2m? + 2m, any 7, and any k < n,

perm,, k dety ,k
dim In+T ™t <dim [, 7

In other words
dim(0=* (""" perm,,)) =, < dim(97* det,,)—,
The proof of Theorem 7.6.3.1 splits into four cases:

e (C1) Case k>n— <. This case has nothing to do with the padded
permanent or its derlvatlves the estimate is valid for any polyno-
mial in m? + 1 variables.
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e (C2) Case 2m < k < n —2m. This case uses that when k < n —m,
the Jacobian ideal of any padded polynomial ¢"~™P € S"™W is
contained in the ideal generated in degree n — m — k by ¢»~m=F
which has slowest growth by Macaulay’s theorem.

e (03) Case k < 2m and 7 > 3n%*m. This case is similar to case C2,
only a degeneration of the determinant is used in the comparison.

e (C4) Case k <2mand T < %. This case uses (7.6.7) and compares
it with a very crude upper bound for the dimension of the space of
the shifted partial derivatives of the permanent.

Note that C1, C2 overlap when n > 2m? + 2m and C3, C4 overlap when
n > mTz, so it suffices to take n > 2m? + 2m.

Case C1. The assumption is (m + 1)(n — k)<n. It will be sufficient to

show that some R € End(W)-det,, satisfies dim Iﬁfkifermm’k <dimI f;kk i

Block the matrix x = (zf) € (C”2, with 1 < s,u < n, as a union of n — k
blocks of size m x m in the upper-left corner plus the remainder, which by
our assumption includes at least n — k elements on the diagonal. Set each
diagonal block to the matrix (y;), with 1 <i,7 < n, (there are n — k such
blocks), fill the remainder of the diagonal with ¢ (there are at least n — k
such terms), and fill the remainder of the matrix with zeros. Let R be the
restriction of the determinant to this subspace. Then the space of partials
of R of degree n — k, If;kk C S"kC"* contains a space of polynomials

. . _ 2 gmom k _ 2
isomorphic to S»~*C™ *+1 and I, Pemim - — gn=kCm"+1 56 we conclude.

Example 7.6.3.2. Let m =2, n = 6, k = 4. The matrix is

yi Y
viow
vi Y
vty
L
L
The polynomial (yi)? is the image of W and the polynomial yiy3

. . o4
is the image of 92702305058

Case C2. Aslong as k < n —m, Iﬁn_ikm permy k- — gn—m—k . S™W, so

2
. L~ perm,,, ,k n“+m+7-—-1
(7.6.9) dim 7, _, .~ < ( o )
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By Corollary 7.6.1.2, with N = n?, d =n —k, and d — ¢ = m, it will be

sufficient to show that
2 2
—1
(7.6.10) dim 190 * — <Z> > dim S™W = (” m >

m

In the range 2m < k < n — 2m, the quantity (Z) is minimized at k£ = 2m
and kK = n — 2m, so it is enough to show that

(7.6.11) (27:)1)2 > (”2 +WT N 1).

The estimates of §7.5.1 show that this holds when (5% — 1)* > (%2 — =)
which holds for all sufficiently large m when n > m?.

[y

Case C3. Here simply degenerate det,, to R = ¢] + {3 by e.g., setting all
diagonal elements to ¢1, all the sub-diagonal elements to £ as well as the
(1, n) -entry, and setting all other elements of the matrix to zero. Then
IR e = span{@"_k,ﬂg_k}. Since this is a complete intersection ideal,

2 2
. TRk n“+7-1 n“+r1—(n—k) —1
(7.6.12) dim .7 = 2< . ) ( = k) .

Using the estimate (7.6.9) from Case C2, it remains to show

2<n2 +T7' - 1) B (n2 +Tr::: - 1) B <n2 +:_—((:_—kl<;) - 1) -0

Divide by ("thl). We need

(7.6.13) 2>ﬁ"2+7+m_j+7ﬁ67—j
o i T+m—j j:1n2+7-—]
m n2 n—k n2
(7.6.14) ];[ r+m—j)+j11(1_n2+7—j)'
The second line is less than
n2 ’I’L2
(7.6.15) (L+—=)"+ (1 - m)"—’f.

Consider (7.6.15) as a function of 7. Write 7 = n?md, for some constant §.
Then (7.6.15) is bounded above by

n

1 2_
es +es ms,

The second term goes to zero for large m, so we just need the first term to
be less than 2, so take, e.g., § = %
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Case C4. Compare (7.6.7) with the very crude estimate
k 2 2
. "™ perm, k m n“+71—1
R SZ()(j) ( r >
j:

where Z?:o (?)2 is the dimension of the space of partials of order k of

"™ perm,,, and the ("2+TT_1) is what one would have if there were no

syzygies. One then concludes using the estimates of §7.5.1, although it is
necessary to split the estimates into two sub-cases: k > 3 and k < 3. See
[ELSW16] for details.

7.7. Polynomial identity testing, hitting sets and explicit
Noether normalization

I give an introduction to the three topics in the section title. Hitting sets are
defined with respect to a coordinate system, however they reflect geometry
that is independent of coordinates that merits further study.

For simplicity, I work with homogeneous polynomials, and continue to
work exclusively over C.

7.7.1. PIT. If someone hands you a homogeneous polynomial, given in
terms of a circuit, or in terms of a sequence of symmetrizations and skew-
symmetrizations (as often happens in representation theory), how can you
test if it is identically zero?

I will only discuss “black box” polynomial identity testing (henceforth
PIT), where one is only given the output of the circuit, as opposed to “white
box” PIT where the structure of the circuit may also be examined.

Consider the simplest case: say you are told the polynomial in N-
variables is linear. Then it suffices to test it on N points in general linear
position in PY~1. Similarly, if we have a conic the projective plane, six
general points suffice to test if the conic is zero (and given six points, it is
easy to test if they are general enough).

Any P € S%C? vanishing on any d+ 1 distinct points in P! is identically

zero. More generally, for P € SICV, (NJijl) sufficiently general points in

PN—1 suffice to test if P is zero. If N,d are large, this is not feasible. Also,
it is not clear how to be sure points are sufficiently general. Fortunately, for
a small price, we have the following Lemma, which dates back at least to

[AT92], addressing the “sufficiently general” issue:

Lemma 7.7.1.1. Let ¥ be a collection of d + 1 distinct nonzero complex
numbers, let N = {(c1,...,cn) | ¢ € £}. Then any P € SCVN vanishing
on ¥V is identically zero.
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Proof. Work by induction on N, the case N = 1 is clear. Write P as a
polynomial in xy: P(z1,...,2N8) = Z;l:OPj(xl, ..., TN_1)T} where Pj €
S4=iCN=1 and assume P vanishes on V. For each (cy,...,cn_1) € 2N 71,
P(c1,...,cn_1,zy) is a polynomial in one variable vanishing on !, and is
therefore identically zero. Thus each P; vanishes identically on YN and
by induction is identically zero. O

Now say we are given a polynomial with extra structure and we would
like to exploit the structure to determine if it is non-zero using a smaller set
of points than V. If we are told it is a d-th power (or zero), then its zero
set is simply a hyperplane, so N 4+ 1 points in general linear position again
suffice. Now say we are told it has low Waring rank. How could we exploit
that information to find a small set of points to test?

7.7.2. Hitting sets.

Definition 7.7.2.1. (see, e.g, [SY09, §4.1]) Given a subset C C C[xy,x2,...,xN],
a finite subset H C C is a hitting set for C if for all nonzero f € C, there
exists a € H such that f(«) # 0.

Lemma 7.7.1.1 provides an explicit, size (d 4 1)V hitting set for S4CV.
Call this the naive (d, N)-hitting set.
In geometric language, a hitting set is a subset # C C» such that the

evaluation map evaly : c("iY) = M satisfies evaly~1(0)NC = 0.

Existence of a hitting set implies black box PIT via the evaluation map.
Lemma 7.7.2.2. [HS82] There exist hitting sets for

Cs = {f € S4C" | 3 a size s circuit computing f},

with size bounded by a polynomial in s,d and n.

7.7.3. Waring rank. Returning to the problem of finding an explicit (in

the computer science sense, see §6.1.3) hitting set for polynomials of small

Waring rank, recall that we do not know defining equations for o, (vg(PN 1)),

N—&-L%J—l)

gl

namely the flattenings. So it is easier to change the question: we sim-

d|rd
ply look for a hitting set for the larger variety Flat,LZJ’[QW(SdV) ={P ¢
Sy | mnk(PLgJ (é]) < r}, where Plajray - Slely+ - 121V is the par-
24012 24012
tial derivative map. We have a considerable amount of information about
d|rd

Flatt2 T2 (gay),

Consider the case r = 2: our polynomial is of the form P = (A\jz; +

o ANEN) (a4 - pvay)?, for some A, pj € C. It is no longer sufficient

however, we do have some equations, at least as long as r < (
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to check on the N coordinate points, as it could be that )\? + u;l = 0 for
all 7 but P is nonzero. On the other hand, there cannot be too much
“interference”: restrict to the (g ) coordinate P’s: it is straightforward to
see that if all these restrictions are identically zero, then the polynomial
must be zero. Moreover, each of those restrictions can be tested to be zero
by just checking on d 4+ 1 points on a line. Rephrasing geometrically: no
point of o (vg(PNY~1)) has a zero set that contains the (];[) PY’s spanned by
pairs of points from any collection of N points that span PY~!. (Compare
with Lemma 2.6.2.1.) In contrast, consider ¢;---f¢; = 0: it contains d-

hyperplanes!

The general idea is that, if the flattening rank of P is small and P is
not identically zero, then for some “reasonably small” k, there cannot be a
collection of (]Z ) P*~1’s spanned by k subsets of any set of N points spanning
PN=1 in the zero set of P. In coordinates, this means there is a monomial
in the expression for P that involves at most k variables, so it will suffice to
restrict P to each of the (]Z ) coordinate subspaces and test these restrictions
on a naive (d, k)-hitting set.

From the example of P = f1---/{4, we see that “small” means at least
that r < (L]gj)’ In [FS13a], they show that we may take k = log(r). (Note

that if r is close to 2%, the assertion becomes vacuous as desired.) Explicitly:

Theorem 7.7.3.1. [FS13a] Let H consist of the (d+ 1)"“‘(],:[) points of naive

hitting sets on each coordinate P*='. Then H is an explicit hitting set for

{Pc siCN | rank(PLd] [g]) < 2F}, in particular for points of oy (vg(PN—1)).
2002

An even better hitting set is given in [FSS13].
Recall ROABP’s from §7.3.4.

Theorem 7.7.3.2. [FS13b] Let C C C[xy, ..., z,] denote the set of polyno-
mials computable by a depth n, width at most w, degree at most r ROABP.
Then C has an explicit hitting set H of size poly(n,w,r)°01s™) (quasi-
polynomial size). Furthermore, one can take H C Q™.

7.7.4. Efficient Noether normalization. One of the difficulties in un-
derstanding Det,, C PS"C"” is that its codimension is of size exponential
in n. It would be desirable to have a subvariety of at worst polynomial
codimension to work with, as then one could use additional techniques to
study its coordinate ring. If one is willing to put up with the destruction
of external symmetry, one might simply take a linear projection of Det,, to
a small ambient space. By Noether-Normalization §3.1.4, we know that a
“random” linear space of codimension, say 2n* would give rise to an iso-
morphic projection. However what one would need is an explicit such linear
space. In [Mul12] Mulmuley considers this problem of explicitness, in the
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context of separating points of an affine variety (described below) via a small
subset of its coordinate ring. Call S C C[X] a separating subset if for all
x,y € X, there exists f € S that distinguishes them, i.e., f(z) # f(y).

Remark 7.7.4.1. In [Mull2] the desired linear projection is referred to as
a “‘normalizing map”, which is potentially confusing to algebraic geometers
because it is not a normalization of the image variety.

Consider | End(C™)®" which is an SL,,-variety under the diagonal ac-
tion. Write A= A; @ --- @ A, € End(C™)®".

Theorem 7.7.4.2. [Raz74, Pro76] [First fundamental theorem for matrix
invariants] C[End(C™)®"]5Lm is generated by

To(A) = trace(Aqy, - Ag,), kK <m?, ayg,...,ap € [r].

It is also known that if one takes k < L”%J one does not obtain gen-
erators. In particular, one has an exponentially large (with respect to m)
number of generators.

Put all these polynomials together in a generating function: let y = (y;),
1 <j<m? 1<s<r and define

T(y, A) := trace[(Id +y{ A1 + -+ y{ A) - (Id 4y 2 A+ + Y2 Ap)]

The right hand side is an IMM, even a ROABP. Thus all the generating
invariants may be read off as the coefficients of the output of an ROABP.
This, combined with Theorem 7.7.3.2 implies:

Theorem 7.7.4.3. [FS13a] There exists a poly(n,r)°1°8™) _sized set H C
C[End(C™)®"5Lm of separating invariants, with poly(n,r)-explicit ABP’s.
In other words, for any A, B € End(C™)®", there exists f € C[End(C™)®"]5Lm
with f(A) # f(B) if and only if there exists such f € H.

Remark 7.7.4.4. A more geometric way of understanding Theorem 7.7.4.3
is to introduce the GIT-quotient End(C™)®" J SL,, (see §9.5.2), which is an
affine algebraic variety whose coordinate ring is C[End(C™)®"]5m. Then
H is a subset that separates points of the GIT-quotient End(C™)®" / SL,y,.

The following conjecture appeared in the 2012 version of [Mul12]:
Conjecture 7.7.4.5. [Mul12] Noether normalization can be performed ex-
plicitly for End(C™)®" J SL,, in polynomial time.

Conjecture 7.7.4.5 motivated the work of [FS13a], as Theorem 7.7.4.3
implies:

Corollary 7.7.4.6. [FS13a] Noether normalization can be performed ex-
plicitly for End(C™)®" ) SL,, in quasi-polynomial time.
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Remark 7.7.4.7. The PIT problem is the word problem for the field of
rational functions over a set of commuting variables. One can ask the same
for the (free) skew field over non-commuting variables. This is answered
in [GGOW15] where there are connections to and implications for many
areas including PIT, quivers and GIT questions.



