Genera of non-algerbaic leaves of polynomial foliations of \mathbb{C}^2 Based on a joint work with Yu. Kudryashov

Nataliya Goncharuk natalka@mccme.ru

Department of Mathematics Higher School of Economics

AMS-EMS-SPM joint meeting, 2015

Outline

Motivation and problem statement

- Polynomial foliations of \mathbb{C}^2
- Monodromy group at infinity
- Main Theorems

2 A leaf with many handles

3 Leaves with infinitely many handles

4 Result on limit cycles

Notation

Denote by \mathcal{A}_n the set of foliations of \mathbb{C}^2 given by

$$\dot{x} = p(x, y),$$

 $\dot{y} = q(x, y),$

where p, q are polynomials, deg $p \le n$, deg $q \le n$.

Convention

We consider only $n \ge 2$.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

3

Notation

Denote by \mathcal{A}_n the set of foliations of \mathbb{C}^2 given by

$$\dot{x} = p(x, y),$$

 $\dot{y} = q(x, y),$

where p, q are polynomials, deg $p \le n$, deg $q \le n$.

Convention

We consider only $n \ge 2$.

Extension to $\mathbb{C}P^2$

Change of coordinates

$$u=rac{1}{x};$$
 $v=rac{y}{x};$ $d au=-u^{n-1}dt$

$$\begin{pmatrix} \dot{u} = u^{n+1} P\left(\frac{1}{u}, \frac{v}{u}\right) &=: u \tilde{P}(u, v) \\ \dot{v} = v u^{n} P\left(\frac{1}{u}, \frac{v}{u}\right) - u^{n} Q\left(\frac{1}{u}, \frac{v}{u}\right) &=: H(u, v).$$

The leaf at infinity

Let $\{a_1, \ldots, a_{n+1}\}$ be the roots of H(0, v). Generically, $a_i \neq a_j$. (0, a_j) are singularities of the extended foliation, and $L_{\infty} = \{u = 0\} \setminus \{(0, a_j) \mid 1 \leq j \leq n+1\}$ is its leaf.

▲ □ ► < □ ► </p>

Extension to $\mathbb{C}P^2$

Change of coordinates

$$u=rac{1}{x};$$
 $v=rac{y}{x};$ $d au=-u^{n-1}dt$

$$\begin{cases} \dot{u} = u^{n+1} P\left(\frac{1}{u}, \frac{v}{u}\right) &=: u \tilde{P}(u, v) \\ \dot{v} = v u^{n} P\left(\frac{1}{u}, \frac{v}{u}\right) - u^{n} Q\left(\frac{1}{u}, \frac{v}{u}\right) &=: H(u, v). \end{cases}$$

The leaf at infinity

Let $\{a_1, \ldots, a_{n+1}\}$ be the roots of H(0, v). Generically, $a_i \neq a_j$. (0, a_j) are singularities of the extended foliation, and $L_{\infty} = \{u = 0\} \setminus \{(0, a_j) \mid 1 \leq j \leq n+1\}$ is its leaf.

▶ 4 ∰ ▶ 4 ≡ ▶ 4

Extension to $\mathbb{C}P^2$

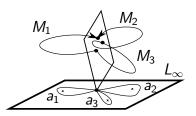
Change of coordinates

$$u = \frac{1}{x};$$
 $v = \frac{y}{x};$ $d\tau = -u^{n-1}dt$

$$\begin{cases} \dot{u} = u^{n+1} P\left(\frac{1}{u}, \frac{v}{u}\right) &=: u \tilde{P}(u, v) \\ \dot{v} = v u^n P\left(\frac{1}{u}, \frac{v}{u}\right) - u^n Q\left(\frac{1}{u}, \frac{v}{u}\right) &=: H(u, v). \end{cases}$$

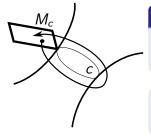
The leaf at infinity

Let $\{a_1, \ldots, a_{n+1}\}$ be the roots of H(0, v). Generically, $a_i \neq a_j$. (0, a_j) are singularities of the extended foliation, and $L_{\infty} = \{u = 0\} \setminus \{(0, a_j) \mid 1 \leq j \leq n+1\}$ is its leaf.



