Curriculum Vitae
Publications
-
Asymptotic stability of solitary waves for the 1D cubic Schrödinger equation under even perturbations
Y. Li, J. Lührmann
Preprint arXiv:2408.15427, 91 pp.
-
On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
J. Lührmann, W. Schlag
To appear in Comm. Amer. Math. Soc., 108 pp.
-
Stability of the catenoid for the hyperbolic vanishing mean curvature equation outside symmetry
J. Lührmann, S.-J. Oh, S. Shahshahani
Preprint arXiv:2212.05620, 99 pp.
-
Soliton dynamics for the 1D quadratic Klein-Gordon equation with symmetry
Y. Li, J. Lührmann
J. Differential Equations 344 (2023), 172–202.
-
The wave maps equation and Brownian paths
B. Bringmann, J. Lührmann, G. Staffilani
To appear in Comm. Math. Phys., 99 pp.
-
Asymptotic stability of the sine-Gordon kink under odd perturbations
J. Lührmann, W. Schlag
Duke Math. J. 172 (2023), no. 14, 2715–2820.
-
On modified scattering for 1D quadratic Klein-Gordon equations with non-generic potentials
H. Lindblad, J. Lührmann, W. Schlag, A. Soffer
Int. Math. Res. Not. 2023 (2022), no. 6, 5118–5208.
-
Probabilistic small data global well-posedness of the energy-critical Maxwell-Klein-Gordon equation
J. Krieger, J. Lührmann, G. Staffilani
Arch. Ration. Mech. Anal. 247 (2023), no. 4, 109 pp.
-
Asymptotics for 1D Klein-Gordon equations with variable coefficient quadratic nonlinearities
H. Lindblad, J. Lührmann, A. Soffer
Arch. Ration. Mech. Anal. 241 (2021), no. 3, 1459–1527.
-
Asymptotic stability of harmonic maps on ℍ2 under the Schrödinger maps evolution
A. Lawrie, J. Lührmann, S.-J. Oh, S. Shahshahani
Comm. Pure Appl. Math. 76 (2023), no. 3, 453–584.
-
Decay and asymptotics for the 1D KG equation with variable coefficient cubic nonlinearities
H. Lindblad, J. Lührmann, A. Soffer
SIAM J. Math. Anal. 52 (2020), no. 6, 6379–6411.
-
Local smoothing estimates for Schrödinger equations on hyperbolic space
A. Lawrie, J. Lührmann, S.-J. Oh, S. Shahshahani
Mem. Amer. Math. Soc. 291 (2023), no. 1447, v+165 pp.
-
Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation
B. Dodson, J. Lührmann, D. Mendelson
Adv. Math. 347 (2019), 619–676.
-
Almost sure scattering for the 4D energy-critical defocusing NLW equation with radial data
B. Dodson, J. Lührmann, D. Mendelson
Amer. J. Math. 142 (2020), no. 2, 475–504.
-
Concentration Compactness for Critical Radial Wave Maps
E. Chiodaroli, J. Krieger, J. Lührmann
Annals of PDE 4 (2018), no. 1, Art. 8, 148 pp.
-
Concentration Compactness for the Critical Maxwell-Klein-Gordon Equation
J. Krieger, J. Lührmann
Annals of PDE 1 (2015), no. 1, Art. 5, 208 pp.
-
On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on ℝ3
J. Lührmann, D. Mendelson
New York J. Math. 22 (2016), 209–227
-
Random data Cauchy theory for nonlinear wave equations of power-type on ℝ3
J. Lührmann, D. Mendelson
Comm. Partial Differential Equations 39 (2014), no. 12, 2262–2283
-
Mean-field quantum dynamics with magnetic fields
J. Lührmann
J. Math. Phys. 53 (2012), no. 2, 19 pp.
Past Conferences and Workshops
Teaching
Texas A&M University
-
Spring 2024: Math 410 Advanced Calculus II
-
Spring 2024: Math 308 Differential Equations
-
Spring 2023: Math 612 Partial Differential Equations
-
Spring 2023: Math 308 Differential Equations
-
Fall 2022: Math 611 Introduction to Ordinary and Partial Differential Equations
-
Spring 2022: Math 308 Differential Equations
-
Spring 2021: Math 410 Advanced Calculus II
-
Spring 2021: Math 689 Special Topics Course on Nonlinear Waves and Dispersive Equations
-
Spring 2020: Math 410 Advanced Calculus II
-
Fall 2019: Math 412 Theory of Partial Differential Equations
Johns Hopkins University
-
Spring 2019: Math 302 Differential Equations with Applications
-
Fall 2018: Math 632 Partial Differential Equations II
-
Spring 2018: Math 417 Partial Differential Equations
-
Fall 2017: Math 302 Differential Equations with Applications
-
Spring 2017: Math 405 Analysis I
-
Fall 2016: Math 106 Calculus I (Biology and Social Sciences)
Funding
I am grateful to the National Science Foundation for generously supporting my research.
|