Section 11.9: Representations of Functions as Power Series

Geometric Power Series: $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x}$ converges for |x| < 1 with Radius of convergence = 1 and interval of convergence (-1,1)

Example: Find the power series representation of f(x) and the radius and interval of convergence.

$$A) \ \frac{1}{4+x}$$

$$B) \frac{x^2}{4+x}$$

Example: Find the power series representation of f(x) and the radius of convergence.

A)
$$\frac{3x^3}{1 - 9x^2}$$

$$B) \frac{x}{x^2 - 3x + 2}$$

C)
$$\frac{9}{x^4 + 81}$$

Theorem: If the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has a radius of convergence R>0, then the function defined by $f(x)=\sum_{n=0}^{\infty} c_n(x-a)^n$ is differentiable (and therefore continuous) on the interval (a-R,a+R) and

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \dots = \sum_{n=0}^{\infty} c_n(x-a)^n$$

$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

$$\int f(x)dx = C + c_0(x-a) + \frac{c_1(x-a)^2}{2} + \frac{c_2(x-a)^3}{3} + \dots = C + \sum_{n=0}^{\infty} \frac{c_n(x-a)^{n+1}}{n+1}$$

The radii of convergence for both f'(x) and $\int f(x)dx$ are both R. The interval of convergence may change.

Math 152-copyright Joe Kahlig, 19c

$$f = \sum_{n=0}^{\infty} \frac{x^n}{3^n}$$

$$g = \sum_{n=0}^{\infty} \frac{x^{n+2}}{3^n}$$

$$f = \frac{x^0}{3^0} + \frac{x^1}{3^1} + \frac{x^2}{3^2} + \cdots$$

$$g = \frac{x^2}{3^0} + \frac{x^3}{3^1} + \frac{x^4}{3^2} + \cdots$$

$$g = x^2 + \frac{x^3}{3^1} + \frac{x^4}{3^2} + \cdots$$

$$g = x^2 + \frac{x^3}{3^1} + \frac{x^4}{3^2} + \cdots$$

$$g' = \sum_{n=0}^{\infty} \frac{(n+2)x^{n+1}}{3^n}$$

Example: Evaluate this integral by using a power series and find the radius of convergence.

$$\int \frac{9}{x^4 + 81} \ dx$$

Example: Find a power series representation of f(x) and determine the interval and radius of convergence.

$$f(x) = \ln(1+x)$$

Example: Find the power series representation of these functions. determine the radius of convergence.

$$A) f(x) = \ln(1 - x)$$

B)
$$f(x) = \ln(4 + x^2)$$

Math 152-copyright Joe Kahlig, 19c

Example: Find the power series representation of f(x) and determine the radius of convergence.

$$f(x) = \arctan(x)$$

Example: Find a power series representation of f(x).

$$f(x) = \frac{1}{(1+x)^3}$$

Example: Find a power series representation of f(x).

$$f(x) = \frac{x^3}{(1+2x)^3}$$

Example: Use a series to evaluate this integral.

$$\int \arctan(x^3) \ dx$$