Section 11.2: Series

Definition: Given a sequence $\{a_i\}$, we can construct an **infinite series** or **series** by adding the terms of the sequence. $\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \dots$

Definition: The *n*th partial sum of a series, denoted s_n , is the sum of the first n-terms.

NOTE: If the index starts at i = 1 then

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

$$s_1 = a_1$$

$$s_2 = s_1 + a_2 = a_1 + a_2$$

$$s_3 = s_2 + a_3 = a_1 + a_2 + a_3$$

$$s_4 = s_3 + a_4 = a_1 + a_2 + a_3 + a_4$$

$$s_5 = s_4 + a_5 = a_1 + a_2 + a_3 + a_4 + a_5$$

Example: Find the s_4 for the series: $\sum_{i=4}^{\infty} \frac{1}{(i-2)^2}$

How To Shift a Series:

Example: Adjust the series $\sum_{i=3}^{\infty} 10 \left(\frac{1}{3}\right)^{2i}$ so that the index will now start at i=1.

Definition: Let $\sum_{i=1}^{\infty} a_i$ be a series with s_n being the nth partial sum of this series. If the **sequence** of partial sums $\{s_n\}$ converges to s, i.e. $\lim_{n\to\infty} s_n = s$, then we say that the series $\sum_{i=1}^{\infty} a_i$ converges to s or that the series has a sum of s, $\sum_{i=1}^{\infty} a_i = s$. If $\{s_n\}$ does not converge, then the series $\sum_{i=1}^{\infty} a_i$ is said to be divergent.

n	a_n	n	$ $ s_n
1	40	1	40
2	8	2	48
3	8/5 = 1.6	3	49.6
4	8/25 = 0.32	4	49.92
5	8/125 = 0.064	5	49.984
6	8/625 = 0.0128	6	49.9968
7	8/3125 = 0.00256	7	49.99936
8	8/15625 = 0.000512	8	49.999872
9	8/78125 = 0.0001024	9	49.9999744
10	8/390625 = 0.00002048	10	49.99999488

Theorem: If the series $\sum_{i=1}^{\infty} a_i$ is convergent, then $\lim_{i \to \infty} a_i = 0$

<u>Test for Divergence</u>: If $\lim_{i\to\infty} a_i \neq 0$ or DNE, then the series $\sum_{i=1}^{\infty} a_i$ is divergent.

Example: Which of these series DO NOT have a chance at being convergent?

$$A) \sum_{n=1}^{\infty} \frac{1}{n^3}$$

B)
$$\sum_{n=1}^{\infty} \frac{3n+5}{7-2n}$$

C)
$$\sum_{n=1}^{\infty} \cos(e^{-n})$$

Example: The series $\sum_{i=1}^{\infty} a_i$ has a *n*th partial sum given by s_n . Will the series converge or diverge? Find the formula for the a_n term.

$$s_n = \frac{3n+5}{7-2n}$$

Example: Determine if the Harmonic series, $\sum_{n=1}^{\infty} \frac{1}{n}$, converges or diverges.

Example: The **geometric series** may be defined in a variety of methods.

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots$$

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 + \dots$$

$$\sum_{n=7}^{\infty} ar^{n-7} = a + ar + ar^2 + ar^3 + \dots$$

Proof of the Geometric Series:

Consider the parital sum of the first n terms.

$$S_n = \sum_{k=1}^{\infty} ar^{k-1} = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$

Multiply S_n by r to get: $rS_n = ar + ar^2 + ar^3 + ... + ar^n$

Now compute $S_n - rS_n$ and then solve for S_n

$$S_n - rS_n = a - ar^n$$

$$(1-r)S_n = a - ar^n$$

$$S_n = \frac{a - ar^n}{1 - r}$$

Sum=
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a - ar^n}{1 - r} = \begin{cases} \frac{a}{1 - r} & \text{if } |r| < 1 \\ DNE & \text{if } |r| \ge 1 \end{cases}$$

Theorem: If $\sum a_n$ and $\sum b_n$ are covergent series, then so are the following series

 $\sum ca_n = c \sum a_n$ (where c is a constant)

$$\sum (a_n + b_n) = \sum a_n + \sum b_n$$

$$\sum (a_n - b_n) = \sum a_n - \sum b_n$$

Example: Determine if these series are convergent or divergent. If the series is convergent, then give the sum of the series.

A)
$$1 - \frac{4}{3} + \frac{16}{9} - \frac{64}{27} + \dots$$

$$B) \sum_{i=3}^{\infty} 10 \left(\frac{1}{3}\right)^{i-1}$$

C)
$$\sum_{n=0}^{\infty} 7 * 4^{-n} 3^{n-1}$$

D)
$$\sum_{i=1}^{\infty} \ln \left(\frac{i}{i+1} \right)$$

E)
$$\sum_{i=3}^{\infty} \left(\frac{1}{i-2} - \frac{1}{i} \right)$$

F)
$$\sum_{i=1}^{\infty} e^{5/(i+1)} - e^{5/i}$$

Example: Use a geometric series to express $0.\overline{14}$ as a ratio of integers.

Example: Find the values of x so that $\sum_{n=1}^{\infty} (4x-5)^n$ will converge. Find the sum for those values of x.