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My research interests are broad: Cartan style differential geometry, classically influenced
algebraic geometry, the geometry of homogeneous varieties, categorical generalizations of Lie
algebras, the geometry and application of tensors, and most recently, complexity theory. I am
the the author of the graduate texts Geometry and Complexity Theory [42], Tensors: geometry
and applications [38], the CBMS lecture notes Tensors: Asymptotic Geometry and Developments
2016-2018 [62], and the co-author (with Ivey) of Cartan for beginners [22] (second edition [23]).
What follows is a summary of results organized by themes.

Complexity theory. Algebraic complexity theory deals with determining the computational
cost of common operations such as multiplying matrices or computing the discrete Fourier
transform. There are three aspects: lower bounds – showing there does not exist a better
algorithm, upper bounds – showing there does, and algorithms– finding fast algorithms. In 1969
Strassen discovered the standard algorithm for multiplying n × n matrices is not optimal, and
since then computer scientists have conjectured that as n goes to infinity, it becomes almost as
easy to multiply two n×n matrices as it is to add them. For the central problem of determining
the complexity of matrix multiplication, there had been no progress on lower bounds for 25
years until my breakthrough papers [35, 66]. In current work, I am initiating a project to use
algebraic geometry to prove upper bounds and find practical algorithms [57, 2] (also see my
student Austin Conner’s [8]), and a different program to implement Strassen’s laser method
with the aid of algebraic geometry and representation theory [11, 9, 10]. A second central
problem is permanent v. determinant, Valiant’s algebraic analog of P v. NP. I have several
important results regarding permanent v. determinant, including the first exponential separation
of permanent from determinant in any restricted model [63], and the best separation in the
Mulmuley-Sohoni model [64] (with Manivel and Ressayre).

● First exponential separation of permanent from determinant in any restricted model [63]
(with Ressayre).

● First improvement on the lower bound of the border rank the matrix multiplication tensor
since 1985 [66] (with Ottaviani), as well as current world record [65] (with Michalek).

● Solved problem from 1980 to determine the border rank of the 2×2 matrix multiplication
tensor [35]. Gave second proof using completely different methods (with Hauenstein and
Ikenmeyer) [19].

● First improvement in the lower bound of the rank the matrix multiplication tensor since
1999 [39]. Current world record was obtained by students working under my direction
[72].

● Demonstration that the exponent of matrix multiplication is also governed by the Waring
rank and border rank of the symmetrized matrix multiplication polynomial, transport-
ing the question from tensors to the well-studied area of cubic hypersurfaces [7] (with
Chiantini, Hauenstein, Ikenmeyer, and Ottaviani).
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● Establishment of mathematical foundations of Geometric Complexity Theory, an ap-
proach to Valiant’s conjecture via algebraic geometry and representation theory pro-
posed in [73, 74] by Mulmuley and Sohoni [6] (with Burgisser, Manivel and Weyman)
and [40].

● Current world record for the GCT separation of permanent from determinant [64] (with
Manivel and Ressayre).

● Proved the celebrated method of shifted partial derivatives, despite hopes of computer
scientists, cannot be used to prove any significant separation of permanent from deter-
minant [14] (with Efremenko, Schenck, and Weyman) and [17] (with Gesmundo).

● Geometric study of algorithms of Smirnov and Bini et. al. [57] (with Ryder).
● New decompositions of the 3 × 3 matrix multiplication tensor found with the aid of

geometry [2] (with Ballard, Ikenmeyer and Ryder).
● Extremal characterizations of the Coppersmith-Winograd tensor used in [12, ?] to prove

the best upper bounds for the exponent of matrix multiplication that indicate it will be
difficult to find a better tensor for the Coppersmith-Winograd method as proposed in
[1], [53, 54] (with Michalek).

● Establishment of methods from algebraic geometry to prove matrix rigidity, including
the first non-classical equations for non-rigidity [15] (with Gesmundo, Hauenstein, and
Ikenmeyer).

● Established conditions for modules of obstructions in the sense of GCT to be useful,
which was used by Ikenmeyer-Panova [?] to disprove the central conjecture of GCT [24]
(with Kadish).

● Determined geometric formulation via spinors, and generalizations of, Valiant’s holo-
graphic algorithms [55] (with Morton and Norine) and [37].

Tensors, Waring problems, and applied tensor questions. Tensors have long been used
in theoretical physics. Recently they have appeared in diverse areas such as complexity theory,
signal processing, numerical PDE, and quantum information theory. I have done foundational
work to establish sound mathematical footing for these applications, including ground-breaking
work in the study of rank and border rank of tensors, properties that arise in all the above-
mentioned applications. Thanks to text [38], I have been recruited for geometric assistance with
tensor problems in diverse application areas [71, 13].

● World record for symmetric border rank lower bounds of explicit polynomials [17] (with
Gesmundo).

● Classification of 1-generic tensors with maximal and near maximal dimensional symmetry
groups [11] (with Conner, Gesmundo and Ventura).

● Numerous counter-examples to the quantum max-flow/min-cut conjectures [16] (with
Gesmundo and Walter).

● Significant advancement in characterization of tensors of minimal border rank [53] (with
Michalek).

● First examples of explicit tensors with rank greater than twice their border rank, giving
a counter-example to a conjecture of Rhodes [53] (with Michalek).

