## Complex rotation numbers and renormalization

Nataliya Goncharuk, University of Toronto natalia.goncharuk@utoronto.ca

MSRI workshop "Adventurous Berkeley Complex Dynamics", May 2-6, 2022



May 2, 2022

## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by rot $f$ if rot $f$ is
irrational
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by $\operatorname{rot} f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers.

## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by $\operatorname{rot} f$ if $\operatorname{rot} f$ is irrational
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot $f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers .

## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by rot $f$ if rot $f$ is irrational
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot $f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers.

## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by $\operatorname{rot} f$ if $\operatorname{rot} f$ is irrational.
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot $f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers.

## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by $\operatorname{rot} f$ if $\operatorname{rot} f$ is irrational.
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by $\operatorname{rot} f$ if rot $f$ is a Herman number.


## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by $\operatorname{rot} f$ if $\operatorname{rot} f$ is irrational.
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by rot $f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers.


## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by $\operatorname{rot} f$ if $\operatorname{rot} f$ is irrational.
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by $\operatorname{rot} f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers.



Hyperbolic: $(f+a)^{\prime}(f$. p. $) \neq 1$

## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by $\operatorname{rot} f$ if $\operatorname{rot} f$ is irrational.
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by $\operatorname{rot} f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers.



Hyperbolic: $(f+a)^{\prime}(f$. p. $) \neq 1$

## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by $\operatorname{rot} f$ if $\operatorname{rot} f$ is irrational.
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by $\operatorname{rot} f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers.



Parabolic: $(f+a)^{\prime}($ f.p. $)=1$

## Rotation number of a circle diffeomorphism.

Let $F$ be a lift of $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ to $\mathbb{R}$.

$$
\operatorname{rot}(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{x}=\lim _{n \rightarrow \infty} \frac{\# \text { turns around } \mathbb{R} / \mathbb{Z} \text { under } n \text { iterates }}{n}
$$

$f$ has a periodic orbit $\Leftrightarrow \operatorname{rot} f$ is rational.
[Denjoy] $C^{2}$-smooth $f$ is continuously conjugate to the rotation by $\operatorname{rot} f$ if $\operatorname{rot} f$ is irrational.
[Arnold, Herman, Yoccoz] $f \in C^{\omega}$ is analytically conjugate to the rotation by $\operatorname{rot} f$ if rot $f$ is a Herman number.
Diophantine $\subset$ Herman $\subset$ Brjuno $\subset$ irrational numbers.

$\uparrow$ Stairs


Parabolic: $(f+a)^{\prime}(\text { f.p. })_{\square}=1$

## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Idea: let us add a complex shift to $f, f_{\omega}=f+\omega$.
- Take the quotient space of the annulus $0<\operatorname{Im} z<\operatorname{Im} \omega$ in $\mathbb{C} / \mathbb{Z}$ by
- We obtain a complex torus $T_{F+\omega}$
- Consider its modulus $\tau_{f}(\omega)$ - the complex rotation number of $f+\omega$.



## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Idea: let us add a complex shift to $f, f_{\omega}=f+\omega$.
- Take the quotient space of the annulus $0<\operatorname{Im} z<\operatorname{Im} \omega$ in $\mathbb{C} / \mathbb{Z}$ by
- We obtain a complex torus $T_{F+\omega}$
- Consider its modulus $\tau_{f}(\omega)$ - the complex rotation number of $f+\omega$.

$\operatorname{Im} \omega$


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.
$\operatorname{Im} z=\operatorname{Im} \omega \frac{F_{\omega}(0)}{}$

- Idea: let us add a complex shift to $f, f_{\omega}=f+\omega$.
- Take the quotient space of the annulus $0<\operatorname{Im} z<\operatorname{Im} \omega$ in $\mathbb{C} / \mathbb{Z}$ by $x \mapsto f(x)+\omega$.
- We obtain a complex torus $T_{F+\omega}$
- Consider its modulus $\tau_{f}(\omega)$ - the complex rotation number of $f+\omega$

