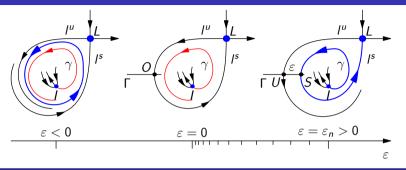
Bifurcations of vector fields on the two-sphere Based on a joint works with Yu. Ilyashenko, I. Schurov, and N. Solodovnikov

Yury Kudryashov and Nataliya Goncharuk

18 Nov 2020 Universidade Federal do Rio de Janeiro

Bifurcation diagram of a separatrix loop



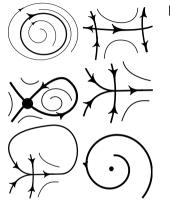
Asymptotics of ε_n

$$\lim_{n\to\infty}\frac{1}{n}\ln(-\ln\varepsilon_n)\to\ln\lambda,$$

where λ is the *characteristic number* of the saddle, i.e. the absolute value of the ratio of its eigenvalues, the negative one is in the numerator. **Reason:** Poincaré map has asymptotics $P(x) \approx x^{\lambda}$.

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its *support*: certain finite set of singular trajectories;
- X on neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;
- $\times v_{\varepsilon}$ is structurally stable: C^1 -close families experience same bifurcation as v_{ε} .

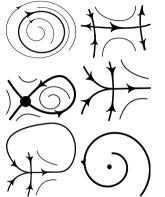


Andronov-Hopf

Figure: Generic 1-parameter families (Sotomayor, 1974)

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its *support*: certain finite set of singular trajectories;
 - X on neighborhood of the support, bifurcation is equivalent to one of finitely many;
 - X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;
- $\times v_{\varepsilon}$ is structurally stable: C^1 -close families experience same bifurcation as v_{ε} .



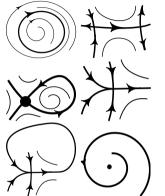
Andronov-Hopf

Figure: Generic 1-parameter families (Sotomayor, 1974)

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its support: certain finite set of singular trajectories;
 - X on neighborhood of the support, bifurcation is equivalent to one of finitely many;
 - X locally, bifurcation diagram is topologically equivalent to one of finitely many;
 - X for each degenerate vector field, there exists a versal deformation;

• $\times v_{\varepsilon}$ is structurally stable: C^1 -close families experience same bifurcation as v_{ε} .

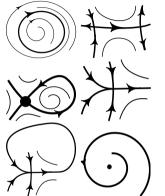


Andronov-Hopf

Figure: Generic 1-parameter families (Sotomayor, 1974)

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its support: certain finite set of singular trajectories;
- Son neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
 - X for each degenerate vector field, there exists a versal deformation;
- $\times v_{\varepsilon}$ is structurally stable: C^1 -close families experience same bifurcation as v_{ε} .



Andronov-Hopf

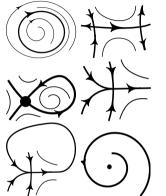
Figure: Generic 1-parameter families (Sotomayor, 1974)

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- Signature Structure Str
- On neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;

) X for each degenerate vector field, there exists a versal deformation;

• $\times v_{\varepsilon}$ is structurally stable: C^1 -close families experience same bifurcation as v_{ε} .



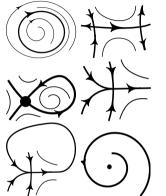
Andronov-Hopf

Figure: Generic 1-parameter families (Sotomayor, 1974)

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its support: certain finite set of singular trajectories;
- On neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;

• $\times v_{\varepsilon}$ is structurally stable: C^1 -close families experience same bifurcation as v_{ε} .

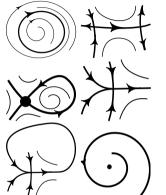


Andronov-Hopf

Figure: Generic 1-parameter families (Sotomayor, 1974)

For a generic smooth k-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its support: certain finite set of singular trajectories;
- Son neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;
- $\times v_{\varepsilon}$ is structurally stable: C^1 -close families experience same bifurcation as v_{ε} .



Andronov-Hopf Figure: Generic 1-parameter families (Sotomayor, 1974) For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its support: certain finite set of singular trajectories;
- On neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;

S × v_ε is structurally stable: C¹-close families experience same bifurcation as v_ε.

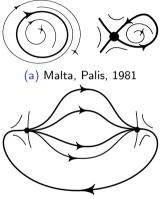


(a) Malta, Palis, 1981

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its *support*: certain finite set of singular trajectories;
- On neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;
- S × v_ε is structurally stable: C¹-close families experience same bifurcation as v_ε.