Chapter 8

Representation theory
and its uses in
complexity theory

In this chapter I derive the representation theory of the general linear group
GL(V) and give numerous applications to complexity theory. In order to
get to the applications as soon as possible, I summarize basic facts about
representations of GL(V') in §8.1. The first application, in §8.2, explains the
theory of Young flattenings underlying the equations that led to the 2n%> —n
lower bound for the border rank of matrix multiplication (Theorem 2.5.2.6).
I also explain how the method of shifted partial derivatives may be viewed
as a special case of Young flattenings. Next, in §8.3, I briefly discuss how
representation theory has been used to find equations for secant varieties
of Segre varieties and other varieties. In §8.4, I describe severe restrictions
on modules of polynomials to be useful for the permanent v. determinant
problem. In §8.5, I give the proofs of several statements about Det,, from
Chapter 7. In §8.6, I begin to develop representation theory via the dou-
ble commutant theorem, the algebraic Peter-Weyl theorem and Schur-Weyl
duality. The reason for this choice of development is that the (finite) Peter-
Weyl theorem is the starting point of the Cohn-Umans program of §3.5 and
the algebraic Peter-Weyl theorem was the starting point of the program of
[MS01, MSO08] described in §8.8. The representations of the general linear
group are then derived in §8.7. In §8.8 I begin a discussion of the program
of [MS01, MSO08|, as refined in [BLMW11], to separate the permanent
from the determinant via representation theory. This is continued in §8.9,
which contains a general discussion of plethysm coefficients, and §8.10, which

223
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presents results of [IP15] and [BIP16] that show this program cannot work
as stated. I then, in §8.11 outline the proofs of Theorems 7.4.1.1 and 7.4.1.4
regarding equivariant determinantal expressions for the permanent. I con-
clude, in §8.12 with additional theory how to determine symmetry groups
of polynomials and illustrate the theory with several examples relevant for
complexity theory.

8.1. Representation theory of the general linear group

Irreducible representations of GL(V) in V®¢ are indexed by partitions of
d with length at most v, as we will prove in Theorem 8.7.1.2. Let S;V
denote the isomorphism class of the irreducible representation associated to
the partition m, and let SV denote some particular realization of S;V in
V@ In particular SV = SV and Sa,.nV = AV where there are d 1’s.
For a partition 7 = (p1,...,pk), write |7| =p1 +---+pr and I(7) = k. Ifa
number is repeated I sometimes use superscripts to record its multiplicity,
for example (2,2,1,1,1) = (22,13).

To visualize m, define a Young diagram associated to a partition 7 to
be a collection of left-aligned boxes with p; boxes in the the j-th row, as in
Figure 8.1.1.

Figure 8.1.1. Young diagram for 7 = (4,2, 1)

Define the conjugate partition 7’ to 7 to be the partition whose Young
diagram is the reflection of the Young diagram of 7 in the north-west to
south-east diagonal.

Figure 8.1.2. Young diagram for ' = (3,2, 1, 1), the conjugate parti-
tion to m = (4,2,1).
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8.1.1. Lie algebras. Associated to any Lie group G is a Lie algebra g,
which is a vector space that may be identified with T1qG. For basic infor-
mation on Lie algebras associated to a Lie group, see any of [Spi79, IL16b,
Pro07].

When G = GL(V), then g = gl(V) := V*@V. If G C GL(V), so that G
acts on V¥4, there is an induced action of g C gl(V) given by, for X € g,

X.(01@02® - - - Qug)
= (X01)®02® -+ Qg + 11Q(X02)R - Qug + -+ + 11QVR + - - QUg_1 (X .vg).

To see why this is a natural induced action, consider a curve g(¢) C G with
g9(0) =1d and X = ¢’(0) and take

d d

p lt=0 g(t) - (11® - @ug) = i li=0 (9(t) - v1)® -+ - @(g(2) - va)-
One concludes by applying the Leibnitz rule.

8.1.2. Weights. Fix a basis e1,...,ey of V, let T C GL(V) denote the
subgroup of diagonal matrices, called a mazimal torus, let B C GL(V) be
the subgroup of upper triangular matrices, called a Borel subgroup, and let
N C B be the upper triangular matrices with 1’s along the diagonal. The
Lie algebra n of N consists of nilpotent matrices. Call z € V®? a weight
vector if T'[z] = [z]. If

I

T

we say z has weight (p1,...,pyv) € ZY.

Call z a highest weight vector if Blz] = [z], i.e., if Nz = z. If M is
an irreducible GL(V)-module and z € M is a highest weight vector, call
the weight of z the highest weight of M. A necessary condition for two
irreducible GL(V)-modules to be isomorphic is that they have the same
highest weight (because they must also be isomorphic T-modules). The
condition is also sufficient, see §8.7.

Exercise 8.1.2.1: (1) Show that z is a highest weight vector if and only if
n.z=0.

The elements of n are often called raising operators.

Exercise 8.1.2.2: (1) Show that if 2 € V®¢ is a highest weight vector of
weight (p1,...,pv), then (p1,...,py) is a partition of d. ®

When G = GL(A1) x -+ x GL(A,,), the maximal torus in G is the
product of the maximal tori in the GL(A;), and similarly for the Borel. A
weight is then defined to be an n-tuple of weights etc...
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Because of the relation with weights, it will often be convenient to add
a string of zeros to a partition to make it a string of v integers.

Exercise 8.1.2.3: (1) Show that the space S?(S2C?) contains a copy of
S(2,2)C? by showing that (27)(23) — (z122)(z122) € S?(S2C?) is a highest
weight vector.

Exercise 8.1.2.4: (1!) Find highest weight vectors in V, S2V, A2V, S3V, A3V
and the kernels of the symmetrization and skew-symmetrization maps V@S2V —
S3V and V®A?V — A3V. Show that both of the last two modules have
highest weight (2,1), i.e., they are realizations of Si; )V

Exercise 8.1.2.5: (2) More generally, find a highest weight vector for the
kernel of the symmetrization map V@S9V — SV and of the kernel of
the “exterior derivative” (or “Koszul”) map

(8.1.1) SFVQAY — SEly @AY
k
xl---xk®y1/\---/\yt»—>le---:ﬁj---xk®wj/\y1/\---/\yt.
j=1

Exercise 8.1.2.6: (1!) Let m = (p1,...,p¢) be a partition with at most v
parts and let 7' = (q1,. .., ¢gp,) denote the conjugate partition. Show that

(81.2) zz = (e1 A" Neg)R(e1 A+ Aeg)R- - @(er A+ A eqpl) e Vel
is a highest weight vector of weight 7.

8.1.3. The Pierirule. Idescribe the decomposition of S;V®V asa GL(V)-
module. Write 7' = (q1,...,¢qp,) and recall z; from (8.1.2). Consider the
vectors:

(1 A Ay Aeqe)®(e1 A Acg)® - Bler A~ Aeg,)

(e1 A Neg)®(e1 A Neg )@ ®(e1 A Aeg, Aeg, +1)
(1A Neg)®(er A Aeg )@+ ®(er A+ Aeg, )®er.

These are all highest weight vectors obtained by tensoring z, with a vector
in V and skew-symmetrizing appropriately, so the associated modules are
contained in S;V®V. With a little more work, one can show these are
highest weight vectors of all the modules that occur in S;V&@V. If ¢; =
¢j+1 one gets the same module if one inserts eg4;11 into either slot, and its
multiplicity in S;V®V is one. More generally one obtains:

Theorem 8.1.3.1 (The Pieri formula). The decomposition of S, V@S9V is
multiplicity free. The partitions corresponding to modules S,V that occur
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are those obtained from the Young diagram of w by adding d boxes to the
diagram of 7, with no two boxes added to the same column.

Definition 8.1.3.2. Let m = (p1,...,pym)), b = (m1,...,my(,) be parti-
tions with [(u) < I(7) One says p interlaces wif p1 > my > py > mg > -+ >

My(x)—1 = Pi(n)-

Exercise 8.1.3.3: (1) Show that S;V®S 4V consists of all the S,V such
that |u| = || + d and 7 interlaces p.

Exercise 8.1.3.4: (1) Show that a necessary condition for S;V to appear
in S4(S"V) is that I(7) < d.

Although a pictorial proof is possible, the standard proof of the Pieri
formula uses a character (see §8.6.7) calculation, computing XrX(d) a8 &
sum of x,’s. See, e.g., [Mac95, §1.9]. A different proof, using Schur-Weyl
duality is in [GWO09, §9.2]. There is an algorithm to compute arbitrary
tensor product decompositions called the Littlewood Richardson Rule. See,
e.g., [Mac95, §1.9] for details.

Similar considerations give:

Theorem 8.1.3.5. [The skew-Pieri formula] The decomposition of S, V@A*V
is multiplicity free. The partitions corresponding to modules S,V that oc-

cur are those obtained from the Young diagram of m by adding k boxes to
the diagram of 7, with no two boxes added to the same row.

8.1.4. The GL(V)-modules not appearing in the tensor algebra of
V. The GL(V)-module V* does not appear in the tensor algebra of V. Nor
do the one-dimensional representations for k > 0, det™* : GL(V) — GL(C")
given by, for v € C!, det % (g)v := det(g) *v.

Exercise 8.1.4.1: (1) Show that if 7 = (p1,...,py) with py > 0, then
det ™' @SV =S -1. po-1)V- @

Exercise 8.1.4.2: (1) Show that as a GL(V)-module, V* = AV~ 'V det ! =
Siv-1V@det™. ©

Every irreducible GL(V)-module is of the form S;V®det™* for some
partition 7 and some k > 0. Thus they may be indexed by non-increasing
sequences of integers (p1,...,py) where p; > p2 > -+ > py. Such a module
is isomorphic to S, _py ... py_1—py,0)V @ detv.

Using

S VRV = S, VAV Ve det ™,

we may compute the decomposition of S;V®V* using the skew-symmetric
version of the Pieri rule.
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Example 8.1.4.3. Let w = 3, then
S(32) W@W* = S(43)W® det_l @S(331)W® det_l EBS(421)W® det_l
= S(43)W® det_l @S(QQ)W ¥ S(gl)W

The first module does not occur in the tensor algebra but the rest do.

8.1.5. SL(V)-modules in V®9. Every SL(V)-module is the restriction to
SL(V) of some GL(V)-module. However distinct GL(V')-modules, when re-
stricted to SL(V') can become isomorphic, such as the trivial representation
and AVV = Sv)V = det’.

Proposition 8.1.5.1. Let # = (p1,...,py) be a partition. The SL(V)-
modules in the tensor algebra V® that are isomorphic to S;V are S,V with
p=(p1+j,p2+J,...,pv +j) for —py < j < <.

Exercise 8.1.5.2: (2) Prove Proposition 8.1.5.1. ®

For example, for SLy-modules, S, ,, C? ~ SP1=P2C2. We conclude:

Corollary 8.1.5.3. A complete set of the finite dimensional irreducible rep-
resentations of SLo are the S4C? with d > 0.

The GL(V)-modules that are SL(V)-equivalent to S;V may be visu-
alized as being obtained by erasing or adding columns of size v from the
Young diagram of m, as in Figure 8.1.5.

L s ) ; y T

Figure 8.1.3. Young diagrams for SLz-modules equivalent to Si21C>

The Lie algebra of SL(V'), denoted s[(V), is the set of traceless endomor-
phisms. One can define weights for the Lie algebra of the torus, which are
essentially the logs of the corresponding torus in the group. In particular,
vectors of sl-weight zero have GL(V')-weight (d,...,d) = (dV) for some d.
Exercise 8.1.5.4: (1!) Let 791 ¢ SL(V) be the diagonal matrices with
determinant one. Show that (V®d)TSL is zero unless d = dv for some natural
number ¢ and in this case it consists of all vectors of weight (V).

8.2. Young flattenings

Most known equations for border rank of tensors, i.e., polynomials in the
ideal of the variety o,(Seg(PA; x --- x PA,,)) and symmetric border rank
of polynomials, i.e., polynomials in the ideal of the variety o, (vy(PV)), are
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obtained by taking minors of some auxiliary matrix constructed from the
tensor (polynomial). What follows is a general way to use representation
theory to find such matrices.

8.2.1. The case of polynomials. Let P € S%V. Recall the flattenings
from §6.2: Pypqj : SKV* — S97KV. Flattenings give rise to a GL(V)-
module of equations because SV C S*V®S? ¥V, The generalization is
similar:

Proposition 8.2.1.1. Given a linear inclusion SV C UQW, ie., SV is
realized as a space of linear maps from U* to W, say the rank of the linear

map associated to (% is ro. If the rank of the linear map associated to P is
r, then Rg(P) > ~.

70

Exercise 8.2.1.2: (1!) Prove Proposition 8.2.1.1. ®

This method works best when ry is small. For example in the classical
flattening case rg = 1.

We will take U,W to be GL(V)-modules and the linear inclusion a
GL(V)-module map because I(o,(v4(PV))) is a GL(V)-module. It turns
out that we know all such maps. The Pieri rule §8.1.3 says they are all
of the form SV SzV*®S5,V where the Young diagram of 1 is obtained
from the Young diagram of m by adding d boxes, with no two boxes added
to the same column. To make this completely correct, we need to con-
sider sequences with negative integers, where e.g., the Young diagram of
(—d) should be thought of as —d boxes in a row. Alternatively, one can
work with SL(V)-modules, as then det™® = S—a)V = Sav-1)V as SL(V)-
modules. For every such pair (, u) there is exactly one GL(V)-inclusion.
Call the resulting linear map a Young-flattening.

The classical case is 7 = (—k) and p = (d — k), or in terms of SL(V)-
modules, 7 = (k¥~!) and p = (kV,d — k). The main example in [LO13],
called a (polynomial) Koszul flattening was constructed as follows: take the
classical flattening Py g, : SEV* — S9-kV and tensor it with Idapy for
some p, to get a map SFV*®@APV — STFV®APV. Now include S¥*V C
S4=F=1Y @V, to obtain a map S*V*@APV — S9F-1V@V®APV and finally
skew-symmetrize the last two factors to obtain a map

(8.2.1) Ph L SFVEQAPY - SRy gAY

If one views this as a map SV @(SFV*@APV) — Sk IV @APHIV it is a
GL(V)-module map. By the Pieri rule,
(SPV*RAPV)* = S(j1v-n) V@ det ™ @S5 1 1v—p-1) V@ det ™!

and
Sd*k*lV@AP“FlV e S(d_k_171p+1)v @ S(d*k,lp)v
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Although in practice one usually works with the map (8.2.1), the map is
zero except restricted to the map between irreducible modules:

[Skv-r V@ det ™" = Sig_p1m) V.

The method of shifted partial derivatives §7.6 is a type of Young flatten-
ing which I will call a Hilbert flattening, because it is via Hilbert functions
of Jacobian ideals. It is the symmetric cousin of the Koszul flattening: take
the classical flattening Py q— : SkV* — S9FV and tensor it with Idgey
for some ¢, to get a map S*V*®SV — SV @SV, Now simply take the
projection (multiplication map) S¥*V®S‘V — STk to obtain a map

(8.2.2) Ppg_yg - SFVF@S'V — 5T Ry,

The target is an irreducible GL(V')-module, so the pruning is easier here.

8.2.2. The case of tensors. Young flattenings can also be defined for
tensors. For tensors in AR BRQC, the Koszul flattenings Tﬁp : APARB* —
AP A®C used in §2.4 appear to be the only useful cases.

