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1 Introduction

We use the name “quantum graph” for a graph considered as a one-dimensional
singular variety and equipped with a self-adjoint differential (in some cases
pseudo-differential) operator (“Hamiltonian”). There are manifold reasons
for studying quantum graphs. They naturally arise as simplified (due to re-
duced dimension) models in mathematics, physics, chemistry, and engineer-
ing (nanotechnology), when one considers propagation of waves of different
nature (electromagnetic, acoustic, etc.) through a “mesoscopic” quasi-one-
dimensional system that looks like a thin neighborhood of a graph. One
can mention in particular the free-electron theory of conjugated molecules
in chemistry, quantum chaos, quantum wires, dynamical systems, photonic
crystals, scattering theory, and a variety of other applications. We will not
discuss any details of these origins of quantum graphs, referring the reader
instead to [54] for a recent survey and literature. The problems addressed
in the quantum graph theory include justifications of quantum graphs as ap-
proximations for more realistic (and complex) models of waves in complex
structures, analysis of various direct and inverse spectral problems (coming
from quantum chaos, optics, scattering theory, and other areas), and many
others. This paper does not contain discussion of most of these topics and
the reader is referred to the survey [54] and to papers presented in the current
issue of Waves in Random Media for more information and references.

In this paper we address some basic notions and results concerning quan-
tum graphs and their spectra. While the spectral theory of combinatorial
graphs is a rather well established topic (e.g., books [12, 21, 22, 23, 62] and
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references therein), the corresponding theory of quantum graphs is just de-
veloping (e.g., examples of such studies in [3, 5, 6, 7, 8, 9, 15], [16] - [20],
[25], [29] - [35], [39], [43] - [49], [56] - [58], [64, 65, 70, 74, 79, 80] and further
references in [54]).

Let us describe the contents of the following sections. Section 2 is devoted
to introducing basic notions of a metric and quantum graph. The largest
Section 3 deals with the detailed description of self-adjoint vertex conditions
for second derivative Hamiltonians on quantum graphs. Treatment of infinite
graphs required some restrictions on their structure. The vertex conditions
are written in the form that enables one to describe easily the quadratic
forms of the operators and to classify all permutation-invariant conditions.
Section 4 is devoted to relations between quantum and combinatorial spectral
problems that will be seen as especially helpful in the planned next part [56]
of this article. The paper ends with short sections containing remarks and
acknowledgments.

The reader should note that this paper is of the survey nature and hence
most of the results are not new (although the exposition might differ from
other sources). Some references are provided throughout the text, albeit
the bibliography was not intended to be comprehensive, and the reader is
directed to the surveys [54, 55] for more detailed bibliography. It was ini-
tially planned to address several new issues in this paper, among which one
can mention above all a more detailed spectral treatment of infinite graphs
(bounds for generalized eigenfunctions, Schnol’s theorems, periodic graphs,
some gap opening effects, and discussion of bound states), however the arti-
cle size limitations resulted in the necessity of postponing those to the next
paper [56]. For the same reason, the author has also restricted considerations
to the case of the second derivative Hamiltonian only, while one can extend
these without much of a difficulty to more general Schrödinger operators
(e.g., [46]). This, as well as some other topics will be dealt with elsewhere.
So, the paper is planned to serve as an introduction that could be useful
while reading other articles of this issue of Waves in Random Media, and
also as the first part of [56].

2 Quantum graphs

As it was mentioned in the introduction, we will be dealing with quantum
graphs, i.e. graphs considered as one-dimensional singular varieties rather
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than purely combinatorial objects and correspondingly equipped with differ-
ential (or sometimes “pseudo-differential”) operators (Hamiltonians) rather
than discrete Laplace operators.

2.1 Metric graphs

A graph Γ consists of a finite or countably infinite set of vertices V = {vi}
and a set E = {ej} of edges connecting the vertices. Each edge e can be
identified with a pair (vi, vk) of vertices. Although in many quantum graph
considerations directions of the edges are irrelevant and could be fixed arbi-
trarily (we will not need them in this paper), it is sometimes more convenient
to have them assigned. Loops and multiple edges between vertices are al-
lowed, so we avoid saying that E is a subset of V ×V . We also denote by Ev

the set of all edges incident to the vertex v (i.e., containing v). It is assumed
that the degree (valence) dv = |Ev| of any vertex v is finite and positive. We
hence exclude vertices with no edges coming in or going out. This is natural,
since for the quantum graph purposes such vertices are irrelevant.

So far all our definitions have dealt with a combinatorial graph. Here we
introduce a notion that makes Γ a topological and metric object.

Definition 1. A graph Γ is said to be a metric graph (sometimes the
notion of a weighted graph is used instead), if its each edge e is assigned
a positive length le ∈ (0,∞] (notice that edges of infinite length are allowed).

Having the length assigned, an edge e will be identified with a finite or
infinite segment [0, le] of the real line with the natural coordinate xe along
it. In most cases we will drop the subscript in the coordinate and call it x,
which should not lead to any confusion. This enables one to interpret the
graph Γ as a topological space (simplicial complex) that is the union of all
edges where the ends corresponding to the same vertex are identified.

The reader should note that we do not assume the graph to be embedded
in any way into an Euclidean space. In some applications such a natural
embedding does exist (e.g., in modeling quantum wire circuits or photonic
crystals), and in such cases the coordinate along an edge is usually the arc
length. In some other applications (e.g., in quantum chaos) the graph is not
assumed to be embedded.

Graph Γ can be equipped with a natural metric. If a sequence of edges
{ej}M

j=1 forms a path, its length is defined as
∑

lj. For two vertices v and
w, the distance ρ(v, w) is defined as the minimal path length between them.
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Since along each edge the distance is determined by the coordinate x, it is
easy to define the distance ρ(x, y) between two points x, y of the graph that
are not necessarily vertices. We leave this to the reader.

We also impose some additional conditions:
• Condition A. The “infinite” ends of infinite edges are assumed to have

degree one. Thus, the graph can be thought of as a graph with finite length
edges with additional infinite “leads” or “ends” going to infinity attached
to some vertices. This situation arises naturally for instance in scattering
theory. Since these “infinite” vertices will never be treated as regular vertices
(in fact, in this paper such vertices will not arise at all), one can just assume
that each infinite edge is a ray with a single vertex.

• Condition B. When studying infinite graphs, we will impose some
assumptions that will imply in particular that for any positive number r and
any vertex v there is only a finite set of vertices w at a distance less than
r from v. In particular, the distance between any two distinct vertices is
positive, and there are no finite length paths of infinitely many edges. This
obviously matters only for infinite graphs (i.e., graphs with infinitely many
edges) and is automatically satisfied for the class of infinite metric graphs
that will be introduced later.

