

MATH 618. Complex Analysis

Midterm test

Nataliya Goncharuk, natasha_goncharuk@tamu.edu

Deadline: Wednesday Feb 28, 10 pm

All problems are out of 10 pts, one lowest score is dropped from the computation.

Here and below, \mathbb{D} is the open unit disc: $\mathbb{D} = \{|z| < 1\}$.

1. Write out a formula for an entire function with a zero of order n at each point n for $n \in \mathbb{N}$.
2. Write out a formula for a meromorphic function that has a pole at each point n for $n \in \mathbb{N}$, with a singular part equal to $\frac{n}{z-n}$.
3. Prove that if $f_n \rightarrow f$ in $M(G)$ and f has a pole at z_0 of order k , then for any small ε , for sufficiently large n , the function f_n has k poles in $B_\varepsilon(z_0)$ counting with multiplicities.
4. An analytic map $f: \mathbb{D} \rightarrow \mathbb{C}$ does not assume real positive values and takes 0 to -1 . Find the maximal possible value of $|f'(0)|$.
5. Let f be analytic in the annulus $3 < |z - 2| < 4$ and have no analytic extension to any larger connected open set. Let K_n be a sequence of compacts $K_n = \{3 + 1/n < |z - 2| < 4 - 1/n\}$.

Show that if Runge theorem is used to construct a sequence of rational functions R_n with poles at 0 and ∞ such that $|f - R_n| < 1/n$ on K_n , then the coefficients of their (finite) Laurent series expansions

$$R_n(z) = \dots + a_{n,-1}z^{-1} + a_{n,0} + a_{n,1}z + \dots$$

converge, $a_{n,k} \rightarrow c_k$ for any k . However, show that the sum of the “limit” Laurent series $\sum_{k=-\infty}^{\infty} c_k z^k$ is not equal to f on any open set.

6. Use the uniqueness part of the Riemann Mapping Theorem to show that if a simply connected domain G is symmetric with respect to zero, then any biholomorphic mapping f that takes G to \mathbb{D} and 0 to 0 is odd, $f(-z) = -f(z)$.
7. Construct an entire function with prescribed values at points $a_n \rightarrow \infty$. Namely, for any sequence of complex numbers $a_n \rightarrow \infty$ and any complex numbers b_n , find an entire function with $f(a_n) = b_n$.

Hint: let g be an entire function with simple zeros at a_n . Show that

$$f(z) = \sum_{n=1}^{\infty} g(z) \frac{e^{\gamma_n(z-a_n)}}{z-a_n} \cdot \frac{b_n}{g'(a_n)}$$

converges for some choice of $\gamma_n \in \mathbb{C}$ to an analytic function and satisfies $f(a_n) = b_n$.