In principle there are numerous inclusions
ARBRC C (87:A®S,B®S,C)* ®(SzA®SB®S;C),

where the Young diagram of 7 is obtained from the Young diagram of w
by adding a box (and similarly for u,v), and the case of Koszul flattenings
is where (up to permuting the three factors) m = (1P), p = (171 (so
S,B ~ B* as SL(B)-modules) and v = (.

Exercise 2.4.1.1 already indicates why symmetrization is not useful, and
an easy generalization of it proves this to be the case for Young flattenings
of tensors. But perhaps additional skew-symmetrization could be useful:
Let T € AQB®C and consider T® Idar 4 ® Idpap ® Idpsc as a linear map
B*QANIB*QAPARQANC — AIB*QAPARARANCRC. Now quotient to the
exterior powers to get a map:

Tpas : AT B* QAP AQASC — ANIB*@APT AQASTIC.

This generalizes the map T;‘\p which is the case ¢ = s = 0. Claim: this
generalization does not give better lower bounds for border rank than Koszul
flattenings when a = b = ¢. (Although it is possible it could give better
lower bounds for some particular tensor.) If T has rank one, say T' = a®b®&c,
the image of T}, , 5 is

A(bH)@(a A APA)D(c A AC).
Here bt := {8 € B* | B(b) = 0}. The image of (a®b®c), 4.5 has dimension

wee= (7))
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Thus the size rdy 4.5 + 1 minors of T}, , s potentially give equations for the
variety of tensors of border rank at most r. We have nontrivial minors as
long as

rdpq.s +1 < min {dim(AqB*®Ap+1A®AS+1), dim(Aq+lB*®ApA®ASC)} )
i.e., as long as

r < min { (pil) (S‘T‘l) (q-ti)-l) (;) (‘s:) }
CHEHED CHENEN ST

- abc abc
b-q)p+1)(s+1)" (¢+1)(a—p)(c—s)

Consider the case ¢ = 0, so we need

}.

r < min{

) { ac abc }
r < min )

(p+1)(s+1)" (a—p)(c—s)

Let’s specialize to a = ¢, p = ¢, so we need

< mi { a2 a’b }
r < min , .
(p+1)? (a—p)?

Consider the case a = mp for some m. Then if m is large, the first term
is large, but the second is very close to b. So unless the dimensions are
unbalanced, one is unlikely to get any interesting equations out of these
Young flattenings.

8.2.3. General perspective. Let X C PV be a G-variety for some reduc-
tive group G, where V = V) is an irreducible G-module.

Proposition 8.2.3.1. Given irreducible G-modules V,,,V,, such that V) C
V@V, andv € V, we obtain a linear map vy, : Vu* — V. Say the maximum
rank of such a linear map for x € X is q, then the size (qr + 1)-minors of
vy, test membership o.(X).

8.3. Additional uses of representation theory to find
modules of equations

In this section, I briefly cover additional techniques for finding modules of
polynomials in ideals of G-varieties. I am brief because either the methods
are not used in this book or they are described at length in [Lan12].
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8.3.1. A naive algorithm. Let X C PW be a G-variety. We are primarily
interested in the cases X = 0,(Seg(PA x PB x PC)) C P(A® B&C'), where
G =GL(A)x GL(B) x GL(C) and X = Det,, C PS"C", where G = GL, .
Since the ideal of X will be a G-module, we can look for irreducible modules
in the ideal of X by testing highest weight vectors. If U C SIW* is an
irreducible G-module with highest weight vector u, then U C I(X) if and
only if u € I(X) because if u € I(X) then g(u) € I(X) for all g € G and
such vectors span U. Thus in each degree d, we can in principle determine
I;(X) by a finite calculation. In practice we test each highest weight vector
uw on a “random” point [z] € X. (If X is an orbit closure it suffices to test
on a point in the orbit.) If u(z) # 0, we know for sure that U ¢ I4(X).
If u(x) = 0, then with extremely high probability (probability one if the
point is truly randomly chosen, and with certainty if dealing with an orbit
closure), we have U C I(X). After testing several such points, we have high
confidence in the result. Once one has a candidate module by such tests,
one can often prove it is in the ideal by different methods.

More precisely, if SW* is multiplicity free as a G-module, there are
a finite number of highest weight vectors to check. If a given module has
multiplicity m, then we need to take a basis u1, ..., u,, of the highest weight
space, test on say z1,...,zq With ¢ > m if 3, yju;(zs) = 0 for some con-
stants y1,...,ym and all 1 < s < gq.

To carry out this procedure in our two cases we would respectively need

- A method to decompose SHA@BRC)* (resp. S%(S"C™)) into irre-
ducible submodules.

- A method to explicitly write down highest weight vectors.

There are several systematic techniques for accomplishing both these
tasks that work well in small cases, but as cases get larger one needs to
introduce additional methods to be able to carry out the calculations in
practice. The first task amounts to the well-studied problem of computing
Kronecker coefficients defined in §8.8.2. I briefly discuss the second task in
§8.7.2.

8.3.2. Enhanced search using numerical methods. Rather than dis-
cuss the general theory, I outline the method used in [HIL13] to find equa-
tions for og(Seg(P? x P3 x P3)). First fix a “random” linear space L C P%
of dimension 4 (i.e., codimog(Seg(P? x P3 x P3))) and consider the finite
set Z := 06(Seg(P3 x P3 x P3)) N L. The first objective is to compute
points in Z, with a goal of computing every point in Z. To this end, we
first computed one point in Z as follows. One first picks a random point
r* € 06(Seg(P? x P3 x P3)), which is easy since an open dense subset of
06(Seg(P? x P3 x P3)) is parameterizable. Let L be a system of 59 linear
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forms so that L is the zero locus of L and let Li .+ be the zero locus of
L(z) —t - L(z*). Since 2* € 0¢(Seg(P? x P3 x P?)) N L ;+, a point in Z is
the endpoint of the path defined by og(Seg(P3 x P3 x P3)) N Ly ,+ at t = 0
starting from z* at t = 1.

Even though the above process could be repeated for different x* to
compute points in Z, we instead used monodromy loops [SVWO1] for gen-
erating more points in Z. After performing 21 loops, the number of points
in Z that we computed stabilized at 15,456. The trace test [SVWO02] shows
that 15,456 is indeed the degree of og(Seg(P? x P3 x P3)) thereby showing
we had indeed computed Z.

From Z, we performed two computations. The first was the membership
test of [HS13] for deciding if My, € o6(Seg(P* x P* x P%)), which requires
tracking 15,456 homotopy paths that start at the points of Z and end on
a P* containing M, (2)- In this case, each of these 15,456 paths converged to
points in og(Seg(P? x P? x P3)) distinct from M 3y providing a numerical
proof that Mgy ¢ o6(Seg(P? x P? x P?)). The second was to compute the
minimal degree of nonzero polynomials vanishing on Z C L. This sequence
of polynomial interpolation problems showed that no non-constant polyno-
mials of degree < 18 vanished on Z and hence on a4 (Seg(P? x P3 x P3)). The
15456 x 8855 matrix resulting from polynomial interpolation of homogeneous
forms of degree 19 in 5 variables using the approach of [GHPS14] has a
64-dimensional null space. Thus, the minimal degree of nonzero polynomials
vanishing on Z C L is 19, showing dim I19(0¢) < 64.

The next objective was to verify that the minimal degree of nonzero
polynomials vanishing on the curve C' := o4(Seg(P3 x P3 x P3)) N K C K
for a fixed “random” linear space K C P53 of dimension 5 was also 19.
We used 50,000 points on C' and the 50000 x 42504 matrix resulting from
polynomial interpolation of homogeneous forms of degree 19 in 6 variables
using the approach of [GHPS14| also has a 64-dimensional null space.
With this agreement, we decomposed S'9(C*@C*®C*) and looked for a 64-
dimensional submodule. The only reasonable candidate was to take a copy of
S5554C1®055554C*®S5554C*. We found a particular copy that was indeed in
the ideal and then proved that M;sy is not contained in o (Seg(P? x P* x P?))
by showing a polynomial in this module did not vanish on it. The evaluation
was numerical, so the result was:

Theorem 8.3.2.1. [HIL13] With extremely high probability, the ideal of

o6(Seg(IP3 xP3 xP3)) is generated in degree 19 by the module S5554C*®S5554C*® S5554C*.
This module does not vanish on M ).
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In the same paper, a copy of the trivial degree twenty module Sx555C*®S5555C*®S5555C4
is shown to be in the ideal of og(Seg(P? x P3 x P3)) by symbolic methods,
giving a new proof that:

Theorem 8.3.2.2. [Lan06, HIL13] R(My)) = 7.

The same methods have shown Iy5(015(Seg(P? x P7 x P8)) = 0 and that
186,999 (015(Seg(PO x PO x PY)) = 0 (this variety is a hypersurface), both of
which are relevant for determining the border rank of M3y, see [HIL13].

8.3.3. Inheritance. Inheritance is a general technique for studying equa-
tions of G-varieties that come in series. It is discussed extensively in [Lan12,
§7.4,616.4].

If V.C W then SzV C V@ induces a module SzW C W& by, e.g.,
choosing a basis of W whose first v vectors are a basis of V. Then the two
modules have the same highest weight vector and one obtains the GL(W)-
module the span of the GL(W)-orbit of the highest weight vector.

Because the realizations of S;V in V®? do not depend on the dimen-
sion of V', one can reduce the study of o,(Seg(PA x PB x PC)) to that of
o, (Seg(P"=1 x Pr=1 x P"~1)). As discussed in §3.3.1 this latter variety is an

orbit closure, namely the orbit closure of M g;

Proposition 8.3.3.1. [LMO04, Prop. 4.4] For all vector spaces Bj with
dimB; = b; > dimA; = a; > r, a module Sy B1®---®Sy B, such
that l(u;) < a; for all j, is in I4(o,(Seg(PB} x --- x PB}))) if and only
if Sp, A1® - - ®Sg, Ap is in Ig(o,(Seg(PA} x --- x PA}))).

Corollary 8.3.3.2. [LM04, ARO03] Let dim A; > r, 1 < j < n. The ideal
of o,.(Seg(PA; x --- xPA,,)) is generated by the modules inherited from the
ideal of o,(Seg(P"! x --- x P"~1)) and the modules generating the ideal
of Sub,. ,(A1®---®Ay). The analogous scheme and set-theoretic results
hold as well.

8.3.4. Prolongation. Prolongation and multi-prolongation provide a sys-
tematic method to find equations for secant varieties that is particularly
effective for secant varieties of homogeneous varieties. For a general dis-
cussion and proofs see [Lan12, §7.5]. For our purposes, we will need the
following:

Proposition 8.3.4.1. Given X C PV*, I,41(0,(X)) = (I(X)®S"1V) N
ST'HV.

Proposition 8.3.4.2. [SS09] Let X C PV be a variety with I;_1(X) = 0.
Then for all 6 < (d —1)r, Is(o,(X)) = 0.

Corollary 8.3.4.3. I;(o4(v,(PV)) = 0.



8.4. GCT useful modules 235

8.4. Necessary conditions for modules of polynomials to be
useful for GCT

The polynomial "~ perm,,, € SnC™ has two properties that can be studied
individually: it is padded, i.e., it is divisible by a large power of a linear
form, and its zero set is a cone with a (n? — m? — 1)-dimensional vertex,
that is, it only uses m? + 1 of the n? variables in an expression in good
coordinates. Both of these properties restrict the types of polynomials we
should look for. Equipped with the language of representation theory we
can give precise descriptions of the modules we should restrict our attention
to, which I call GCT wuseful.

I begin with the study of cones, a classical topic.

8.4.1. Cones. Recall the subspace variety Suby(S4V) C PS4V from §6.2.2,
the polynomials whose associated hypersurfaces are cones with a v — k di-
mensional vertex.

Proposition 8.4.1.1. I5(Suby(S?V)) consists of the isotypic components
of the modules S;V* appearing in S%(S4V*) such that I(7) > k.

Exercise 8.4.1.2: (2!) Prove Proposition 8.4.1.1. ®

With just a little more effort, one can prove the degree k + 1 equations
from Proposition 8.4.1.1 generate the ideal:

Theorem 8.4.1.3. [Wey03, Cor. 7.2.3] The ideal of Suby(S%V) is gener-
ated by the image of AFT1V*@AF1§d=1y* ¢ ShH1(V*@gd-1y/*) in Sk+1(§dy*),
the size k + 1 minors of the (k,d — k)-flattening.

Aside 8.4.1.4. Here is further information about the variety Sub(S%V):
It is an example of a variety admitting a Kempf- Weyman desingularization,
a type of desingularization that G-varieties often admit. Rather than dis-
cuss the general theory here (see [Wey03] for a full exposition or [Lan12,
Chap. 17| for an elementary introduction), I just explain this example,
which gives a proof of Theorem 8.4.1.3, although more elementary proofs
are possible. As was mentioned in §5.4.3, the Grassmannian G(k, V') has a
tautological vector bundle 7 : S — G(k, V'), where the fiber over a k-plane
E is just the k-plane itself. The whole bundle is a sub-bundle of the triv-
ial bundle V with fiber V. Consider the bundle S%S ¢ S?V. We have a
projection map p : S¥V — S%V. The image of S?S under p is S’ubk(SdV).
Moreover, the map is a desingularization, that is S%S is smooth, and the
map to Subk(SdV) is generically one to one. In particular, this implies
dim Suby(S?V) = dim(S%S) = (k+g—1) + d(v — k). One obtains the entire
minimal free resolution of Suby,(S?V) by “pushing down” a tautological res-
olution “upstairs”. From the minimal free resolution one can read off the
generators of the ideal.
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8.4.2. The variety of padded polynomials. Define the variety of padded
polynomials

Pad,,—p, (S"W) =

P{PecS"W | P=/{""h,for some { € W, h € S"W} C PS"W.
Note that Pad,_,(S"W) is a GL(W)-variety.
Proposition 8.4.2.1. [KL14] Let m = (p1,...,pw) be a partition of dn.

If p1 < d(n — m), then the isotypic component of S;W* in S¥(S"W*) is
contained in I13(Pad,,_,(S"W)).

Proof. Fix a (weight) basis eq,..., ey of W with dual basis 1, ..., xyw of
W*. Note any element (" ™h € Pad,_,,(S"W) is in the GL(W)-orbit
of (e1)"™h for some h, so it will be sufficient to show that the ideal in
degree d contains the modules vanishing on the orbits of elements of the
form (e1)"~™h. The highest weight vector of any copy of S, . p.,)W*
in S%(S"W*) will be a linear combination of vectors of the form m; :=
(aczl%xi,‘},")(m?xig"), where 1}—{——}—2? =pj foral 1 <j<wand

z’f + -+ z’jv =n for all 1 <k < d as these are all the vectors of weight 7 in

S4(S"W). Each m; vanishes on any (e;)"~™h unless p; > d(n —m). (For
a coordinate-free proof, see [KL14].) O

What we really need to study is the variety Pad,,_,,(Suby(SW)) of
padded cones.