So, now one can imagine the graph Γ as a one-dimensional simplicial com-
plex, each 1D simplex (edge) of which is equipped with a smooth structure,
with singularities arising at junctions (vertices) (see Fig. 1).

The reader should notice that now the points of the graph are not only its
vertices, but all intermediate points x on the edges as well. One can define
in the natural way the Lebesgue measure dx on the graph. Functions f(x)
on Γ are defined along the edges (rather than at the vertices as in discrete
models). Having this and the measure, one can define in a natural way some
function spaces on the graph:

Definition 2. 1. The space L2(Γ) on Γ consists of functions that are mea-
surable and square integrable on each edge e and such that

‖f‖2
L2(Γ) =

∑
e∈E

‖f‖2
L2(e) < ∞.

In other words, L2(Γ) is the orthogonal direct sum of spaces L2(e).

2. The Sobolev space H1(Γ) consists of all continuous functions on Γ
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Figure 1: Graph Γ.

that belong to H1(e) for each edge e and such that

∑
e∈E

‖f‖2
H1(e) < ∞.

Note that continuity in the definition of the Sobolev space means that
the functions on all edges adjacent to a vertex v assume the same value at v.

There seem to be no natural definition of Sobolev spaces Hk(Γ) of or-
der k higher than 1, since boundary conditions at vertices depend on the
Hamiltonian (see details later on in this paper).

The last step that is needed to finish the definition of a quantum graph
is to introduce a self-adjoint (differential or more general) operator (Hamil-
tonian) on Γ. This is done in the next section.

2.2 Operators

The operators of interest in the simplest cases are:
the negative second derivative

f(x) → −d2f

dx2
, (1)

a more general Schrödinger operator
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f(x) → −d2f

dx2
+ V (x)f(x), (2)

or a magnetic Schrödinger operator

f(x) →
(

1

i

d

dx
− A(x)

)2

+ V (x)f(x). (3)

Here x denotes the coordinate xe along the edge e.
Higher order differential and even pseudo-differential operators arise as

well (see, e.g. the survey [54] and references therein). We, however, will
concentrate here on second order differential operators, and for simplicity of
exposition specifically on (1). In order for the definition of the operators to
be complete, one needs to describe their domains. The natural conditions
require that f belongs to the Sobolev space H2(e) on each edge e. One also
clearly needs to impose boundary value conditions at the vertices. These will
be studied in the next section.

3 Boundary conditions and self-adjointness

We will discuss now the boundary conditions one would like to add to the
differential expression (1) in order to create a self-adjoint operator.

3.1 Graphs with finitely many edges

In this section we will consider finite graphs only. This means that we
assume that the number of edges |E| is finite (and hence the number of
vertices |V | is finite as well, since we assume all vertex degrees to be positive).
Notice that edges are still allowed to have infinite length.

We will concentrate on local (or vertex) boundary conditions only, i.e.
on those that involve the values at a single vertex only at a time. It is
possible to describe all the vertex conditions that make (1) a self-adjoint
operator (see [43, 41] and a partial description in [34]). This is done by
either using the standard von Neumann theory of extensions of symmetric
operators (as for instance described in [1]), or by its more recent version that
amounts to finding Lagrangian planes with respect to the complex symplectic
boundary form that corresponds to the maximal operator (see for instance
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[3, 26, 27, 28, 41, 42, 43, 69, 71] for the accounts of this approach that goes
back at least as far as [63], where it was presented without use of words
“symplectic” or “Lagrangian”). One of the most standard types of such
boundary conditions is the “Kirchhoff” condition:





f(x) is continuous on Γ
and

at each vertex v one has
∑

e∈Ev

df
dxe

(v) = 0
, (4)

where the sum is taken over all edges e containing the vertex v. Here the
derivatives are taken in the directions away from the vertex (we
will call these “outgoing directions”), the agreement we will adhere to
in all cases when these conditions are involved. Sometimes (4) is called the
Neumann condition. It is clear that at “loose ends” (vertices of degree 1) it
turns into the actual Neumann condition. Besides, as the Neumann boundary
condition for Laplace operator, it is natural. Namely, as it will be seen a little
bit later, the domain of the quadratic form of the corresponding operator does
not require any conditions on a function besides being in H1(Γ) (and hence
continuous). It is also useful to note that under the boundary conditions (4)
one can eliminate all vertices of degree 2, connecting the adjacent edges into
one smooth edge.

There are many other plausible vertex conditions (some of which will be
discussed later), and the question we want to address now is how to describe
all of those that lead to a self-adjoint realization of the second derivative
along the edges.

Since we are interested in local vertex conditions only, it is clear that it
is sufficient to address the problem of self-adjointness for a single junction
of d edges at a vertex v. Because along each edge our operator acts as the
(negative) second derivative, one needs to establish two conditions per an
edge, and hence at each vertex the number of conditions must coincide with
the degree d of the vertex. For functions in H2 on each edge, the conditions
may involve only the boundary values of the function and its derivative. Then
the most general form of such (homogeneous) condition is

AvF + BvF
′ = 0. (5)

Here Av and Bv are d × d matrices, F is the vector (f1(v), ..., fd(v))t of the
vertex values of the function along each edge, and F ′ = (f ′1(v), ..., f ′d(v))t
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is the vector of the vertex values of the derivatives taken along the edges
in the outgoing directions at the vertex v, as we have agreed before. The
rank of the d × 2d matrix (Av, Bv) must be equal to d (i.e., maximal) in
order to ensure the correct number of independent conditions. When this
would not lead to confusion, we will drop the subscript v in these matrix
notations, remembering that the matrices depend on the vertex (in fact, for
non-homogeneous graphs they essentially have no other choice).

Now one is interested in the necessary and sufficient conditions on ma-
trices A and B in (5) that would guarantee self-adjointness of the resulting
operator. All such conditions were completely described in [43] (see also the
earlier paper [33] for some special cases and [41, 48]for an alternative consid-
eration that represents the boundary conditions in terms of vertex scattering
matrices). We will formulate the corresponding result in the form taken from
[43].

Theorem 3. [43] Let Γ be a metric graph with finitely many edges. Consider

the operator H acting as − d2

dx2
e

on each edge e, with the domain consisting of

functions that belong to H2(e) on each edge e and satisfy the boundary condi-
tions (5) at each vertex. Here {Av, Bv | v ∈ V } is a collection of matrices of
sizes dv × dv such that each matrix (Av Bv) has the maximal rank. In order
for H to be self-adjoint, the following condition at each vertex is necessary
and sufficient:

the matrix AvB
∗
v is self-adjoint. (6)

The proof of this theorem can be found in [43].
We would like now to describe the quadratic form of the operator H

corresponding to the (negative) second derivative along each edge, with self-
adjoint vertex conditions (5) (we assume in particular that (6) is satisfied). In
order to do so, we will establish first a couple of simple auxiliary statements.

