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1. Introduction

Iterated monodromy groups are algebraic invariants of topological dynamical
systems (e.g., rational functions acting on the Riemann sphere). They encode in
a computationally efficient way combinatorial information about the dynamical
systems. In hyperbolic (expanding) case the iterated monodromy group contains
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all essential information about the dynamical system. For instance, the Julia set of
the system can be reconstructed from the iterated monodromy group).

Besides their applications to dynamical systems (see, for instance [BN06] and
[Nek08b]) iterated monodromy groups are interesting from the point of view of
group theory, as they often possess exotic properties. In some sense their com-
plicated structure is parallel to the complicated structure of the associated fractal
Julia sets. In some cases the relation with the dynamical systems can be used to
understand algebraic properties of the iterated monodromy groups.

Even though the main application of the iterated monodromy groups is dynam-
ics, their origins are in algebra (however, some previous works in holomorphic dy-
namics contained constructions directly related to the iterated monodromy groups,
see [HOV95, LM97, Pil00]). They were defined in 2001 in connection with the
following construction due to R. Pink. Let F (x) be a rational function over C.
Consider its iterations Fn(x) and let Ωn be the field obtained by adjoining to the
field of functions C(t) all solutions of the equation Fn(x) = t in an algebraic closure
of C(t). Then Ωn is an increasing sequence of fields; denote Ω =

⋃
n≥1 Ωn. How to

compute the Galois group of the extension Ω/C(t)?
Note that the Galois group naturally acts on the sets Ln of solutions of the

equation Fn(x) = t. If x ∈ Ln is a solution of this equation, then F (x) is a solution
of the equation F (n−1)(x) = t. Hence, the union of the sets Ln has a natural
structure of the vertex set of a rooted tree: every vertex x ∈ Ln is connected to
the vertex F (x) ∈ Ln−1. The Galois group of Ω/C(t) acts hence on this tree by
automorphisms and the action is faithful. So, the problem of computation of the
Galois group can be reformulated as the question of computation of the action of
this group on the rooted tree.

It follows from classical facts (see, for example [For81, Theorem 8.12]) that the
action of the Galois group Aut(Ω/C(t)) on the nth level Ln of the tree coincides

with the monodromy action of the fundamental group π1(Ĉ \ B, t0) on the fiber

F−n(t0) of the covering Fn : Ĉ \ F−n(B) −→ Ĉ \ B, where B is the set of critical

values of Fn and t0 ∈ Ĉ \B is a base-point. We get hence a sequence Gn of finite
permutation groups. Their inverse limit is the Galois group Aut(Ω/C(t)). The first
example of an explicit computation of the groups Gn for a polynomial appears in
the paper [Pil00] of K. Pilgrim.

Especially interesting is the case when F (x) is a post-critically finite rational
function, i.e., when the orbit of every critical point of F under iterations of F is
finite. Then all the monodromy groups Gn are quotients of the fundamental group

π1(Ĉ \ P, t), where P is the union of the orbits of critical values of F . The natural

epimorphisms from Gn+1 to Gn agree with the epimorphisms π1(Ĉ \ P, t) −→ Gn.
Hence, the inverse limit of the groups Gn contains a dense subgroup which is a
quotient of the finitely generated fundamental group.

Since the early 80s an effective way of describing automorphisms of rooted trees
was developed. It uses the language of Meely automata and wreath recursions.
Groups generated by finite automata became important examples of groups with
unusual properties (see [Sid98, GNS00, BGN03, BGŠ03, GŠ07]). All the techniques
of this theory could be readily applied to the question of R. Pink. A simple recursive
formula for the action of the generators of the Galois group Aut(Ω/C(t)) on the tree
was found. It was noted that for many examples the obtained automorphisms of
the rooted tree are defined by finite automata. The Galois group is then the closure
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of a group generated by the states of a finite automaton. This dense subgroup of
the Galois group (the image of the fundamental group of the punctured sphere) was
more interesting from the point of view of groups acting on rooted trees (and later
from the point of view of dynamics) than the profinite Galois group. It is called
now the iterated monodromy group IMG (F ) of the function F . It is interesting
that some of the iterated monodromy groups were defined before as interesting
examples of groups generated by finite automata. For instance, IMG

(
z2 − 1

)
was

defined in [GŻ02a, GŻ02b] by R. Grigorchuk and A. Żuk as an example of a group
generated by a three-state automaton which does not contain a free subgroup,
but can not be constructed from groups of sub-exponential growth using group-
theoretical operations, preserving amenability (passing to subgroups, quotients,
direct limits and extensions). Later L. Bartholdi and B. Virag proved in [BV05]
that this group is amenable. It is thus the first example of an amenable group which
can not be constructed from groups of sub-exponential growth. Another example
of a previously known iterated monodromy group is IMG

(
z3(−3/2 + i

√
3/2) + 1

)

which appeared in [FG91] as an example of a group of intermediate growth (see
also [BG00], where the spectrum of the action of this group on the boundary of the
tree was computed).

More on relations between Galois theory and groups acting on rooted trees (in
particular iterated monodromy groups) see the papers [AHM05, BJ07].

It was noted that in many cases the graphs of the action of the group generated
by a finite automaton on the levels of the tree seem to converge to some limit space
(see, for instance [BG00]). This observation was formalized later by the author of
these notes in a notion of the limit space of a contracting group generated by an
automaton. This theory was also inspired by the theory of numeration systems on
Rn (see [Pen65, Knu69, Vin00]) and results of the paper [NS04].

The theory of limit spaces of groups generated by automata (of self-similar
groups) was developed just in time to apply it to the iterated monodromy groups.
It was shown that the limit space of the iterated monodromy group IMG (F ) of a
post-critically finite rational function is homeomorphic to the Julia set of F . This
way a direct connection of the theory of groups generated by automata to holomor-
phic dynamics was established. Now all the exotic examples of groups generated
by automata became a part of a theory with many connections with other branches
of Mathematics.

The present paper is a survey of the theory of iterated monodromy groups, with
emphasis on examples, applications and algebraic properties of groups. More details
and proofs can be found in the book [Nek05] and in the articles [Nek08c, Nek09,
Nek08a]. See also the surveys [BGN03, Nek07c, GŠ07].

The second chapter introduces the main constructions and some simple examples.
In particular, we discuss the formula for computation of the iterated monodromy
group.

Chapter 3 describes the main algebraic tools of the theory and lists some open
questions on algebraic properties of the iterated monodromy groups.

Chapter 4 develops the theory of limit spaces of self-similar groups. We also
show how iterated monodromy groups can be used to construct models of the Julia
sets of dynamical systems.

Examples of interesting iterated monodromy groups and their applications are
collected in the last chapter of the paper. This includes: examples of Abelian



4 VOLODYMYR NEKRASHEVYCH

Figure 1. Monodromy action

iterated monodromy groups and their relation to self-affine tillings; virtually nilpo-
tent iterated monodromy groups and a theorem of M. Shub; the Grigorchuk group
and a family of iterated monodromy groups of the tent map, originally defined by
Z. Šunić; iterated monodromy groups of quadratic polynomials and the Mandelbrot
set; an example of the iterated monodromy group of an endomorphism of CP

2; and
an example of a group of non-uniform exponential growth.

I would like to thank the organizers of “Groups St Andrews 2009” in Bath for a
beautiful conference and for inviting me to give the lectures, which are the basis of
these notes.

2. Definitions and examples

2.1. Definition. LetM be a path connected and locally path connected topolog-
ical space, and let p :M1 −→M be a degree d > 1 covering map, whereM1 ⊆M
is a subset ofM. Here a degree d covering map is a continuous map such that for
every point x ∈ M there exists a neighbourhood U ∋ x and a decomposition of
p−1(U) into a union of d disjoint subsets U1, . . . , Ud such that p : Ui −→ U is a
homeomorphism.

We call such maps p : M1 −→ M partial self-coverings of M. A partial self-
covering can be iterated, as any partial map, and the iterates fn :Mn −→M will
be also partial self-coverings. Note that the domainsMn in general become smaller
as n grows.

Choose a point t ∈ M and consider the fundamental group π1(M, t) and the
rooted tree of preimages with the vertex set

(1) Tp =
⊔

n≥0

p−n(t),

where a vertex z ∈ p−(n+1)(t) is connected by an edge with the vertex p(z) ∈ p−n(t).
The point t is the root of the tree Tp.

The fundamental group π1(M, t) acts on the levels p−n(t) of the tree Tp by the
usual monodromy action (see, for instance, [Bre93, Section III.5]). The image of
a point z ∈ p−n(t) under the action of a loop γ ∈ π1(M, t) is the endpoint of the
unique lift of γ by pn starting at z (see Figure 1).

Since the action is defined by lifting the loops by p, the monodromy action of the
fundamental group on the levels of the tree agrees with the tree structure, and we
get an action of π1(M, t) on Tp by automorphisms of the rooted tree. This action
is called the iterated monodromy action.
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The iterated monodromy action is not faithful in general, i.e., there exist loops
γ ∈ π1(M, t) which are lifted by iterations of p only to loops. The quotient of the
fundamental group by the kernel of the iterated monodromy action (i.e., by the
subgroup of loops lifted only to loops) is called the iterated monodromy group of p
and is denoted IMG (p).

2.2. Example: double self-covering of the circle. Consider the orientation-
preserving degree two self-covering of the circle. We realize it as the self-map
p : x 7→ 2x of the circle R/Z.

The fundamental group of the circle is generated by the loop γ equal to the
image of [0, 1] in R/Z. The lifts of γ by the iterations pn are obviously the images
of the segments

[
m
2n , m+1

2n

]
, for m = 0, . . . , 2n − 1, in R/Z. We get hence a cycle of

2n arcs.
It follows that the generator γ of the fundamental group acts as a transitive

cycle on every level of the tree of preimages. Up to conjugacy in the automorphism
group of the tree, there is only one such an automorphism (see [BORT96, GNS01]).
It is called the adding machine.

We conclude that the iterated monodromy group of the double self-covering of
the circle is isomorphic to the fundamental group Z of the circle. More interesting
examples will follow.

2.3. Chebyshev polynomials. Chebyshev polynomials can be defined by the
equality

Td(x) = cos(d arccosx) =
1

2

((
x +

√
x2 − 1

)d

+
(
x−

√
x2 − 1

)d
)

or by an equivalent recursive formula

(2) Td+1(x) = 2xTd(x) − Td−1(x)

with the initial values T0(x) = 1 and T1(x) = x. The first Chebyshev polynomials
are

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1.

The polynomials Td (divided by the leading coefficient 2n−1) were defined by
P. Chebyshev in [Che54] in relation with problems of approximation theory. They
were of course known much earlier. See, for instance, Section 243 in Chapter XIV
of L. Euler’s “Introductio in Analysin Infinitorum” [Eul48, Eul88], where the poly-
nomials up to T7 together with a general formula for Td are given.

It follows directly from the definition that Td composed with Tk coincides with
Tdk. In particular, nth iteration of Td is Tdn .

Differentiating the equality Td(cos θ) = cos dθ we get T ′d(cos θ) sin θ = d sin dθ,
hence

T ′d(cos θ) =
d sin dθ

sin θ
.

It follows that the critical points of Td are cos πm
d for m = 1, 2, . . . , d− 1.

The set of values of Td at the critical points is {cosπm : m = 1, 2 . . . , d − 1},
which is equal to {1,−1} for d ≥ 3 and to {−1} for d = 2. We have

Td(1) = 1, Td(−1) = (−1)d.



6 VOLODYMYR NEKRASHEVYCH

Figure 2. Computing IMG (Td)

It follows that the set {−1, 1} is Td-invariant, hence the Chebyshev polynomial
Td is a partial self-covering

Td : C \ T−1
d ({−1, 1}) −→ C \ {−1, 1}.

Let us describe the iterated monodromy action of π1(C\ {±1}) associated with the
polynomial Td. Choose t = 0 as a base-point of the fundamental group. Denote
by a a small loop around 1 attached to 0 by a straight segment. Similarly, let
b be a small loop around −1 connected to 0 by a straight segment. These two
loops generate π1(C \ {±1}, t). Let us find their lifts by the nth iterate Tdn of the
polynomial Td. We have

T−1
dn (0) =

{
cos

π/2 + lπ

dn
: l = 0, . . . , dn − 1

}
,

i.e., T−1
dn (0) is the set of points obtained by projecting onto the x-axis the vertices of

the regular 2dn-gon Pn inscribed into the unit circle in such a way that the x-axis
is its non-diagonal axis of symmetry. The critical values of Tdn are the projec-
tions of the midpoints of the arcs connecting consecutive vertices of Pn. Equality
Tdn(cos θ) = cos dnθ implies now that the lifts of a and b are obtained by projecting
the arcs connecting consecutive vertices of Pn. We get in this way a path of edges
with loops at the ends connecting dn vertices. See Figure 2.3, where the graph of
T7 together with the graph of the action of 〈a, b〉 on T−1

7 (0) is shown.
It follows that the elements of IMG (Td) corresponding to the generators a and b

are involutions and that their product is infinite, since it is transitive on each level
of the tree. Consequently, the group IMG (Td) is infinite dihedral.