$\operatorname{Im} \omega$


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Idea: let us add a complex shift to $f, f_{\omega}=f+\omega$.
- Take the quotient space of the annulus $0<\operatorname{Im} z<\operatorname{Im} \omega$ in $\mathbb{C} / \mathbb{Z}$ by $x \mapsto f(x)+\omega$.
- We obtain a complex torus $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_{f}(\omega)$ - the complex rotation number of $f+\omega$

$\operatorname{Im} \omega$


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Idea: let us add a complex shift to $f, f_{\omega}=f+\omega$.
- Take the quotient space of the annulus $0<\operatorname{Im} z<\operatorname{Im} \omega$ in $\mathbb{C} / \mathbb{Z}$ by $x \mapsto f(x)+\omega$.
- We obtain a complex torus $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_{f}(\omega)$ - the complex rotation number of $f+\omega$

$\operatorname{Im} \omega$


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Idea: let us add a complex shift to $f, f_{\omega}=f+\omega$.
- Take the quotient space of the annulus $0<\operatorname{Im} z<\operatorname{Im} \omega$ in $\mathbb{C} / \mathbb{Z}$ by $x \mapsto f(x)+\omega$.
- We obtain a complex torus $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_{f}(\omega)$ - the complex rotation number of $f+\omega$.

$\operatorname{Im} \omega$


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Idea: let us add a complex shift to $f, f_{\omega}=f+\omega$.
- Take the quotient space of the annulus $0<\operatorname{Im} z<\operatorname{Im} \omega$ in $\mathbb{C} / \mathbb{Z}$ by $x \mapsto f(x)+\omega$.
- We obtain a complex torus $T_{F+\omega}$ with marked generators.
- Consider its modulus $\tau_{f}(\omega)$ - the complex rotation number of $f+\omega$.

$\operatorname{Im} \omega$


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Example: If $f(x)$ is a rotation by $\phi$, then $\tau_{f}(\omega)=\omega+\phi$.
- Remark: $\tau_{f}$ is holomorphic.
- Arnold's conjecture, 1978:

$$
\lim _{\rightarrow \rightarrow a \in \mathbb{R}} \tau_{f}(\omega)=\operatorname{rot}(f+a)
$$

if $\operatorname{rot}(f+a)$ is Diophantine. [TRUE]

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Example: If $f(x)$ is a rotation by $\phi$, then $\tau_{f}(\omega)=\omega+\phi$.
- Remark: $\tau_{f}$ is holomorphic.
- Arnold's conjecture, 1978:

$$
\lim _{\rightarrow \rightarrow a \in \mathbb{R}} \tau_{f}(\omega)=\operatorname{rot}(f+a)
$$

if $\operatorname{rot}(f+a)$ is Diophantine. [TRUE]

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Example: If $f(x)$ is a rotation by $\phi$, then $\tau_{f}(\omega)=\omega+\phi$.
- Remark: $\tau_{f}$ is holomorphic.
- Arnold's conjecture, 1978:
if $\operatorname{rot}(f+a)$ is Diophantine. [TRUE]
- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.


- Example: If $f(x)$ is a rotation by $\phi$, then $\tau_{f}(\omega)=\omega+\phi$.
- Remark: $\tau_{f}$ is holomorphic.
- Arnold's conjecture, 1978:
$\lim _{\rightarrow \mathbb{R}} \tau_{f}(\omega)=\operatorname{rot}(f+a)$
if $\operatorname{rot}(f+a)$ is Diophantine. $[T R U E]$
- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.



- Example: If $f(x)$ is a rotation by $\phi$, then $\tau_{f}(\omega)=\omega+\phi$.
- Remark: $\tau_{f}$ is holomorphic.
- Arnold's conjecture, 1978:

$$
\lim _{\omega \rightarrow a \in \mathbb{R}} \tau_{f}(\omega)=\operatorname{rot}(f+a)
$$

if $\operatorname{rot}(f+a)$ is Diophantine. [TRUE]

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.



- Example: If $f(x)$ is a rotation by $\phi$, then $\tau_{f}(\omega)=\omega+\phi$.
- Remark: $\tau_{f}$ is holomorphic.
- Arnold's conjecture, 1978:

$$
\lim _{\omega \rightarrow a \in \mathbb{R}} \tau_{f}(\omega)=\operatorname{rot}(f+a)
$$

if $\operatorname{rot}(f+a)$ is Diophantine. [TRUE]

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?