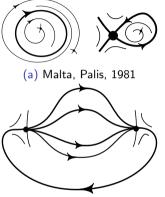
Figure: Counterexamples



(b) Kotova, Stanzo, 1995 Figure: Counterexamples

For a generic smooth k-parameter family v_{ε} of vector fields on S^2 ,

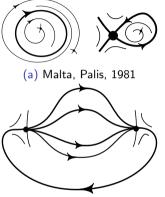
- X bifurcation actually happens in a neighborhood of its *support*: certain finite set of singular trajectories;
- X on neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;
- $\times v_{\varepsilon}$ is structurally stable: C^1 -close families experience same bifurcation as v_{ε} .



(b) Kotova, Stanzo, 1995 Figure: Counterexamples

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its *support*: certain finite set of singular trajectories;
- X on neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;
- S × v_ε is structurally stable: C¹-close families experience same bifurcation as v_ε.

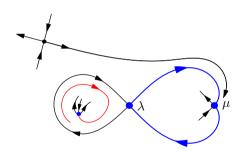


(b) Kotova, Stanzo, 1995 Figure: Counterexamples

For a **generic** smooth *k*-parameter family v_{ε} of vector fields on S^2 ,

- X bifurcation actually happens in a neighborhood of its *support*: certain finite set of singular trajectories;
- X on neighborhood of the support, bifurcation is equivalent to one of finitely many;
- X locally, bifurcation diagram is topologically equivalent to one of finitely many;
- X for each degenerate vector field, there exists a versal deformation;
- X v_ε is structurally stable: C¹-close families experience same bifurcation as v_ε.

Structurally unstable family: Tear of the heart Ilyashenko, Kudryashov, Schurov



• A degeneracy of codimension 3.

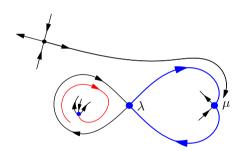
• Topological classification of unfoldings has at least one numerical invariant.

Theorem

Let v_0 and w_0 be two vector fields, each with a polycycle "tear of the heart". Let v_{ε} , w_{δ} be two 3-parameter unfoldings of v_0 and w_0 , respectively. If v_{ε} is moderately equivalent to w_{δ} , then

 $\frac{\ln \lambda(v_0)}{\ln \mu(v_0)} = \frac{\ln \lambda(w_0)}{\ln \mu(w_0)}$

Structurally unstable family: Tear of the heart Ilyashenko, Kudryashov, Schurov



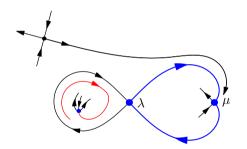
- A degeneracy of codimension 3.
- Topological classification of unfoldings has at least one numerical invariant.

「heorem

Let v_0 and w_0 be two vector fields, each with a polycycle "tear of the heart". Let v_{ε} , w_{δ} be two 3-parameter unfoldings of v_0 and w_0 , respectively. If v_{ε} is moderately equivalent to w_{δ} , then

 $\frac{\ln \lambda(v_0)}{\ln \mu(v_0)} = \frac{\ln \lambda(w_0)}{\ln \mu(w_0)}$

Structurally unstable family: Tear of the heart Ilyashenko, Kudryashov, Schurov



- A degeneracy of codimension 3.
- Topological classification of unfoldings has at least one numerical invariant.

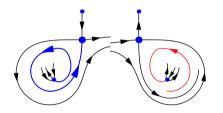
Theorem

Let v_0 and w_0 be two vector fields, each with a polycycle "tear of the heart". Let v_{ε} , w_{δ} be two 3-parameter unfoldings of v_0 and w_0 , respectively. If v_{ε} is moderately equivalent to w_{δ} , then

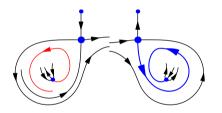
$$\frac{\ln\lambda(v_0)}{\ln\mu(v_0)} = \frac{\ln\lambda(w_0)}{\ln\mu(w_0)}$$



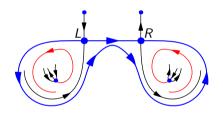
- Take a generic 3-parameter unfolding of "glasses".
- We can have separatrix connections on the left.
- Or on the right.
- And we have a "synchronizing" subfamily.



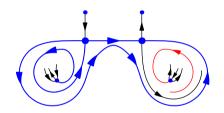
- Take a generic 3-parameter unfolding of "glasses".
- We can have separatrix connections on the left.
- Or on the right.
- And we have a "synchronizing" subfamily.



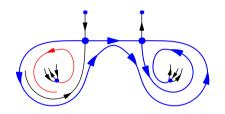
- Take a generic 3-parameter unfolding of "glasses".
- We can have separatrix connections on the left.
- Or on the right.
- And we have a "synchronizing" subfamily.