2.4. Computation. The tree of preimages (1) is an abstract rooted tree, so if we
want to compute the iterated monodromy action of the fundamental group on it,
we need to introduce some “coordinates” on the tree.

Vertices of a regular rooted trees are often encoded by finite words over an
alphabet X. The root is the empty word ∅. A vertex represented by a word v is
connected to the vertices of the form vx for x ∈ X. Denote by X

∗ the set of all
finite words over the alphabet X seen as a rooted tree.
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Figure 3. The map Λ

Figure 4. Recurrent formula and its proof

There exists a convenient encoding of the vertices of the tree of preimages Tp by
words, which uses lifts of paths. Let the size of the alphabet X be equal to the degree
of the partial self-covering p :M1 −→M. Choose a bijection Λ : X −→ p−1(t) and
a path ℓ(x) from t to Λ(x) for every x ∈ X.

We also set Λ(∅) = t and define the map Λ : X
∗ −→ Tp inductively by the rule:

Λ(xv) is the end of the p|v|-lift of ℓ(x) starting at Λ(v).

It is easy to prove by induction (see Figure 3) that the defined map Λ : X
∗ −→ Tp

is an isomorphism of rooted trees.
Let us conjugate the iterated monodromy action on the tree Tp by the isomor-

phism Λ, i.e., let us identify the trees Tp and X
∗ using the isomorphism Λ. We get

a standard action of the iterated monodromy group IMG (p) on the tree X
∗. The

standard action is computed in the following recursive way.

Proposition 2.1. Let γ be an element of the fundamental group π1(M, t). For
x ∈ X, let γx be the lift of γ by p starting at Λ(x). Let y ∈ X be such that Λ(y) is
the end of γx. Then for every v ∈ X

∗ we have

γ(xv) = y
(
ℓ(x)γxℓ(y)−1

)
(v).

The loop ℓ(x)γxℓ(y)−1 is shown on the left-hand side part of Figure 4. The proof
of the proposition is shown on the right-hand side part. It shows a lift of the path
ℓ(x)γxℓ(y)−1 by the covering pn.

2.5. Examples. Let us show how Proposition 2.1 is used to compute the action of
generators of iterated monodromy groups on trees.
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Figure 5. Computing IMG
(
z2
)

2.5.1. The adding machine. Consider the polynomial p(z) = z2 as a map from the
complex plane to itself. It induces a double self-covering of C \ {0} (homotopically
equivalent to the 2-fold self-covering x 7→ 2x of the circle R/Z).

Choose the base-point t = 1. We have p−1(1) = {1,−1}. Let us take the
alphabet X = {0 , 1}. Let ℓ(0 ) be the trivial path at the base-point, and let ℓ(1 )
be the unit upper half-circle. Let γ be the unit circle based at t with the positive
orientation.

We get, applying Proposition 2.1, the following recurrent formula for the action
of γ on X

∗ (see Figure 5):

γ(0v) = 1v, γ(1v) = 0γ(v).

This transformation is known as the adding machine, or odometer, since it describes
the process of adding one to a binary integer. If the first digit (the last digit in the
usual encoding of binary numbers) is zero then we change it to one, if it is one, we
change it to zero and carry. Formally:

γ(x0x1 . . . xn) = y0y1 . . . yn if and only if 1 +

n∑

k=1

xk2k =

n∑

k=1

yk2k (mod 2n+1).

It follows that the action of γ is transitive on every level of the tree, which we
already knew (see Subsection 2.2).

2.5.2. Chebyshev polynomials. Let us compute the standard action of the iterated
monodromy group of the Chebyshev polynomial Td. We choose t = 0 as the base-

point. Connect it to the preimages z ∈
{

cos π/2+lπ
d : l = 0, . . . , d− 1

}
by straight

segments. Choose the alphabet X = {0, 1, . . . , d− 1} and the bijection

Λ : X −→ T−1
d (t) : l 7→ cos

π/2 + lπ

d
.

Let a and b be small loops around the post-critical points 1 and −1, respectively,
both connected to the base-point by straight segments. It follows from the descrip-
tion of the lifts of a and b given in Subsection 2.3 that the generators of a and b
act by the rules

a(0v) = 0a(v), a((d−1)v) = (d−1)b(v), a(lv) = α(l)v, for l = 1, 2, . . . , d−2,

b(lv) = β(l)v, for l = 0, 1, . . . , d− 1,

for even d, where permutations α and β are

α = (12 )(34 ) · · · (d − 3 , d − 2 ), β = (01 )(12 ) · · · (d − 2 , d − 1 ).



ITERATED MONODROMY GROUPS 9

If d is odd, then

a(0v) = 0a(v), a(lv) = α(l)v, for l = 1, 2 . . . , d− 1,

b((d− 1)v) = (d− 1)b(v), b(lv) = β(l)v, for i = 0, 1, . . . , d− 2,

where

α = (12 )(34 ) · · · (d − 2 , d − 1 ), β = (01 )(23 ) · · · (d − 3 , d − 2 ).

In particular, the generators of the iterated monodromy group of the polynomial
T2(z) = 2z2 − 1 are defined by the recursive rule

a(0v) = 0a(v), a(1v) = 1b(v),
b(0v) = 1v, b(1v) = 0v.

2.5.3. The polynomial − z3

2 + 3z
2 . A rational function f(z) ∈ C(z) is post-critically

finite if the orbit (under iterations of f) of every critical point of f is finite. The
union Pf of the orbits of the critical values of f is the post-critical set Pf of f .
Simple examples of post-critically finite polynomials are zn (with the post-critical
set {0,∞}) and Chebyshev polynomials Tn (with the post-critical set {1,−1,∞}).

If f is post-critically finite, then it is a partial self-covering f : Ĉ \ f−1(Pf ) −→
Ĉ \ Pf , since f−1(Pf ) ⊃ Pf . Here Ĉ = C ∪ {∞} is the Riemann sphere.

Consider the polynomial f(z) = − z3

2 + 3z
2 . It has three critical points ∞, 1,−1,

which are fixed under f . Hence it is post-critically finite and is a covering of C\{±1}
by the subset C \ f−1({±1}) = C \ {±1,±2}.

Choose the base-point t = 0. It has three preimages 0,±
√

3. Take X = {0 , 1 , 2}
and choose the connecting paths and generators a and b of π1(C \ {±1}, 0) as it is
shown on the bottom part of Figure 6 (the path ℓ(0 ) is trivial).

The generators a and b are lifted by f to the paths shown on the upper part of
Figure 6. We get then the following recurrent description of the action of a and b
on X

∗.

a(0v) = 1v, a(1v) = 0a(v), a(2v) = 2v,
b(0v) = 2v, b(1v) = 1v, b(2v) = 0b(v).

We see that a and b act as binary adding machines on the sub-trees {0 , 1}∗ and
{0 , 2}∗, respectively.

Let us show that in this case the iterated monodromy group is different from the
fundamental group of the punctured plane (which is freely generated by a and b).

We have

a2(0v) = 0a(v), a2(1v) = 1a(v), a2(2v) = 2v,
b2(0v) = 0b(v), b2(1v) = 1v, b2(2v) = 2b(v),

hence

[a2, b2](0v) = 0 [a, b](v), [a2, b2](1v) = 1v, [a2, b2](2v) = 2v.

It follows now that [a2, b2] and [a2, b2]a commute. In fact, we will prove later that
iterated monodromy groups of post-critically finite rational functions do not contain
free subgroups.
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Figure 6. Computation of IMG
(
− z3

2 + 3z
2

)

2.5.4. A two-dimensional example. Consider the transformation F (x, y) =
(
1− y2

x2 , 1− 1
x2

)

of C2. It can be naturally extended to the projective plane CP
2 by the formula

[x : y : z] 7→ [x2 − y2 : x2 − z2 : x2]

in homogeneous coordinates. The Jacobian of this map is
∣∣∣∣∣∣

2x −2y 0
2x 0 −2z
2x 0 0

∣∣∣∣∣∣
= 8xyz,

hence the set of critical points of F is {x = 0} ∪ {y = 0} ∪ {z = 0}. The orbits of
the post-critical lines are:

{x = 0} 7→ {z = 0} 7→ {y = z} 7→ {x = y} 7→ {x = 0}
and

{y = 0} 7→ {x = z} 7→ {y = 0}.
It follows that the post-critical set of F is (in the affine coordinates) the union

of the line at infinity and the lines x = 0, x = 1, y = 0, y = 1, x = y.
The iterated monodromy group of F , as computed by J. Belk and S. Koch

(see [BK08]), is generated by the transformations:

a(1v) = 1b(v), b(1v) = 1c(v), c(1v) = 4d(v),
a(2v) = 2v, b(2v) = 2c(v), c(2v) = 3(ceb)−1(v),
a(3v) = 3v, b(3v) = 3v, c(3v) = 2(fa)−1(v),
a(4v) = 4b(v), b(4v) = 4v, c(4v) = 1v,
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d(1v) = 2v, e(1v) = 1f(v), f(1v) = 3b−1(v),
d(2v) = 1a(v), e(2v) = 2v, f(2v) = 4v,
d(3v) = 4v, e(3v) = 3f(v), f(3v) = 1eb(v),
d(4v) = 3a(v), e(4v) = 4v, f(4v) = 2e(v).

3. Self-similar groups and virtual endomorphisms

3.1. Self-similar groups. We have seen in Proposition 2.1 that for every element
g of the iterated monodromy group IMG (p) and for every x ∈ X there exists
gx ∈ IMG (p) such that

g(xv) = g(x)gx(v)

for all v ∈ X
∗.

Definition 1. A group G acting faithfully on the set X
∗ is called self-similar if for

every g ∈ G and every x ∈ X there exist h ∈ G such that

g(xw) = g(x)h(w)

for all w ∈ X
∗.

If the action of G on X
∗ is self-similar, then for every v ∈ X

∗ and every g ∈ G
there exists h ∈ G such that

g(vw) = g(v)h(w)

for all w ∈ X
∗. The element h is uniquely defined, is called section (or restriction)

of g in v, and is denoted g|v. We have the following obvious properties:

(3) g|v1v2 = g|v1 |v2 , (g1g2)|v = g1|g2(v)g2|v
for all v, v1, v2 ∈ X

∗ and g, g1, g2 ∈ G.
Let us take X = {1, 2, . . . , d}. For every g ∈ G consider the element

π(g|1, g|2, . . . , g|d) ∈ Sd ⋉ Gd = Sd ≀G,

where π ∈ Sd is the action of g on the set of words of length one (i.e., on the first
level of the tree X

∗). It is easy to check that the map

g 7→ π(g|1, g|2, . . . , g|d),
is a homomorphism from G to Sd ≀ G (use (3)). This homomorphism is called the
wreath recursion associated with the self-similar group G. In general a wreath
recursion on a group G is any homomorphism Φ : G −→ Sd ≀G.

The wreath recursion associated with the standard action of IMG (p) depends
on the choice of the bijection of X with p−1(t) and on the choice of the connecting
paths ℓ(x). Different choices produce wreath recursions which differ from each other
by an inner automorphism of Sd ≀G.

We say that Φ1, Φ2 : G −→ Sd ≀ G are equivalent if there exists an inner auto-
morphism τ of Sd ≀G such that Φ2 = τ ◦ Φ1.

Every wreath recursion defines an action on the tree {1, 2, . . . , d}∗. If Φ(g) =
π(g1, g2, . . . , gd) then we put

g(iv) = π(i)gi(v)

for all v ∈ {1, 2, . . . , d}∗ and x ∈ {1, 2, . . . , d}. These recurrent rules uniquely define
the action of G associated with Φ.
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The faithful self-similar group defined by the wreath recursion Φ is the quotient
of G by the kernel of the associated action. Equivalent wreath recursions define
self-similar groups which are conjugate in the full automorphism group of the rooted
tree X

∗.
If G is generated by a finite set {g1, g2, . . . , gk}, then the wreath recursion is

determined by its values on the generators:

Φ(g1) = π1(g11, g12, . . . , g1d),

Φ(g2) = π2(g21, g22, . . . , g2d),

...

Φ(gk) = πk(gk1, gk2, . . . gkd).

If we write gij as groups words in g1, . . . , gk, then we get a finite description of
the associated self-similar group. (As a wreath recursion over the free group.) We
will often omit Φ and write just g = π(g1, g2, . . . , gd), identifying the automorphism
group Aut(X∗) of the tree X

∗ with the wreath product Sd ≀ Aut(X∗).
Let Φ : G −→ Sd ≀ G be a wreath recursion. Denote by KΦ the kernel of the

associated action on the tree. If g /∈ KΦ, then there exists a finite word v ∈ X
∗

moved by g. Hence there exists an algorithm which stops if and only if g is not
trivial in the self-similar group defined by Φ.