Choose $O \in L_{\infty}$ and take loops $\gamma_j \subset L_{\infty}$ around a_j starting from O. The monodromy (pseudo)group at infinity is generated by the monodromy maps $M_j := M_{\gamma_j}$ along γ_j .

Limit cycles



Definition

A *limit cycle* is a homotopy class [c] of a closed loop c on a leaf such that $M_c \neq id$

Limit cycles correspond to isolated fixed points of monodromy maps.

Definition

A set of limit cycles of a foliation is called *homologically independent* if for any leaf L all the cycles located on this leaf are linearly independent in $H_1(L)$.

Generic pseudogroup in $(\mathbb{C},0)$

- \bullet Orbits are dense in $(\mathbb{C},0)$
- Infinite number of isolated fixed points
- Rigidity

Generic foliation from \mathcal{A}_n

- Leaves are dense in $\mathbb{C}P^2$
- Infinite number of independent limit cycles

• Rigidity

Theorem (M. Khudai-Verenov, 1962; Yu.Ilyashenko, 1978)

For a generic foliation from A_n , all leaves are dense.

Theorem (Yu.Ilyashenko, 1978)

For $n \ge 2$, there exists a full-measure subset of A_n such that each foliation from this subset possesses infinitely many homologically independent limit cycles.

Theorem (A. Shcherbakov, E. Rosales-Gonzalez, L. Ortiz-Bobadilla, 1998)

For $n \ge 3$, there exists an open dense subset of A_n , such that each foliation from this subset possesses infinitely many homologically independent limit cycles.

Theorem (M. Khudai-Verenov, 1962; Yu.Ilyashenko, 1978)

For a generic foliation from A_n , all leaves are dense.

Theorem (Yu.Ilyashenko, 1978)

For $n \ge 2$, there exists a full-measure subset of A_n such that each foliation from this subset possesses infinitely many homologically independent limit cycles.

Theorem (A. Shcherbakov, E. Rosales-Gonzalez, L. Ortiz-Bobadilla, 1998)

For $n \ge 3$, there exists an open dense subset of A_n , such that each foliation from this subset possesses infinitely many homologically independent limit cycles.

Theorem (M. Khudai-Verenov, 1962; Yu.Ilyashenko, 1978)

For a generic foliation from A_n , all leaves are dense.

Theorem (Yu.Ilyashenko, 1978)

For $n \ge 2$, there exists a full-measure subset of A_n such that each foliation from this subset possesses infinitely many homologically independent limit cycles.

Theorem (A. Shcherbakov, E. Rosales-Gonzalez, L. Ortiz-Bobadilla, 1998)

For $n \ge 3$, there exists an open dense subset of A_n , such that each foliation from this subset possesses infinitely many homologically independent limit cycles.

Conjecture (D.Anosov)

The countable set of leaves of a generic foliation are topological cylinders, others are topological discs

This is correct for generic *analytic* foliations in $\mathbb{C}P^2$ (T.Firsova, 2006; T.Golenishcheva-Kutuzova, 2006).

Conjecture (D.Anosov)

Generic foliation from A_n has no identical cycles.

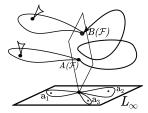
Definition

An *identical cycle* is a free homotopy class [c] of a closed loop c on a leaf such that $M_c = id$

• • • • • • • • • • • • • •

э

Density of separatrix connections



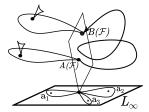
Theorem (D.Volk)

In a dense subset of A_n , any foliation has a separatrix connection.

Lemma (D. Volk)

For any neighborhood $\mathcal{F} \in U \subset$, for two holomorphic functions $A, B: U \to S$, there exists a curve $\gamma \in L_{\infty}$ such that the condition $M_{\gamma}(A(\mathcal{F})) = B(\mathcal{F})$ defines a codimention-one analytic submanifold in U.

Density of separatrix connections



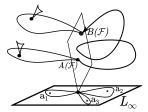
Theorem (D.Volk)

In a dense subset of A_n , any foliation has a separatrix connection.