## Arnold's construction (1978)

Let $f: \mathbb{R} / \mathbb{Z} \mapsto \mathbb{R} / \mathbb{Z}$ be an analytic circle diffeomorphism.



- Example: If $f(x)$ is a rotation by $\phi$, then $\tau_{f}(\omega)=\omega+\phi$.
- Remark: $\tau_{f}$ is holomorphic.
- Arnold's conjecture, 1978:

$$
\lim _{\omega \rightarrow a \in \mathbb{R}} \tau_{f}(\omega)=\operatorname{rot}(f+a)
$$

if $\operatorname{rot}(f+a)$ is Diophantine. [TRUE]

- Ghys's question: is this true for any irrational rotation number?
- What happens for the rational rotation number?


## Bubbles: overview of results

$$
\tau_{f}: \mathbb{H} \rightarrow \mathbb{H} \text { extends continuously to } \mathbb{R} \text {. Let } \hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)
$$

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Outside stairs)
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. (Stairs)
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$. .

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Outside stairs)
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. (Stairs)
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{5}}{q^{2}}$

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Outside stairs)
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. (Stairs)
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{a}$-bubble is at most $\frac{c}{a^{2}}$
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\varepsilon}}{q^{2}}$

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Outside stairs)
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. (Stairs)
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$
- Near a Dionhantine number $\alpha$ the $\frac{p}{\alpha}$ bubble is much smaller:

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Outside stairs)
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. (Stairs)
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$
- Near a Diophantine number $\alpha$, the

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Outside stairs)
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. (Stairs)
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller:

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Outside stairs)
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. (Stairs)
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$. .

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is Diophantine $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. (Stairs)
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$. .

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is Diophantine $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. (Endpoints of stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is Diophantine $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. X.Buff, NG $\leftarrow$ Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$. $\bar{\equiv}$

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. X.Buff, NG $\leftarrow$ Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$. $\bar{\equiv}$

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. X.Buff, NG Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. X.Buff, NG $\leftarrow$ Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$. $\bar{\equiv}$

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. X.Buff, NG Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. X.Buff, NG $\leftarrow$ Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.X.Buff, NG
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. X.Buff, NG Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. X.Buff, NG $\leftarrow$ Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.X.Buff, NG
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller: $<\sim \frac{(\operatorname{dist}(p / q, \alpha))^{\xi}}{q^{2}}$.

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. X.Buff, NG Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. X.Buff, NG $\leftarrow$ Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.X.Buff, NG
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller. NG, I.Gorbovickis

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. X.Buff, NG Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. X.Buff, NG $\leftarrow$ Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.X.Buff, NG
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller. NG, I.Gorbovickis

$\uparrow$ Stairs


Limit values of $\tau_{f}$ on $\mathbb{R}$.

## Bubbles: overview of results

$\tau_{f}: \mathbb{H} \rightarrow \mathbb{H}$ extends continuously to $\mathbb{R}$. X.Buff, NG Let $\hat{\tau}_{f}(a):=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$.

- $\operatorname{rot}(f+a)$ is irrational $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. X.Buff, NG $\leftarrow$ Risler; Moldavskis
- $f+a$ is hyperbolic $\Rightarrow \hat{\tau}_{f}(a) \in \mathbb{H}$. Ilyashenko, Moldavskis;NG
- $f+a$ is parabolic $\Rightarrow \hat{\tau}_{f}(a)=\operatorname{rot}(f+a)$. J.Lacroix; NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$-bubble is at most $\frac{C}{q^{2}}$.X.Buff, NG
- Near a Diophantine number $\alpha$, the $\frac{p}{q}$-bubble is much smaller. NG, I. Gorbovickis


Zero bubbles for perturbations of $z \mapsto \frac{a z+b}{c z+d}$, approximation.

# On a bubble: let $f+$ a be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



[^0]
# On a bubble: let $f+$ a be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



[^1]
# On a bubble: let $f+$ a be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



- $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.