It is not known if every finitely generated self-similar has solvable word prob-
lem. Nevertheless, in some cases there exists a simple algorithm solving the word
problem. Let E1 be the kernel of Φ. Denote

(4) En+1 = Φ−1({1} · Ed
n),

and E∞ =
⋃

n≥1 En. If the word problem is solvable in G, then there is an algorithm
which, given an element g ∈ G, stops if and only if g ∈ E∞. If, additionally,
E∞ = KΦ, then we get a solution of the word problem in G/KΦ. We will define
later a class of self-similar groups for which this approach works and produces a
polynomial time algorithm.

3.2. Virtual endomorphisms.

Definition 2. A virtual endomorphism φ : G 99K G of a group G is a homomor-
phism Domφ −→ G from a subgroup of finite index Domφ < G to G.

If φ1, φ2 are virtual endomorphisms of G, then their composition is also a virtual
endomorphism. Its domain is Domφ1 ◦ φ2 = φ−1

2 (Dom φ1).
In particular, if φ is a virtual endomorphism of G, then the iterates φn are also

virtual endomorphisms.
Let Φ : G −→ Sd ≀ G be a wreath recursion. Suppose that the projection of

Φ(G) onto Sd is transitive, i.e., that the group G acts transitively on the first level
of the tree. Fix a letter x ∈ X. The associated virtual endomorphism is the map
φ : g 7→ g|x from the stabilizer of x ∈ X to G, i.e., it is the map defined by the
condition

g(xw) = xφ(g)(w)

for all g ∈ Dom φ and w ∈ X
∗.

The virtual endomorphism uniquely determines the wreath recursion (up to inner
automorphisms of the wreath product). Namely, if {r1, r2, . . . , rd} is a left coset
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representative system for Dom φ < G, then we define

Φ1(g) = π(g1, . . . , gd),

where π(i) = j if and only if gri Dom φ = rj Dom φ, and gi = φ(r−1
j gri). Then Φ1

is equivalent to Φ.
Two virtual endomorphisms associated with a wreath recursion (and possibly

different letters x ∈ X) are conjugate to each other, i.e., can be obtained one from
the other by pre- and post-composition with inner automorphisms of G.

If p : M1 −→ M is a partial self-covering, then π1(M1) is identified with a
subgroup of finite index in π1(M) and the virtual endomorphism associated with
the standard iterated monodromy action is the map π1(M1) −→ π1(M) induced
by the inclusionM1 →֒ M (defined up to inner automorphisms of π1(M)).

As an example, let us compute the virtual endomorphisms associated with the
standard actions of IMG

(
z2
)

and IMG
(
−z3/2 + 3z/2

)
.

If φ is the virtual endomorphism of Z associated with the wreath recursion

Φ(γ) = (01 )(1, γ),

associated with IMG
(
z2
)
, then φ(γ2) = γ, since the stabilizer of any letter x ∈

{0 , 1} is generated by γ2 and Φ(γ2) = (γ, γ). Therefore, the virtual endomorphism
associated with the binary adding machine is the partial map n 7→ n/2 on Z.

The virtual endomorphism associated with IMG
(
−z3/2 + 3z/2

)
, i.e., with the

wreath recursion

Φ(a) = (01 )(1, a, 1), Φ(b) = (02 )(1, 1, b),

is
a2 7→ a, b−1ab 7→ 1,
b2 7→ b, a−1ba 7→ 1.

We have the following description of the kernel of the action defined by a wreath
recursion, see [Nek05, Proposition 2.7.5].

Proposition 3.1. If φ : G 99K G is the virtual endomorphism associated with a
wreath recursion Φ, then the kernel KΦ of the associated self-similar action is

KΦ =
⋂

g∈G,n≥1

g−1 ·Dom φn · g.

3.3. Contracting groups. The sections g|v, defined above for self-similar groups
can be naturally defined for arbitrary wreath recursion Φ : G −→ Sd ≀G. We define
g|v for g ∈ G and v ∈ X

∗ inductively by g|∅ = g and by the condition

Φ(g|v) = π(g|v1, g|v2, . . . , g|vd).

We will have then for the action of G on X
∗ defined by the wreath recursion:

g(vw) = g(v)g|v(w),

for all v, w ∈ X
∗.

Definition 3. A wreath recursion on G is contracting if there exists a finite set
N ⊂ G such that for every g ∈ G there exists n ∈ N such that

g|v ∈ N
for all words v of length at least n.
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The notion of a contracting group can be naturally formulated in terms of the
associated virtual endomorphism in the following way.

Theorem 3.2. Let φ : G 99K G be a virtual endomorphism of a finitely generated
group. Denote by l(g) the length of a group element g with respect to a fixed finite
generating set of G. Then the number

ρ = lim sup
n→∞

n

√
lim sup

g∈Dom φn,l(g)→∞

l(φn(g))

l(g)

does not depend on the choice of the generating set, and it is less than one if and
only if the associated wreath recursion is contracting.

Since the virtual endomorphism associated with the iterated monodromy group
IMG (p) maps a loop γ to its lift by p, expanding maps will have contracting iterated
monodromy group. More precisely, the following theorem is proved in [Nek05,
Theorem 5.5.3], where also a more detailed definition of an expanding covering is
given.

Theorem 3.3. If the partial self-covering p : M1 −→ M is expanding, then
IMG (p) is a contracting self-similar group.

In particular, the iterated monodromy groups of post-critically finite rational
functions are contracting.

3.4. Algebraic properties of contracting groups. In some sense, the class of
the iterated monodromy groups of expanding maps can be identified with the class
of contracting groups, since there exists a converse construction, which produces
for every contracting self-similar group G an expanding self-covering (of orbispaces)
s : JG −→ JG such that G is the iterated monodromy group of s. This construction
(called the limit dynamical system) will be described later.

Let us list some known algebraic properties of contracting groups.

Theorem 3.4. The word problem in a contracting self-similar group is solvable in
polynomial time.

If ρ is the contraction coefficient of the associated virtual endomorphism, then

for every ǫ > 0 there is an algorithm solving the word problem in degree log(|X|)
− log ρ + ǫ

time.

The algorithm is similar to the observation made in Subsection 3.1. See its
description in [Nek05, Proposition 2.13.10]. It is a generalization of the algorithm
described by R. Grigorchuk in [Gri85].

Besides the fact that the word problem is solvable in contracting groups (and the
trivial fact that contracting groups act faithfully on the rooted tree, and hence are
residually finite), the only other known general fact about algebraic properties of
all contracting groups is absence of free subgroups, proved in [Nek07a]. The proof
is based on the following general theorem which can be also used in many other
situations.

Theorem 3.5. Let G be a group acting faithfully on a locally finite rooted tree T .
Denote by ∂T the boundary of T . Then one of the following is true:

(1) G has no free subgroups;
(2) there is a free non-abelian subgroup F ≤ G and a point ξ ∈ ∂T such that

the stabilizer Fξ is trivial;
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(3) there is a point ξ ∈ ∂T and a free non-abelian subgroup F ≤ Gξ such that
F acts faithfully on all neighbourhoods of ξ.

Proof. Let us sketch the proof of this theorem. For more details, see [Nek07a].
Suppose that G is a counterexample. Fix any free non-abelian subgroup F < G.
For every ξ ∈ ∂T the stabilizer Fξ will be also free non-abelian, and there will exist
a neighbourhood U of ξ and a non-trivial element g ∈ F acting trivially on U . We
get an open covering of ∂T by such subsets U .

By compactness and by the basic properties of topology on ∂T , we can find
a finite covering of ∂T by disjoint subsets {Ui}i=1,...,k such that the pointwise
stabilizer of Ui is non-trivial for every i. Let F1 be the subgroup of the elements
of F leaving the sets Ui invariant. It has finite index in F . It follows that the
pointwise stabilizer in F1 of each set Ui is also non-trivial. The intersection of
these stabilizers has to be trivial, since the action of G is faithful and the sets Ui

cover ∂T . But intersection of non-trivial normal subgroups of a free group is always
non-trivial. Hence we get a contradiction. �

As a corollary of Theorem 3.5 we get.

Theorem 3.6. Contracting groups have no free subgroups.

Proof. The boundary of the tree X
∗ is naturally identified with the space X

ω of the
right-infinite words over the alphabet X.

Third option of Theorem 3.5 is not possible, since the sections (i.e., restrictions
onto the neighbourhoods of a point ξ ∈ X

ω) of elements of G eventually belong to
a finite set.

Let us show why the second option is also impossible. Let w ∈ X
ω be a point of

the boundary. Consider the growth function of the orbit G(w) defined as γw(r) =
|Bw(r)|, where

Bw(r) = {g(w) : g ∈ G, l(g) ≤ r}
is the ball of radius r in the orbit G(w). Here l(g) is the length of the element
g ∈ G with respect to a fixed generating set of G (we may assume that G is finitely
generated, since every finitely generated subgroup of G is contained in a finitely
generated self-similar contracting subgroup of G). Consider the map S : X

ω −→ X
ω

erasing the first n letters of an infinite word. It is a |X|n-to-one map. We have for
every w ∈ X

ω

S(g(w)) = g|v(S(w)),

where v is the beginning of length n of the word w. The action of the group G is
contracting, hence we can choose n and C such that l(g|v) < 1

2 l(g) for all g such
that l(g) ≥ C. Then we have

S(Bw(r)) ⊂ BS(w)(r/2) ∪Bw(C),

which implies that

γw(r) = |Bw(r)| ≤ |X|n|BS(w)(r/2)|+ N,

where N is the number of elements of G of length less than C. Applying this
inequality ⌊log2 r⌋ times we get

γw(r) ≤ N(1 + |X|n + |X|2n + · · ·+ |X|⌊log2 r⌋n) < r(n+1) log2 |X| N

|X|n − 1
,

i.e., we get a polynomial estimate of the growth of the orbits of G. This implies
that there is no free subgroup of G acting freely on the orbit of a point w ∈ X

ω . �
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3.5. Open questions.

3.5.1. Algorithmic problems. It is not known if the conjugacy problem is solvable
in contracting groups. For a solution of the conjugacy problem in the Grigorchuk
group, which uses self-similarity, see the papers [Leo98, Roz98, LMU08].

Most of the other classical algorithmic problems for groups are open for con-
tracting groups.

An interesting problem, with possible applications to dynamics, is the following
algorithmic question.

Problem. Given a wreath recursion decide if it defines a contracting group.

3.5.2. Amenability. The following problem is one of the main problems in the sub-
ject of contracting groups (see, for instance [Gri05, Problem 3.3] and [BKN08,
Nek07a]).

Problem. Are contracting groups amenable?

A group G is called amenable if there exists a finitely-additive measure µ defined
on all subsets of G such that µ(G) = 1 and µ(A · g) = µ(A) for all A ⊂ G and
g ∈ G. This notion was introduced by J. von Neumann [vN29] in relation with the
Banach-Tarski paradox [BT24, Wag94] (amenable groups are precisely the groups
which do not admit a Banach-Tarski paradox). The word “amenable” is due to
M. Day [Day49]. For more on amenability, see [Gre69, Run02].

We have seen before that contracting groups have no free subgroups, which makes
Problem 3.5.2 even more interesting.

The following is a corollary of a more general result on amenability of groups
generated by “bounded automata”, see [BKN08].

Theorem 3.7. If f is a post-critically finite polynomial, then IMG (f) is amenable.

The first non-trivial partial case of this theorem (IMG
(
z2 − 1

)
) was shown by

L. Bartholdi and B. Virag [BV05]. This group is the first example of an amenable
group which can not be constructed from groups of sub-exponential growth (which
are all amenable) by the group-theoretical operations preserving amenability: ex-
tensions, direct limits, direct products and passing to a subgroup and a quotient.

3.5.3. Presentations.

Problem. Which contracting groups are finitely presented?

There are examples of contracting virtual nilpotent groups, see [Nek05, Sec-
tion 6.1] and Subsection 5.2 of our paper. But all the other known examples of
contracting groups are not finitely presented. Namely, in all the other known ex-

amples of contracting groups G there exists a finitely presented group G̃ and a

wreath recursion Φ : G̃ −→ Sd ≀ G̃ such that G is the quotient of G̃ by the ker-

nel KΦ of the associated self-similar action of G̃; the sequences of subgroups En,
defined by (4) is strictly increasing; and KΦ = E∞.

In many cases, contracting groups have finite L-presentations (finite endomor-
phic presentation). A finite L-presentation of a group G is given by a finite set of re-
lations R and an endomorphism σ (or perhaps a finite collection of endomorphisms)
of the free group such that the set

⋃
n≥0 σn(R) is a set of defining relations of the

group G. Different variations of this definition are possible (see [Gri98, Bar03a]).
The following problem is still open.
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Problem. Do all contracting groups have finite L-presentations? Is there any
relation between the topology of a partial self-covering and L-presentations of its
iterated monodromy group?