Proposition 8.4.2.2. [KL14] I;(Pad,,—, (Subi(S"W*))) consists of all mod-
ules S=W such that S=CF is in the ideal of Padn,m(S"(Ck’*) and all modules

whose associated partition has length at least k + 1.
Exercise 8.4.2.3: (2) Prove Proposition 8.4.2.2.

In summary:
Proposition 8.4.2.4. In order for a module S, ., W™, where (p1,---,01)
is a partition of dn to be GCT-useful for showing ¢"~ "™ perm,,, € GL,2 - det,,
we must have
o [ <m?+1, and

e p1 >d(n—m).

8.5. Representation theory and Det,

8.5.1. Proof of Proposition 6.7.2.2. Recall PA(M) = det,,(My, ..., My, Mg)
from §6.7.1 where M = My + Mg is the decomposition of the matrix M
into its skew-symmetric and symmetric components. We need to show
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GL,2 - [PA] has codimension one in Det,, and is not contained in End(C"")-
[det,]. We compute the stabilizer of Py inside GL(E®E), where E = C".
The action of GL(E) on EQE by M +— gMg” preserves Py up to scale, and
the Lie algebra of the stabilizer of [Py ] is a GL(E) submodule of End(EQFE).
Note that sl(E) = S(g1n—2)F and gl(E) = sl(£)@C. Decompose End(E®FE)
as a SL(E)-module:

End(E®E) = End(A%E) ® End(S%E) @ Hom(A?E, S*E) @ Hom(S*E, A*E)
= ANE®AN’E* © S’E®S*E* @ A°E*®S*FE @ S*E*®A*FE
(8.5.1)
= (g[(E) ) SzZJn—QE) (&) (g[(E) b S4’2n—1E) b (5[(E) ) Sgyln—QE) ) (EI(E) b 532,2n—2E)

By testing highest weight vectors, one concludes the Lie algebra of Gp, is
isomorphic to gl(E) @ gl(F), which has dimension 2n? = dim Gget, + 1,
implying GL(W) - Py has codimension one in GL(W) - [det,]. Since it is
not contained in the orbit of the determinant, it must be an irreducible
component of its boundary. Since the zero set is not a cone, Py cannot be
in End(W)-det,, which consists of GL(W)-det,, plus polynomials whose zero
sets are cones, as any element of End(W) either has a kernel or is invertible.

Exercise 8.5.1.1: (3) Verify by testing on highest weight vectors that the
only summands in (8.5.1) annihilating Py are those in gl(E) @ gl(F). Note
that as a gl(F)-module, gl(F) = sl(F) @ C so one must test the highest
weight vector of s[(E) and C.

8.5.2. The module structure of the equations for hypersurfaces
with degenerate duals. Recall the equations for Dy gy C P(SCN*) that
we found in §6.5.3. In this subsection I describe the module structure of
those equations. It is technical and can be skipped on a first reading.

Write P =" ; Pya’ with the sum over |J| = d. The weight of a mono-
mial Py, 270 is Jo = (j1, ..., jn). Adopt the notation [i] = (0,...,0,1,0,...,0)
where the 1 is in the i-th slot and similarly for [i,j] where there are two
I’s. The entries of Py_99 are, for i # j, (Py—22)i;j = PIHM}Q@I, and for
i = 7, PIHMxl, where |[I| = d — 2, and Pj is P; with the coefficient
adjusted, e.g., Pqy,.0 = d(d— 1)]3((1’07._.70) etc.. (This won’t matter be-
cause we are only concerned with the weights of the coefficients, not their
values.) To determine the highest weight vector, take L = span{ej,es},
F = span{ey,...,er13}. The highest weight term of

(7P| A (@5 o PlL) A A (25 0P|L) A (detigs(Pa—zp 7))L

is the coefficient of z§ A 26 tzg A -+ A xi_(e_dw):ngfdﬂ. It will not mat-

ter how we distribute these for the weight, so take the coefficient of z§ in
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(detyy3(Pa—22 |F))|r- It has leading term
Pla0,...0)F(d-220,...0)P(d-2,020,...0) " - Fld2,0,...02,0,...0)

which is of weight (d+ (k+2)(d—2),2"*2). For each (x5~ 9 *235P|) take the

coefficient of :ci_s_lxgﬂ which has the coefficient of P4_1 1, 0) each time,

to get a total weight contribution of ((e —d+1)(d—1),(e —d+1),0,...,0)
from these terms. Adding the weights together, and recalling that e =
(k +3)(d — 2) the highest weight is

(d2k + 2d® — 2dk — 4d + 1, dk + 2d — 2k — 3,28F1),
which may be written as

((k 4 2)(d? = 2d) + 1, (k 4 2)(d — 2) + 1,28,

In summary:

Theorem 8.5.2.1. [LMR13] The ideal of the variety Dy qn C P(SICN¥)
contains a copy of the GLy-module SW(,W)(CN, where

m(k,d) = ((k +2)(d* — 2d) + 1, d(k + 2) — 2k — 3, 2F+1).
Since |7| = d(k + 2)(d — 1), these equations have degree (k + 2)(d — 1).

Observe that the module m(2n — 2, n) indeed satisfies the requirements
to be (m, m72)—GCT useful, as p; = 2n® — 2n% + 1 > n(n —m) and I(7(2n —
2,n)) =2n+ 1.

8.5.3. Dualkd’N v. Dy anN- Recall that Dualy g n C PSYCN* is the Zariski
closure of the irreducible polynomials whose hypersurfaces have k-dimensional
dual varieties. The following more refined information may be useful for
studying permanent v. determinant:

Proposition 8.5.3.1. [LMR13] As subsets of SCN", Dualy g N inter-
sected with the irreducible hypersurfaces equals Dy, 4 n intersected with the
irreducible hypersurfaces.

Proof. Let P € Dy 4 be irreducible. For each (L, F) € G(2,F) x G(k +
3, V') one obtains set-theoretic equations for the condition that P|;, divides
Q|r, where Q = det(Py_22|r). But P divides Q if and only if restricted to
each plane P divides @, so these conditions imply that the dual variety of
the irreducible hypersurface Zeros(P) has dimension at most k. (]

Theorem 8.5.3.2. [LMR13] Det,, is an irreducible component of Dy,,_s ,, 2

The proof of Theorem 8.5.3.2 requires familiarity with Zariski tangent
spaces to schemes. Here is an outline: Given two schemes, X,Y with X
irreducible and X C Y, an equality of Zariski tangent spaces, T, X = T,Y
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for some x € Xgmooth, implies that X is an irreducible component of Y (and
in particular, if Y is irreducible, that X = Y’). The following theorem is a
more precise version:

Theorem 8.5.3.3. [LMR13] The scheme Dy, 5, ,2 is smooth at [det,],
and Dety, is an irreducible component of Dy,,_9 ,, 2.

The idea of the proof is as follows: We need to show T{4et,|Dp on—2n2 =
Tlget,| Detrn. We already know Tiger, | Detn C Tiges,|Dpon—2n2- Both of these
vector spaces are Get,,-submodules of S"(E®F'). In 8.7.1.3 you will prove
the Cauchy formula that S"(EQF) = @ =, SrEQSF.

Exercise 8.5.3.4: (2) Show that [det,] = Si» E®@S1nF and Ty, Det, =
SlnE®S1nF @ 5271n71E®SQ71n71F. @

So as a GL(E) x GL(F)-module, Tige,1Dety, = So 1n-2E®85 1n—2F. The
problem now becomes to show that none of the other modules in S™"(EQF)
are in Tiges,|Dpon—2n2- To do this, it suffices to check a single point in
each module. A first guess would be to check highest weight vectors, but
these are not so easy to write down in any uniform manner. Fortunately
in this case there is another choice, namely the immanants I M, defined by
Littlewood [Lit06], the unique trivial representation of the diagonal &,, in
the weight ((1™), (1™)) subspace of Sz E®S,F, and the proof in [LMR13]|
proceeds by checking that none of these other than I M, 1n—2 are contained
in T[detn},Dn,Qn—an'

Theorem 8.5.3.3 implies that the GL(WW)-module of highest weight 7(2n—
2,n) given by Theorem 8.5.2.1 gives local equations at [det,]| of Det,, of
degree 2n(n — 1). Since Suby(S"CY) C Dualg, n, the zero set of the
equations is strictly larger than Det,. Recall that dim Suby(S"C"") =
(’HZH) +(k+2)(N —k—2)—1. For k =2n—2, N = n? this is larger
than the dimension of the orbit of [det,], and therefore Dualy, s, 2 is not
irreducible.

8.6. Double-Commutant and algebraic Peter-Weyl Theorems

I now present the theory that will enable proofs of the statements in §8.1
and §3.5.

8.6.1. Algebras and their modules. For an algebra A, and a € A the
space Aa is a left ideal and a (left) A-module.

Let G be a finite group. Recall from §3.5.1 the notation C[G] for the
space of functions on G, and ¢4 € C[G] for the function such that §4(h) =0
for h # g and d4(g9) = 1. Define a representation L : G — GL(C[G]) by
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L(g)0n = 04, and extending the action linearly. Define a second representa-
tion R : G — GL(C[G]) by R(g)dn = d4-1. Thus C[G] is a G x G-module
under the representation (L, R), and for all ¢ € C[G], the ideal C[G]c is a
G-module under the action L.

A representation p : G — GL(V) induces an algebra homomorphism
C[G] — End(V), and it is equivalent that V' is a G-module or a left C[G]-
module.

A module M (for a group, ring, or algebra) is simple if it has no proper

submodules. The module M is semi-simple if it may be written as the direct
sum of simple modules. An algebra is completely reducible if all its modules
are semi-simple. For groups alone I will continue to use the terminology
irreducible for a simple module, completely reducible for a semi-simple mod-
ule, and reductive for a group such that all its modules can be decomposed
into a direct sum of irreducible modules.
Exercise 8.6.1.1: (2) Show that if A4 is completely reducible, V' is an A-
module with an A-submodule U C V, then there exists an A-invariant
complement to U in V and a projection map 7 : V — U that is an A-
module map. ®

8.6.2. The double-commutant theorem. Our sought-after decomposi-
tion of V¥ as a GL(V)-module will be obtained by exploiting the fact that
the actions of GL(V) and &4 on V®¢ commute. In this subsection I discuss
commuting actions in general, as this is also the basis of the generalized DFT
used in the Cohn-Umans method §3.5, and the starting point of the program
of [MS01, MSO08]. References for this section are [Pro07, Chap. 6] and
[GWO09, §4.1.5]. Let S C End(V') be any subset. Define the centralizer or
commutator of S to be

S :={X €End(V) | Xs=sX Vs € S}
Proposition 8.6.2.1.
(1) S’ C End(V) is a sub-algebra.
(2) Sc (9.
Exercise 8.6.2.2: (1!) Prove Proposition 8.6.2.1.

Theorem 8.6.2.3. [Double-Commutant Theorem] Let A C End(V) be a
completely reducible associative algebra. Then A" = A.

There is an ambiguity in the notation S’ as it makes no reference to V/,
so instead introduce the notation Endg(V) := S’.

Proof. By Proposition 8.6.2.1, A C A”. To show the reverse inclusion, say
T € A”. Fix a basis v1,...,vy of V. Since the action of T is determined
by its action on a basis, we need to find a € A such that av; = Tv; for
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j=1,...,v. Let w:=v1®--- Doy € VP and consider the submodule
Aw C VPV, By Exercise 8.6.1.1, there exists an A-invariant complement to
this submodule and an A-equivariant projection 7 : VOV — Aw C VOV, that
is, a projection 7 that commutes with the action of A, i.e., 7 € End4(V®V).
Since T' € End (V') and the action on V%V is diagonal, T' € End4(V®).
We have 7(Tw) = T'(n(w)) but T'(w(w)) = T(w) = Tv1 & --- @& Tvy. But
since m(Tw) € Aw, there must be some a € A such that aw = T'(w), i.e.,
a1 @ - - Davy =Tv @ --- D Tvy, ie., avj =Tv; for j =1,...,v. O

Burnside’s theorem, stated in §3.5, has a similar proof:

Theorem 8.6.2.4. [Burnside] Let A C End(V') be a finite dimensional sim-
ple sub-algebra of End (V') (over C) acting irreducibly on a finite-dimensional
vector space V. Then A = End(V). More generally, a finite dimensional
semi-simple associative algebra A over C is isomorphic to a direct sum of
matrix algebras:

A~ Matg, xa,(C) & - ® Matg,xq,(C)

for some dy, ..., dq,.

Proof. For the first assertion, we need to show that given X € End(V),

there exists a € A such that av; = Xwv; for v1,...,vy a basis of V. Now just
imitate the proof of Theorem 8.6.2.3. For the second assertion, note that A
is a direct sum of simple algebras. ([

Remark 8.6.2.5. A pessimist could look at this theorem as a disappoint-
ment: all kinds of interesting looking algebras over C, such as the group
algebra of a finite group, are actually just plain old matrix algebras in dis-
guise. An optimist could view this theorem as stating there is a rich structure
hidden in matrix algebras. We will determine the matrix algebra structure
explicitly for the group algebra of a finite group.

8.6.3. Consequences for reductive groups. Let S be a group or algebra
and let V, W be S-modules, adopt the notation Homg(V, W) for the space
of S-module maps V. — W, i.e.,

Homg(V, W) :={f € Hom(V,W) | s(f(v)) = f(s(v)) Vse S, veV}
= (V*aW)".
Theorem 8.6.3.1. Let G be a reductive group and let V be a G-module.
Then

(1) The commutator Endg (V') is a semi-simple algebra.

(2) The isotypic components of G and Endg (V) in V' coincide.
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(3) Let U be one such isotypic component, say for irreducible represen-
tations A of G and B of Endg (V). Then, as a G xEndg(V)-module,

U= A®B,
as an Endg(V')-module
B = Homg(A4,U),
and as a G-module
A = Homgyq,,vy(B, U).
In particular, mult(A, V) = dim B and mult(B, V) = dim A.

Example 8.6.3.2. Below we will see that EndGL(V)(V®d) = C[&y4]. As
an &3 x GL(V)-module, we have the decomposition V&3 = ([3]@5%V) @
([2,1]®S21V) @ ([1,1,1]@A3V) which illustrates Theorem 8.6.3.1.

To prove the theorem, we will need the following lemma:

Lemma 8.6.3.3. For W C V a G-submodule and f € Homg(W, V), there
exists a € Endg (V') such that a|yw = f.