In the next two lemmas and a corollary we will consider matrices A and B
as in (8). Since we will be concerned with a single vertex here, we will drop for
this time the subscripts v in Av, Bv, and dv. Let us introduce some notations.
We will denote by P and P1 the orthogonal projections in Cd onto the kernels
K = ker B and K1 = ker B∗ respectively. The complementary orthogonal
projectors onto the ranges R = R(B∗) and R1 = R(B) are denoted by Q and
Q1 (here R(M) denotes the range of a matrix M).
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Lemma 4. Let d×d matrices A and B be such that the d×2d matrix (AB)
has maximal rank and AB∗ is self-adjoint. Then

1. Operator A maps the range R of B∗ into the range R1 of B.

2. The mapping P1AP : K → K1 is invertible.

3. The mapping Q1BQ : R → R1 is invertible (we denote its inverse by
B(−1)).

4. The matrix B(−1)AQ is self-adjoint.

Proof. Self-adjointness of AB∗ means AB∗ = BA∗, which immediately im-
plies the first statement of the lemma. In order to prove the next two state-
ments, let us decompose the space Cd into the orthogonal sum R1 ⊕K1 and
C2d into Cd ⊕ Cd = R ⊕ K ⊕ R ⊕ K. Then the matrix (AB) representing
an operator from C2d into Cd can be written in a 2 × 4 block-matrix form
with respect to these decompositions. Taking into account the definitions
of the subspaces R, R1, K, and K1 and the already proven first statement of
the lemma, this leads to the block matrix

(AB) =

(
A11 A12 B11 0
0 A22 0 0

)
. (7)

For this matrix to have maximal rank, the entry A22 must be invertible,
which gives the second statement of the lemma. The third statement is
obvious, since the matrix B11 is square and has no kernel (which has already
been eliminated and included into K). Immediate calculation shows that
self-adjointness of AB∗ means that the square matrix A11B

∗
11 is self-adjoint,

i.e. A11B
∗
11 = B11A

∗
11. Since invertibility of B11 has already been established

(recall that its inverse is denoted by B(−1)), we can multiply the previous
equality by appropriate inverse matrices from both sides to get

B(−1)A11 = A∗
11B

(−1)∗.

This means that the matrix B(−1)A11 is self-adjoint and hence the last state-
ment of the lemma is proven.

Corollary 5. Let the conditions of Lemma 4 be satisfied. Then the boundary
condition (5) AF + BF ′ = 0 is equivalent to the pair of conditions PF = 0
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and LQF + QF ′ = 0, where P , as before, is the orthogonal projection onto
the kernel of matrix B, Q is the complementary projector, and L is the self-
adjoint operator B(−1)A.

Proof. We will employ the notations used in the preceding lemma. It is
clear that (5) is equivalent to the pair of conditions P1AF + P1BF ′ = 0
and Q1AF + Q1BF ′ = 0. The lemma now shows that the first of them can
be rewritten as A22PF = 0, which by the second statement of the lemma
is equivalent to PF = 0. The second equality, again by the lemma, can
be equivalently rewritten as AQF + B11QF ′ = 0, or after inverting B11 as
LQF + QF ′ = 0, which finishes the proof of the corollary.

We can now re-phrase general self-adjoint boundary conditions in a fash-
ion that is sometimes more convenient (for instance, for describing the quadratic
form of the operator).

Theorem 6. All self-adjoint realizations H of the negative second derivative
on Γ with vertex boundary conditions can be described as follows. For every
vertex v there are an orthogonal projector Pv in Cdv with the complementary
projector Qv = Id−Pv and a self-adjoint operator Lv in QvCdv . The functions
f from the domain D(H) ⊂ ⊕

e

H2(e) of H are described by the following

conditions at each (finite) vertex v:

PvF (v) = 0
QvF

′(v) + LvQvF (v) = 0.
(8)

In terms of the matrices Av and Bv of Theorem 3, Pv is the orthogonal
projector onto the kernel of Bv and Lv = B

(−1)
v Av (where B

(−1)
v has been

defined previously).

Proof. Adopting the definitions of Pv and Lv provided in the theorem, one
can see that the theorem’s statement is just a simple consequence of Theorem
3, Lemma 4, and Corollary 5 combined.

Remark 7. 1. In view of the first condition in (8), the second one can be
equivalently written as QvF

′(v) + LvF (v) = 0.

2. Conditions (8) say that the Pv-component of the vertex values F (v) of
f must be zero (kind of a “Dirichlet” part), while the Pv-part of the
derivatives F ′(v) is unrestricted. The Qv-part of the derivatives F ′(v)
is determined by the Qv-part of the function F (v).
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We will need also the following well known trace estimate that we prove
here for completeness.

Lemma 8. Let f ∈ H1[0, a], then

|f(0)|2 ≤ 2

l
‖f‖2

L2[0,a] + l‖f ′‖2
L2[0,a] (9)

for any l ≤ a.

Proof. Due to H1-continuity of both sides of the inequality, it is sufficient to
prove it for smooth functions. Start with the representation

f(0) = f(x)−
x∫

0

f ′(t)dt, x ∈ [0, l] (10)

and estimate by Cauchy-Schwartz inequality

|
x∫

0

f ′(t)dt|2 ≤ ‖f ′‖2
L2[0,a]‖χ[0,x]‖2

L2[0,a] = x‖f ′‖2
L2[0,a].

This implies

‖
x∫

0

f ′(t)dt‖2
L2[0,l] ≤ ‖f ′‖2

L2[0,a]

l∫

0

x dx =
l2

2
‖f ′‖2

L2[0,a].

Now taking L2[0, l]-norms in both sides of (10) and using triangle inequality
and (a + b)2 ≤ 2a2 + 2b2, we get the estimate

|f(0)|2l ≤ 2‖f‖2
L2[0,a] + l2‖f ′‖2

L2[0,a],

which implies the statement of the lemma.
We are ready now for the description of the quadratic form of the operator

H on a finite graph Γ. Let as before Γ be a metric graph with finitely many

vertices. The selfadjoint operator H in L2(Γ) acts as − d2

dx2
along each edge,

with the domain consisting of all functions f(x) on Γ that belong to the
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Sobolev space H2(e) on each edge e and satisfy at each vertex v conditions
(8):

PvF (v) = 0
QvF

′(v) + LvQvF (v) = 0.
(11)

Here, as always F (v) = (f1(v), ...fdv(v))t is the column vector of the values of
the function f at v that it attains when v is approached from different edges
ej adjacent to v, F ′(v) is the column vector of the corresponding outgoing
derivatives at v, the dv × dv-matrix Pv is an orthogonal projector and Lv is
a self-adjoint operator in the kernel QvCdv of Pv.