3.5.4. Growth. Many iterated monodromy groups have word growth intermediate
between polynomial and exponential (see Theorem 5.13 below and discussion after
it). Moreover, the first example of a group of intermediate growth, the Grigorchuk
group, is the iterated monodromy group of a partial orbispace self-covering (see
Subsection 5.3). But so far all we know are some isolated examples, without a
general theory.

Problem. Describe contracting groups of intermediate growth.

3.6. Iterated monodromy group of a correspondence. We have defined in
Section 2.1 iterated monodromy groups of partial self-coverings, i.e., of a covering
map f :M1 −→M together with an embedding ι :M1 −→M.

There is no reason to restrict to the case when ι is an embedding. We did not
use anywhere injectivity of ι. Therefore, the following structure is a natural setting
for iterated monodromy groups.

Definition 4. A topological automaton (or topological correspondence) is a pair of
maps p :M1 −→M and ι :M1 −→M, where p is a finite degree covering and ι
is a continuous map.

In general, one has to consider not only topological spaces M and M1, but
orbispaces, i.e., topological spaces represented locally as quotients of the action of
finite groups on topological spaces. More on orbispaces and related structures,
see [BH99, Chapter III.G] and [Nek05, Chapter 4]. Since in all our examples the
orbispaces will be developable, we will instead consider proper actions of groups on
topological spaces later (see Definition 9).

Topological automata (under different names) appeared in the works [Kat04,
IS08]. Topological automata can be iterated, formally speaking, exactly in the
same way as partial self-coverings. Set M0 = M, p0 = p, ι0 = ι and define
inductively a space Mn, a covering pn : Mn+1 −→ Mn and a continuous map
ιn :Mn+1 −→Mn by the pullback diagram

(5)

Mn+1
ιn−→ Mnypn

ypn−1

Mn
ιn−1−→ Mn−1

i.e., pn :Mn+1 −→Mn is the induced covering, see [Ste51].
More explicitly, the space Mn (in the case when M is a topological space) is

homeomorphic to the subspace

(6) {(z0, z1, . . . , zn) : ι(zk+1) = f(zk)} ⊂ Mn+1

of “orbits” of length n. One should think of ι as of an approximation of the identity
map.

The iterated monodromy action of π1(M, t) is defined in the same way as for
partial a self-covering. It is the monodromy action of the fundamental group on
the fibers (f0 ◦ f1 ◦ · · · ◦ fn)−1(t) of the compositions of the coverings fi.

An equivalent way of defining the iterated monodromy group of a topological
automaton is to use virtual endomorphisms. The virtual endomorphism of π1(M)
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Figure 7. Dual Moore diagram

associated with the topological automaton is the homomorphism ι∗ : π1(M1) −→
π1(M) induced by ι, where π1(M1) is identified with a subgroup of π1(M) by the
isomorphism p∗. The self-similar group defined by the virtual endomorphism ι∗
coincides with the iterated monodromy group of the topological automaton.

3.7. Examples of topological automata.

3.7.1. Dual Moore diagrams. Every virtual endomorphism φ of the free group can
be realized as ι∗ for a map ι : M1 −→ M, where M is a bouquet of circles, and
M1 is a finite covering graph ofM defining the domain of φ.

Consequently, every self-similar group is an iterated monodromy group of a topo-
logical automaton over graphs. This correspondence can be constructed from the
wreath recursion in the following way. Let G be a self-similar group acting on X

∗.
Let M be a bouquet of circles labelled by generators of G. Let M1 be the graph
with the set of vertices X = {1, 2, . . . , d}, where for every generator g of G and
every x ∈ X there is an arrow eg,x from x to g(x). This arrow is mapped onto g by
a map f : M1 −→ M, which is then obviously a covering. Define ι :M1 −→ M
is such a way that it maps eg,x to the path corresponding to g|x (i.e., to any lift of
g|x to the fundamental group ofM, which is the group freely generated by S).

It follows directly from the definitions that the iterated monodromy group of the
obtained topological automaton (M,M1, f, ι) is isomorphic to G as a self-similar
group.

Suppose that a generating set S of G has the property that for all g ∈ S and
x ∈ X the section g|x also belongs to S. Then S can be interpreted as the set
of internal states of an automaton generating G. This automaton, taking a letter
x ∈ X as input and being in a state g ∈ S, outputs the letter g(x) and changes its
internal state to g|x. We can choose then in the automaton (M,M1, f, ι) the map
ι to be cellular. Then the obtained graphM1 in which every arrow e is labelled by
(f(e), ι(e)) is called the dual Moore diagram of the automaton generating G.

Usual Moore diagram (also called state diagram) is the graph with the vertex
set S in which for every x ∈ X and g ∈ S we have an arrow from g to g|x labelled
by (x, g(x)).

3.7.2. Arithmetic-geometric mean of Lagrange and Gauss. An example of a topo-
logical automaton originates from the arithmetic-geometric mean, studied by Gauss [Gau66]
and Lagrange [Lag85]. On the history and applications of arithmetic-geometric
mean see [Cox84, BB98, AB88].
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It was shown by Lagrange in 1784 and independently by Gauss in 1791 that if
a0 and b0 are positive real numbers, then the sequences

an =
1

2
(an−1 + bn−1), bn =

√
an−1bn−1

converge to a common value M(a0, b0), called the arithmetic-geometric mean. One
of its applications is the formula

π

2M(a, b)
=

∫ π/2

0

dφ√
a2 cos2 φ + b2 sin2 φ

.

The arithmetic-geometric mean also gives very efficient algorithms of computing π
and elementary functions, see [BB98].

In the complex case one has to choose one of two different values of the square
root, so that we get a correspondence (a, b) 7→ ((a + b)/2,

√
ab) rather than a map.

This correspondence is homogeneous, hence

[z1 : z2] 7→ [(z1 + z2)/2 :
√

z1z2]

is a correspondence on the projective line Ĉ. It is written in non-homogeneous
coordinates as the correspondence w 7→ 1+w

2
√

w
.

More formally, consider the following pair of maps on Ĉ

f(w) =
(1 + w)2

4w
, ι(w) = w2.

Then an orbit of length n of the correspondence is a sequence w0, w1, . . . , wn such
that wk+1 = 1+wk

2
√

wk
, i.e., such a sequence that

ι(wk+1) = f(wk).

Comparing it with (6), we see that iterating of the correspondence [(z1 + z2)/2 :√
z1z2] is equivalent to iterating the topological automaton defined by the maps f

and ι. The only remaining problem is that the map f is not a covering. Consider

the set {0, 1,−1,∞} ⊂ Ĉ. The set of critical points of f is {−1,∞} and

f({0, 1,−1,∞}) = {∞, 1, 0} = ι({0, 1,−1,∞}).
Note that f−1({∞, 1, 0}) = {∞, 0, 1,−1}. It follows that if we denote M = Ĉ \
{0, 1,∞} and M1 = Ĉ \ {0, 1,−1,∞}, then f : M1 −→ M is a covering and
ι :M1 −→M is a continuous map. (Note that ι is also a covering map.) We get
in this way a topological automaton F = (M,M1, f, ι) such that iterations of F
correspond to iterations of the correspondence [z1 : z2] 7→ [(z1 + z2)/2 :

√
z1z2].

Here we give a short summary (following [Cox84] and [Bul91]) of the properties
of this automaton, which are essentially due to Gauss (see [Gau66] pp. 375–403).

Denote by H the upper half plane {τ ∈ C : ℑ(τ) > 0}. Denote z = eπiτ and let

p(τ) = 1 + 2

∞∑

n=1

zn2

, q(τ) = 1 + 2

∞∑

n=1

(−1)nzn2

.

Then p(τ)2+q(τ)2 = 2p(2τ)2 and p(τ)q(τ) = q(2τ)2, i.e., p(2τ)2 is the arithmetic
mean of p(τ)2 and q(τ)2, while q(2τ)2 is their geometric mean. If we denote k(τ) =
q(τ)2/p(τ)2, then our correspondence maps k(τ) to k(2τ), i.e., we have

(7) f(k(τ)) = k(2τ)2 = ι(k(2τ)).
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Denote by Γ(2) the subgroup of PSL(2, Z) consisting of matrices
[

a b
c d

]
≡
[

1 0
0 1

]
(mod 2).

It is freely generated by

[
1 2
0 1

]
and

[
1 0
2 1

]
(see [San47] and [Har00, II.B.25]).

Denote also by Γ2(4) the index two subgroup of Γ(2) consisting of matrices with
b ≡ 0 (mod 4).

Both groups act freely on H by fractional linear transformations. The functions
k(τ) and k(τ)2 induce (bi-holomorphic) homeomorphisms

k2 : H/Γ(2) −→ C \ {0, 1} =M, k : H/Γ2(4) −→ C \ {0,±1} =M1,

which make the diagram

H/Γ2(4)
k−→ M1yg

yι

H/Γ(2)
k2−→ M

commutative, where g is the covering induced by the inclusion Γ2(4) < Γ(2) (i.e.,
by the identical map on H) and ι(z) = z2.

Proposition 3.8. The virtual endomorphism φ of Γ(2) = π1(M) associated with
the a.g.m. correspondence is given by

φ

[
a b
c d

]
=

[
a b/2
2c d

]
.

In particular, domain of φ is the subgroup Γ2(4).

Proof. Choose a base-point z ∈ M and let τ ∈ H be any of its preimages under the
universal covering map k2. Then the point z1 = k(τ/2) ∈ M1 is an f -preimage of
z, since

f(z1) = f(k(τ/2)) = k(τ)2 = z,

by (7). Connect τ to τ/2 by a path ℓ̃ and let k2(ℓ̃) = ℓ be its image in M. The
path ℓ connects z to ι(z1) = k(τ/2)2. Let us compute the virtual endomorphism

φ(γ) = ℓι(f−1(γ)z1)ℓ
−1

associated to the a.g.m. correspondence. Here and below we denote by f−1(γ)z1

the lift of γ by f starting at z1.
Let γ ∈ π1(M, z) be an arbitrary element of the fundamental group. The k2-

lift of γ to H starting in τ is a path γ̃ connecting τ to aτ+b
cτ+d , where

[
a b
c d

]
is

the element of Γ(2) identified with γ under the natural isomorphism of π1(M, z)
with Γ(2). The curve γ̃/2 will connect the point τ/2 to the point aτ+b

2cτ+2d . Let

γ1 = k(γ̃/2). The path γ1 starts in k(τ/2) = z1 and we have

f(γ1) = f(k(γ̃/2)) = k(γ̃)2 = γ,

hence γ1 = f−1(γ)z1 . We have ι(γ1) = k(γ̃/2)2, i.e., γ̃/2 is the lift of ι(γ1) by the
universal covering map k2 : H −→M. The end aτ+b

2cτ+2d of the path γ̃/2 is obtained
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from its beginning τ/2 by application of the linear fractional transformation z 7→
az+b/2
2cz+d . It follows that if γ1 is a loop, then the curve

δ = ℓ̃ · γ̃/2 ·
(

aℓ̃ + b/2

2cℓ̃ + d

)−1

is the k2-lift of the loop ℓ · ι(γ1) · ℓ−1 = φ(γ), hence φ(γ) is identified with[
a b/2
2c d

]
, since (aτ + b/2)/(2cτ + d) is the end of δ. �

Theorem 3.9. The iterated monodromy group of the arithmetic-geometric mean
is generated by

α = σ(1, α), β = (β2, (β−1α)2),

and is free.

Proof. The fundamental group ofM is freely generated by the matrices

α =

[
1 2
0 1

]
, β =

[
1 0
2 1

]
.

The domain of the virtual endomorphism φ of Γ(2) is generated by the matrices

α2 =

[
1 4
0 1

]
, β =

[
1 0
2 1

]
, γ = α−1βα =

[
−3 −8
2 5

]
.

The virtual endomorphism acts on the generators of its domain by

φ(α2) =

[
1 2
0 1

]
= α, φ(β) =

[
1 0
4 1

]
= β2,

φ(γ) =

[
−3 −4
4 5

]
= (β−1α)2.

It follows that one of the standard actions of the iterated monodromy group is
given by the wreath recursion

α = σ(1, α), β = (β2, (β−1α)2),

since we have then

α2 = (α, α), α−1βα = ((β−1α)2, α−1β2α),

hence the virtual endomorphism φ coincides with the projection onto the first co-
ordinate.