# On a bubble: let $f+$ a be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



- $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.
- $f+a, a \in \mathbb{R}$, has an annular fundamental domain $\Pi$ as well!
- $\hat{\tau}_{f}(a)=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$ is the modulus of the torus $\Pi /(f+a)$.


# On a bubble: let $f+$ a be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



- $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.
- $f+a, a \in \mathbb{R}$, has an annular fundamental domain $\Pi$ as well!
- $\hat{\tau}_{f}(a)=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$ is the modulus of the torus $\Pi /(f+a)$



# On a bubble: let $f+$ a be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



- $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.
- $f+a, a \in \mathbb{R}$, has an annular fundamental domain $\Pi$ as well!
- $\hat{\tau}_{f}(a)=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$ is the modulus of the torus $\Pi /(f+a)$



# On a bubble: let $f+$ a be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



- $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.
- $f+a, a \in \mathbb{R}$, has an annular fundamental domain $\Pi$ as well!
- $\hat{\tau}_{f}(a)=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$ is the modulus of the torus $\Pi /(f+a)$



# On a bubble: let $f+$ a be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



- $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.
- $f+a, a \in \mathbb{R}$, has an annular fundamental domain $\Pi$ as well!
- $\hat{\tau}_{f}(a)=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$ is the modulus of the torus $\Pi /(f+a)$



# On a bubble: let $f+a$ be a hyperbolic circle diffeomorphism and $\omega \rightarrow$ a. 



- $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.
- $f+a, a \in \mathbb{R}$, has an annular fundamental domain $\Pi$ as well!
- $\hat{\tau}_{f}(a)=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$ is the modulus of the torus $\Pi /(f+a)$.



## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.


## Lavaurs maps - through the eggbeater



## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\begin{equation*}
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 \tag{Rf}
\end{equation*}
$$

## Lavaurs maps - through the eggbeater



## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater



## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater

Fact: $\mathcal{R}(f+a) \rightarrow L_{c}$ as $a \rightarrow 0$ where $L_{c}$ are Lavaurs maps, $c \in \mathbb{R} / \mathbb{Z}$.


## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater



## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater



Fact: $\mathcal{R}(f+a) \rightarrow L_{c}$ as $a \rightarrow 0$ where $L_{c}$ are Lavaurs maps, $c \in \mathbb{R} / \mathbb{Z}$.


## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater



Fact: $\mathcal{R}(f+a) \rightarrow L_{c}$ as $a \rightarrow 0$ where $L_{c}$ are Lavaurs maps, $c \in \mathbb{R} / \mathbb{Z}$.


## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater



Fact: $\mathcal{R}(f+a) \rightarrow L_{c}$ as $a \rightarrow 0$ where $L_{c}$ are Lavaurs maps, $c \in \mathbb{R} / \mathbb{Z}$.


## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater



Fact: $\mathcal{R}(f+a) \rightarrow L_{c}$ as $a \rightarrow 0$ where $L_{c}$ are Lavaurs maps, $c \in \mathbb{R} / \mathbb{Z}$.


## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater



Fact: $\mathcal{R}(f+a) \rightarrow L_{c}$ as $a \rightarrow 0$ where $L_{c}$ are Lavaurs maps, $c \in \mathbb{R} / \mathbb{Z}$.


## Self-similarity of bubbles

Renormalization $\mathcal{R} f$ is the first-return map under $f$ to the circle $[0, f(0)] / f$.

$$
\operatorname{rot}(\mathcal{R} f)=-\frac{1}{\operatorname{rot} f} \bmod 1 ; \quad \tau(\mathcal{R} f)=-\frac{1}{\tau(f)} \bmod 1
$$

## Lavaurs maps - through the eggbeater



Fact: $\mathcal{R}(f+a) \rightarrow L_{c}$ as $a \rightarrow 0$ where $L_{c}$ are Lavaurs maps, $c \in \mathbb{R} / \mathbb{Z}$.


