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Bifurcation diagram of a separatrix loop
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Asymptotics of εn

lim
n→∞

1

n
ln(− ln εn)→ lnλ,

where λ is the characteristic number of the saddle, i.e. the absolute value of the ratio of its
eigenvalues, the negative one is in the numerator.
Reason: Poincaré map has asymptotics P(x) ≈ xλ.
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Arnold’s conjectures, 1985

For a generic smooth k-parameter family vε of vector fields on S2,

1 X bifurcation actually happens in a neighborhood of its support:
certain finite set of singular trajectories;

2 X on neighborhood of the support, bifurcation is equivalent to
one of finitely many;

3 X locally, bifurcation diagram is topologically equivalent to one
of finitely many;

4 X for each degenerate vector field, there exists a versal
deformation;

5 X vε is structurally stable: C 1-close families experience same
bifurcation as vε.

vε ∼ wδ if for some change of parameter h, for all ε, phase portraits
of vε and wh(ε) are topologically equivalent.
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Structurally unstable family: Tear of the heart
Ilyashenko, Kudryashov, Schurov

λ µ

A degeneracy of codimension 3.

Topological classification of unfoldings has
at least one numerical invariant.

Theorem

Let v0 and w0 be two vector fields, each with a
polycycle “tear of the heart”. Let vε, wδ be
two 3-parameter unfoldings of v0 and w0,
respectively. If vε is moderately equivalent to
wδ, then

lnλ(v0)

lnµ(v0)
=

lnλ(w0)

lnµ(w0)
.
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Structurally unstable families: “Glasses”

Take a generic 3-parameter unfolding
of “glasses”.

We can have separatrix connections
on the left.

Or on the right.

And we have a “synchronizing”
subfamily.
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Partial bifurcation diagram of the “glasses”
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Functional invariants: two copies of “glasses”

Take a vector field with 2 copies of
“glasses”.

Take a 7-parameter unfolding.

On a curve γ ⊂ (R7, 0) both
“glasses” survive.

Image of this curve under (ϕ1, ϕ2) is
a functional invariant.
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Whirled glasses: infinitely many invariants

c

L1 R1

Replace separatrix connection with a
parabolic cycle.

If we destroy the parabolic cycle, we
get a sequence of separatrix
connections.

Sequence of the values of ϕ at these
vector fields is an invariant.

The value ϕ(v) = − lnλ
ln ρ for the

unperturbed vector field is an
invariant too.
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Lips with glasses

b

S1 S2

Γ1 Γ2

Consider ensemble “lips” (codim = 3).

Add d + 1 Cherry cells inside and one
“glass lense” outside (now codim = 4).

We can destroy “lips” so that one of d
“glasses” appear.

d numerical invariants.

Functional invariants in unfoldings with
≤ d + 3 parameters.
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A family with no versal deformations
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