Proof. Consider the diagram
End(V) — Hom(W,V)

+ +
Endg(V) — Homg(VV,V)

The vertical arrows are G-equivariant projections, and the horizontal ar-
rows are restriction of domain of a linear map. The diagram is commuta-
tive. Since the vertical arrows and upper horizontal arrow are surjective, we
conclude the lower horizontal arrow is surjective as well. ([

Proof of Theorem 8.6.3.1. I first prove (3): The space Homg(A,V) is
an Endg(V)-module because for s € Homg(A,V) and a € Endg(V), the
composition as : A — V is still a G-module map. We need to show (i) that
Homg(A, V) is an irreducible Endg(V)-module and (ii) that the isotypic
component of A in V is A® Homg(A,V).

To show (i), it is sufficient to show that for all nonzero s, ¢t € Homg(A, V),
there exists a € Endg (V) such that at = s. Since tA and sA are isomor-
phic G-modules, by Lemma 8.6.3.3, there exists a € Endg (V') extending an
isomorphism between them, so a(tA) = sA, i.e., at : A — sA is an isomor-
phism. Consider the isomorphism S : A — sA, given by a — sa, so S~ lat
is a nonzero scalar ¢ times the identity. Then a := %a has the property that
at = s.

To see (ii), let U be the isotypic component of A, so U = A®B for some
vector space B. Let b € B and define a map b: A — V by a — a®b, which



8.6. Double-Commutant and algebraic Peter-Weyl Theorems 243

is a G-module map where the action of G on the target is just the action
on the first factor. Thus B C Homg (A4, V). Any G-module map A — V by
definition has image in U, so equality holds.

(3) implies (2).

To see (1), note that Endg(V') is semi-simple because if the irreducible
G x Endg(V)-components of V' are U;, then Endg(V) = @; Endg(U;) =
@; Endg(A;®B;) = @; End(B;). O

8.6.4. Matrix coefficients. For affine algebraic reductive groups, one can
obtain all their (finite dimensional) irreducible representations from the ring
of regular functions on G, denoted C[G]. Here G is an affine algebraic
variety, i.e., a subvariety of CV for some N, so C[G] = C[z1,...,zn]|/I(G).
Exercise 8.6.4.1: (1!) Show that GL,, is an affine algebraic subvariety of
C™+! with coordinates (x;, z) by considering the polynomial z detn(:vé.) —1.

Thus C[GL(W)] may be defined to be the restriction of polynomial func-
tions on C™**! to the subvariety isomorphic to GL(W). (For a finite group,
all complex-valued functions on G are algebraic, so this is consistent with
our earlier notation.) If G C GL(W) is defined by algebraic equations, this
also enables us to define C[G] because G C GL(W) is a subvariety. In this
section and the next, we study the structure of C[G] as a G-module.

Let G be an affine algebraic group. Let p : G — GL(V) be a finite
dimensional representation of G. Define a map iy : V*®@V — C[G] by
iv(a®v)(g) := a(p(g)v). The space of functions iy (V*®V) is called the
space of matrix coefficients of V.

Exercise 8.6.4.2: (1)

i) Show iy is a G x G-module map.

ii) Show that if V' is irreducible, iy is injective. ©

iii) If we choose a basis v1, ..., vy of V with dual basis o', ..., a", then

iy (a'®v;)(g) is the (i,j)-th entry of the matrix representing p(g)
in this basis (which explains the name “matrix coefficients”).

iv) Compute the matrix coefficient basis of the three irreducible rep-
resentations of Gz in terms of the standard basis {d, | o € &3}.

v) Let G = GLsC, write g = (Z Z

coefficient basis as functions of a, b, ¢,d when V = S2C?, S3C? and
A2C2.

) € G, and compute the matrix

Theorem 8.6.4.3. Let G be an affine algebraic group and let V be an
irreducible G-module. Then iy (V*®V') equals the isotypic component of
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type V in C[G| under the action L and the isotypic component of V* in
C|G] under the action R.

Proof. It suffices to prove one of the assertions, consider the action L. Let
j : V. — C[G] be a G-module map under the action L. We need to show
J(V) C iy(V*®V). Define a € V* by a(v) := j(v)(Idg). Then j(v) =
iv(a®v), as j(v)g = j(v)(g-1dg) = j(gv)(Ide) = a(gv) = iv(a®v)g. O

8.6.5. Application to representations of finite groups. Theorem 8.6.4.3
implies:

Theorem 8.6.5.1. Let GG be a finite group, then as a G X G-module under
the action (L, R) and as an algebra,

(8.6.1) ClG) = P viev;

where the sum is over all the distinct irreducible representations of G.

Exercise 8.6.5.2: (1!) Let G be a finite group and H a subgroup. For
the homogeneous space G//H, show that C[G/H] = @, V;*®(V;)# as a G-
module under the action L.

8.6.6. The algebraic Peter-Weyl Theorem. Theorem 8.6.5.1 general-
izes to reductive algebraic groups. The proof is unchanged, except that one
has an infinite sum:

Theorem 8.6.6.1. Let G be a reductive algebraic group. Then there are
only countably many non-isomorphic finite dimensional irreducible G-modules.
Let AE denote a set indexing the irreducible G-modules, and for A € AE, let
V) denote the irreducible module associated to A. Then, as a G x G-module

ClGl = 6P VaaVy.
AeAd

Corollary 8.6.6.2. Let H C GG be a closed subgroup. Then, as a G-module,
the coordinate ring of the homogeneous space G/H is

im *\H
(862)  Clo/H]=ClG)" = P e = @ 1
AEAS AeAS,

Here G acts on the V) and (Vy ) is just a vector space whose dimension
records the multiplicity of Vy in C[G/H].

Exercise 8.6.6.3: (2!) Use Corollary 8.6.6.2 to determine Clvg(PV)] (even
if you already know it by a different method).
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8.6.7. Characters and representations of finite groups. Let p: G —
GL(V) be a representation. Define a function x, : G — C by x,(g9) =
trace(p(g)). The function yx, is called the character of p.

Exercise 8.6.7.1: (1) Show that x, is constant on conjugacy classes of G.

A function f : G — C such that f(hgh™!) = f(g) for all g,h € G is
called a class function.

Exercise 8.6.7.2: (1) For representations p; : G — GL(Vj), show that
Xp1®p2 = Xp1 T+ Xpo-

Exercise 8.6.7.3: (1) Given p; : G — GL(Vj) for j = 1,2, define p1®ps :
G = GL(i@Vs) by p1@p2(g)(v1@v2) = p1(g)vi@p2(g)va. Show that Xp,ep, =
Xp1 Xpa-+

Theorem 8.6.5.1 is not yet useful, as we do not yet know what the V;
are. Let u; : G — GL(V;) denote the representation. It is not difficult to
show that the functions x,, are linearly independent in C[G]. (One uses
a G-invariant Hermitian inner-product (xv,xw) := ﬁ deg xv(g)xw(g)
and shows that they are orthogonal with respect to this inner-product, see,
e.g., [FHI1, §2.2].) On the other hand, we have a natural basis of the
class functions, namely the d-functions on each conjugacy class. Let C; be
a conjugacy class of G and define dc, := 9eC; dg. It is straightforward to
see, via the DFT (§3.5.1), that the span of the d¢,’s equals the span of the
Xu;'s, that is the number of distinct irreducible representations of G equals
the number of conjugacy classes (see, e.g., [FH91, §2.2] for the standard
proof using the Hermitian inner-product on class functions and [GWO09,
§4.4] for a DFT proof).

Remark 8.6.7.4. The classical Heisenberg uncertainty principle from physics,
in the language of mathematics, is that it is not possible to localize both
a function and its Fourier transform. A discrete analog of this uncertainty
principle holds, in that the transforms of the delta functions have large sup-
port in terms of matrix coefficients and vice versa. In particular, the relation
between these two bases can be complicated.

8.6.8. Representations of &;. When G = &4, we get lucky: one may
associate irreducible representations directly to conjugacy classes.

The conjugacy class of a permutation is determined by its decomposition
into a product of disjoint cycles. The conjugacy classes of &, are in 1-1 corre-
spondence with the set of partitions of d: to a partition 7 = (p1,...,p,) one
associates the conjugacy class of an element with disjoint cycles of lengths
Pi,...,pr. Let [1] denote the isomorphism class of the irreducible &4-module
associated to the partition 7. In summary:
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Proposition 8.6.8.1. The irreducible representations of &, are indexed by
partitions of d.

Thus as an &4 x &4 module under the (L, R)-action:

(8.6.3) Cl&4) = P I[r]; @[]
||=d

We can say even more: as G4 modules, [r] is isomorphic to [r]*. This is
usually proved by first noting that for any finite group G, and any irreducible
representation pu, x,+ = X, where the overline denotes complex conjugate
and then observing that the characters of G, are all real-valued functions.
Thus we may rewrite (8.6.3) as

(8.6.4) Cl&d) = P [r]olr]r.
||=d
Exercise 8.6.8.2: (1) Show [d] C [r]®[y] if and only if 7 = p. ®

Exercise 8.6.8.3: (1) Show that moreover [d] C [r]®[r] with multiplicity
one. ©

8.7. Representations of &; and GL(V)

In this section we finally obtain our goal of the decomposition of V&% as a
GL(V)-module.

8.7.1. Schur-Weyl duality. We have already seen that the actions of
GL(V) and &4 on V&4 commute.

Proposition 8.7.1.1. EndGL(V)(V®d) = C[&4].

Proof. We will show that Endgg,] (V®4) is the algebra generated by GL(V)
and conclude by the double commutant theorem. Since

End(VE9) = V& (Ve
~ (Vv*)

under the re-ordering isomorphism, End(V®%) is spanned by elements of the
form X,®---®X, with X; € End(V), i.e., elements of Seg(P(End(V)) x
-+ x P(End(V))). The action of X1® - ®X4 on v11® - - - ®vy induced from
the GL(V)*%-action is 11® - ®vg +— (X101)®@- - @(X4vq). Since g €
GL(V) acts by g - (n1®---®vq) = gui®---®gug, the image of GL(V) in
(VaV*)® lies in SY(V@V*), in fact it is a Zariski open subset of 04(P(V@V*)
which spans S¢(V®@V*). In other words, the algebra generated by GL(V)
is SYVeV*) C End(V®?). But by definition SHVaV*) = [(VoV*)®4]S
and we conclude. O
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Theorem 8.6.3.1 and Proposition 8.7.1.1 imply:

Theorem 8.7.1.2. [Schur-Weyl duality] The irreducible decomposition of
V@ a5 a GL(V) x C[&,]-module (equivalently, as a GL(V) x &4-module)

1S

(8.7.1) Vel = P S.Veln,
|m|=d

where S;V := Home ,([7], V®?) is an irreducible GL(V)-module.

Note that as far as we know, SV could be zero. (It will be zero whenever
l(m) > dimV.)
Exercise 8.7.1.3: (2) Show that as a GL(E) x GL(F)-module, S(E®F) =
®IW\:d SzE®SF. This is called the Cauchy formula. ®

8.7.2. Explicit realizations of representations of &; and GL(V). By
Theorem 8.6.5.1 we may explicitly realize each irreducible & ;-module via
some projection from C[&,4]. The question is, which projections?

Given 7 we would like to find elements ¢z € C[& 4] such that C[S ]cx is
isomorphic to [r]. I write 7 instead of just m because the elements are far
from unique; there is a vector space of dimension dim|[r] of such projection
operators by Theorem 8.6.5.1, and the overline signifies a specific realization.
In other words, the &4-module map RM,_ : C[&,4] — C[Sy], f — fcz should
kill all &%-modules not isomorphic to [7]g, and the image should be [r],®z
for some z € [r]g. If this works, as a bonus, the map cz : V&4 — V&
induced from the Gg-action will have image SV ®z ~ S7V for the same
reason, where SzV is some realization of S;V and z € [r].

Here are projection operators for the two representations we understand
well:

When 7 = (d), there is a unique up to scale @ and it is easy to see

it must be Cay = ZO’EGd 0o, as the image of RMCm is clearly the line
through Cay on which &, acts trivially. Note further that c@(V@)d) = SV
as desired.

When 7 = (1), again we have a unique up to scale projection, and its
clear we should take Cay = > oce, 5e1(0)0; as the image of any &, will be

sgn(T)c@, and C@(V(@d) = AV,

The only other representation of &, that we have a reasonable under-
standing of is the standard representation m = (d — 1, 1) which corresponds
to the complement of the trivial representation in the permutation action
on C%. A basis of this space could be given by e; —eg, €2 —€q, . . ., €q4—1 — €q.
Note that the roles of 1,...,d — 1 in this basis are the “same” in that if one
permutes them, one gets the same basis, and that the role of d with respect
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to any of the other e; is “skew” in some sense. To capture this behavior,
consider

¢ty = (1 = 9,0 Z )

O’EGd_l[d—l]
where S,4_1[d — 1] C &, is the subgroup permuting the elements {1,...,d —
1}. Note that c(dil’l)& = C=T) for any 7 € G4_1[d — 1] so the image is
of dimension at most d = dim(C[&,]/C[S4-_1]).
Exercise 8.7.2.1: (2) Show that the image is d — 1 dimensional.

Now consider RMCm(V@l): after re-orderings, it is the image of the

composition of the maps
Vel o yed—2 A2y - gty gV
In particular, in the case d = 3, it is the image of
VeA?V — SPVeV,

which is isomorphic to S21V, as was mentioned in in §4.1.5.

Here is the general recipe to construct an &4-module isomorphic to [r]:
fill the Young diagram of a partition 7 of d with integers 1,...,d from top
to bottom and left to right. For example let 7 = (4,2,1) and write:

416]7]

‘WMH
(@)

(8.7.2)

Define 67 ~ &4 x --- X Sg,, C &4 to be the subgroup that permutes
elements in each column and &7 is the subgroup of &, that permutes the
elements in each row.

Explicitly, writing 7 = (p1,...,pq ) and 7 = (q1, ..., qp, ), G4 permutes
the elements of {1,...,¢1}, &4, permutes the elements of {g1+1,...,q1+¢2}
etc.. Similarly, &7 ~ &, x --- x §,, C &y is the subgroup where &,,
permutes the elements {1,¢1 + 1,1 + @ +1,...,¢1 + -+ gp,—1 + 1}, &),
permutes the elements {2,¢1 +2,¢1 +q2+2,...,q1 + -+ + qp,—1 + 2} etc..

Define two elements of C[&4]: s7 =), cs_0, and az := ZO’EGF/ sgn(o)de-
Fact: Then [r] is the isomorphism class of the G4-module C[&|azsz. (It
is also the isomorphism class of C[&4]szaz, although these two realizations
are generally distinct.)

Exercise 8.7.2.2: (1) Show that [7'] = [7]®[19] as G4-modules. ®

The action on V®? is first to map it to AMV®---@A%1V, and then
the module S,V is realized as the image of a map from this space to
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SPIV®---®SPaV obtained by re-ordering then symmetrizing. So despite
their original indirect definition, we may realize the modules S;V explicitly
simply by skew-symmetrizations and symmetrizations.