Theorem 9. The quadratic form h of H is given as

h[f, f ] =
∑
e∈E

∫
e

| df
dx
|2dx− ∑

v∈V

∑
ej ,ek∈Ev

(Lv)jk fj(v)fk(v)

=
∑
e∈E

∫
e

| df
dx
|2dx− ∑

v∈V

〈LvF, F 〉, (12)

where 〈, 〉 denotes the standard hermitian inner product in Cd. The domain
of this form consists of all functions f that belong to H1(e) on each edge e
and satisfy at each vertex v the condition PvF = 0.

Correspondingly, the sesqui-linear form of H is:

h[f, g] =
∑
e∈E

∫

e

df

dx

dg

dx
dx−

∑
v∈V

〈LvF,G〉. (13)

Proof. Notice that Lemma 8 shows that (12) with the domain described in
the theorem defines a closed quadratic form. It hence corresponds to a self-
adjoint operator M in L2(Γ). Integration by parts in (13) against smooth
functions g that vanish in a neighborhood of each vertex shows that on its
domain M acts as the negative second derivative along each edge. So, the
remaining task is to show that its domain D(M) consists of all functions
that belong to H2 on each edge and satisfy the vertex conditions (8). This
would imply that M = H. So, let us assume f ∈ D(M). In particular,
f ∈ ⊕

e

H1(e). It is the standard conclusion then that f ∈ H2(e) for any

edge e (we leave to the reader to fill in the details, see also the section
concerning infinite graphs). We need now to verify that f satisfies the vertex
conditions (8). The condition PvF (v) = 0 does not need to be checked, since
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it is satisfied on the domain of the quadratic form. Integration by parts
transforms (13) into

−
∑
e∈E

∫

e

d2f

dx2
gdx−

∑
v∈V

〈F ′ + LvF, G〉. (14)

The second term must vanish for any g in the domain of the quadratic form.
Taking into account that then G(v) can be an arbitrary vector such that
PvG(v) = 0, this means that for each v the equality

QvF
′(v) + QvLvF (v) = 0 (15)

needs to be satisfied, where Qv is the complementary projection to Pv. This
gives us the needed conditions (8) for the function f .

It is also easy to check in a similar fashion that as soon as a function f
belongs to H2 on each edge and satisfies (8), it belongs to the domain of M.
This proves that M in fact coincides with the previously described operator
H. The proof is hence completed.

Corollary 10. The operator H is bounded from below. Moreover, let S =
max

v
{‖Lv‖}, then

H ≥ −C Id, (16)

where
C = 4S max{2S, max

e
{l(−1)

e }}.

Proof. One can choose l := min{le} in (9) applied to any edge e. Then, due
to (9) one has:

∑
v

〈LvF (v), F (v)〉 ≤ S
∑
v

|F (v)|2

≤ 2S
(

2
l
‖f‖2

L2(Γ) + l‖f ′‖2
L2(Γ)

)
.

(17)

If now 2lS ≤ 1, then (17) and the definition of the quadratic form h show
that the statement of the Corollary holds.

Although one can (and often needs to) consider quantum graphs with
more general Hamiltonian operators (e.g. Schrödinger operators with elec-
tric and magnetic potentials, operators of higher order, pseudo-differential
operators, etc.), for the purpose of this article only we adopt the fol-
lowing definition:
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Definition 11. A quantum graph is a metric graph equipped with the
operator H that acts as the negative second order derivative along edges and
is accompanied by the vertex conditions (8).

3.2 Examples of boundary conditions

In this section we take a brief look from the prospective of the previous
section at some examples of vertex conditions and corresponding operators.
The reader can find more examples in [34, 43, 59].

3.2.1 δ-type conditions

are defined as follows:




f(x) is continuous on Γ
and

at each vertex v ,
∑

e∈Ev

df
dxe

(v) = αvf(v)
. (18)

Here αv are some fixed numbers. One can recognize these conditions as an
analog of conditions one obtains from a Schrödinger operator on the line with
a δ potential, which explains the name. In this case the conditions can be
obviously written in the form (5) with

Av =




1 −1 0 .... 0
0 1 −1 ... 0
... ... 0 1 −1
−αv 0 ... 0 0




and

Bv =




0 0 .... 0
... ... ... ...
0 0 .... 0
1 1 ... 1


 .

Since

AvB
∗
v =




0 0 .... 0 0
... ... ... ... ...
0 0 ... 0 −αv


 ,

the self-adjointness condition (6) is satisfied if and only if α is real.
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In order to write the vertex conditions in the form (8), one needs to
find the orthogonal projection Pv onto the kernel of Bv and the self-adjoint
operator Lv = B

(−1)
v AvQv. It is a simple exercise to find that Qv is the one-

dimensional projector onto the space of vectors with equal coordinates and
correspondingly the range of Pv is spanned by the vectors rk, k = 1, ..., dv−1,
where rk has 1 as the k-th component, −1 as the next one, and zeros other-
wise. Then a straightforward calculation shows that Lv is the multiplication

by the number −αv

dv

. In particular, the description of the projector Pv shows

that the quadratic form of the operator H is defined on functions that are
continuous throughout all vertices (i.e., F (v) = (f(v), ..., f(v))t) and hence
belong to H1(Γ). The form is computed as follows:

∑
e∈E

∫
e

| df
dx
|2dx− ∑

v∈V

〈LvF, F 〉
=

∑
e∈E

∫
e

| df
dx
|2dx +

∑
v∈V

αv|f(v)|2. (19)

It is obvious from (19) that the operator is non-negative if αv ≥ 0 for all
vertices v.

3.2.2 Neumann (Kirchhoff) conditions

These conditions (4) that have already been mentioned, represent probably
the most common case of the δ-type conditions (18) when αl = 0, i.e.





f(x) is continuous on Γ
and

at each vertex v ,
∑

e∈Ev

df
dxe

(v) = 0
. (20)

The discussion above shows that the quadratic form of H is

∑
e∈E

∫

e

| df
dx
|2dx, (21)

defined on H1(Γ), and the operator is non-negative

3.2.3 Conditions of δ′-type

These conditions remind the δ-type ones, but with the roles of functions and
the derivatives are reversed at each vertex (see also [2]). In order to describe

15



them, let us introduce the notation fv for the restriction of a function f onto
the edge e. Then the conditions at each vertex v can be described as follows:





The value of the derivative dfe

dxe
(v) is the same for all edges e ∈ Ev

and∑
e∈Ev

fe(v) = αv
df
dx

(v)
.