Lemma (D. Volk)

For any neighborhood $\mathcal{F} \in U \subset \mathcal{A}_n$, for two holomorphic functions $A, B: U \to S$, there exists a curve $\gamma \in L_\infty$ such that the condition $M_\gamma(A(\mathcal{F})) = B(\mathcal{F})$ defines a codimention-one analytic submanifold in U.

Density of separatrix connections



Theorem (D.Volk)

In a dense subset of A_n , any foliation has a separatrix connection.

- **4 ∃ ≻** 4

Lemma (D. Volk; NG, Yu. Kudryashov)

For any neighborhood $\mathcal{F} \in U \subset \mathcal{M}$, dim $\mathcal{M} > 8$, for two holomorphic functions $A, B: U \to S$, there exists a curve $\gamma \in L_{\infty}$ such that the condition $M_{\gamma}(A(\mathcal{F})) = B(\mathcal{F})$ defines a codimention-one analytic submanifold in U.

Main theorems

Theorem (NG, Yu. Kudryashov)

In a dense subset of A_n , any foliation has a leaf with at least $\frac{(n+1)(n+2)}{2} - 2$ handles.

Theorem (NG, Yu. Kudryashov)

Let \mathcal{A}_n^{sym} be the subspace of \mathcal{A}_n , $n \geq 2$, given by

$$p(-x, y) = p(x, y), \quad q(-x, y) = -q(x, y).$$

For a foliation \mathcal{F} from some open dense subset of \mathcal{A}_n^{sym} , all leaves of \mathcal{F} (except for a finite set of algebraic leaves) have infinite genus.

Main theorems

Theorem (NG, Yu. Kudryashov)

In a dense subset of A_n , any foliation has a leaf with at least $\frac{(n+1)(n+2)}{2} - 2$ handles.

Theorem (NG, Yu. Kudryashov)

Let \mathcal{A}_n^{sym} be the subspace of \mathcal{A}_n , $n \geq 2$, given by

$$p(-x,y) = p(x,y), \quad q(-x,y) = -q(x,y).$$

For a foliation \mathcal{F} from some open dense subset of \mathcal{A}_n^{sym} , all leaves of \mathcal{F} (except for a finite set of algebraic leaves) have infinite genus.

Outline

1 Motivation and problem statement

- Polynomial foliations of \mathbb{C}^2
- Monodromy group at infinity
- Main Theorems

2 A leaf with many handles

Leaves with infinitely many handles

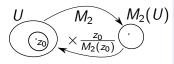
4 Result on limit cycles

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $M_2 \circ M_1 \neq M_1 \circ M_2$;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .

Approximation of a linear map $z \mapsto \tau z$ (if $|M'_1(0)| < 1$)

- Choose k, l s.t. $(M_1^k \circ M_2^l)'(0) \approx \tau$.
- $\Rightarrow M_1^{-N} \circ M_1^k \circ M_2^l \circ M_1^N(z) \rightrightarrows (M_1^k \circ M_2^l)'(0)z \approx \tau z \text{ as } N \to \infty.$



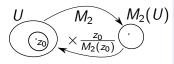
$$\begin{array}{l} z_0 \text{ is a fixed point of } \frac{z_0}{M_2(z_0)} \cdot M_2(z). \\ \text{Thus } M_1^{-N} \circ (M_1^k M_2') \circ M_1^N \circ M_2(z) \approx \\ \frac{z_0}{M_2(z_0)} \cdot M_2(z) \text{ has an isolated fixed point.} \end{array}$$

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $M_2 \circ M_1 \neq M_1 \circ M_2$;
- $\langle M'_1(0), M'_2(0) \rangle$ is dense in \mathbb{C}^* .