- Take a generic 3-parameter unfolding of "glasses".
- We can have separatrix connections on the left.
- Or on the right.
- And we have a "synchronizing" subfamily.

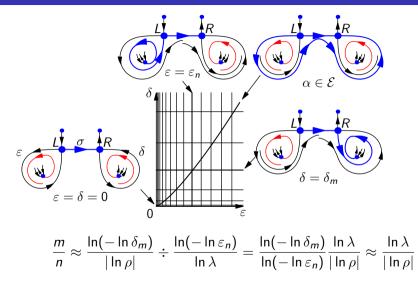


- Take a generic 3-parameter unfolding of "glasses".
- We can have separatrix connections on the left.
- Or on the right.
- And we have a "synchronizing" subfamily.

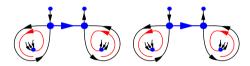


- Take a generic 3-parameter unfolding of "glasses".
- We can have separatrix connections on the left.
- Or on the right.
- And we have a "synchronizing" subfamily.

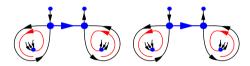
Partial bifurcation diagram of the "glasses"



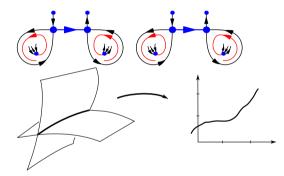
э



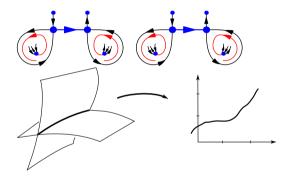
- Take a vector field with 2 copies of "glasses".
- Take a 7-parameter unfolding.
- On a curve $\gamma \subset (\mathbb{R}^7, 0)$ both "glasses" survive.
- Image of this curve under (φ_1, φ_2) is a functional invariant.



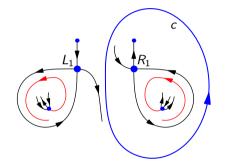
- Take a vector field with 2 copies of "glasses".
- Take a 7-parameter unfolding.
- On a curve $\gamma \subset (\mathbb{R}^7, 0)$ both "glasses" survive.
- Image of this curve under (φ_1, φ_2) is a functional invariant.



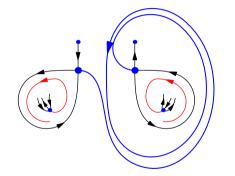
- Take a vector field with 2 copies of "glasses".
- Take a 7-parameter unfolding.
- On a curve $\gamma \subset (\mathbb{R}^7, 0)$ both "glasses" survive.
- Image of this curve under (φ_1, φ_2) is a functional invariant.



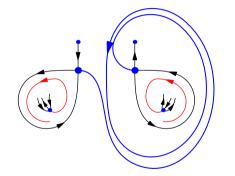
- Take a vector field with 2 copies of "glasses".
- Take a 7-parameter unfolding.
- On a curve $\gamma \subset (\mathbb{R}^7, 0)$ both "glasses" survive.
- Image of this curve under (φ_1, φ_2) is a functional invariant.



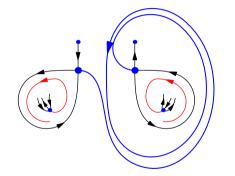
- Replace separatrix connection with a parabolic cycle.
- If we destroy the parabolic cycle, we get a sequence of separatrix connections.
- Sequence of the values of φ at these vector fields is an invariant.
- The value φ(v) = -ln λ/ln ρ for the unperturbed vector field is an invariant too.



- Replace separatrix connection with a parabolic cycle.
- If we destroy the parabolic cycle, we get a sequence of separatrix connections.
- Sequence of the values of φ at these vector fields is an invariant.
- The value φ(v) = -ln λ/ln ρ for the unperturbed vector field is an invariant too.

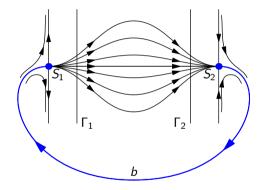


- Replace separatrix connection with a parabolic cycle.
- If we destroy the parabolic cycle, we get a sequence of separatrix connections.
- Sequence of the values of φ at these vector fields is an invariant.
- The value φ(v) = ln λ/ln ρ for the unperturbed vector field is an invariant too.



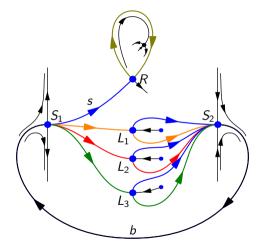
- Replace separatrix connection with a parabolic cycle.
- If we destroy the parabolic cycle, we get a sequence of separatrix connections.
- Sequence of the values of φ at these vector fields is an invariant.
- The value $\varphi(\mathbf{v}) = -\frac{\ln \lambda}{\ln \rho}$ for the unperturbed vector field is an invariant too.