Suppose that the iterated monodromy group is not free. Then there exists a
normal subgroup N ⊳ Γ(2) such that N belongs to the domain Γ2(4) of φ and
φ(N) ≤ N . It follows from the formula for the virtual endomorphism φ that N

must consist only of the fractional linear transformations of the form

[
1 0
c 1

]
, i.e.,

of fractional linear transformations fixing 0. Since N is normal, all elements of N
must fix all points of the Γ(2)-orbit of 0, in particular the points 2 and −2, which

are images of 0 under

[
1 2
0 1

]
and

[
1 −2
0 1

]
. But only the identical fractional

linear transformation fixes the points 0, 2 and −2. Consequently, N is trivial. �
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Figure 8. Brunner-Sidki-Vieira group

In some sense Theorem 3.9 is the most straightforward example of a self-similar
free group. Other examples of self-similar free groups can be found in [GM05, VV07]
and [Nek05, Subsections 1.10.2–4]. They are in some sense better, since, unlike the
example from Theorem 3.9, they are generated by finite automata (i.e., for every
element g of the group the set {g|v : v ∈ X

∗} is finite), although the proofs of
faithfulness of the action are more complicated.

More examples of critically finite correspondences (i.e., such correspondences
(M,M1, f, ι) thatM,M1 are punctured spheres and f and ι are coverings defined
by rational functions) are given in [Bul92].

3.7.3. Lattices in Lie groups. The following theorem of M. Kapovich [Kap08] is
closely related to the last example.

Theorem 3.10. Let Γ be an irreducible lattice in a semisimple algebraic Lie group
G. Then the following are equivalent:

(1) Γ is virtually isomorphic to an arithmetic lattice in G, i.e., contains a finite
index subgroup isomorphic to such arithmetic lattice.

(2) Γ admits a faithful self-similar action which is transitive on the first level.

The proof of the theorem is an application of the description of arithmetic lattices
in terms of their commensurators by Margulis [Mar91].

All the lattices satisfying the conditions of the theorem are iterated monodromy
groups of automata of the form (G/Γ, G/(φ−1(Γ)∩Γ), f, ι), where φ : G −→ G is an
automorphism of the Lie group G, f is the natural covering of G/Γ by G/(φ−1(Γ)∩
Γ) and ι : G/(φ−1(Γ) ∩ Γ) −→ G/Γ is the map induced by φ.

3.7.4. Brunner-Sidki-Vieira group. The Brunner-Sidki-Vieira group (see [BSV99])
is generated by two automorphisms of the binary tree given by the recursions

(8) a = σ(1, a), b = σ(1, b−1),

where σ, as usual, is the transposition.
The group is torsion free and all its proper quotients are solvable. It has a finite

L-presentation

〈a, b : ςk([b−1a, ab−1]) = ςk([a−2ba, aba−2]) = 1, k ≥ 0〉,
where the endomorphism ς of the free group 〈a, b〉 is given by

a 7→ a2, b 7→ b−1a−1.

Figure 8 shows a topological automaton such that the Brunner-Sidki-Vieira
group is its iterated monodromy group. The picture on the bottom shows the
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Figure 9. The graphs of the action of IMG
(
− z3

2 + 3z
2

)

space M. It is a square with two pairs of vertices identified. The boundary loops
corresponding to the generators a and b are marked by the corresponding letters.

The covering spaceM1 is shown twice on the top part of the figure. The letters
mark the corresponding preimages of the loops. Both loops are lifted to a pair of
non-closed paths. The right hand side picture shows how ι projects the coverings
space M1 onto M. The lighter shade of grey colour shows the side of the surface
M1 opposite to the side shown on the left hand side picture. We see that ι preserves
the orientation of the loop a, while it inverts the orientation of the loop b. It is easy
to check that the iterated monodromy group of the defined topological polynomial
is given by recursion (8).

4. Limit spaces and Julia sets

4.1. Schreier graphs.

Definition 5. Let G be a group acting on X
∗. Fix a finite generating set S of G.

The associated Schreier graphs, or graphs of the action of G on X
n is the graph

Γn(G, S) with the set of vertices X
n in which two vertices v1, v2 are connected by

an edge if and only if there exists s ∈ S such that s(v1) = v2.

Since the group acts on the tree X
∗ by automorphisms, the map vx 7→ v :

X
n+1 −→ X

n is a covering of the corresponding graphs.
For example, for the adding machine action we get a cycle of length 2n, which

is a double covering of the previous cycle of length 2n−1.
The nth level Schreier graph of the iterated monodromy group of the Chebyshev

polynomial Td is the path of dn vertices with loops at the ends (see Subsection 2.3).
The covering of Γn(IMG (Td) , {a, b}) by Γn+1(IMG (Td) , {a, b}) folds the segment
d times.

The Schreier graphs of the action of the generators a and b of IMG
(
− z3

2 + 3z
2

)

on the first four levels are shown on Figure 9.

Definition 6. Let f(z) be a complex rational function. Its Julia set is the closure
of the union of repelling cycles of f . Here a repelling cycle is a sequence z0 =
f(zn), z1 = f(z0), . . . , zn = f(zn−1) such that |f ′(z0)f

′(z1) · · · f ′(zn)| > 1.
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Figure 10. A model of the Julia set of − z3

2 + 3z
2

Figure 11. The Julia set of − z3

2 + 3z
2

If f is a polynomial, then the Julia set of f can be equivalently defined as the
boundary of the set of points z such that the sequence (f◦n(z))n≥0 is bounded. For
more details, see [Mil99].

Gaston Julia described a model of the Julia set of the polynomial − z3

2 + 3z
2 in his

paper [Jul18]. The model is constructed by attaching at each step regular triangles
to the middles of the edges of the graph constructed on the previous step. See
the fourth step of the construction on Figure 10 and compare it with the Schreier

graphs of IMG
(
− z3

2 + 3z
2

)
.

The Julia set itself is shown on Figure 11. As we will see later, the model
described by G. Julia converges to the Julia set, though he is careful not to claim
anything concrete about the relation of the model with the polynomial (except for
some general statements about the relative arrangement of the basins of attraction),
saying that it is just a scheme aiding intuition. It also seems that the only reason
to use triangles was an inspiration by a recent paper of H. Koch on what is known
now as the Koch curve.

4.2. Limit space. Previous examples suggest that the Schreier graphs of the it-
erated monodromy groups and the covering Γn+1(G, S) −→ Γn(G, S) converge to
some limit. This observation is formalized in the following definition.

Definition 7. Let G be a contracting self-similar group acting on X
∗. Let X

−ω

be the space of left-infinite sequences . . . x2x1, xi ∈ X, with the direct product
topology. Two sequences . . . x2x1, . . . y2y1 ∈ X

−ω are equivalent if there exists a
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Figure 12. The Moore diagram of the adding machine

sequence gk taking values in a finite subset of G such that

gk(xk . . . x1) = yk . . . y1

for every k. The quotient of X
−ω by the equivalence relation is the limit space JG.

In other words, two sequences . . . x2x1 and . . . y2y1 represent the same point
of the limit space if the words xn . . . x1 and yn . . . y1 are on a uniformly bounded
distance from each other in the graphs of the action of G on the levels X

n of the
tree.

The shift . . . x2x1 7→ . . . x3x2 agrees with the equivalence relation, hence it in-
duces a continuous map s : JG −→ JG. The dynamical system (JG, s) is called the
limit dynamical system of the group G.

A more explicit description of the equivalence relation is given in the following
proposition proved in [Nek05, Proposition 3.2.7].

Proposition 4.1. Let G be a finitely generated contracting group acting on X
∗,

and let S be a finite generating set such that g|x ∈ S for every g ∈ S and x ∈ X.
Consider the set of RS of pairs of sequences (. . . x2x1, . . . y2y1) ∈ X

−ω × X
−ω for

which there exists a sequence gn ∈ S such that

gn(xn) = yn, gn|xn
= gn−1.

Then the equivalence relation generated by RS coincides with the equivalence rela-
tion given in Definition 7.

Recall, that a Moore diagram of the set S from Proposition 4.1 is the oriented
graph with the set of vertices S in which for every g ∈ S and x ∈ X we have an arrow
starting in g, ending in g|x, and labelled by (x, g(x). Then Proposition 4.1 tells us
that the equivalence relation is generated by the pairs of infinite sequences read on
the labels of the left-infinite oriented paths in the Moore diagram. Note that the
right-infinite paths describe the action of the generators on infinite sequences. If
(x1, y1), (x2, y2), . . . are the labels of the edges along an oriented path starting in
g ∈ S, then g(x1x2 . . .) = y1y2 . . ..

For instance, the Moore diagram of the generating set {1, a} of the adding ma-
chine action is shown on Figure 12. We see that the left-infinite paths in the Moore
diagram of {1, a} are labelled by pairs of equal letters, or by . . . (1, 0)(1, 0)(1, 0), or
by

. . . (1, 0)(1, 0)(1, 0)(0, 1)(x1, x1)(x2, x2) . . . (xn, xn)
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for some word x1x2 . . . xn ∈ X
∗ (which can be empty). Hence we get the following

identifications in X
−ω:

. . . 1110x1x2 . . . xn ∼ . . . 0001x1x2 . . . xn

and
. . . 1111 ∼ . . . 0000.

These are the usual identifications of the real binary fractions modulo Z. Conse-
quently, the limit space of the adding machine action is the circle R/Z. The shift
. . . x2x1 7→ . . . x3x2 coincides with the map x 7→ 2x on R/Z, hence it is a double
self-covering of the circle.

4.3. Models of the limit space. Definition 7 is too abstract and can be used
to visualize the limit space of a contracting group only in the simplest cases. The
Schreier graphs are better in this sense, but it is also hard to use them to study
topological properties of the limit space.

A better approach is to use approximations of the limit space by simplicial
complexes. By a theorem of P. Alexandroff [Ale29], every compact metrizable finite-
dimensional space J is an inverse limit of a sequence of finite simplicial complexes
Mn of bounded dimension (one can take the dimension of the complexes to be
equal to the dimension of the space). We will have then maps J −→Mn from the
inverse limit to the complexesMn, which are becoming closer to a homeomorphism
as n grows.

We want to describe a procedure producing in a simple recursive way a sequence
of simplicial complexesMn converging in the described sense to the limit space of
a contracting group.

Definition 8. Let G be a contracting group. A model of its limit dynamical system
is a topological automaton F = (M,M1, p, ι) such that M and M1 are compact
(orbi)spaces with a length structure (e.g., Euclidean simplicial complexes), there
exists 0 < λ < 1 such that for every rectifiable curve γ in M1 the length of ι(γ) is
at most λ times the length of γ, the length of p(γ) is equal to the length of γ, and
the iterated monodromy group of F is G.

Every model of the limit space of a contracting group provides an approximation
of the limit space as an inverse limit. The following theorem is proved in [Nek08a].

Theorem 4.2. Let F = (M,M1, p, ι) be a model of the limit space of a contracting
group G. Let the spaces Mn and the maps ιn : Mn+1 −→ Mn be defined by the
pull-back diagram (5). Then the limit space JG is homeomorphic to the inverse
limit of the sequence

M ι←−M1
ι1←−M2

ι2←− · · · .
We will not loose any generality in applications, if we restrict ourselves to devel-

opable orbispaces, i.e., to quotients of topological spaces by proper group actions.
Moreover, we can reformulate Definition 8 in the following way.

Definition 9. Let φ : G 99K G be a surjective contracting virtual endomorphism.
A topological model of φ is a metric space X with a right proper co-compact G-
action by isometries and a contracting map F : X −→ X such that

F (ξ · g) = F (ξ) · φ(g)

for all ξ ∈ X and g ∈ Dom φ.



ITERATED MONODROMY GROUPS 27

The corresponding topological automaton is (X/G,X/ Dom φ, p, ι), where p :
X/ Domφ −→ X/G is induced by the identity map on X and ι is induced by F .

Here F is called contracting if there exist C > 0 and 0 < λ < 1 such that

d(F ◦n(ξ1), F
◦n(ξ2)) ≤ Cλnd(ξ1, ξ2)

for all ξ1, ξ2 ∈ X , where d(·, ·) is the metric on X .
An action of G on X is proper if for every compact set K ⊂ X the set of the

elements g ∈ G such that K · g ∩K 6= ∅ is finite. It is co-compact if there exists a
compact set K ⊂ X such that X =

⋃
g∈G K · g.

Note that F induces a well-defined map F0 : X/ kerφ −→ X , since F (ξ·g) = F (ξ)
for g ∈ kerφ. More generally, it induces maps Fn : X/ kerφn+1 −→ X/ kerφn.

The group G acts on the spaces X/ kerφn by the rule

(ξ kerφn) · g = (ξ · h) kerφn,

where h ∈ Dom φn is such that φn(h) = g. This action is well defined and proper.
One can show that the orbispaces Mn of the defined action of G on X/ kerφn

coincide with the orbispaces obtained by iteration of the associated topological
automaton (X/G,X/ Dom φ, f, ι). The maps ιn : Mn+1 −→ Mn coincide with
the maps induced by Fn, the coverings pn :Mn+1 −→Mn will be induced by the
inclusions kerφn+1 > kerφn.