(22)

Here, as before, dfe

dxe
(v) is the derivative in the outgoing direction at the vertex

v. It is clear that in comparison with δ-type case the matrices Av and Bv are
switched:

Bv =




1 −1 0 .... 0
0 1 −1 ... 0
... ... 0 1 −1
−αv 0 ... 0 0




and

Av =




0 0 .... 0
... ... ... ...
0 0 .... 0
1 1 ... 1


 .

Since

AvB
∗
v =




0 0 .... 0 0
... ... ... ... ...
0 0 ... 0 −αv


 ,

the self-adjointness condition (6) is satisfied again for real αv only.
Consider first the case when αv = 0 for some vertex v. Then the kernel

of Bv consists of all vector with equal coordinates, and the projector Qv

projects orthogonally onto the subspace of vectors that have the sum of their
coordinates equal to zero. On this subspace operator Av is equal to zero, and
hence Lv = 0. This leads to no non-integral contribution to the quadratic
form coming from the vertex v. In particular, if αv = 0 for all vertices, we
get the quadratic form ∑

e

∫

e

| df
dx
|2dx
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with the domain consisting of all functions from
⊕
e

H1(e) that have at each

vertex the sum of the vertex values along all entering edges equal to zero. In
this case the operator is clearly non-negative.

Let us look at the case when for a vertex v the value αv is non-zero. In
this case the operator Bv is invertible and so Pv = 0, Qv = Id. It is not
hard to compute that (Lv)ij = −(αd)(−1) for all indices i, j. This leads to
the non-integral term

1

αv

|
∑

{e∈Ev}
fe(v)|2.

One can think that the case when αv = 0 is formally a “particular case” of
this one, if one assumes that the denominator being equal to zero forces the
condition that the sum in the numerator also vanishes.

The quadratic form for a general choice of real numbers α can be written
as follows: ∑

e∈E

∫

e

| df
dx
|2dx +

∑

{v∈V |αv 6=0}

1

αv

|
∑

{e∈Ev}
fe(v)|2.

The domain consists of all functions in
⊕
e

H1(e) that have at each vertex v

where αv = 0 the sum of the vertex values along all entering edges equal to
zero.

When all numbers αv are non-negative, the operator is clearly non-negative
as well.

3.2.4 Vertex Dirichlet and Neumann conditions

The vertex Dirichlet conditions are those where at each vertex it is re-
quired that the boundary values of the function on each edge are equal to
zero. In this case the operator completely decouples into the direct sum of
the negative second derivatives with Dirichlet conditions on each edge. There
is no communication between the edges. The quadratic form is clearly

∑
e∈E

∫

e

| df
dx
|2dx

on functions f ∈ H(Γ) with the additional condition f(v) = 0 for all vertices
v. The spectrum σ(H) is then found as

σ(H) = {n2π2/l2e | e ∈ E, n ∈ Z− 0}.
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Another type of conditions under which the edges completely decouple and
the spectrum can be easily found from the set of edge lengths, is the vertex
Neumann conditions. Under these conditions, no restrictions on the vertex
values fe(v) are imposed, while all derivatives f ′e(v) are required to be equal
to zero. Then on obtains the Neumann boundary value problem on each edge
separately. The formula for the quadratic form is the same as for the vertex
Dirichlet conditions, albeit on a larger domain with no vertex conditions
imposed whatsoever.

3.2.5 Classification of all symmetric vertex conditions

The reader might have noticed that in all examples above the conditions were
invariant with respect to any permutations of edges at a vertex. We will now
classify all such conditions (8). The list of symmetric vertex conditions in-
cludes several popular classes. However, quantum graph models arising as
approximations for thin structures sometimes involve non-symmetric condi-
tions as well, which preserve some memory of the geometry of junctions (see,
e.g. [58, 59, 60]). As it has already been mentioned, one can find discussion
of other examples of boundary conditions in [34, 43].

Let us repeat for the reader’s convenience the boundary conditions (8) at
a vertex v, dropping for simplicity of notations all subscripts indicating the
vertex:

PF (v) = 0
QF ′(v) + LQF (v) = 0.

(23)

Here, as before, P is an orthogonal projector in Cd, Q = I − P , and L is a
self-adjoint operator in QCd.

We are now interested in the case when these conditions are invariant
with respect to the symmetric group Sd acting on Cd by permutations of
coordinates. Notice that this action has only two non-trivial invariant sub-
spaces: the one-dimensional subspace U consisting of the vectors with equal
components, and its orthogonal complement U⊥, since the representation of
Sd in U⊥ is irreducible (e.g., Section VI.4.7 in [13] or VI.3 in [78]). Here
U⊥ consists of all vectors with the sum of components equal to zero. Let us
denote by φ the unit vector φ = (d−1/2, ..., d−1/2) ∈ Cd. This is a unit basis
vector of U . Then the orthogonal projector onto U is φ⊗φ (a physicist would
denote it |φ〉〈φ|) acting on a vector a as 〈a, φ〉φ. Then the complementary
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projector onto U⊥ is I − φ ⊗ φ. In order for (23) to be Sd-invariant, opera-
tors P and L must be so. Due to the just mentioned existence of only two
non-trivial Sd-invariant subspaces, there are only four possible orthogonal
projectors that commute with Sd: P = 0, P = φ ⊗ φ, P = I − φ ⊗ φ, and
P = I. Let us study each of these cases:

• Let first P = 0. In this case Q = I and L acting on Cd must commute
with the representation of the symmetric group by permutations of
coordinates. As it was discussed above, this implies that L = αφ⊗φ+
βI. This shows that there are no restrictions imposed on the vertex
values F and the restrictions on F ′ are given as F ′+α〈F, φ〉+βF = 0.
In other words, one can say that the expression f ′e(v) + βfe(v) is edge-
independent and −α

∑
e∈Ev

fe(v) = (f ′(v) + βf(v)). In the particular

case when α 6= 0, β = 0, we conclude that all the values of the outgoing
derivatives f ′e(v) are the same, and

∑
e∈Ev

(fe(v)) = −α(−1)f ′(v). One

recognizes this as the δ′-type conditions. If α = β = 0, one ends up
with the vertex Neumann condition.

• Let now P = I. Then Q = 0 and hence L is irrelevant. We conclude
that F = 0 and no more conditions are imposed. This is the vertex
Dirichlet condition, under which the edges decouple.

• Let P = φ⊗ φ. Then Q = I −φ⊗φ and L is equal to a scalar α, due
to irreducibility of the representation in QCd. Then

∑
e∈Ev

fe(v) = 0 and

F ′(v)− 〈F ′(v), φ〉φ + αF (v) = 0.