Lips with glasses

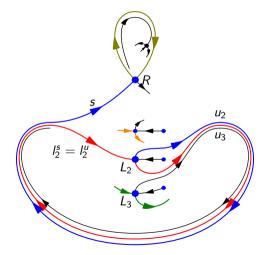


- Consider ensemble "lips" (codim = 3).
- Add *d* + 1 Cherry cells inside and one "glass lense" outside (now codim = 4).
- We can destroy "lips" so that one of *d* "glasses" appear.
- *d* numerical invariants.
- Functional invariants in unfoldings with ≤ d + 3 parameters.

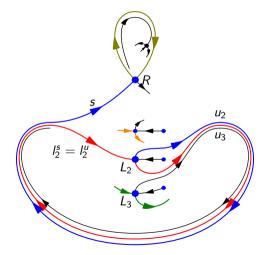
Lips with glasses



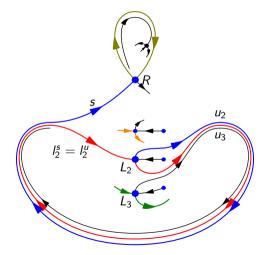
- Consider ensemble "lips" (codim = 3).
- Add *d* + 1 Cherry cells inside and one "glass lense" outside (now codim = 4).
- We can destroy "lips" so that one of *d* "glasses" appear.
- *d* numerical invariants.
- Functional invariants in unfoldings with $\leq d + 3$ parameters.



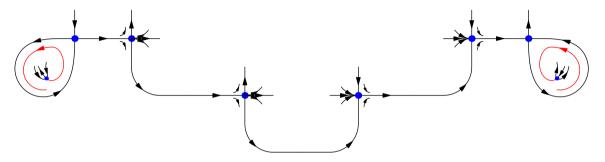
- Consider ensemble "lips" (codim = 3).
- Add *d* + 1 Cherry cells inside and one "glass lense" outside (now codim = 4).
- We can destroy "lips" so that one of *d* "glasses" appear.
- *d* numerical invariants.
- Functional invariants in unfoldings with $\leq d + 3$ parameters.



- Consider ensemble "lips" (codim = 3).
- Add *d* + 1 Cherry cells inside and one "glass lense" outside (now codim = 4).
- We can destroy "lips" so that one of *d* "glasses" appear.
- d numerical invariants.
- Functional invariants in unfoldings with $\leq d + 3$ parameters.

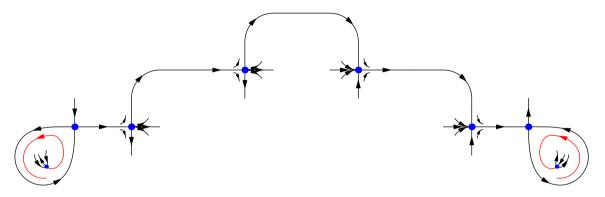


- Consider ensemble "lips" (codim = 3).
- Add *d* + 1 Cherry cells inside and one "glass lense" outside (now codim = 4).
- We can destroy "lips" so that one of *d* "glasses" appear.
- d numerical invariants.
- Functional invariants in unfoldings with $\leq d + 3$ parameters.

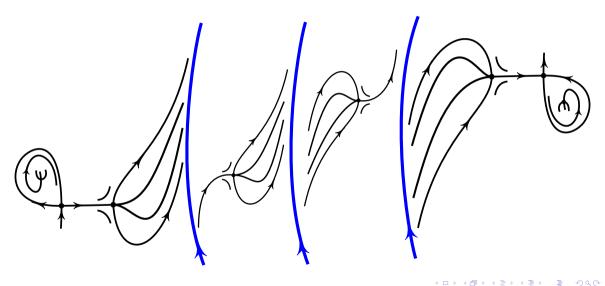


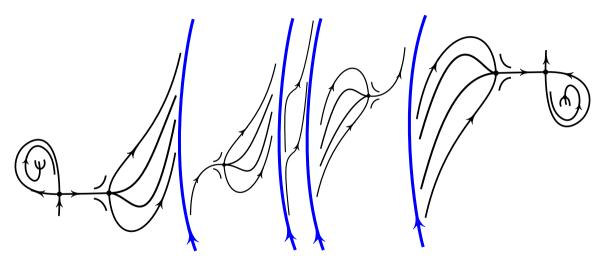
• • = • • = • 10/10 18 Nov 2020, Rio de Janeiro

э



э





э

3