Theorem 4.3. Let F : X −→ X be a topological model of a contracting virtual
endomorphism φ : G 99K G. Then the inverse limit XG of the G-spaces

. . .
F3−→ X/ kerφ3 F2−→ X/ kerφ2 F1−→ X/ kerφ

F0−→ X

depends only on G and φ. The space of orbits XG/G is the inverse limit of the
spaces Mn with respect to the maps ιn and is homeomorphic to JG.

We get the following corollary of Theorem 4.3. The proof is a rather straight-
forward application of the Schwarz-Pick lemma for the Poincaré metric on the
Thurston orbifold of the rational function (see [Mil99] for these notions).

Corollary 4.4. The limit space of IMG (f) for a post-critically finite rational func-
tion f is homeomorphic to the Julia set of f . The action of f on its Julia set is
conjugate to the limit dynamical system (JIMG(f), s).

The unique inverse limit XG from Theorem 4.3 is called the limit G-space of the
group G. It can be also defined as the quotient of the space X

−ω×G by a naturally
defined equivalence relation.

Definition 10. Let G be a contracting group acting on X
∗. Two sequences . . . x2x1·

g and . . . y2y1 ·h ∈ X
−ω ×G are asymptotically equivalent if there exists a sequence

gk taking values in a finite subset of G such that

g(xk . . . x1) = yk . . . y1, g|xk...x1g = h

for all k.
The quotient of X

−ω × G by the asymptotic equivalence relation is the limit
G-space XG. The equivalence relation is invariant with respect to the natural right
action of G on X

−ω ×G, hence we get an action of G on XG.
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Figure 13. A model of the Julia set of − z3

2 + 3z
2

For every x ∈ X we have a map on Fx : XG −→ XG mapping a point represented
by . . . x2x1 · g to the point represented by . . . x2x1g(x) · g|x. This map is continuous
and satisfies

Fx(ξ · g) = Fx(ξ) · φ(g),

for all elements g of the stabilizer of x, where φ is the virtual endomorphism asso-
ciated with G and x. One can also show that Fx is contracting with respect to a
metric on XG.

4.4. A model of the Julia set of − z3

2 + 3z
2 . Let us apply Theorem 4.2 to the

polynomial − z3

2 + 3z
2 and show that the model of its Julia set described by G. Julia

in [Jul18] is correct.

The virtual endomorphism associated with IMG
(
− z3

2 + 3z
2

)
is

(9) a2 7→ a, b2 7→ b, ab 7→ 1, ba 7→ 1.

Consider the topological automaton, shown on Figure 13. Here the arrows de-
scribe the action of the map ι : M1 −→ M. It contracts the distances on the
bigger circles twice and contracts the smaller circles to single points. The covering
f :M1 −→M is described by the labels of the circles. The bigger circles labelled by
a or b cover twice the circles labelled by the corresponding letters downstairs. The
smaller circles are mapped by f onto the corresponding circles homeomorphically.
It is easy to check that the virtual endomorphism of the fundamental group ofM
associated with this topological automaton is (conjugate to) the endomorphism (9).

It follows that the graphMn+1 is obtained from the graphMn by adding a loop
in the middle of every edge.

In this case the graphs Mn and the canonical maps from lim←Mn (i.e., from
the Julia set J of the polynomial) to Mn have a nice interpretation in terms of
holomorphic dynamics. Fatou components are the connected components of the
complement of the Julia set. We can identify the graph M with the union of the
boundaries of the Fatou components of −z3/2 + 3z/2 containing the points 1 and
−1 (see the Julia set of the polynomial on Figure 11). This is a subset of the Julia
set J and is forward-invariant. The polynomial acts on each of the two circles ofM
as a double self-covering. Then the spaceMn will be the inverse image ofM under
the action of the nth iteration of the polynomial. Thereofore, it will also be a union
of a finite number of boundaries of Fatou components. The projection of J onto
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Figure 14. Gupta-Sidki group

Mn comes from the tree-like structure of the Julia set (see Figure 11). Closure of
each component of J \Mn intersects withMn exactly in one point, which we call
the root of the component. The map J −→Mn (coming from the identification of
lim←Mn with the Julia set) will project the points of every component of J \Mn

to its root.

4.5. Gupta-Sidki group. The Gupta-Sidki group (see [GS83]) is generated by
two automorphisms s, t of the tree {0 , 1 , 2}∗, where s is the transitive cycle (012 )
acting only on the first letter of words and t is given by the recursion

t = (s, s−1, t).

Figure 14 gives a contracting topological model (M,M1, f, ι) of the limit space of
the Gupta-Sidki group. In this caseM andM1 are graphs of groups, i.e., orbispaces
of action of a group on a tree. For the theory of graphs of groups, see [Ser80, BH99].

The orbispaceM, shown on the left hand side of the figure, is a tripod of groups
with cyclic groups of order three at the feet A, B, C.

The covering graph of groupsM1 is shown on the right hand side of the figure. It
is obtained by gluing together three copies of the tripod ABC along two feet. The
graph of groups M1 has three cyclic vertex groups of order 3, which are mapped
by the covering to the foot A of M. The two common points of the copies of the
tripod are mapped to the feet B and C ofM. The map ι :M1 −→M “projects”
the graph M1 onto the graph M. It maps the vertices of degree one of M1 (i.e.,
the elements of the set f−1(A)) to the feet ofM, and maps the “internal” part of
M1 onto the inner halves of the legs of M. The map ι will be contracting with
coefficient 2.

The fundamental group π1(M) is generated by the generators a, b, c of the
groups of the vertices A, B and C, respectively. The universal covering of M is a
regular ternary tree with vertices coloured into two colours: one corresponding to
the inverse images of the feet A, B, C; the other corresponding to the central point
of the tripod. The fundamental group of M is the free product 〈a〉 ∗ 〈b〉 ∗ 〈c〉 of
three cyclic groups or order 3 acting on the tree in the natural way (by “rotations”
around the inverse images of A, B and C). The covering orbispaceM1 corresponds
to the subgroup of the fundamental group generated by the elements bc, cb, a, ab, ac,
which has index three in π1(M). The loops a, ab and ac are lifted by the covering f
to generators of the isotropy groups of the feet ofM1. The loops ab and ac will be
lifted to loops going around two holes of the central graph of M1. It follows that
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the virtual endomorphism associated with the described topological automaton is

bc 7→ 1, cb 7→ 1,
a 7→ a, ab 7→ b,

ac 7→ c.

Consequently, the iterated monodromy group of the automaton is the Gupta-Sidki
group, where the epimorphism from the fundamental group ofM onto the iterated
monodromy group is given by

a 7→ t, b 7→ s, c 7→ s−1.

5. Miscellaneous examples

5.1. Abelian groups. Let A be an n × n-matrix with integer entries and let
| detA| = d > 1. Then the linear map A : Rn −→ Rn induces a d-fold self-covering
of the torus Rn/Zn.

The associated virtual endomorphism is A−1 : Zn 99K Zn with the domain A(Zn)
of index d in Zn.

Choosing a coset representative system (equivalently a collection of connecting
paths on the torus) we get the associated iterated monodromy action on X

∗, which
corresponds to a numeration system on Zn.

Namely, if r1, . . . , rd is a coset-representative system of Zn/A(Zn), then every
element x ∈ Zn is uniquely written as a formal sum

x = ri0 + A(ri1 ) + A2(ri2) + · · · ,
where rik

is defined by the condition

x−
(
ri0 + A(ri1 ) + · · ·+ Ak(rik

)
)
∈ Ak+1(Zn).

The associated action of Zn = π1(R
n/Zn) describes addition of the elements of

Zn to such formal series. The series are convergent in the completion of Zn with
respect to the sequence (Ak(Zn))k≥0 of subgroups of finite index.

The following theorem is basically proved in [NS04], see also [Nek05, Proposi-
tion 2.9.2].

Theorem 5.1. If no eigenvalue of A−1 is an algebraic integer, then IMG (A) =
π1(R

n/Zn) = Zn.

Proposition 5.2. The iterated monodromy group of A : Rn/Zn −→ Rn/Zn is
contracting if and only if A is expanding (i.e., all eigenvalues are greater than 1
in absolute value). In this case the limit G-space XZn of the iterated monodromy
group is the space Rn with the natural action of Zn on it, and the limit space JZn

is the torus Rn/Zn.

Proof. The first part is a direct corollary of Theorem 3.2.
For the second part we can apply Theorem 4.3. The group Zn acts naturally on

the space Rn, and the action is proper and co-compact. The virtual endomorphism
A−1 : A(Zn) −→ Zn is surjective and is induced by the contracting map A−1 :
Rn −→ Rn. Therefore, the map A−1 : Rn −→ Rn is a topological model of
the virtual endomorphism (see Definition 9). Since the virtual endomorphism is
injective, the inverse sequence in Theorem 4.3 is just the sequence of the spaces Rn

and the maps A−1. Consequently, the limit G-space of Zn is the space Rn. �
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Figure 15. Twin dragon tiling

The points of the limit Zn-space Rn are encoded by the sequences from X
−ω ·Zn

according to “base A” numeration system. Namely, a sequence . . . i2i1 · g encodes
the point

ξ = g + A−1(ri1 ) + A−2(ri2 ) + A−3(ri3 ) + · · · ∈ Rn.

Note that convergence of the above series follows from the fact that A is expanding.
As an example, take A to be multiplication by (i − 1) on C, equivalently it is

the matrix

[
−1 −1
1 −1

]
acting on R2. It will induce a degree 2 self-covering of the

torus C/Z[i] ≈ R2/Z2.
Choose the coset representatives 0 and 1 of Z[i] by the subgroup (i − 1)Z[i].

We get a “binary numeration system” on the Gaussian integers: every integer is
uniquely written as a formal sum

z = x0 + x1(i− 1) + x2(i− 1)2 + x3(i− 1)3 + · · · ,

(which will be actually finite in the sense that all but a finite number of coefficients
xk will be zero; but this will note be true in general (for instance, for the base 1+i).
This numeration system was probably introduced for the first time in [Pen65].

The torus C/Z[i] is the limit space of the associated iterated monodromy group.
The images of the cylindrical sets X

−ωv, v ∈ X
n tile the torus by “twin dragons”.

Similarly, the limit G-space (see Theorem 4.3) XZ[i] is homeomorphic to C with the

natural action of Z[i] on it. The images of the sets X
−ω × {g} for g ∈ Z[i] tile the

plane C. A piece of this tiling is shown on Figure 15.
Note that the tiling is self-similar, i.e., if we multiply it by (i−1), then every tile

of the image will be a union of precisely two original tiles. See a discussion of this
tiling in [Knu69] (see pp. 189–190). Such self-similar tilings and related numeration
systems are objects of extensive studies, see the papers [Vin00, Ken92, Vin95] and
references therein.



32 VOLODYMYR NEKRASHEVYCH

5.2. Expanding endomorphisms of manifolds. An endomorphism f :M −→
M of a compact Riemannian manifoldM is called expanding if there exist constants
c > 0 and λ > 1 such that

‖Dp◦n(~v)‖ ≥ cλn‖~v‖
for every tangent vector ~v and every n ≥ 1. Here D is the differential. For in-
stance, the self-covering of the torus Rn/Zn defined by an expanding matrix A is
an expanding endomorphism of the torus.

Every expanding endomorphism is a covering, which is of finite degree by com-
pactness. Consequently, we can define the iterated monodromy of f . It will be a
contracting self-similar group, since the associated virtual endomorphism f−1

∗ will
be obviously contracting (by Theorem 3.2). Note also that the associated virtual
endomorphism is injective (its inverse is the homomorphism f∗ : π1(M) −→ π1(M)
induced by f), hence the group π1(M) is of polynomial growth (by the same argu-
ment as in the proof of Theorem 3.6, see also [Fra70, Gro81a]).

Passing to the universal covering M̃ and lifting f to a map F : M̃ −→ M̃ we get

a topological model F−1 : M̃ −→ M̃ of the virtual endomorphism f−1
∗ . Since F−1

is a homeomorphism, we get from Theorem 4.3 that the limit G-space of the iterated

monodromy group of f is M̃ and that the limit dynamical system of IMG (f) is
f :M−→M. We have thus proved the following result of M. Schub [Shu69].

Theorem 5.3. An expanding endomorphism f :M−→M is determined uniquely,
up to a topological conjugacy, by the action of the homomorphism f∗ on the funda-
mental group π1(M).

In fact, our Theorem 4.2 can be seen as a generalization of Shub’s theorem for
general topological (orbi)spaces.

M. Gromov in [Gro81a] proved that groups of polynomial growth are virtually
nilpotent, thus proving a conjecture of M. Shub [Shu70, Hir70]. In our terms, the

conjecture states that the limit G-space M̃ of IMG (f) for an expanding endo-
morphism f : M −→ M is a nilpotent Lie group on which IMG (f) = π1(M)

acts properly by affine transformations. The map F : M̃ −→ M̃ is an expanding

automorphism of the Lie group M̃. See a proof of this result (valid also for orb-
ifolds) in [Nek05, Section 6.1.2]. The proof uses Gromov’s theorem on groups of
polynomial growth

An example (see [PN08]) of an expanding endomorphism of a nil-manifold is
defined by the following expanding automorphism of the real Heisenberg group X

F :




1 x y
0 1 z
0 0 1


 7→




1 2z −2y + 2xz
0 1 x
0 0 1


 .