## Renormalization (joint with M. Yampolsky) and bubbles

- Golden ratio rotation is a hyperbolic fixed point for $\mathcal{R}^{2}$
- $\Rightarrow$ bubbles are small near the golden ratio (Gorbovickis, NG; in progress) - $\Rightarrow$ "rot $f=$ Herman number" is an analytic condition (Risler's theorem) - "rot $f=$ golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?
QQ Do critical maps have bubbles? How do they look like?


## Renormalization (joint with M.Yampolsky) and bubbles

- Golden ratio rotation is a hyperbolic fixed point for $\mathcal{R}^{2}$
- $\Rightarrow$ bubbles are small near the golden ratio (Gorbovickis, NG; in progress).
- $\Rightarrow$ "rot $f=$ Herman number" is an analytic condition (Risler's theorem) (M.Yampolsky, NG; in progress)

Are they only finitely smooth?
Do critical maps have bubbles? How do they look like?


## Renormalization (joint with M.Yampolsky) and bubbles

- Brjuno rotations are a hyperbolic set for $\mathcal{R}$ (joint with M. Yampolsky).
- $\Rightarrow$ bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
$\bullet \Rightarrow$ "rot $f=$ Herman number" is an analytic condition (Risler's theorem) - "rot $f=$ golden ratio" are at least finitely smooth near critical maps (M. Yampolsky, NG; in progress).

Are they only finitely smooth?
Do critical maps have bubbles? How do they look like?


## Renormalization (joint with M.Yampolsky) and bubbles

- Brjuno rotations are a hyperbolic set for $\mathcal{R}$ (joint with M. Yampolsky).
- $\Rightarrow$ bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- $\Rightarrow$ "rot $f=$ Herman number" is an analytic condition (Risler's theorem).
(M.Yampolsky, NG; in progress)

Are they onlv finitely smooth?
Do critical maps have bubbles? How do they look like?


## Renormalization (joint with M.Yampolsky) and bubbles

- Brjuno rotations are a hyperbolic set for $\mathcal{R}$ (joint with M. Yampolsky).
- $\Rightarrow$ bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- $\Rightarrow$ "rot $f=$ Herman number" is an analytic condition (Risler's theorem).
(M.Yampolsky, NG; in progress)

Are they only finitely smooth?
Do critical maps have bubbles? How do they look like?


## Renormalization (joint with M.Yampolsky) and bubbles

- Brjuno rotations are a hyperbolic set for $\mathcal{R}$ (joint with M. Yampolsky).
- $\Rightarrow$ bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- $\Rightarrow$ "rot $f=$ Herman number" is an analytic condition (Risler's theorem).
- "rot $f=$ golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).



## Renormalization (joint with M.Yampolsky) and bubbles

- Brjuno rotations are a hyperbolic set for $\mathcal{R}$ (joint with M. Yampolsky).
- $\Rightarrow$ bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- $\Rightarrow$ "rot $f=$ Herman number" is an analytic condition (Risler's theorem).
- "rot $f=$ golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?


## Renormalization (joint with M.Yampolsky) and bubbles

- Brjuno rotations are a hyperbolic set for $\mathcal{R}$ (joint with M. Yampolsky).
- $\Rightarrow$ bubbles are small near Herman numbers (Gorbovickis, NG; in progress).
- $\Rightarrow$ "rot $f=$ Herman number" is an analytic condition (Risler's theorem).
- "rot $f=$ golden ratio" are at least finitely smooth near critical maps (M.Yampolsky, NG; in progress).

QQ Are they only finitely smooth?
QQ Do critical maps have bubbles? How do they look like?



[^0]:    - $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.
    of $1 a, a \in \mathbb{R}$, has an annular fundamental domain $\Pi$ as well! - $\hat{\tau}_{f}(a)=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$ is the modulus of the torus $\Pi /(f+a)$.

[^1]:    - $T_{\omega}$ is the quotient of a fundamental domain of $f+\omega$ via $f+\omega$. This domain degenerates as $\omega \rightarrow a$.
    of $1 a, a \in \mathbb{R}$, has an annular fundamental domain $\Pi$ as well! - $\hat{\tau}_{f}(a)=\lim _{\omega \rightarrow a} \tau_{f}(\omega)$ is the modulus of the torus $\Pi /(f+a)$.

