Section 10.1: Curves Defined by Parametric Equations

Example: Use the parametric function $x(t) = t^2 + 3t$, y(t) = 2t + 5 to answer the following.

A) Is the point (10,8) on the graph? Justify your answer

10,8) on the g

er.			8
er. 2t	4>		•
	, _	3	
21	(=	_ ~	,
	L =	1	2

 $X(\frac{3}{2}) = (\frac{3}{2})^{2} + 3(\frac{3}{2})$ $= \frac{6}{4} + \frac{6}{2}$ $= \frac{6}{4} + \frac{18}{14}$ $= \frac{27}{4} + \frac{18}{14}$

B) Sketch the graph of the curve.

	t	\boldsymbol{x}	y
	-4	4	-3
	-3	0	-1
	-2	-2	1
	-1	-2	3
	0	0	5
,	1	4	7
	2	10	9

 $X = \left(\frac{5-5}{2}\right)^2 + 3\left(\frac{9-5}{2}\right)$

C) Find the Cartesian equation of the parametric function.

$$x = \frac{1}{2} + 3t$$
 $y = 0 + 15$
 $y - 5 = 2t$
 $y - 5 = t$

Example: Sketch the curve $x = \cos(t)$, $y = \cos^2(t)$.

Example: Sketch the graph of these parametric curves.

A)
$$x = 4\sin(t)$$
, $y = 4\cos(t)$

$$\frac{X}{y} = sn(t)$$
 $\frac{y}{y} = los(t)$

$$Sin^{2}t + cos^{2}t = 1$$

$$\left(\frac{X}{4}\right)^{2} + \left(\frac{9}{4}\right)^{2} = 1$$

$$\frac{X}{16} + \frac{9}{16} = 1$$

$$x^{2} + 9^{2} = 16$$

$$x^{2} + 9^{2} = 16$$

B)
$$x = 4\cos(t)$$
, $y = 4\sin(t)$