Other realizations of S;V (resp. highest weight vectors for S;V, in fact

a basis of them) can be obtained by letting &4 act on RMCFV@)d (resp. the
highest weight vector of RM,_V®9).

Example 8.7.2.3. Consider Caay associated to

1[3
(8.7.3) 2[4

which realizes a copy of S50V C V&4 It first maps V®* to A2V®@A?V and
then maps that to S?V®52V. Explicitly, the maps are

aRbRcRc — (a®b — bRa)®(c@d — d®c) = aRbRcRd — aRbRARc — bRaRcRd + bRaRdRc
= (a®b®cRd 4+ c@Rba®d + aRdRc®b + c@dRa®b)
— (aRbRd®c + dRbRaRc + a®cRdRb + dRcRa®b)
— (b®a®c®d + c®a®@bRd + bRdRcRa + cRIRbRa)
+ (bea®d®c + dRa®bRc + bRcRdRa + dRcRbRa)

Exercise 8.7.2.4: (2) Show that a basis of the highest weight space of
[2,1]@521V C V3 is v1 = e1 A ea®eq and vy = e1®eq A eg. Let Zs C &3 be
the cyclic permutation of the three factors in V®3 and show that wv; +w?vsy

27

are eigenvectors for this action with eigenvalues w,w?, where w =e’s .

8.8. The program of [MS01, MSO08]

Algebraic geometry was used successfully in [Mul99] to prove lower bounds
in the “PRAM model without bit operations” (the model is defined in
[Mul99]), and the proof indicated that algebraic geometry, more precisely
invariant theory, could be used to resolve the P v. NC problem (a cousin
of permanent v. determinant). This was investigated further in [MSO01,
MSO08] and numerous sequels. In this section I present the program out-
lined in [MSO08], as refined in [BLMW11].

Independent of its viability, I expect the ingredients that went into the

program of [MS01, MSO08]| will play a role in future investigations regarding
Valiant’s conjecture and thus are still worth studying.

8.8.1. Preliminaries. Let W = C". Recall C[Det,,] := Sym(S"W*)/I(Dety),
the homogeneous coordinate ring of the (cone over) Det,,. This is the space

of polynomial functions on Det,, inherited from polynomials on the ambient
space.
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Since I(Det,,) C Sym(S"W*) is a GL(W)-submodule, and since GL(W)
is reductive, we obtain the following splitting as a GL (W )-module:

Sym(S"W*) = I(Det,) & C[Det,,].

In particular, if a module S;W* appears in Sym(S"W*) and it does not
appear in C[Det,], it must appear in I(Det,,).

Now consider
C[GL(W) - det,] = C[GL(W)/Gqet, ] = C[GL(W)]Cdetn
There is an injective map
C[Det,] — C[GL(W) - det,,]

given by restriction of functions. The map is an injection because any func-
tion identically zero on a Zariski open subset of an irreducible variety is
identically zero on the variety.

Corollary 8.6.6.2 in principle gives a recipe to determine the modules in
C[GL(W) - det,,], which motivates the following plan:

Plan : Find a module SzW* not appearing in C[GL(W)/Gqet,| that does
appear in Sym(S"W*).

By the above discussion such a module must appear in I(Det,,).

Definition 8.8.1.1. An irreducible GL(W)-module S;W* appearing in
Sym(S"W*) and not appearing in C[GL(W)/Get, | is called an orbit oc-
currence obstruction.

The precise condition a module must satisfy in order to not occur in
C[GL(W)/Gget,, ] is explained in Proposition 8.8.2.2. The discussion in §8.4
shows that in order to be useful, 7 must have a large first part and few parts.

One might object that the coordinate rings of different orbits could coin-
cide, or at least be very close. Indeed this is the case for generic polynomials,
but in GCT one generally restricts to polynomials whose symmetry groups
characterize the orbit in the sense of Definition 1.2.5.3. We have seen in §6.6
that both the determinant and permanent polynomials are characterized by
their stabilizers.

Corollary 8.6.6.2 motivates the study of polynomials characterized by
their stabilizers: if P € V is characterized by its stabilizer, then G - P is
the unique orbit in V' with coordinate ring isomorphic to C[G - P] as a G-
module. Thus one can think of polynomial sequences that are complete for
their complexity classes and are characterized by their stabilizers as “best”
representatives of their class.
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Remark 8.8.1.2. All GL(W)-modules S, . .. W may be graded using
p1+ -+ pw as the grading. One does not have such a grading for SL(WW)-
modules, which makes their use in GCT more difficult. In [MS01, MSO08],
it was proposed to use the SL(W)-module structure because it had the
advantage that the SL-orbit of det, is already closed. The disadvantage
from the lack of a grading appears to outweigh this advantage.

8.8.2. The coordinate ring of GL,> - det,,. Write c = E®F, with

E,F = C". 1 first compute the SL(E) x SL(F)-invariants in S;(E®F)

where || = d = én. Recall from §8.7.1 that by definition, S, W = Homg,, ([7], W®9).
Thus

S:(E®F) = Homg,([x], E*¢@F®?)
= Home, ([7], (P @S, E)a( P V@S, F))

lul=d |v|=d
= @ Homg, ([7], [#]®[V])®S,EQS, F
lul=lv|=d
The vector space Homg, ([7], []®[v]) simply records the multiplicity of S, E®S, F'

in Sy (EF®F). The numbers k., , = dim Homg, ([7], []®[v]) are called Kro-
necker coefficients.

Exercise 8.8.2.1: (2) Show that
kr . = Homg, ([d], [7]@[p]®[v]) = mult(S, A®S,B®S,C, S (A2 BaC)).
In particular, kr ., is independent of the order of =, y1, v

Recall from §8.1.5 that S,E is a trivial SL(E) module if and only if
w = (6™) for some § € Z. Thus so far, we are reduced to studying the
Kronecker coefficients k; s» 5». Now take the Zy action given by exchanging
E and F into account. Write [u]®[u] = S?[u] ® A2[u]. The first module
will be invariant under Zy = &5, and the second will transform its sign
under the transposition. So define the symmetric Kronecker coefficients
skj, = dim(Home (7], S?[p]))-

We conclude:

Proposition 8.8.2.2. [BLMW11] Let W = C". The coordinate ring of
the GL(W )-orbit of det,, is

CIGL(W) -det,)] = @5 (S,W*)@hinar,
d€Z r | |7|=nd

While Kronecker coefficients were studied classically (if not the sym-
metric version), unfortunately very little is known about them. In the next
section I describe a geometric method used to study them.
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8.9. Plethysm coefficients, Kronecker coefficients and
geometry

A basic, if not the basic problem in representation theory is: given a group
G, an irreducible G-module U, and a subgroup H C G, decompose U as
an H-module. The determination of Kronecker coefficients can be phrased
this way with G = GL(V@W), U = Sx(VeW) and H = GL(V) x GL(W).
The determination of plethysm coefficients may be phrased as the case G =
GL(S™V), U = S4(S"V) and H = GL(V).

I briefly discuss a geometric method of L. Manivel and J. Wahl [Wah91,
Man97, Man98, Man15b, Man15a] based on the Bott-Borel- Weil theo-
rem that allows one to gain asymptotic information about such decomposi-
tion problems.

The Bott-Borel-Weil theorem realizes modules as spaces of sections of
vector bundles on homogeneous varieties. The method studies sequences
of such sections. It has the properties: (i) the vector bundles come with
filtrations that allow one to organize information, (ii) the sections of the
associated graded bundles can be computed explicitly, giving one bounds
for the coefficients, and (iii) Serre’s theorem on the vanishing of sheaf co-
homology tells one that the bounds are achieved eventually, and gives an
upper bound for when stabilization occurs.

I now discuss the decomposition of S¥(S"V).

8.9.1. Asymptotics of plethysm coefficients. We want to decompose
S(S™V) as a GL(V)-module, or more precisely, to obtain qualitative asymp-
totic information about this decomposition. Note that SV c S¢(S"V)
with multiplicity one. Beyond that the decomposition gets complicated.
Let x1,...,2y be a basis of V, so ((z1)")? is the highest highest weight
vector in S¢(S™V).

Define the inner degree lifting map m,, = mcml’lm’" : SYS™V) = 84SV
on basis elements by

-1 ;1 il -d id

(8.9.1) (lelac;Qxdd)(lel xdd)
il (n—m) il il 194+ (n—m) id
— (x Ty (2] )

and extend linearly. Here z{ 4+ 4 ié =m for all j.

A vector of weight © = (q1,¢2,-..,qq) is mapped under m,, to a vector
of weight 7 = (p1,...,pa) :== p+ (d(n —m)) = (1 +d(n —m), q2, ..., qa) in
S(SmV).
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Define the outer degree lifting map 0, = ofc’fi’” : §9(S"V) — SU(S™V)
on basis elements by
(8.9.2)
(xim T xil,n) T (xim e xi(s,n) = (xil,l o len) T (xié,l o :Elsn)(x?) T (x?)

and extend linearly. A vector of weight 1 = (q1, q2, - - ., q4) is mapped under
0z, to a vector of weight 7 = (p1,...,pq) = p+ (d—0)n) = (1 + (d —
5)n, qa, - . ., qq) in SH(S™V).

Both m,, and o, take highest weight vectors to highest weight vectors,
as Lie algebra raising operators annihilate .

This already shows qualitative behavior if we allow the first part of a
partition to grow. More generally, one has:

Theorem 8.9.1.1. [Man97] Let ;1 be a fixed partition. Then mult(Sg,— .,V S4(S"V))
is a non-decreasing function of both d and n that is constant as soon as
d = || orn = 1U(p).
More precisely, the inner and outer degree lifting maps my, and o0y,
are both injective and eventually isomorphisms on highest weight vectors of
isotypic components of partitions (pi1,...,py) with (pa,...,py) fixed and p;
growing.

There are several proofs of the stability. The precise stabilization is
proved by computing the space of sections of homogeneous vector bundles
on PV via an elementary application of Bott’s theorem (see, e.g., [Wey03,
§4.1] for an exposition of Bott’s theorem).

One way to view what we just did was to write V =21 @ T, so
n . .
(8.9.3) S'@ @ T) =Py 0T
j=0

Then decompose the d-th symmetric power of S™(x; @ T') and examine the
stable behavior as we increase d and n. One could think of the decomposition
(8.9.3) as the osculating sequence of the n-th Veronese embedding of PV at
[z]] and the further decomposition as the osculating sequence (see, e.g.,
[IL16b, Chap. 4]) of the d-th Veronese re-embedding of the ambient space
refined by (8.9.3).

For Kronecker coefficients and more general decomposition problems the
situation is more complicated in that the ambient space is no longer projec-
tive space, but a homogeneous variety, and instead of an osculating sequence,
one examines jets of sections of a vector bundle.

8.9.2. A partial converse to Proposition 8.4.2.1.
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Proposition 8.9.2.1. [KL14] Let m = (p1,...,pw) be a partition of dn.
If py > min{d(n — 1),dn — m}, then I;(Pad,—,,(S™"W)) does not contain a
copy of S;W*.

Proof. The image of the space of highest weight vectors for the isotypic
component of S, W* in S¢(S™W*) under m&™™ will be in C[Pady_p, (S"W)]
because, for example, such a polynomial will not vanish on (ey)™™[(e) - - - (eg)a+
R (el)i(f e (ed)ig], but if p; > d(n — 1) we are in the stability range.

For the sufficiency of p; > dn—m, note that if py > (d—1)n+(n—m) =

dn—m, then in an element of weight 7, each of the exponents i1,. .., ¢ of 21
must be at least n —m. So there again exists an element of Pad,,_,(S"W)
such that a vector of weight © does not vanish on it. ([

8.10. Orbit occurrence obstructions cannot separate Perm,'
from Det,,

I present an outline of the proof [IP15, BIP16] that the program of [MS01,
MSO08| cannot work as originally proposed, or even the refinement discussed
in [ BLMW11]. Despite this negative news, the program has opened several
promising directions, and inspired perspectives that have led to concrete
advances such as [LR15] as described in §7.4.1.

Throughout this section, set W = cr’.

8.10.1. Occurrence obstructions cannot separate. The program of
[MS01, MSO08| proposed to use orbit occurrence obstructions to prove
Valiant’s conjecture. In [IP15] they show that this cannot work. Fur-
thermore, in [BIP16] they prove that one cannot even use the following
relaxation of orbit occurrence obstructions:

Definition 8.10.1.1. An irreducible GL(W)-module S\W* appearing in
Sym(S"W*) and not appearing in C[Det,| is called an occurrence obstruc-
tion.

The extension is all the more remarkable because they essentially prove
that occurrence obstructions cannot even be used to separate any degree m
polynomial padded by ¢"~™ in m? variables from

(8.10.1) M J(vp_g(PW), 0 (vx(PW))) = GL(W) - [(n=F(ak + - -+ 4 k)]

for certain k,r with kr < n. Here MJ is the multiplicative join of §7.5.3.

First I show that the variety (8.10.1) is contained in Det,,. I will use the
following classical result:
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Theorem 8.10.1.2. [Valiant [Val79], Liu-Regan [LRO6]] Every f € Clz1, ...

of formula size u is a projection of det, 1. In other words f € End((C(“H) )
detu+1.

Note that the formula size of ¥ + - -+ + 2% is at most rk.
Corollary 8.10.1.3. [BIP16] If rk < n then [(" % (2} + .- 4 2F)] € Det,,
and thus GL(W) - [(n=k(zk 4 ... + k)] C Det,,.

Their main theorem is:

Theorem 8.10.1.4. [BIP16] Let n > m?>. Let ™ = (p1,...,p¢) be a parti-
tion of dn such that £ < m?+1 and p; > d(n—m). If a copy of SxW* occurs

in S4(S"W*) then a copy also occurs in some C[GL(W) - [n=k(zk + ... 4 2k)]]

for some r, k with vk <n.
By the above discussion, this implies occurrence obstructions cannot be
used to separate the permanent from the determinant.

The proof is done by splitting the problem into three cases:

(1) d< /2
(2) d> /2 and p; > dn —m™
(3) d > /Z and py < dn —m™.
The first case is an immediate consequence of the prolongation property
§8.3.4: take r = d and k = m.

