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Rotation number of a circle diffeomorphism.

Let F be a lift of f : R/Z→ R/Z to R.

rot(f ) = lim
n→∞

F n(x)

x
= lim

n→∞

# turns around R/Z under n iterates
n

f has a periodic orbit ⇔ rot f is rational.
[Denjoy] C 2-smooth f is continuously conjugate to the rotation by rot f if rot f is
irrational.
[Arnold, Herman, Yoccoz] f ∈ Cω is analytically conjugate to the rotation by rot f
if rot f is a Herman number.
Diophantine ⊂ Herman ⊂ Brjuno ⊂ irrational numbers.
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Arnold’s construction (1978)

Let f : R/Z 7→ R/Z be an analytic circle diffeomorphism.

Im z = 0

Im z = Imω

0

Fω(0)

1

Fω(1)

x

Fω(x)

Idea: let us add a complex shift to f , fω = f + ω.
Take the quotient space of the annulus 0 < Im z < Imω in C/Z by
x 7→ f (x) + ω.
We obtain a complex torus TF+ω with marked generators.
Consider its modulus τf (ω) — the complex rotation number of f + ω.
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Arnold’s construction (1978)

Let f : R/Z 7→ R/Z be an analytic circle diffeomorphism.

Im z = 0

Im z = Imω

0

Fω(0)

1

Fω(1)

x

Fω(x)

Example: If f (x) is a rotation by φ, then τf (ω) = ω + φ.
Remark: τf is holomorphic.
Arnold’s conjecture, 1978:

lim
ω→a∈R

τf (ω) = rot(f + a)

if rot(f + a) is Diophantine. [TRUE]
Ghys’s question: is this true for any irrational rotation number?
What happens for the rational rotation number?

Nataliya Goncharuk Complex rotation numbers and renormalization



Arnold’s construction (1978)

Let f : R/Z 7→ R/Z be an analytic circle diffeomorphism.

Im z = 0

Im z = Imω

0

Fω(0)

1

Fω(1)

x

Fω(x)

Example: If f (x) is a rotation by φ, then τf (ω) = ω + φ.
Remark: τf is holomorphic.
Arnold’s conjecture, 1978:

lim
ω→a∈R

τf (ω) = rot(f + a)

if rot(f + a) is Diophantine. [TRUE]
Ghys’s question: is this true for any irrational rotation number?
What happens for the rational rotation number?

Nataliya Goncharuk Complex rotation numbers and renormalization



Arnold’s construction (1978)

Let f : R/Z 7→ R/Z be an analytic circle diffeomorphism.

Im z = 0

Im z = Imω

0

Fω(0)

1

Fω(1)

x

Fω(x)

Example: If f (x) is a rotation by φ, then τf (ω) = ω + φ.
Remark: τf is holomorphic.
Arnold’s conjecture, 1978:

lim
ω→a∈R

τf (ω) = rot(f + a)

if rot(f + a) is Diophantine. [TRUE]
Ghys’s question: is this true for any irrational rotation number?
What happens for the rational rotation number?

Nataliya Goncharuk Complex rotation numbers and renormalization



Arnold’s construction (1978)

Let f : R/Z 7→ R/Z be an analytic circle diffeomorphism.

Im z = 0

Im z = Imω

0

Fω(0)

1

Fω(1)

x

Fω(x)

Example: If f (x) is a rotation by φ, then τf (ω) = ω + φ.
Remark: τf is holomorphic.
Arnold’s conjecture, 1978:

lim
ω→a∈R

τf (ω) = rot(f + a)

if rot(f + a) is Diophantine. [TRUE]
Ghys’s question: is this true for any irrational rotation number?
What happens for the rational rotation number?

Nataliya Goncharuk Complex rotation numbers and renormalization



Arnold’s construction (1978)

Let f : R/Z 7→ R/Z be an analytic circle diffeomorphism.

Im z = 0

Im z = Imω

0

Fω(0)

1

Fω(1)

x

Fω(x)

Example: If f (x) is a rotation by φ, then τf (ω) = ω + φ.
Remark: τf is holomorphic.
Arnold’s conjecture, 1978:

lim
ω→a∈R

τf (ω) = rot(f + a)

if rot(f + a) is Diophantine. [TRUE]
Ghys’s question: is this true for any irrational rotation number?
What happens for the rational rotation number?

Nataliya Goncharuk Complex rotation numbers and renormalization



Arnold’s construction (1978)

Let f : R/Z 7→ R/Z be an analytic circle diffeomorphism.

Im z = 0

Im z = Imω

0

Fω(0)

1

Fω(1)

x

Fω(x)

Example: If f (x) is a rotation by φ, then τf (ω) = ω + φ.
Remark: τf is holomorphic.
Arnold’s conjecture, 1978:

lim
ω→a∈R

τf (ω) = rot(f + a)

if rot(f + a) is Diophantine. [TRUE]
Ghys’s question: is this true for any irrational rotation number?
What happens for the rational rotation number?

Nataliya Goncharuk Complex rotation numbers and renormalization



Arnold’s construction (1978)

Let f : R/Z 7→ R/Z be an analytic circle diffeomorphism.

Im z = 0

Im z = Imω

0

Fω(0)

1

Fω(1)

x

Fω(x)

Example: If f (x) is a rotation by φ, then τf (ω) = ω + φ.
Remark: τf is holomorphic.
Arnold’s conjecture, 1978:

lim
ω→a∈R

τf (ω) = rot(f + a)

if rot(f + a) is Diophantine. [TRUE]
Ghys’s question: is this true for any irrational rotation number?
What happens for the rational rotation number?

Nataliya Goncharuk Complex rotation numbers and renormalization



Bubbles: overview of results

τf : H→ H extends continuously to R. Let τ̂f (a) := lim
ω→a

τf (ω).

rot(f + a) is irrational ⇒ τ̂f (a) = rot(f + a). (Outside stairs)
f + a is hyperbolic ⇒ τ̂f (a) ∈ H. (Stairs)
f + a is parabolic ⇒ τ̂f (a) = rot(f + a). (Endpoints of stairs)
Bubbles are (generically) self-similar near rational points.
Size of the p

q -bubble is at most C
q2 .

X.Buff, NG

Near a Diophantine number α, the p
q -bubble is much smaller: <∼ (dist(p/q,α))ξ

q2 .

.
NG, I.Gorbovickis
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Zero bubbles for perturbations of z 7→ az+b
cz+d , approximation.
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On a bubble: let f + a be a hyperbolic circle diffeomorphism
and ω → a.

Tω is the quotient of a fundamental domain of f + ω via f + ω. This domain
degenerates as ω → a.
f + a, a ∈ R, has an annular fundamental domain Π as well!
τ̂f (a) = limω→a τf (ω) is the modulus of the torus Π/(f + a).
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Self-similarity of bubbles

Renormalization Rf is the first-return map under f to the circle [0, f (0)]/f .

rot(Rf ) = − 1
rot f mod 1; τ(Rf ) = − 1

τ(f ) mod 1.

Lavaurs maps — through the eggbeater

Fact: R(f + a)→ Lc as a→ 0 where Lc are Lavaurs maps, c ∈ R/Z.
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Renormalization (joint with M.Yampolsky) and bubbles

Golden ratio rotation is a hyperbolic fixed point for R2

⇒ bubbles are small near the golden ratio (Gorbovickis, NG; in progress).
⇒ “rot f = Herman number” is an analytic condition (Risler’s theorem).
“rot f = golden ratio” are at least finitely smooth near critical maps
(M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?
QQ Do critical maps have bubbles? How do they look like?
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