Let G be the subgroup of the matrices with x, y, z ∈ Z. Then G acts on X by
multiplication from the right. LetM be the quotient manifold (the action of G on
X is free, proper and co-compact). The map F induces a covering f :M−→M of
degree 4. The group IMG (f) coincides with the fundamental group and is generated
by the matrices

a =




1 1 0
0 1 0
0 0 1


 , b =




1 0 0
0 1 1
0 0 1


 .
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The associated wreath recursion on IMG (f) is

a = (12 )(34 )(1, b, 1, b), b = (24 )(a, ab, a, a).

A similar expanding automorphism of the Heisenberg group and the associ-
ated tiling was studied in [Gel94]. The associated wreath recursion is described
in [PN08].

5.3. Grigorchuk group and Ulam-von Neumann map. The Grigorchuk group
is generated by the wreath recursion

a = σ, b = (a, c), c = (a, d), d = (1, b),

where σ is the transposition (12 ).
It is easy to see that the generators a, b, c, d are of order 2 and that {1, b, c, d} is

isomorphic to C2 × C2.
The Grigorchuk group is a particularly easy example of an infinite finitely gen-

erated periodic group. It was defined as a group of measure-preserving transforma-
tions of the interval in [Gri80] (it appeared for the first time implicitly in [Ale72]).
It is the first example of a group of intermediate growth [Gri83], and it has many
other interesting properties, see [Har00, BGŠ03, Gri05].

The Grigorchuk group is contracting (which was basically proved in the original
paper [Gri80]). Let us describe its limit dynamical system.

Recall that the iterated monodromy group of the Chebyshev polynomial T2 is
isomorphic to the infinite dihedral group and is generated by

α = σ, β = (α, β),

see Subsection 2.5.2 (we have renamed the generators of IMG (T2) in order not to
confuse them with the generators of the Grigorchuk group, and have changed the
order of the letters of the alphabet).

It is not hard to check that for every v ∈ {0 , 1}∗ and g ∈ {b, c, d} we have
a(v) = α(v) and

g(v) = v, or g(v) = β(v).

Moreover, for every word v there exists g ∈ {b, c, d} such that g(v) = β(v).
It follows that the Schreier graphs Γn(G) of the Grigorchuk group are obtained

from the Schreier graphs of IMG (T2) just by adding some loops and duplicating
some of the edges. An explicit description of the Schreier graphs of the Grigorchuk
group is given in [BG00].

Consequently, the asymptotic equivalence relations on {0 , 1}−ω defined by the
actions of G and of IMG (T2) coincide. Therefore the limit dynamical systems of G
and IMG (T2) also coincide (i.e., are topologically conjugate).

The limit dynamical system of IMG (T2) is the action of the polynomial T2(z) =
2z2 − 1 on its Julia set [−1, 1] (by Corollary 4.4). This dynamical system was
studied by M. Ulam and J. von Neumann (in a conjugate form of f(x) = 4x(1− x)
acting on [0, 1], see the abstract [UvN47]) and is called sometimes the “Ulam-von
Neumann map”.

The tent map T : [0, 1] −→ [0, 1] is given by

T (x) =

{
2x, if x ∈ [0, 1/2]

2− 2x, if x ∈ [1/2, 1].

See the graphs of the Ulam-von Neumann map (left) and the tent map (right) on
Figure 16.
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Figure 16. Ulam-von Neumann map and Tent map

Proposition 5.4. The limit dynamical systems of IMG (T2) and of the Grigorchuk
group are conjugate to the tent map.

As a corollary we get the classical fact that action of the Ulam-von Neumann
map on [0, 1] is conjugate with the tent map.

Proof. Let us use Theorem 4.3. Consider the action of the infinite dihedral group
D∞ ∼= IMG (T2) on the real line R by the transformations of the form x 7→ ±x + n
where n is an integer. A fundamental domain of this action is the segment [0, 1/2].
The stabilizers of the endpoints of this segment in D∞ are groups of order 2. Hence,
the orbispace R/D∞ is a segment of two groups of order 2.

The map x 7→ x/2 induces the virtual endomorphism transforming x 7→ ±x + n
to x 7→ ±x+n/2. It is easy to check that this virtual endomorphism coincides with
the endomorphism

β 7→ β, βα 7→ α

associated with the self-similar group IMG (T2). Here β corresponds to the transfor-
mation x 7→ −x and α to −x+1. Consequently, by Theorem 4.3 the limit IMG (T2)-
space is R with the described action. It follows that the limit space JIMG(T2) is the
orbispace R/D∞ and that the limit dynamical system s : JIMG(T2) −→ JIMG(T2) is

induced by the map F−1 : x 7→ 2x on R, i.e., is the tent map. �

We see that the limit dynamical system s : JG −→ JG does not determine the
group G, if we look at JG just as at a topological space. Nevertheless, it will
determine the group G, if we include the orbispace structure. Namely, for every
contracting group G the limit space JG is the orbispace of the action of G on
the limit G-space XG (see Definition 10). We get in this way (assuming that the
associated virtual endomorphism φ is onto) a topological automaton (M,M1, s, ι),
where M = XG/G, M1 = XG/ Dom φ are orbispaces, the covering s :M1 −→M
is induced by the identity map on XG (i.e,. by the inclusion Domφ < G) and
ι :M1 −→M is induced by

Fx(. . . x2x1 · g) = . . . x2x1g(x) · g|x
for any x ∈ X.
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The map ι is a homeomorphism of the topological spaces M and M1, but it is
not an isomorphism of the orbispaces in general. It is surjective on the isotropy
groups and is an embedding of orbispaces (see [Nek05, Section 4.6]).

The described orbispace automaton is called the limit orbispace dynamical system
of G. One can show (see [Nek05, Theorem 5.3.1]) that G is its iterated monodromy
group. Thus, the limit orbispace dynamical system (JG, s) determines G in a unique
way.

We have seen above that for G = IMG (T2) the orbispace M is the segment
R/D∞ of two groups of order two, where D∞ acts on R by the transformations
x 7→ ±x + n, n ∈ Z. The orbispace M1 is the orbispace for the action of the
subgroup of the transformations with even n. Hence,M1 is also a segment of groups
of order two. The covering s :M1 −→M folds the segmentM1 in two. The map
ι : M1 −→ M is induced by the map x 7→ x/2 of R, hence it is an isomorphism
of the orbispaces. We can identify then M1 and M by the isomorphism ι. Then
s : M −→ M becomes the tent map seen as a self-covering of the segment of
groups of order two. The dihedral group is the fundamental group of the graph of
groupsM and it coincides with the iterated monodromy group of the self-covering
s :M−→M.

We get a different limit orbispace dynamical system for the Grigorchuk group
(but the same topological limit dynamical system). The limit orbispace M = JG

of the Grigorchuk group is a segment of groups C2 × C2 and C2. We will identify
the segment with [0, 1] ⊂ R so that C2 × C2 and C2 are the isotropy groups of the
points 0 and 1, respectively. The fundamental group of this orbispace (graph of
groups) is the free product (C2 × C2) ∗ C2.

The covering orbispaceM1 is the segment of two copies of C2×C2 (also identified
with [0, 1]) with the covering map s :M1 −→M acting as the tent map T on the
underlying space [0, 1]. The morphism ι : M1 −→ M acts as the identical (on
[0, 1]) homeomorphism of the segments, maps the isotropy group C2 × C2 of 1 in
M1 surjectively onto the isotropy group C2 of 1 inM and induces an isomorphism
of the isotropy groups C2 ×C2 of 0. See a schematic description of the maps s and
ι on the right-hand side of Figure 16. The graph of the tent map represents M1,
the segments on the coordinate axes representM, letter B represents the isotropy
group C2 × C2.

We can identify the isotropy groups C2 × C2 and C2 of the ends ofM with the
subgroups {1, b, c, d} and {1, a} of G, respectively, in such a way that ι induces the
maps

b1 7→ a, c1 7→ a, d1 7→ 1,

and
b0 7→ c, c0 7→ d, d0 7→ b,

where gx for x ∈ {0, 1} is the lift by the covering s of the element g of the isotropy
group of the end 1 ofM to an element of the isotropy group of the point x ofM1.

It is checked directly that the iterated monodromy group of the described orbis-
pace automaton is the Grigorchuk group.

A natural question arises: what other contracting groups have the tent map
as their limit dynamical system? In other words: what are all possible iterated
monodromy groups of the tent map?

Definition 11. Let p(x) = xm + am−1x
m−1 + · · ·+ a0 be a polynomial over Z/2Z.

Define a self-similar group Gp(x) generated by subgroups B ∼= Cm
2 and A ∼= C2 =
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{1, a}, acting on the tree {1 , 2}∗ according to the wreath recursion

a = (12 ), b = (ι1(b), ι2(b)),

for all b ∈ B, where ι1 : B −→ A is the epimorphism given by the matrix

[0 0 . . . 0 1]

and ι2 : B −→ B is the automorphism given by the matrix



0 0 . . . 0 a0

1 0 . . . 0 a1

0 1 . . . 0 a2

...
...

. . .
...

...
0 0 . . . 1 am−1




.

Theorem 5.5 (Z. Sunić and V. Nekrashevych). The limit dynamical system (JG, s)
of a contracting group G is topologically conjugate to the tent map if and only if
G is equivalent as a self-similar group to the group Gp(x) for some polynomial p(x)
over Z/2Z.

The dihedral group D∞ = IMG (T2) is the group Gx+1. The Grigorchuk group
is the group Gx2+x+1. Another group of this family which was studied before is the
group Gx2+1. It is one of the groups (denoted G010101...) defined by R. Grigorchuk
in [Gri85]. It was later studied by A. Erschler in [Ers04], where she proved that

the growth function of Gx2+1 is bounded below by exp
(

n
log2+ǫ(n)

)
and above by

exp
(

n
log1−ǫ(n)

)
for all ǫ > 0 and all sufficiently big n. The same group was used

in [Nek10] to construct a group of non-uniform exponential growth.
The proof Theorem 5.5 is rather straightforward. It is not hard to see that the

limit orbispace JG has to be a segment of groups and that the isotropy group of
one of the ends (the one corresponding to 1 for the standard tent map T : [0, 1] −→
[0, 1]) is A = C2. Let B be the isotropy group of the other end. Then M1 is a
segment connecting two copies of B. The morphism ι :M1 −→M will induce an
epimorphism B −→ A on one end and an isomorphism B −→ B on the other (see
the right-hand side of Figure 16). We conclude that the iterated monodromy group
of the defined orbispace automaton is given by the wreath recursion described in
the theorem. It remains to show that B is an elementary abelian 2-group, which
easily follows from the recursion (we assume that G acts faithfully on the tree).
The matrix form of the morphisms ιi also follows from faithfulness of the action
and is proved in [Šun07, Proposition 2].

The polynomial p(x) is the minimal polynomial of the automorphism ι2, and
we get in this way a bijection p(x) 7→ Gp(x) between the set of polynomials over
Z/2Z and the set of contracting groups with the limit dynamical system conjugate
with the tent map. The family of groups Gp(x) was defined by Z. Šunić before its

connection with the tent map was established. He proved in [Šun07] the following
properties of the groups Gp(x).

Theorem 5.6. If p1(x) is divisible by p2(x), then Gp1(x) ≥ Gp2(x). If p(x) is
not divisible by x + 1, then Gp(x) is a 2-group. If p(x) 6= x + 1, then Gp(x) has
intermediate growth, and its closure in the automorphism group of the tree has
Hausdorff dimension 1− 3

2deg p+1 .
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Here the Hausdorff dimension of a closed subgroup G of the automorphism group
of the rooted binary tree is defined as

lim inf
n→∞

1

2n − 1
log2[G : Gn],

where Gn is the stabilizer of the nth level of the tree in G.

5.4. Quadratic polynomials. Iterated monodromy groups of post-critically finite
polynomials (i.e., the corresponding wreath recursions) are described in [Nek05]
and [Nek09]. Iterated monodromy groups of quadratic polynomials are studied in
more detail in the paper [BN08]. We present here a survey of its results.

Every quadratic polynomial is conjugate (by an affine transformation) with a
polynomial of the form z2 + c. Let us describe a parametrization of the post-
critically finite quadratic polynomials by rational angles θ ∈ R/Z.