The last equality shows that the expression f ′e(v) + αfe(v) is edge-
independent and equal to

∑
e∈Ev

f ′e(v). This, together with
∑

e∈Ev

fe(v) = 0

gives all the conditions in this case. There appears to be no common
name for these conditions.

• The last case is P = I− φ⊗ φ. Then Q = φ ⊗ φ and L is a scalar
α again. In this case the condition PF = 0 means that the values
fe(v) are edge independent, or in other words f is continuous through
the vertex v. The other condition easily leads to

∑
e∈Ev

f ′e(v) = −αf(v),

which one recognizes as the δ-type conditions.
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This completes our classification of symmetric vertex conditions. These con-
ditions were found previously in [34] by a different technique.

As we have already mentioned before, non-symmetric conditions arise
sometimes as well (e.g., [34, 43, 58, 59, 60]).

One of the natural questions to consider is which of the conditions (6)
arise in the asymptotic limits of problems in thin neighborhoods of graphs.
This issue was discussed in [54], however it has not been resolved yet. One
might think that when quantum graph models are describing the limits of
thin domains, different types of vertex conditions could probably be obtained
by changing the geometry of the domain near the junctions around vertices.
This guess is based in particular on the results of [59, 60].

3.3 Infinite quantum graphs

We will now allow the number of vertices and edges of a metric graph Γ to be
(countably) infinite. Our goal is to define a self-adjoint operator H on Γ in
a manner similar to the one used for finite graphs. In other words, H should
act as the (negative) second derivative along each edge, and the functions
from its domain should satisfy (now infinitely many) vertex conditions (5) or
equivalently (8). This would turn a metric graph Γ into a quantum graph.
However, unless additional restrictions on the graph and vertex conditions
are imposed, the situation can become more complex than in the finite graph
case. This is true even for such “simple” graphs as trees, where additional
boundary conditions at infinity may or may not be needed depending on
geometry (see [19, 79]). On the other hand, if one looks at the naturally
arising infinite graphs, one can notice that in many cases there is an auto-
morphism group acting on the graph such that the orbit space (which is a
graph by itself) is compact. This is the case for instance with periodic graphs
and Cayley graphs of groups. We do not need exactly the homogeneity, but
rather that the geometry does not change drastically throughout the graph.
The assumptions that we introduce below captures this idea and covers all
cases mentioned above. It also enables one to establish nice properties of
the corresponding Hamiltonians. We would also like to notice that this class
of graphs is in some sense an analog of the so called manifolds of bounded
geometry [76]. On such manifolds studying elliptic operators is easier than
on more general ones.
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Assumption 1. The lengths of all edges e are uniformly bounded from below:

0 < l0 ≤ le ≤ ∞. (24)

Remark 12. 1. This assumption makes sense for infinite graphs only.

2. There is no upper bound assumed on the lengths of edges. In fact, some
edges may be of infinite length, as they often are, e.g. in scattering
problems.

Let us now equip a metric graph Γ with the negative second derivative
operator and boundary conditions (8). We will say that the Hamiltonian H
is defined, although its precise definition will be provided only a little bit
later in this section. This makes Γ a quantum graph.

Assumption 2. The following estimate holds uniformly for all vertices v:

‖Lv‖ ≤ S < ∞. (25)

The norms in (25) are the operator norms with respect to the standard l2
norms on spaces Cd.

Remark 13. If the vertex conditions are given in the form (5), then the
condition above should be replaced by the following:

‖B(−1)
v AvQv‖ ≤ S < ∞.. (26)

Here, as before, Qv is the orthogonal projection onto the range of B∗
v and

B
(−1)
v is the inverse to the operator Bv acting from the range of B∗

v to the
range of Bv.

Let us now define the operator H more precisely.

Definition 14. The (unbounded) Hamiltonian H in L2(Γ) acts as the nega-
tive second derivative along the edges, defined on the domain D(H) consisting
of functions f such that:

1. f ∈ H2(e) for each edge e,

2. ∑
e

‖f‖2
H2(e) < ∞,
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3. for each vertex v, conditions (8) are satisfied:

LvF (v) + QvF
′(v) = 0, PvF (v) = 0.

It will be shown below that this operator is self-adjoint and in fact is
the only “reasonable” self-adjoint realization of our Hamiltonian (i.e., its
restriction to the appropriate subspace of compactly supported functions is
essentially self-adjoint). We, however, want to describe the corresponding
quadratic form first. The definition will be similar to the one we gave in the
case of finite graphs:

Definition 15. The quadratic form h is defined as

h[f, f ] =
∑
e∈E

∫

e

| df
dx
|2dx−

∑
v∈V

〈LvF, F 〉, (27)

where 〈, 〉 denotes the standard hermitian inner product in Cdv .
The domain of this form consists of all functions f that belong to H1(e)

for each edge e, satisfy at each vertex v the condition PvF = 0, and such that

∑
e

‖f‖2
H1(e) < ∞. (28)

One can easily write the sesquilinear form for h:

h[f, g] =
∑
e∈E

∫

e

df

dx

dg

dx
dx−

∑
v∈V

〈LvF,G〉. (29)

Some remarks are due concerning this definition.

Remark 16. 1. Analogous formulas can be written in terms of the ma-
trices Av, Bv of conditions (5), one just needs to replace Lv by B

(−1)
v Av

and remember that Pv is the orthogonal projection onto the kernel of
Bv.

2. Due to the lower bound on the lengths of the edges, the norms of the
trace operators that associate to each function f ∈ H1(e) for e ∈ Ev its
value at the vertex v are bounded uniformly with respect to v and e:

|f(v)| ≤ C‖f‖1
H(e). (30)
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3. In order for the definition to be correct, one needs to make sure that
both infinite sums in the formula for h converge. The first one (the
sum of the integrals) converges due to Cauchy-Schwartz inequality and
(28). Moreover, (28) and (30) imply that for any f from the domain
of the form one has for its traces F (v) (recall that F (v) is a vector in
Cdv) the inequality

∑
v

‖F (v)‖2 ≤ C
∑

e

‖f‖2
H1(e) < ∞. (31)

Since the same applies to the function g, this, (25), and the Cauchy-
Schwartz inequality secure convergence of the second sum.

We are now prepared for the discussion of the Hamiltonian.

Theorem 17. Let Γ be a quantum graph satisfying Assumptions 1 and 2.
Under the definitions given above for the quadratic form h and operator H,
the following statements hold:

1. The operator H is self-adjoint and its quadratic form is h.

2. Let H0 be the restriction of H onto the sub-domain consisting of all
functions from D(H) with compact support. Then H0 is symmetric,
essentially self-adjoint, and its closure is H.