Approximation of a linear map $z\mapsto au z$ (if $|M_1'(0)|<1$)

- Choose k, l s.t. $(M_1^k \circ M_2^l)'(0) \approx \tau$.
- $\Rightarrow M_1^{-N} \circ M_1^k \circ M_2^l \circ M_1^N(z) \rightrightarrows (M_1^k \circ M_2^l)'(0)z \approx \tau z \text{ as } N \to \infty.$



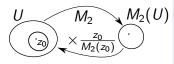
$$\begin{array}{l} z_0 \text{ is a fixed point of } \frac{z_0}{M_2(z_0)} \cdot M_2(z). \\ \text{Thus } M_1^{-N} \circ (M_1^k M_2') \circ M_1^N \circ M_2(z) \approx \\ \frac{z_0}{M_2(z_0)} \cdot M_2(z) \text{ has an isolated fixed point.} \end{array}$$

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $M_2 \circ M_1 \neq M_1 \circ M_2$;
- $\langle M_1'(0), M_2'(0) \rangle$ is dense in \mathbb{C}^* .

Approximation of a linear map $z \mapsto \tau z$ (if $|M'_1(0)| < 1$)

- Choose k, l s.t. $(M_1^k \circ M_2^l)'(0) \approx \tau$.
- $\Rightarrow M_1^{-N} \circ M_1^k \circ M_2^l \circ M_1^N(z) \rightrightarrows (M_1^k \circ M_2^l)'(0)z \approx \tau z \text{ as } N \to \infty.$



$$\begin{array}{l} z_0 \text{ is a fixed point of } \frac{z_0}{M_2(z_0)} \cdot M_2(z). \\ \text{Thus } M_1^{-N} \circ (M_1^k M_2') \circ M_1^N \circ M_2(z) \approx \\ \frac{z_0}{M_2(z_0)} \cdot M_2(z) \text{ has an isolated fixed point.} \end{array}$$

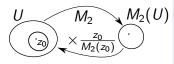
Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $M_2 \circ M_1 \neq M_1 \circ M_2$;
- $\langle M_1'(0), M_2'(0) \rangle$ is dense in \mathbb{C}^* .

Approximation of a linear map $z \mapsto \tau z$ (if $|M_1'(0)| < 1$)

• Choose k, l s.t. $(M_1^k \circ M_2^l)'(0) \approx \tau$.

• $\Rightarrow M_1^{-N} \circ M_1^k \circ M_2^l \circ M_1^N(z) \rightrightarrows (M_1^k \circ M_2^l)'(0)z \approx \tau z \text{ as } N \to \infty.$



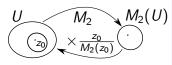
$$\begin{array}{l} z_0 \text{ is a fixed point of } \frac{z_0}{M_2(z_0)} \cdot M_2(z). \\ \text{Thus } M_1^{-N} \circ (M_1^k M_2') \circ M_1^N \circ M_2(z) \approx \\ \frac{z_0}{M_2(z_0)} \cdot M_2(z) \text{ has an isolated fixed point.} \end{array}$$

Genericity assumptions

- $|M'_1(0)| \neq 1$, hence M_1 is linearizable;
- $M_2 \circ M_1 \neq M_1 \circ M_2$;
- $\langle M_1'(0), M_2'(0) \rangle$ is dense in \mathbb{C}^* .

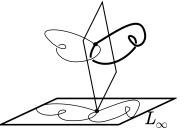
Approximation of a linear map $z \mapsto \tau z$ (if $|M'_1(0)| < 1$)

- Choose k, l s.t. $(M_1^k \circ M_2^l)'(0) \approx \tau$.
- $\bullet \ \Rightarrow M_1^{-N} \circ M_1^k \circ M_2^\prime \circ M_1^N(z) \rightrightarrows (M_1^k \circ M_2^\prime)^\prime(0) z \approx \tau z \text{ as } N \to \infty.$



$$\begin{array}{l} z_0 \text{ is a fixed point of } \frac{z_0}{M_2(z_0)} \cdot M_2(z). \\ \text{Thus } M_1^{-N} \circ (M_1^k M_2^l) \circ M_1^N \circ M_2(z) \approx \\ \frac{z_0}{M_2(z_0)} \cdot M_2(z) \text{ has an isolated fixed point.} \end{array}$$

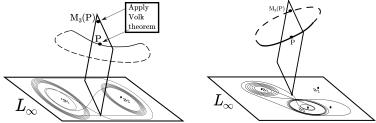
- We construct two monodromy maps with a common fixed point
- and analyze the intersections of corresponding limit cycles.



One handle is guaranteed if two limit cycles intersect transversally at one point.