The second reduces to the first by two applications of Manivel’s stability
theorem:
Proposition 8.10.1.5. [BIP16, Prop. 5.2] Let |r| = dn, I(7) < m? + 1,
p2 < k, m?k? < n and m*k < d. If a copy of Sy W occurs in S¢(S"W), then
a copy also occurs in C[GL(W) - [(n—k(xk 4 ... + mfn%)]]

Proof. For a partition u = (my,...,m;), introduce the notation t = (ma, . ..
First note that the inner degree lifting map (8.9.1) m?’k’” : SUSEFWH) —
S?(S™W*) is an isomorphism on highest weight vectors in this range because
d is sufficiently large, so there exists p with |u| = dk and T = Ti. Moreover, if
vy, is a highest weight vector of weight i, then mg’k’”(v#) is a highest weight
vector of weight 7. Since m?k is sufficiently large, there exists v with |v| =
m?k? = (m2k)k, with ¥ = [z such that v, = 04, (w,), where w, is a highest
weight vector of weight v in S™F(S¥W*). Since 1,24 (0m2k (v (PW))) = 0,
we conclude that a copy of S, W* is in Clo,,,2;. (vk(PW))] and then by the dis-
cussion above the modules corresponding to p and 7 are respectively in the

7ml)

coordinate rings of M J([(4"™°F]. g, 21 (v, (PW))) and M J([("*], 5,25 (v (PW))).

Since (m2k)k < n, the result follows by prolongation. O
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The third case relies on a building block construction made possible by
the following exercise:

Exercise 8.10.1.6: (1!) Show that if V' is a GL(W)-module and @ €
S\W C 8% and R € S,W C SOV are both highest weight vectors, then
QR e S\ W C S0V is also a highest weight vector.

Exercise 8.10.1.6, combined with the fact that for an irreducible variety
X, if Q,R € C[X], then QR € C[X] enables the building block construc-
tion assuming n > m?®. I will show (Corollary 9.4.1.2) that for n even,
there exists a copy of S(,,ayW in Clog(v,(PW))], providing one of the build-
ing blocks. The difficulty in their proof lies in establishing the other base
building block cases. See [BIP16] for the details.

Remark 8.10.1.7. In [IP15] the outline of the proof is similar, except there
is an interesting argument by contradiction: they show that in a certain
range of n and m, if an orbit occurrence obstruction exists, then the same is
true for larger values of n with the same m. But this contradicts Valiant’s
result (see §6.6.3) that if n = 4™, then "~ "™ perm,, € Dety,.

It is conceivably possible to carry out a modification of the program, ei-
ther taking into account information about multiplicities, or with the degree
m iterated matrix multiplication polynomial IM M, in place of the deter-
minant, as the latter can be compared to the permanent without padding.

8.11. Equivariant determinantal complexity

The GCT perspective of focusing on symmetry groups led to the discovery of
symmetry in Grenet’s expression for the permanent, as well as the restricted
model of equivariant determinantal complexity. In this section I first give a
geometric description of Grenet’s expressions in the IMM model, and then

outline the proof that the equivariant determinantal complexity of perm,,
: 2m
18 (m) -1

8.11.1. Geometric description of Grenet’s expression. [ now de-
scribe Grenet’s size 2™ — 1 determinantal expression for perm,, from a
geometric perspective. The matrix Agrenet(y) in Grenet’s expression is
in block format, and taking det(flgrenet(y)) amounts to the matrix mul-
tiplication of these blocks (see, e.g., the expression (1.2.3) compared with
(7.3.1)), and so are more naturally described as a homogeneous iterated ma-
trix multiplication. Recall that for P € S™CY, this is a sequence of matrices
Mi(y), ..., Mpn(y), with M; of size mj_1 x m; and mg = m,, = 1, such that
P(y) = Mi(y)--- My, (y). View this more invariantly as

Up=C"2Wy, M Ly =
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where M; is a linear map cN - U;‘®Uj_1. Such a presentation is G-
equivariant, for some G C Gp, if there exist representations p; : G —
GL(Uj), with dual representations p; : G — GL(U;), such that for all
9 € G, (p;®pj+1)(9)M;(g-y) = M(y).

Write perm,, € S™(E®F). In the case of Grenet’s presentation, we
need each U; to be a TP = (TSHE) x4 &,,)-module and M (y) - - - My, (y) to
equal the permanent.

Let (S*E),¢; denote the span of the square free monomials, which I
will also call the regqular weight space. It is the span of all vectors of
weight (a1,...,an) with a; € {0,1} and Zaj = k. This is an irreducible
I'-module. Note that (S™E)req is a one-dimensional vector space, and
perm,, € (S"E);eqg®@(S"F)reg C STERS™F C S™(E®F), which charac-
terizes perm,, up to scale (and the scale can be fixed e.g., by evaluating on
the identity matrix).

Note that E C Hom((S7E)eg, (S7TL1E),¢y) via the composition

(8.11.1) ER(SE)reg — STE — (ST E) eq
where the first map is multiplication and the second projection onto the reg-
ular weight space. This inclusion is as a I'P-module. Fix a basis fi,..., fm

of F. Consider the spaces U; := (57 E),c,®S’F, and the inclusions EQf; C
Hom((S7E)yeg®@SF, (S7TE) @S F) where the E side is mapped via
(8.11.1) and the F side is multiplied by the vector f;.

Taking the chain of maps from Uy to U,,, by construction our output
polynomial lies in (S E),,@S™F, but the weight on the second term is
(1,...,1) so it must lie in the one-dimensional space (S™E)cg®(S™F)reg-
Finally we check that it is indeed the permanent by evaluating on the identity
matrix.

Remark 8.11.1.1. The above construction is a symmetric cousin of a fa-
miliar construction in algebra, namely the Koszul maps:

AE D \Lp MR A2 M D Ampy
If we tensor this with exterior multiplication by basis vectors of F', we obtain
a SL(E)-equivariant homogeneous iterated matrix multiplication of det,, €
ATMEQA™F of size 2™ — 1.

(Note that both the Koszul maps and (8.11.1) give rise to complexes,
i.e., if we multiply by the same vector twice we get zero.)

This IMM realization of the determinant is related to the IMM version of
Grenet’s realization of the permanent via the Howe-Young duality functor:
The involution on the space of symmetric functions (see [Mac95, §1.2]) that
exchanges elementary symmetric functions with complete symmetric func-
tions, (and, for those familiar with the notation, takes the Schur function
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Sz to $pv) extends to modules of the general linear group. This functor ex-
changes symmetrization and skew-symmetrization. For more explanations,
see §10.4.4, where it plays a central role. I expect it will be useful for future
work regarding permanent v. determinant. It allows one to transfer knowl-
edge about the well-studied determinant, to the less understood permanent.

One can have a full Gperm, -equivariant expression by considering the
inclusions

(8.11.2)  E®F C Hom((S7E)eg@(S7F)regs (ST E) g @ (ST ) eg).

(The transpose invariance is possible because transposing the matrices in
the sequence M,,_; is sent to M]T and (My,—;(y")T = M;(y).)

Exercise 8.11.1.2: (1) Show that (8.11.2) gives rise to a size (27;?) IMM
expression for perm,,. ®

Remark 8.11.1.3. One similarly obtains a size (2:;) G get,,,-equivariant
IMM presentation of dety,.

8.11.2. Outline of proofs of lower bounds. Recall the lower bound
theorems:

Theorem 8.11.2.1. [LR15|Assume m > 3.

2m

e edc(perm,,) = (") — 1 with equality given by the determinantal
expression obtained from (8.11.2).

e The smallest size I'F-equivariant determinantal expression for perm,,
is 2™ — 1 and is given by Agrenet-

Ideas towards the proofs are as follows: Write C"* = B®C. Without
loss of generality, one takes the constant part A of A to be the diagonal
matrix with zero in the (1, 1)-slot and 1’s on the remaining diagonal entries.
Then A determines a splitting BRC' = (B ® B2)®(C1 @ Co) with dim By =
dim C; = 1. Consider the linear part of an expression A : EQF — B®C.
We have already seen (in the proof of Theorem 6.3.4.6) the component in
B1®C1 (i.e., the (1,1) slot in the matrix A(y)) must be zero. Thus in order
for the expression not to be identically zero, we must have the components
of A(y) in B1®C5 and Ba®Cy nonzero (i.e., other entries in the first row and
column must be nonzero). Focus on the ' E_equivariant case for simplicity
of exposition. As a I'-module, EQF = E®™. By I"'P-equivariance, B;®Cs
must contain at least one copy of F, write the submodule as B1®C5 1 ~ E%,
For simplicity of discussion, assume j = 1. Also for simplicity, assume the
one-dimensional space Bj is a trivial T'¥-module, so Cy1 ~ E as a re.
module. Since I'F is reductive, we have a splitting Co = Cs,1 @ C4. In order
that there is no degree two component appearing, we must have the map to
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C3,®@B7 be zero. The picture of what we have reduced to so far looks like
this:
0 C3,®B] *
B1®Cs1 Id *
* ?

Now in order that the determinant is not identically zero, the 7 block
cannot be identically zero, so there must be some By C B, such that
0571®B2 ~ E*®Bs 1 contains a copy of E.

Fact: the minimum dimension of a I'*-module M such that E C E*®M
is (ZL) and the corresponding module is (up to tensoring with a one-dimensional
representation) (S?E)yeg.

Remark 8.11.2.2. Were we constructing a SL(E)-equivariant regular de-
terminantal presentation of the determinant, we would need an SL(FE)-
module M such that F C E*®@M. By the Pieri rule, the admissible M
correspond to Young diagrams with two boxes, i.e., S2E and A?E. Note
that dim(A%E) = (ZL) This “coincidence” of dimensions is attributable to
the Howe-Young duality endofunctor.

Continuing, we need some Bj s such that E C (SQE);‘:EQ®BQ72, and the
smallest such is By o = (S 3E)Teg (just as in the skew case, one needs a Young
diagram with three boxes, the smallest such module is A3E).

One continues until arriving at B = @;”:_OI(S’j E);eq and one concludes.

Remark 8.11.2.3. In the above discussion I swept two important compli-
cations under the rug. First, we don’t really have I'F' Ggetn,n, but rather a
group G C Glet,, A that has a surjective map onto I'®. This problem is dealt
with by observing that the modules for any such G can be labeled using
the labels from I'P-modules. Second, since I'F is not connected, we need to
allow the possibility that the Zy C Gget,,a is part of the equivariance. This
second problem is dealt with by restricting to the alternating group. For
details, see [LR15].

8.12. Symmetries of additional polynomials relevant for
complexity theory

A central insight from GCT is that polynomials that are determined by
their symmetry groups should be considered preferred representatives of
their complexity classes. This idea has already guided several results: i) the
symmetries of the matrix multiplication tensor have given deep insight into
its decompositions, ii) these symmetries were critical for proving its border
rank lower bounds, and iii) the above results on equivariant determinan-
tal complexity. We have already determined the symmetry groups of the
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determinant, permanent, and x; ---x,. In this section I present the sym-
metry groups of additional polynomials relevant for complexity theory and
techniques for determining them.

Throughout this section G = GL(V), dim V' = n, and I use index ranges
1<i,j,k<n.

8.12.1. The Fermat. This example follows [CKW10]. Let fermat? :=
¢+ 4 2% € S9C". The GL,-orbit closure of [fermat?] is the n-th secant
variety of the Veronese variety o, (vg(P"1)) C PSIC". It is clear &, C
G'ermat, as well as the diagonal matrices whose entries are d-th roots of unity.
We need to see if there is anything else. The first idea, to look at the singular
locus, does not work, as the zero set is smooth, so consider (fermatg)gjd_g =
2?@297? 4. ..+ 22272, Write the further polarization (fermatﬁ)LLd,g as
a symmetric matrix whose entries are homogeneous polynomials of degree
d — 2 (the Hessian matrix):

Were the determinant of this matrix GL(V')-invariant, we could proceed as
we did with ey, 5, using unique factorization. Although it is not, it is close
enough as follows:

Recall that for a linear map f : W — V, where dim W = dimV = n,
we have f" € A"W*®A™V and an element (h,g9) € GL(W) x GL(V)
acts on f " by (h,g) - f"* = (det(h))~!(det(g)) ™. In our case W = V*
so P ,(z) = det(g)®Py" ,(g - z), and the polynomial obtained by the
determinant of the Hessian matrix is invariant up to scale.

Arguing as in §7.1.2, Zj(gille)d_Q (g, ) = 282 282 and

we conclude again by unique factorization that g is in &,, X T,,. Composing
with a permutation matrix to make g € T, we see that, by acting on the
Fermat itself, that the entries on the diagonal are d-th roots of unity.

In summary:
Proposition 8.12.1.1. GI?JFU_HC% =G, X (Zg)*".
Exercise 8.12.1.2: (2) Show that the Fermat is characterized by its sym-

metries.

8.12.2. The sum-product polynomial. The polynomial

SP =Y TJ_z;; € S*(C™),
=1
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called the sum-product polynomial in the CS literature, was used in our study
of depth three circuits. Its GL(rn)-orbit closure is the r-th secant variety
of the Chow variety o,(Ch,(C"")).

Exercise 8.12.2.1: (2) Determine Gsp» and show that SP is character-
ized by its symmetries.

8.12.3. Further Techniques. One technique for determining Gp is to
form auxiliary objects from P which have a symmetry group H that one
can compute, and by construction H contains Gp. Usually it is easy to find
a group H' that clearly is contained in Gp, so if H = H’, we are done.

Recall that we have already used auxiliary varieties such as Zeros(P) jqc k
and Zeros(P)Y in determining the symmetry groups of perm,, and det,,.

One can determine the connected component of the stabilizer by a Lie
algebra calculation: If we are concerned with p € S?V, the connected com-
ponent of the identity of the stabilizer of p in GL(V) is the connected Lie
group associated to the Lie subalgebra of gl(V) that annihilates p. (The
analogous statement holds for tensors.) To see this, let h C gl(V) de-
note the annihilator of p and let H = exp(h) C GL(V) the correspond-
ing Lie group. Then it is clear that H is contained in the stabilizer as
h-p=exp(X) -p=Id+X + %XX + ...)p the first term preserves p and
the remaining terms annihilate it. Similarly, if H is the group preserv-
ing p, taking the derivative of any curve in H through Id at ¢ = 0 gives
d _
gili=oh(t) -p=0.

To recover the full stabilizer from knowledge of the connected component
of the identity, we have the following observation, the first part comes from
[BGL14|:

Proposition 8.12.3.1. Let V be an irreducible GL(W)-module. Let G
be the identity component of the stabilizer G, of some v € V in GL(W).
Then G, is contained in the normalizer N(GY) of GO in GL(W). If GY is
semi-simple and [v] is determined by G, then up to scalar multiples of the

identity in GL(W), G,, and N(GY) coincide.

Proof. First note that for any group H, the full group H normalizes H°.
(If h € HY, take a curve hy with hg = Id and hy = h, then take any g € H,
the curve ghyg~! connects ghi1g~! to the identity.) So G, is contained in
the normalizer of GY in GL(W).