Before we proceed to the proof of the theorem, let us mention that its
second statement implies that under the prescribed vertex conditions there
is only one reasonable way to define our self-adjoint Hamiltonian H, and it
is the one we choose. One can also notice that according to [19, 79] this is
not true anymore for graphs that do not have “bounded geometry” in terms
of the Assumptions 1 and 2, even for trees, where some boundary conditions
at infinity might be needed.

Proof. First of all, it is immediate to check that both operators H and H0

are symmetric. Next, the form h is closed. Indeed, the estimate (31) shows
that the norm √

M‖f‖2
L2(Γ) + h[f, f ]

with a sufficiently large M on the domain of h is equivalent to the norm of the
space H =

⊕
e

H1(e). This implies closedness. Now, the form h corresponds
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to a self-adjoint operator M. We will show that M coincides with H, which
would prove the first statement of the theorem. According to the definition
of operator M, for any f ∈ D(M) ⊂ H there exists p ∈ L2(Γ) (which is
then denoted by Mf) such that for any g ∈ D(h) one has

h[f, g] =
∑

e

∫

e

p(x)g(x)dx.

Let now g be any compactly supported function smooth on each edge and
equal to zero in a neighborhood of each vertex. Then clearly g ∈ D(h).
Choosing only such functions in the previous equality, substituting the def-
inition of h for the left hand side, and integrating by parts, one concludes
that

p(x) = Mf(x) = −d2f

dx2

on each edge, where the derivatives are meant in the distributional sense.
This means that d2f

dx2 ∈ L2(Γ), and due to f ∈ D(h) ⊂ H, we conclude that
f ∈ ⊕

e

H2(e) and
∑
e

‖f‖H2(e) < ∞. Since f ∈ D(h), this function satisfies

the conditions PvF (v) = 0 at each vertex v. We need to show that it satisfies
also the remaining vertex conditions (those containing derivatives). One does
this using a test function g ∈ D(h) that is non-zero in small neighborhood
of a single vertex v. Then integration by parts shows that

〈F ′(v) + LvF (v), G(v)〉 = 0.

Since this equality must hold for any vector G(v) such that PvG(v) = 0, this
implies the complete boundary condition (8). This shows that M⊂ H.

It is a straightforward calculation of exactly same nature that shows that
in fact any f ∈ D(H) belongs to D(M). Hence, M = H and the first
statement of the theorem is proven.

Let now f ∈ D(H). Our goal is to create a sequence of cut-off functions
φn(x) such that fn = φnf ∈ D(H0) and

‖f − fn‖L2(Γ) → 0, ‖Hf −H0fn‖L2(Γ) → 0. (32)

If this were accomplished, then we would know that H were the closure of
H0 and hence H0 were essentially self-adjoint.

The idea of how functions φn should behave is clear: they must be equal
to 1 on an expanding and exhausting sequence Γn ⊂ Γ of compacta, must
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have compact supports, must be constant in a neighborhood of each vertex
(in order not to destroy the vertex conditions), and must fall off to zero
“not too fast,” so that their first and second order derivatives are uniformly
bounded. Now, if a sequence of such functions is constructed, then (32)
is straightforward. The graph nature of our variety causes some superficial
complications, so we will describe this construction (which could certainly be
done in many different ways). Let us first describe a convenient expanding
sequence of compacta in Γ that exhaust the whole graph. Let us fix a vertex
o ∈ Γ and consider for any natural n the set Γn ⊂ Γ that contains all (finite)
edges e whose both endpoints are at a distance at most n from o and all
points x of infinite edges such that ρ(x, o) ≤ n (here ρ is the previously
defined metric on Γ). This is clearly an expanding sequence of compact sets
that exhausts Γ. Let φ(x) be any smooth function on [0, l0/4] such that it
is identically equal to 1 in a neighborhood of 0 and identically equal to zero
close to l0/4. Here l0 is the lower bound for the lengths of all edges of Γ,
which is positive due to our assumptions. We are ready to define the cut-off
function φn on Γ. It is equal to 1 on Γn and to 0 on all edges which do not
have vertices in Γn. We only need to define it along the edges that have only
one vertex in Γn. Let e be a finite edge whose one vertex v is contained in
Γn. The function φn is defined to be equal to 1 along e starting from v till
the middle of the edge, then it is continued by an appropriately shifted copy
of φ(x) (which by construction will become zero at least at the distance le/4
from the end of the edge), and stays zero after that. If e is an infinite edge
starting at v ∈ Γn, then φn is defined to be equal to 1 along e starting from v
till the the distance n from o, then it is continued by an appropriately shifted
copy of φ(x), and stays zero after that. It is clear that all our requirements
for the sequence of functions are satisfied.

Let now f ∈ D(H) and fn = φnf . Then fn is in H2(e) for any edge e
and satisfies the boundary conditions. The reason for the latter is that φn

is constant around each vertex, and so multiplication by it does not destroy
the vertex conditions. In other words, fn ∈ D(H0). One gets the following
simple conclusion:

lim
n→∞

‖f − fn‖L2(Γ) = lim
n→∞

‖(1− φn)f‖L2(Γ)

≤ C lim
n→∞

‖f‖L2(Γ−Γn) = 0.

Here C is the maximal value of |φ(x)− 1|. We also have

Hf −H0fn = (1− φn)f ′′ − φ′nf
′ − φ′′nf.
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Since f , f ′, and f ′′ all belong to L2(Γ) and the functions 1− φn, φ′n, and φ′′n
are uniformly bounded and supported outside Γn, we also obtain the second
required limit

lim
n→∞

‖Hf −H0fn‖L2(Γ) = 0.

This finishes the proof of the theorem.

4 Relations between spectra of quantum and

discrete graph operators

In many (if not most) cases when a quantum graph is involved, one is inter-
ested in the spectrum of the corresponding Hamiltonian H. This is true for
quantum chaos studies, scattering theory, photonics, etc. (see the references
in [54]).

We have emphasized throughout the text the difference between com-
binatorial graphs and corresponding difference operators on one hand and
metric graphs equipped with differential operators on the other. However,
we will show now that spectral problems for quantum graphs can sometimes
be transformed into the ones for difference operators on combinatorial graphs.
This observation goes back probably to the paper [4].

We will address here the cases of finite graphs with edges of finite lengths
only. Due to the article size limitations, more complex situation of infinite
graphs will be treated in [56]. The situation of interest for scattering the-
ory when several infinite leads are attached to a finite graph will also be
considered elsewhere.

Let us start with the following simple result.

Theorem 18. Let Γ be a finite quantum graph with finite length edges equipped
with a Hamiltonian given by the negative second derivative along the edges
and vertex conditions (8). Then its resolvent is of trace class, and in partic-
ular the spectrum is discrete.

