

1. Find the limit.

(a) $\lim_{t \rightarrow 0} \frac{\sin^2 3t}{t^2}$
 (b) $\lim_{x \rightarrow 0} \frac{\sin 3x}{\sin 5x}$
 (c) $\lim_{x \rightarrow 0} \frac{(\cos x - 1) \sin 3x}{x^2}$
 (d) $\lim_{x \rightarrow -2} \frac{\tan \pi x}{x + 2}$

2. Differentiate the function.

(a) $f(x) = \tan x + x \sec x$
 (b) $f(x) = (3x^3 - 2x^2 + 1)^6$
 (c) $f(x) = (1 + \cos^2 x)^3$
 (d) $f(x) = \cos \sqrt{x}$
 (e) $f(x) = \left(\frac{x^4 - 1}{x^4 + 1} \right)^3$
 (f) $f(x) = \frac{2x + 1}{\sqrt{x^2 + 3}}$
 (g) $f(x) = (x^6 + 4x^5 - 11)^5 (2 + x^8)^7$

3. Functions f and g satisfy the properties as shown in the table. Find the indicated quantity.

x	$f(x)$	$f'(x)$	$g(x)$	$g'(x)$
1	-3	3	1	1
2	0	3	-5	10
3	2	5	0	4

(a) $h'(1)$, if $h(x) = f(g(x))$
 (b) $z'(2)$, if $z(x) = [f(2x - 1)]^4$
 (c) $G'(1)$, if $G(x) = [x^2 - g(2x)]^3$

4. Find the equation of the tangent line to the curve $y = x\sqrt{1+x^2}$ at the point where $x = 1$.

5. Find $\frac{dy}{dx}$ for the equation $\cos(x - y) = y \sin x$.

6. Find $\frac{dx}{dy}$ for the equation $y^4 + x^2y^2 + yx^4 = y + 1$.

7. Find the slope of the tangent line to the curve $2(x^2 + y^2)^2 = 25(x^2 - y^2)$ at the point $(3,1)$.

8. Find a tangent vector of unit length to the curve $\mathbf{r}(t) = \langle t \cos t, t \sin t \rangle$ at the point where $t = \frac{\pi}{4}$.

9. Find the vector and parametric equations for the line tangent to the curve $\vec{r}(t) = \langle 1 - 4t, 2t - 3t^2 \rangle$ at the point $P(-11, -21)$.

10. The ball is tossed into the air. Its position at time t is given by $\mathbf{r}(t) = \langle 5t, 100t - 16t^2 \rangle$.

(a) Find the velocity and the speed of the ball when $t = 2$.

- (b) How high does the ball go?
- (c) With what speed does the ball hit the ground?

11. Find the angle of intersection of the curves traced by $\mathbf{r}_1(t) = \langle 1 - t, 3 + t^2 \rangle$ and $\mathbf{r}_2(s) = \langle s - 2, s^2 \rangle$.