Section 10.3: Polar Coordinates

Definition: The **polar coordinate system** is a way to reference the points in the xy-plane where each point is of the form (r, θ) . r is the distance from the point in the plane to the **pole** (or origin). θ is the angle from the **polar axis** (positive x-axis) to the line segment connecting the point and the origin. This angle is positive when measured in the counterclockwise direction and negative when measured in the clockwise direction.

XY

Example: Give a polar coordinate of the Cartesian point (0,3).

$$(3, \sqrt[7]{2})$$

$$\left(2, \frac{\pi}{2} + 2\pi\right)$$

$$\left(-3, -\frac{\pi}{2}\right)$$

Converting Between Polar and Cartesian Coordinates:

$$\theta = \operatorname{Grib}\left(\frac{y}{x}\right)$$

$$\cos \theta = \frac{x}{r}$$
 $\sin \theta = \frac{y}{r}$

10

Example: Convert the point $\left(1.5, \frac{\pi}{6}\right)$ from polar to Cartesian coordinates.

$$X = V \cos \theta$$

$$X = 1.5 \cos \left(\frac{\pi}{6}\right)$$

$$X = 1.5 \left(\frac{\sqrt{3}}{2}\right) = \frac{3\sqrt{3}}{4}$$

$$5 = CSIND$$

$$5 = 1.5SIN(T)$$

$$5 = \frac{3}{2}(\frac{1}{2}) = \frac{3}{4}$$

Example: Convert the point $(1, -\sqrt{3})$ from Cartesian to polar coordinates.

$$\left(\begin{array}{cc}
2, & \frac{77}{3} \\
2, & \frac{577}{3}
\end{array}\right)$$

$$r = \sqrt{(1)^2 + (-\sqrt{3})^2}$$

$$= \sqrt{1 + 3}$$

$$= \sqrt{4}$$

$$= 2$$

$$tm\theta = \left| \frac{-\sqrt{3}}{1} \right|$$

$$tm\theta = \sqrt{3}$$

$$reference \theta = arctn(\sqrt{3})$$

$$reference \theta = \pi / \sqrt{3}$$

$$\left(-1,\sqrt{3}\right)$$

$$r=2$$

$$\left(2,\frac{2\pi}{3}\right)$$

Example: Sketch the region in the plane consisting of points whose polar coordinates satisfies these conditions: $1 \le r \le 2$, $\pi/3 \le \theta \le 3\pi/4$

Example: Find a Cartesian equations for the polar equation and sketch the graph.

 $r = 10\cos\theta$

 $\chi^{2}/v \times ty^{2} = v$ $\chi^{2}/v \times ty^{2} + 5^{2} = 5^{2}$ $(\chi - \xi)^{2} + 5^{2} = 25$

center (5,0)

Example: Find a Cartesian equations for the polar equation and sketch the graph.

$$r=-4\sin\theta$$

$$y^{2} = -4r sm \theta$$

 $x^{2} + y^{2} = -4y$

Example: Find a Cartesian equations for the polar equation and sketch the

graph.

$$r = 1 + \cos \theta$$

$$\int_{1}^{2} = \int_{1}^{2} \int_$$

Example: Sketch the graph of the limacon.

$$r = 3 + 5\sin\theta$$

Example: Sketch the graph of the rose.

r= 6050

Example: Sketch the graph of the rose.

Note: Here is a link that gives some of the conditions for the number of loops in the polar graph.

https://en.wikipedia.org/wiki/Rose_(mathematics)

Example: Find a polar equation for the Cartesian equations.

$$y^2 = 5x$$

$$(r \sin \theta)^{2} = 5 r \cos \theta$$

$$r^{2} \sin^{2} \theta = 5 r \cos \theta$$

$$r \sin^{2} \theta = 5 \cos \theta$$

$$r \sin^{2} \theta = 5 \cos \theta$$

$$r \sin^{2} \theta = 5 \cos \theta$$

$$X = r \omega s \Theta$$
$$y = r s \Omega \Theta$$