Proof. The domain of H is a closed subspace of the direct sum of the Sobolev
spaces H2(e) on all edges. Hence, for non-real λ the resolvent R(λ) =
(H − λ)−1 maps L2(Γ) continuously into this direct sum. Now the state-
ment follows form the standard embedding theorem for the Sobolev spaces
on finite intervals.
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According to Theorem 18, the spectrum σ(H) is discrete. We are inter-
ested therefore in solving the equation

Hf = λf (33)

with f ∈ L2(Γ). Let v be a vertex and e be one of the outgoing edges of
length le and with the coordinate x counted from v. We will also denote by
we the other end of e. Then along this edge one can solve (33) as follows:

fe(x) =
1

sin
√

λle

(
fe(v) sin

√
λ(le − x) + fe(we) sin

√
λx

)
. (34)

This can be done as long as λ 6= n2π2l−2
e with an integer n 6= 0 (the formula

can also be naturally interpreted for λ = 0), i.e. when λ does not belong to
the spectrum of the negative second derivative with Dirichlet conditions on
e (identified with [0, le]).

The last formula allows us to find the derivative at v:

f ′e(v) =

√
λ

sin le
√

λ

(
fe(we)− fe(v) cos le

√
λ
)

. (35)

Substituting these relations into (23) to eliminate the derivatives, one reduces
(23) to a system of discrete equations that involve only the vertex values:

T (λ)F = 0. (36)

Here F is the vector of dimension D =
∑
v

dv that combines all the vector

values F (v) of function f and T (λ) is a D ×D matrix.
The reader can notice that (36) is a system of second order difference

equations on the combinatorial version of the graph Γ, where at each vertex
v we have a dv-dimensional value F (v) of the vector function F assigned. One
easily concludes that the following statement holds:

Theorem 19. A point λ 6= n2π2l
(−2)
e , n ∈ Z − {0} belongs to the spectrum

of H if and only if zero belongs to the spectrum of the matrix T (λ).

This theorem shows that spectral problems for quantum graph Hamiltoni-
ans can be rewritten as spectral problems for some difference operators. One
can notice that when computed, the system (36) often looks rather complex.
However, it simplifies significantly for some frequently arising situations.
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Consider for instance a quantum graph with all edges of same length l
and with δ-type vertex conditions. In this case the function is continuous,
and hence the values Fe(v) = f(v) do not depend on the edge e ∈ Ev. Then
(36) after some simple arithmetic becomes

∑

{w| e=(v,w)∈Ev}
f(w) =

(
α

sin l
√

λ

l
√

λ
+ dv cos

√
λ

)
f(v). (37)

In the particular case when all vertices have same degree d (i.e., the graph is
regular), we conclude that λ 6= n2π2/l2 belongs to the spectrum σ(H) of the

quantum graph if and only if
(
α sin l

√
λ

l
√

λ
+ d cos

√
λ
)

belongs to the spectrum

σ(∆) of the discrete Laplace ∆ operator on Γ that is defined by the left hand
side of (37). This provides a very useful relation of the spectra that enables
one to pass information between the continuous and discrete models. The
full advantage of using this correspondence will be shown in particular in
[56].

One can ask what happens to the excluded Dirichlet eigenvalues n2π2/l2e .
The following examples show that it is hard to answer this question in general
terms.

• Consider the vertex Dirichlet conditions case. Here the whole spectrum
obviously consists of the above Dirichlet eigenvalues only.

• Consider a ring consisting of two edges of lengths l1, l2 connected at
two vertices of degree 2 into a loop of length L = l1 + l2 and equipped
with the Kirchhoff conditions (4). As it has been mentioned before,
this means that we can eliminate the two vertices of the graph and
consider it as a circle of length L equipped with the negative second
derivative Hamiltonian H. In this case, the spectrum σ(H) is the set
of numbers {(2nπ/L)2}. If the numbers lj are rationally independent,
then none of the edge Dirichlet eigenvalues are in the spectrum.

• Choosing in the previous example the lengths lj commensurate, one
can make sure that only a non-empty part of the set of edge Dirichlet
eigenvalues belongs to σ(H).

One should beware these edge Dirichlet eigenvalues. For instance, in the
case of an integer lattice graph Γ = Zn, one can apply standard Floquet
theory used for periodic PDEs (e.g., [51, 52, 53, 73]) to find the spectrum.
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At the first glance, this leads to the usual picture of a band-gap absolutely
continuous spectrum of a periodic problem. However, there is a danger (that
has materialized in several publications) to overlook the point spectrum that
does arise at the edge Dirichlet eigenvalues.

5 Remarks

1. We have considered for the sake of simplicity the second derivative
Hamiltonians only. One can analogously deal with more general Schrödinger
operators on graphs that involve electric and magnetic potentials [46].
Sometimes matrix or higher order differential and even pseudo-differential
operators on graphs need to be considered [15, 36, 57, 58, 70]. We hope
to address some of these issues elsewhere.

2. The results of Section 4 concerning relations between spectra of quan-
tum and combinatorial graph operators in the case of infinite graphs
require more analysis, since the spectra might not be discrete anymore.
In particular, one should be able to identify points of the spectrum
with those where some growing solutions (generalized eigenfunctions)
exist. This requires analogs of the so called Schnol’s theorems and es-
timates on generalized eigenfunctions (see the PDE versions of these
correspondingly in [24, 40, 75, 76] and [10, 77, 38]). Such analogs will
be provided in [56].

3. It was mentioned that in situation the discrete equations (36) that
one gets when switching from a quantum to a combinatorial graph
look rather complex. It would be nice to fit those into some algebraic
framework that would allow a thorough analysis like the one available
for discrete Laplace operators. One can interpret (36) in terms of graph
representations [11, 37], although we have not found this useful so far.
A vertex scattering matrix approach [48] might also prove to be useful
here.

4. The results of this paper do not provide any details of the structure
of the spectrum that would reflect specific graph geometry. This is a
problem definitely worth studying and the one that has been addressed
from various points of view in several publications (e.g. [3, 5, 6, 7, 8],
[16]-[20], [29]-[32], [39], [43]-[49], [54]-[61], [64, 65, 74, 79, 80], other
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papers of the current issue of Waves in Random Media, and references
therein). We plan to address some of the related problems (e.g., spectral
gaps, bound states, etc.) in [56] and other papers.

5. An interesting and useful generalization that deserves consideration
concerns operators on multi-structures that involve cells of different
dimensions (see, e.g. [14, 50, 66, 72]). Among those one can mention
for instance, 2D or 3D quantum wells joined by 1D quantum wires,
or three-dimensional photonic band gap media that sometimes look as
2D surface structures in R3.
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