For the second assertion, let A € N(G9) be in the normalizer. We have
h~tghv = g'v = v for some ¢’ € GY, and thus g(hv) = (hv). But since [v] is
the unique line preserved by GO we conclude hv = \v for some A € C*. O

Here is a lemma for those familiar with roots and weights:
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Lemma 8.12.3.2. [BGL14, Prop. 2.2] Let G° be semi-simple and act ir-
reducibly on V. Then its normalizer N(G°) is generated by G, the scalar
matrices, and a finite group constructed as follows: Assume we have cho-
sen a Borel for G°, and thus have distinguished a set of simple roots A
and a group homomorphism Aut(A) — GL(V'). Assume V = V) is the irre-

ducible representation with highest weight A of G° and consider the subgroup
Aut(A, ) C Aut(A) that fixes \. Then N(GY) = ((C*xG%)/Z)x Aut(A, N).

For the proof, see [ BGL14].

8.12.4. Iterated matrix multiplication. Let IMMF € $™(C*™) denote
the iterated matrix multiplication operator for kxk matrices, (X1,...,X,) —
trace(Xy - -+ X,,). Letting V; = C¥, invariantly

IMMY =1dy, @ ---®@1dy, € (ViaVs)o(VadVy)® - - o(V, 10V (Ve Vi)
CS"((VaVy) @ (VedVy) @ - & (Vo Vy)) @ (VaVly)),

and the connected component of the identity of Grypn C GL(CF™) is
GL(V1) x -+ x GL(V,,).

The case of IMM? is important as this sequence is complete for the
complexity class VP, of sequences of polynomials admitting polynomial
size formulas, see [BOC92]. Moreover IM M is complete for the same
complexity class as the determinant, namely VQP = VP, see [B1401b].

The first equality in the following theorem for the case k = 3 appeared
in [dG78, Thms. 3.3,3.4] and [Burl5, Prop. 4.7] with ad-hoc proofs.
Theorem 8.12.4.1. [Ges16] Gy = (GL"/C*) x Dy, where Dy, =

Zy, X Zo is the dihedral group. The Z,, corresponds to cyclic permutation of
factors, and the Zg is generated by (Xi,..., Xg) — (X,Z"7 XD,

A “hands on” elementary proof is possible, see, e.g. [Burl5, Prop.
4.7). Here is an elegant proof for those familiar with Dynkin diagrams from
[Ges16] in the special case of My, i.e., k =mn and n = 3.

Proof. It will be sufficient to show the second equality because the (C*)*?
acts trivially on A BQC. For polynomials, the method of [BGL14, Prop.
2.2] adapts to reducible representations. A straight-forward Lie algebra cal-
culation shows the connected component of the identity of G Min) is é%@m =
(C*)*2 x PGLX3. As was observed in [BGL14], the full stabilizer group
must be contained in its normalizer N (G(Z]\/lm) ), see Proposition 8.12.3.1. But

the normalizer of é(l]\@n) quotiented by é?w(n> is the automorphism group of
the marked Dynkin diagram for A @ B & C', which is
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*—o— o——0—0 *—o— 0 —0—0 *—o o——0—0

1 1

*—o— ——0—0 *—0o— 0 —0—0 *—o ——0—0
1 1

*—o ——0—0 *—o - ——0—0 *—o ——0—0

There are three triples of marked diagrams. Call each column consisting
of 3 marked diagrams a group. The automorphism group of the picture is
Zs X Zs, where the Zo may be seen as flipping each diagram, exchanging the
first and third diagram in each group, and exchanging the first and second
group. The Zs may be seen as cyclically permuting each group and the
diagrams within each group. ([

Problem 8.12.4.2. Find equations in the ideal of GLg,, - IMM3. Deter-
mine lower bounds for the inclusions Perm,, C GLg, - IMM? and study
common geometric properties (and differences) of Det,, and GLg, - IMM}3.

8.12.5. The Pascal determinant. Let k be even, and let A; = C". De-
fine the k-factor Pascal determinant PDy , to be the unique up to scale
element of A"A1®---@A"A, C S"(A1®---®Ag). Choose the scale such
that if X =) @, 4,01, ® - ®ay,;, with a, ; a basis of Ay, then

(8.12.1)

PDpp(X) = > sgn(02- 0k)T105(1), (1) Troa(n)sorp(n)

02,..,0,EC,

This expression, for fixed k, shows that (PDy, ) € VNP.
Proposition 8.12.5.1 (Gurvits). The sequence (PDy,) is VNP complete.

Proof. It remains to show VNP-hardness. Set x;;,; = 0 unless ¢ = j and
k = 1. Then ; 5, (i),04(i),00(i) = 0 unless o2(i) = i and 03(i) = 04(i) so the
only nonzero monomials are those where oo = Id and 03 = o04. Since the
sign of o3 is squared, the result is the permanent. U

Thus we could just as well work with the sequence PD,, as the perma-
nent. Since det,, = PD3,, and the symmetry groups superficially resemble
each other, it is an initially appealing substitute.

It is clear the identity component of the stabilizer includes (SL(A;) X

- x SL(Ay))/tn where p, is as in §6.6.1, and a straight-forward Lie
algebra calculation confirms this is the entire identity component. (Alterna-
tively, one can use Dynkin’s classification [Dyn52] of maximal subalgebras.)
It is also clear that & preserves PD, ;. by permuting the factors.

Theorem 8.12.5.2 (Garibaldi, personal communication). For all k even

GPpy, = SLy* ik % Sy,
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Note that this includes the case of the determinant, and gives a new
proof.

The result will follow from the following Lemma and Proposition 8.12.3.1.

Lemma 8.12.5.3. [Garibaldi, personal communication] Let V = A1® - - - @ Ay.
The normalizer of SLX* /., in GL(V) is (GLX* /ui,) x &y, where py, denotes
the kernel of the product map (C*)** — C*.

Proof of Lemma 8.12.5.3. We use Lemma 8.12.3.2. In our case, the

Dynkin diagram for (A, ) is and Aut(A, ) is clearly Sg. O
o o0 o——o0

Figure 8.12.1. Marked Dynkin diagram for V'

The theorem follows.



Chapter 9

The Chow variety of
products of linear
forms

In the GCT approach to Valiant’s conjecture, one wants to understand the
GL,2-module structure of C[GL,,2 - [det,]] via C[GL,,2 - [dety]]. In this chap-
ter I discuss a “toy” problem that turns out to be deep, subtle and have
surprising connections with several different areas of mathematics: the or-
bit closure GL,, - [x1---zp] = Chy,(C") C PS™C™. This subject has a re-
markable history beginning over 100 years ago, with work of Brill, Gordan,
Hermite and Hadamard. The history is rife with rediscoveries and errors
that only make the subject more intriguing.

I begin, in §9.1 describing the Hermite-Hadamard-Howe map h,, that
has been discovered and rediscovered numerous times. Its kernel is the ideal
of the Chow variety. I also state the main results regarding this map: the
Black-List propagation theorem and Brion’s asymptotic surjectivity theo-
rem. In §9.2 I re-derive the map from a GCT perspective that compares the
coordinate ring of the orbit to that of its closure. In §9.3 I define a map of
modules for the permutation group &4, that contains equivalent information
to the original map. This map was originally defined in a different manner
by Black and List as a path to prove a celebrated conjecture of Foulkes that
I also explain in the section. Via a variant of this &4,-map, I give the proof
of the Black-List propagation theorem from [Ikel5]|, which is a geometric
reinterpretation of the proof in [McKO8]. In §9.4 I illustrate the subtlety
of determining the rank of h, by explaining how a very special case of the

265
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problem is equivalent to a famous conjecture in combinatorics due to Alon
and Tarsi. In §9.5, I give yet another derivation of the map h,, via algebraic
geometry due to Brion. If one is content with set-theoretic equations for the
Chow variety, such equations were discovered over a hundred years ago by
Brill and Gordan. I give a modern presentation of these equations in §9.6. 1
conclude in §9.7 with the proof of Brion’s asymptotic surjectivity theorem.
This last proof requires more advanced results in algebraic geometry and
commutative algebra, and should be skipped by readers unfamiliar with the
relevant notions.

9.1. The Hermite-Hadamard-Howe map

I begin with the first description of the ideal of Ch,(V*), due to Hadamard
(1897).

9.1.1. The Hermite-Hadamard-Howe map and the ideal of the
Chow variety. The following linear map was first defined when dimV' = 2
by Hermite (1854), and in general independently by Hadamard (1897), and
Howe (1988).

Definition 9.1.1.1. The Hermite-Hadamard-Howe map hg,, : S1(S"V) —
S™(S9V) is defined as follows: First include S¢(S™V) € V®"?. Next, reorder
the copies of V from d blocks of n to n blocks of d and symmetrize the blocks
of d to obtain an element of (S%V)®". Finally, thinking of SV as a single
vector space, symmetrize the n blocks.

For example, putting subscripts on V' to indicate position:

S2(SPV) C VS = V1@Vhe Ve Vi@Vso Vs
— (ViaVy)e(VaeVh)@(V3eVs)
— S2VeS*VestV
— S3(5%V)

Note that hq, is a GL(V)-module map.
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Example 9.1.1.2. For (zy)? = (zy)(zy) € S?(S*C?), here is hg2((xy)?):

(20)? = Fl(@ey + yor)B @y + you))

1
=1 [TRYRTRY + TRQYRYRT + YRITRTRY + YRTRYRx]

1
> 1 [TRrRYRY + rRYRYRT + YRTRTRY + YRYRTRx]
1

- Z[2(x2)<§z>(y2) + 2(zy)®(zy)]

o SlE) @) + () (ay)]

Exercise 9.1.1.3: (1!) Show that hq,((z1)" - (xqg)") = (x1---z4)".
Theorem 9.1.1.4 (Hadamard [Had97]). ker hq,, = I5(Ch,(V*)).

Proof. Given P € S¢(S™V), we determine if P vanishes on Ch,,(V*). Since
Seg(vn(PV) x - -+ x v,(PV)) spans (S"V)®?, its projection to S%(S™V) also
spans, so we may write P = 3 (21;)" - (z4j)" for some x4 € V. Let

(Y., 0" € V*. Recall P is P considered as a linear form on (S"V*)®?, In
what follows I use (—, —) to denote the pairing between a vector space and
its dual.

Pt ) = (P, (LM%
(@)™ ()™, (€8 L))

(1) (£ 7)) - ()", (£ 7))
T2 T i (L)
(@1 way, (YD) - (g - mgg, (0)7)

= (han(P), ()" - (€")7).

If hg.,(P) is nonzero, there will be some monomial of the form (£1)% .. (¢)2
it will pair with to be nonzero (using the spanning property in SS9V ).
On the other hand, if hq,(P) = 0, then P annihilates all points of C'h,,(V*).

([

9.1.2. Information on the rank of hg,,.

Exercise 9.1.2.1: (2) Show that hg, : S1(S"V) — S*(S9V) is “self-dual”
in the sense that hin = hpa : S"(SIV*) — S4(S"V*). Conclude that hg,,
surjective if and only if A, 4 is injective.



268 9. The Chow variety of products of linear forms

Exercise 9.1.2.2: (1) Show that if kg, : S¢(S"C™) — S*(SIC™) is not
surjective, then hg, : S4(S"CF) — S™(S4CF) is not surjective for all k > m,
and that the partitions corresponding to highest weights of the modules in
the kernel are the same in both cases if d < m. ©

Exercise 9.1.2.3: (1) Show that if a4, : S(S"C™) — S"(S4C™) is surjec-
tive, then hg,, : SY(S"CF) — S*(SICF) is surjective for all k < m.

Example 9.1.2.4 (The case dimV = 2). When dim V' = 2, every polyno-
mial decomposes as a product of linear factors, so the ideal of Ch,(C?) is
zero. We recover the following theorem of Hermite:

Theorem 9.1.2.5 (Hermite reciprocity). The map hq, : S4(S"C?) —
S™(S4C?) is an isomorphism for all d,n. In particular S(S™C?) and S™(SC?)
are isomorphic G Lo-modules.

Often in modern textbooks (e.g., [FH91]) only the “In particular” is
stated.

Originally Hadamard thought the maps hg, were always of maximal
rank, but later he realized he did not have a proof. In [Had99] he did
prove:

Theorem 9.1.2.6 (Hadamard [Had99]). The map hs 3 : S?(S3V) — S3(S3V)
is an isomorphism.

Proof. By Exercise 9.1.2.2, we may assume v = 3 and x1,x9,x3 € V* are
a basis. Say we had P € ker(hg3) = I3(Ch3(V*)). Consider P restricted to
the line in P(S?V*) spanned by 23 + 23 + 23 and z1z923. Write P(u,v) =
P(u(x3 + 23 +23) — Ar12273) as a cubic polynomial on P! with coordinates
[11, \]. Note that P(u,v) vanishes at the four points [0, 1], [1, 3], [1, 3w], [1, 3w?]
where w is a primitive third root of unity. A cubic polynomial on P! van-
ishing at four points is identically zero, so the whole line is contained in
Zeros(P). In particular, P(1,0) = 0, i.e., P vanishes on a3 + 23 + x3. Since
o3(v3(P?)) is a GLs-variety, P must vanish identically on o3(v3(P?)). But
I3(03(v3(P?))) = 0, see, e.g., Corollary 8.3.4.3. (In fact o3(v3(P?)) C PS3C3
is a hypersurface of degree four.) O

In the same paper, he posed the question:

Question 9.1.2.7. Is hg, always of maximal rank?

Howe [How87] also investigated the map hg,, and wrote “it is reasonable
to expect” that hg, is always of maximal rank.

Remark 9.1.2.8. The above proof is due to A. Abdesselam (personal com-
munication). It is a variant of Hadamard’s original proof, where instead of
:L'zf —1—1’% +1:§ one uses an arbitrary cubic f, and generalizing x1z9x3 one uses
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the determinant of the Hessian dets(H(f)). Then the curves f = 0 and
detz(H(f)) = 0 intersect in 9 points (the nine flexes of f = 0) and there are
four groups of three lines going through these points, i.e., four places where
the polynomial becomes a product of linear forms.

Theorem 9.1.2.9. [BL89]| [also see [McKO08, Thm. 8.1] and [Ikel5]] If
hay is surjective, then hg ,, is surjective for all d' > d. Equivalently, if hq,
is injective, then hg s is injective for all n' > n.

The proof is outlined in §9.3. The following two theorems were shown
by a computer calculation:

Theorem 9.1.2.10. [MNO5] The map hy 4 is an isomorphism.

The results above imply hg,, is of maximal rank for all n < 4 and all d.
Theorem 9.1.2.11. [MNO5] The map hs 5 is not surjective.

Remark 9.1.2.12. In [MNO5] they showed the map hs 5.0 defined in §9.3
below is not injective. A. Abdessalem realized their computation showed
the map hs 5 is not injective and pointed this out to them. Evidently there
was some miscommunication because in [MINO5] they mistakenly say the