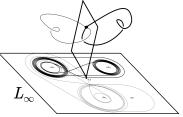
• Take one limit cycle corresponding to $M_1^{-N} \circ (M_1^k M_2^l) \circ M_1^N \circ M_2(z)$.

• Use Volk theorem to obtain another one in a submanifold of codimension one.



One handle

- Take one limit cycle corresponding to $M_1^{-N} \circ (M_1^k M_2^l) \circ M_1^N \circ M_2(z)$.
- Use Volk theorem to obtain another one in a submanifold of codimension one.



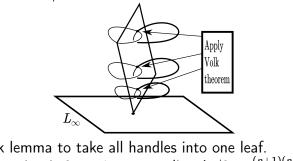
• Analyze intersections.

Result

In $\mathcal{M}_1 \subset \mathcal{A}_n$ with codim $\mathcal{M}_1 = 1$, any $\mathcal{F} \in \mathcal{M}_1$ has one handle.

Many handles

- In $\mathcal{M}_1 \subset \mathcal{A}_n$ with codim $\mathcal{M}_1 = 1$, we have one handle.
- Apply Volk lemma inside \mathcal{M}_1 .
- We get \mathcal{M}_2 , codim $\mathcal{M}_2 = 2$: each foliation $\mathcal{F} \in \mathcal{M}_1$ has 2 handles on different leaves,



- etc.
- Use Volk lemma to take all handles into one leaf. The codimension is 2g - 1, so $g \approx \dim A_n/2 = \frac{(n+1)(n+2)}{2}$

Outline

1 Motivation and problem statement

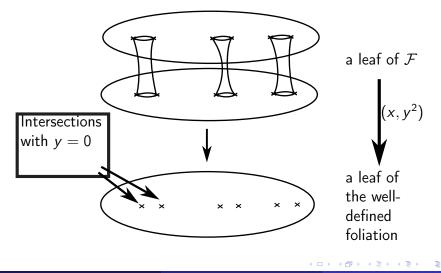
- Polynomial foliations of \mathbb{C}^2
- Monodromy group at infinity
- Main Theorems

2 A leaf with many handles

3 Leaves with infinitely many handles

4 Result on limit cycles

Infinite genus for p(x, y) = -p(x, -y), q(x, y) = q(x, -y)



Nataliya Goncharuk (HSE) Genera of non-algerbaic leaves of polynor AMS-EMS-SPM '15 19 / 23

Outline

1 Motivation and problem statement

- Polynomial foliations of \mathbb{C}^2
- Monodromy group at infinity
- Main Theorems

2 A leaf with many handles

Leaves with infinitely many handles

4 Result on limit cycles

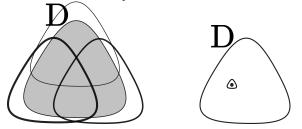
Theorem (NG, YK)

For $n \ge 2$, for a dense subset $\mathcal{A}_n^{LC} \subset \mathcal{A}_n$, each $\mathcal{F} \in \mathcal{A}_n^{LC}$ possesses an infinite sequence of limit cycles $[\gamma_j]$ such that:

- the cycles are homologically independent;
- the multipliers of the cycles tend to zero;
- the cycles are uniformly bounded, i.e., there exists a ball in C² that includes all representatives γ_j;
- there exists a cross-section such that γ_j intersect it in a dense subset.

Limit cycles: main idea

• Find monodromy maps f_i and the domain D detached from zero



such that the images of D under f_j cover D.

- Any long composition has a fixed point which produces a limit cycle
- Multipliers tend to 0.
- Fixed points are dense in D.

Homological independence is not trivial.

If dependent cycles are simple and disjoint, the dependence is of the form $c_{i_1} \pm \cdots \pm c_{i_k} = 0$ in $H_1(L)$. Thus the multipliers satisfy $\mu_{i_1}^{\pm 1} \cdots \mu_{i_k}^{\pm 1} = 1$.

This is impossible if the multipliers

- rapidly tend to 1 (as in classical proofs)
- or rapidly tend to zero (as in the our proof).

Now the main difficulty is to avoid intersections and self-intersections of limit cycles.