● Series of papers determining equations for secant varieties of Segre varieties (i.e., al-
gebraic tests for border rank of tensors), and more generally of homogenous varieties
[19, 50, 51, 61, 60, 19] (with various co-authors among Hauenstein, Ikenmeyer, Manivel,
Ottaviani, Weyman)

● First explicit m ×m ×m tensors of border rank at least 2m − 1 [41].
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● Major breakthrough in the study of ranks of polynomials by exploiting the singularities
of corresponding hypersurfaces [58] (with Teitler), which has inspired a significant body
of work on the subject.

● Answered question of Grasedyk on tensor network states, showing a widely used assump-
tion in solid state physics was false [67] (with Qi and Ye).

● Established basic facts about tensor rank and border rank and more generally secant
varieties of cominuscule varieties [4, 5] (with Buczynski).

Homogeneous varieties and representation theory. My work in this area (primarily joint
with Manivel) deals with the study of homogeneous varieties from the novel perspective of
local projective differential geometry. The work has revealed remarkable algebraic structures
that have been used by geometers in Gromov-Witten theory, Schubert calculus and other ar-
eas. Moreover it shows how a considerable amount of representation theory can be deduced
simply from the local differential geometry of homogenous varieties (e.g., the classification of
complex simple Lie algebras [49]). In another direction, the project established significant new
information about the exceptional groups and their representation theory, for example answer-
ing questions on categorical generalizations of the exceptional series due to Deligne [44] and
categorical generalizations of general simple (super) Lie algebras due to Vogel [47].

● Series of papers examining the projective differential geometry of homogeneous varieties
including a new proof of the classification of complex simple Lie algebras based on their
projective differential geometry, and discovery of E7 1
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[46, 43, 45, 52, 49] (with Manivel).

● Series of papers investigating the geometry of homogeneous varieties associated to the
exceptional groups, answering questions on categorical generalizations the exceptional
series due to Deligne [44] and of general simple (super) Lie algebras due to Vogel [47]
(both with Manivel) and [52] (with Manivel and Westbury).

● Established surprising connections between longstanding conjectures in combinatorics
(Alon-Tarsi) and algebraic geometry/representation theory (Hadamard-Howe), as well
as certain integrals over unitary groups [25] (with Kumar).

● Series of papers studying Griffiths-Harris rigidity of homogeneous varieties, including a
proof of their rigidity conjecture and establishment of new methods for exterior differ-
ential systems (EDS), with the introduction of Lie algebra cohomology techniques and
filtered EDS. [69, 68] (with Robles), and [36, 33].

Projective geometry. My work in this area addresses classically flavored questions in pro-
jective algebraic geometry approached with modern methods from exterior differential systems
and representation theory. Highlights include an explicit counter-example to the infinitesimal
LeBrun-Salamon conjecture [70] on quaternionic-Kähler manifolds and contact Fano manifolds
[48], affirmation of Hartshorne’s conjecture on complete intersections for varieties cut out by
quadrics [29], resolution of a conjecture of Kontsevich originating in physics calculations by
translating it to classical algebraic geometry [32], counter-examples to a conjecture of Eisenbud-
Koh-Stillmann [3], and resolution of the classical problem to determine defining equations for
the variety of hypersurfaces with degenerate dual varieties [64].

● Counter-example to a conjecture of Eisenbud-Koh-Stillmann, and answer to a question of
Eisenbud, on secant varieties of Veronese re-embeddings of varieties, [3] (with Buczynski
and Ginesky).

● Explicit counter-example to the infinitesimal LeBrun-Salamon conjecture, namely con-
struction of a smooth inhomogeneous Legendrian variety in dimension two [48] (with
Manivel).
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● Geometrization and resolution of a conjecture of Kontsevich regarding Hadamard in-
verses of orthogonal matrices [32].

● Series of papers examining the existence and non-existence of linear spaces on projective
varieties. Results include an n! upper bound on the number of lines through a general
point of a uni-ruled n-fold [34] and a differential-geometric test for uni-ruledness [31] that
was used in [18] in their breakthrough on the Erdös distinct distances problem, a Fubini-
type theorem in codimension two [56] (with Robles), and progress on the Debarre-deJong
conjecture [59] (with Tommasi).

● Affirmation of Harshorne’s conjecture for varieties cut out by quadrics and differential-
geometric characterization of complete intersections [29].

● Established a new upper bound for the size of spaces of symmetric matrices of constant
rank and its relation to degeneracy loci and dual varieties [20] (with Ilic).

● Differential-geometric proof of Zak’s theorem on Severi varieties as well as establishment
of infinitesimal structure of varieties with degenerate secant and tangential varieties [30].

● Determination of defining equations for the variety of hypersurfaces with degenerate dual
varieties [64] (with Manivel and Ressayre).

● Singularities of varieties of small codimension can be detected just from second order
projective differential geometric information at a general point [28].

Minimal submanifolds. My early work used methods from exterior differential systems and
representation theory to work on classical questions about minimal submanifolds and general-
izations of calibrated geometries.

● Generalization of calibrated geometry, Weierstrass type formulas for minimal 3-folds in
5-space, [27, 26].

● Determined existence and non-existence of minimal isometric embeddings of quasi-curved
manifolds [21] (with Ivey).
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