The Mandelbrot set (see [Man80, DH84]) is the set M of numbers c ∈ C such
that the sequence

0, f(0), f◦2(0), f◦3(0), . . .

is bounded, where f(z) = z2 + c.
We remind here the main facts of the theory of external rays to the Mandelbrot

set. Details and proofs can be found in the original manuscript [DH84, DH85].
There exists a unique bi-holomorphic isomorphism Φ : C \D −→ C \M tangent

to identity at infinity. Here D = {z ∈ C : |z| ≤ 1}.
The image Rθ of the ray {r · eθ·2πi : r ∈ (1, +∞)} under Φ is called the external

(parameter) ray at the angle θ. We say that a ray Rθ lands on a point c ∈ M if
c = limrց1 Φ

(
r · eθ·2πi

)
. It is known that rays with θ ∈ Q/Z land.

If the orbit {f◦n(c)}n≥1 of c is pre-periodic (i.e., if f◦n(c) = f◦m(c) for some
n < m, but f◦n(c) 6= c for any n), then c belongs to the boundary of M and it is a
landing point of a finite number of external rays Rθ. Each such angle θ is a rational
number with even denominator.

In the other direction, if θ ∈ Q/Z has even denominator, then the ray Rθ lands
on a point cθ ∈ M such that the orbit of cθ under action of f(z) = z2 + cθ is
pre-periodic.

For example, the landing point of R1/6 is i. The orbit of i under z2 + i is
i 7→ −1 + i 7→ −i 7→ −1 + i. The orbit of 1/6 under angle doubling is 1/6 7→ 1/3 7→
2/3 7→ 4/3 = 1/3.

If c is periodic (i.e, if f◦n(c) = c for some n), then c is an internal point of M .
There are two rays Rθ1 , Rθ2 landing on the root of the component of the interior
of M to which c belongs. Both angles θi have odd denominators and their periods
under the angle doubling map are equal to the period of c under the action of z2+c.

If θ ∈ Q/Z has odd denominator, then Rθ lands on a root of a component of the
interior of M such that the centre cθ of this component is a point periodic under the
action of z2+cθ. The period of cθ will coincide with the period of θ under the angle
doubling map. We have not defined precisely the notions of the root and centre
of a (hyperbolic) component of the interior of M , but the only important fact for
us is that every angle θ ∈ Q/Z with odd denominator determines a post-critically
finite polynomial z2 + cθ.

For example, the orbit of −1 under z2 − 1 is −1 7→ 0 7→ −1. The corresponding
angles are 1/3 and 2/3. The action of angle doubling is 1/3 7→ 2/3 7→ 4/3 = 1/3.
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Figure 17. External rays

See Figure 17 for the external rays R1/3 and R2/3 to the Mandelbrot set (on the

left-hand side) and to the Julia set of z2 − 1 (on the right-hand side).
Fix θ ∈ Q/Z. The points θ/2 and (θ + 1)/2 divide the circle R/Z into two open

semicircles S0, S1. Here S0 is the semicircle containing 0.

The kneading sequence θ̂ of θ is the sequence x1x2 . . ., where

xk =





0 if 2kθ ∈ S0

1 if 2kθ ∈ S1

∗ if 2kθ ∈ {θ/2, (θ + 1)/2}
The iterated monodromy group of z2 + cθ will be defined in terms of the kneading

sequence θ̂.
Denote for v = x1 . . . xn−1 ∈ {0, 1}∗ by K (v) the group generated by

a1 = σ(1, an), ai+1 =

{
(ai, 1) if xi = 0,
(1, ai) if xi = 1,

Denote for non-empty w = y1 . . . yk ∈ {0, 1}∗ and v = x1 . . . xn ∈ {0, 1}∗ such
that yk 6= xn by K (w, v) the group generated by

b1 = σ, bj+1 =

{
(bj , 1) if yj = 0
(1, bj) if yj = 1

a1 =

{
(bk, an) if yk = 0 and xn = 1,
(an, bk) if yk = 1 and xn = 0,

ai+1 =

{
(ai, 1) if xi = 0
(1, ai) if xi = 1

The following description of the iterated monodromy groups of quadratic poly-
nomials is given in [BN08].

Theorem 5.7. Denote by z2 + cθ the polynomial corresponding to the angle θ ∈
Q/Z.

If θ̂ = (x1x2 . . . xn−1∗)∞, then

IMG
(
z2 + cθ

)
= K (x1x2 . . . xn−1) .

If θ̂ = y1y2 . . . yk(x1x2 . . . xn)∞, then

IMG
(
z2 + cθ

)
= K (y1y2 . . . yk, x1x2 . . . xn) .
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For example, if we take θ = 1/3, then 1̂/3 = (1∗)∞ and hence IMG
(
z2 − 1

)
is

generated by
a1 = σ(1, a2), a2 = (1, a1).

Not all groups K (v) and K (w, v) are iterated monodromy groups of quadratic
polynomials (since not all sequences are kneading sequences of some angles). For
all v, for all non-empty w and for all non-periodic non-empty u with the first
letter different from the first letter of w, the groups K (v) and K (w, u) are the
iterated monodromy groups of polynomials of degree 2k for some positive integer k
(see [Nek05, Theorem 6.10.8]).

Note that the groups K (0, 1n) coincide with the groups Gxn+1 defined in 5.3.
They are not iterated monodromy groups of any complex polynomials for n > 1.

Two examples of iterated monodromy groups, corresponding to smooth Julia
sets, are classical groups: for θ = 0 we have IMG

(
z2
)

= K (∅) = Z, and for

θ = 1/2 the iterated monodromy group IMG
(
z2 − 2

)
= K (1, 0) is the infinite

dihedral group (see Subsection 2.3).
All the remaining examples are not finitely presented. However, there are nice

recursive L-presentations. Fix v = x1 . . . xn−1. Define the following endomorphism
of the free group:

ϕ(an) = a2
1, ϕ(ai) =

{
ai+1 if xi = 0
aa1

i+1 if xi = 1

Let R be the set of commutators [
ai, a

ak
1

j

]
,

where 2 ≤ i, j ≤ n, and k = 0, 2 if xi−1 6= xj−1 and k = 1 if xi−1 = xj−1.
The following result is proved in [BN08].

Theorem 5.8. The group K (v) is has presentation

K (v) =
〈
a1, . . . , an

∣∣∣ϕℓ(R) for all ℓ ≥ 0
〉
.

The groups K (w, v) also have finite L-presentations, but they are a bit more
complicated.

Corollary 5.9. Let v = x1x2 . . . xn−1 ∈ {0, 1}∗. Write p(t) = xn−1t + xn−2t
2 +

· · ·+ x1t
n−1 ∈ Z[t]. Then the group K (v) is isomorphic to the subgroup generated

by the elements a, at, . . . , atn−1

of the finitely presented group〈
a, t
∣∣∣ atn−2ap(t)

,
[
ati

, atja
]
,
[
ati

, atja3]
for all 1 ≤ i, k < n

〉
.

Problem. Find similar embeddings for other iterated monodromy groups and their
relation with the topology of the respective maps.

The following theorem is proved in [Nek05, Theorem 3.11.3].

Theorem 5.10. Let f1 and f2 be post-critically finite quadratic polynomials. If
IMG (f1) and IMG (f2) are isomorphic as abstract groups, then the Julia sets of f1

and f2 are homeomorphic.

Consider, for example, the groups

G1 = 〈a1 = σ(1, c1), b1 = (1, a1), c1 = (1, b1)〉 = K (11) ,

G2 = 〈a2 = σ(1, c2), b2 = (1, a2), c2 = (b2, 1)〉 = K (10) .
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Figure 18. Aeroplane and Rabbit

They are the iterated monodromy groups of two polynomials with critical point of
period 3:

z2 − 0.1226 . . . + 0.7449 . . . i, z2 − 1.7549 . . . .

They are not isomorphic, since the Julia sets of these polynomials (known as
“Douady Rabbit” and “Aeroplane”, see Figure 18) are not homeomorphic. One
of the ways to show this is to prove that the Rabbit can be disconnected into three
pieces by removing a point, while the Aeroplane can be disconnected only into two
pieces.

It seems to be rather hard to prove that the groups G1 and G2 are not isomorphic
by “algebraic” means. The following properties of these groups follow from the
results of the paper [Nek07b].

Theorem 5.11. The closures of the groups G1 and G2 in the automorphism group
of the binary tree coincide.

For every finite sets of relations and inequalities between the generators a1, b1, c1

of G1 there exists a generating set a′1, b
′
1, c
′
1 of G2 satisfying the same relations and

inequalities.

Nevertheless, there is a property that conjecturally distinguishes the groups G1

and G2. Namely, the elements a1, b1, c1 generate a free monoid, but we do not know
any example of a free subsemigroup in G2.

Problem. Does there exists a free sub-semigroup in G2?

The proof of the fact that a1, b1, c1 generate a free monoid is straightforward, if
we look at the structure of the graph of the action of G1 on the orbit of the infinite
sequence 111 . . ., which is shown on the left-hand side part of Figure 19. The graph
consists of six infinite rays decorated by finite graphs. It follows that if we apply a
product of the generators a1, b1, c1 to the sequence 111 . . ., then we will know what
was the first generator applied to the sequence just looking at ray to which the
image of the sequence belongs. This implies that the monoid generated by a1, b1, c1

is free.
The large-scale structure of the graph of the action of G1 on the orbit of 111 . . .

is the same as the structure of the “zoom” of the Julia set of the Douady Rabbit
polynomial at the fixed point ≈ −0.2763+ 0.4797i, which corresponds to the point
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Figure 19. An infinite Schreier graph and a zoom of the Julia set

of the limit space of G1 encoded by the sequence . . . 111 (see the right-hand side
part of Figure 19).

A more rigorous argument can be used to prove the following theorem.

Theorem 5.12. Let f be a post-critically finite polynomial. If there exist two
finite Fatou components of f with intersecting closures, then IMG (f) contains a
free subsemigroup.

Recall that a Fatou component is a connected component of the complement of
the Julia set. One of the Fatou components is infinite (its closure is not compact):
it is the basin of attraction of infinity. The remaining Fatou components are called
finite.

More examples of iterated monodromy groups of exponential growth are provided
by the tuning procedure (see [Häı00] and [Nek08c, Subsection 5.5]), which for a
given polynomial f produces polynomials g such that IMG (f) < IMG (g). In
many cases the polynomial g will not satisfy the conditions of Theorem 5.12, but
then IMG (g) will still contain a free subsemigroup.

Theorem 5.12 does not help us to find a free subsemigroup of the iterated mon-
odromy group G2 of the Aeroplane polynomial. Any two finite Fatou components
of the Aeroplane polynomial have disjoint closures. Actually, we even do not know
what is the growth of G2.

There are examples of iterated monodromy groups of intermediate growth. The
following is a result of K.-U. Bux and R. Perez [BP06].

Theorem 5.13. IMG
(
z2 + i

)
has intermediate growth.

An earlier example of an iterated monodromy group of intermediate growth is the

Gupta-Fabrikowski group [FG91], which is isomorphic to IMG
(
z3(− 3

2 + i
√

3
2 ) + 1

)
.

Problem. Which polynomials have iterated monodromy groups of intermediate
growth?

In all known cases of iterated monodromy groups IMG (f) of intermediate growth
the Julia set of f is a dendrite (an R-tree) and the post-critical points of f do not
disconnect the Julia set.
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5.5. An example of Fornæss and Sibony. We describe here some results of the
papers [Nek07b, Nek10, Nek08b]. J. E. Fornæss and N. Sibony studied in [FS92]
the following endomorphism of PC

2:

F : [z : p : u] 7→ [(p− 2z)2 : (p− 2u)2 : p2],

or, in affine coordinates

F : (z, p) 7→
((

1− 2z

p

)2

,

(
1− 2

p

)2
)

.

The same map has appeared in a natural way in the paper [BN06] in relation with
Teichmüller theory of polynomials.

Note that the second coordinate of the value of F (z, p) depends only on the
second coordinate p of the argument. The first coordinate of F (z, p) is a quadratic
polynomial in z depending on the parameter p. This skew product structure of
F greatly facilitates its study. We will also see below how it is reflected in the
structure of the iterated monodromy group of F .

The critical locus of F is the union of the lines p = 2z, p = 2u and p = 0. We
have

{p = 2z} 7→ {z = 0} 7→ {z = u} 7→ {z = p} 7→ {z = u},
{p = 2u} 7→ {p = 0} 7→ {u = 0} 7→ {p = u} 7→ {p = u},

hence the post-critical set is the union of the lines z = 0, z = 1, z = p, p = 0, p = 1
and the line at infinity.

The following theorem is proved in [Nek08b].

Theorem 5.14. The iterated monodromy group of the map F is generated by

α = (12 )(34 ), β = (α, γ, α, γβ), γ = (β, 1, 1, β),

T = (R, R, T, T ), S = (13 )(24 )(1, β, 1, β),

where R = βαβγβT−1S−1.

The subgroup 〈α, β, γ〉 is isomorphic to the group Γ generated by

(10) α = (12 )(34 ), β = (α, γ, α, γ), γ = (β, 1, 1, β).

Theorem 5.15. Denote E0 = {1 , 2} and E1 = {3 , 4}. The subgroup Γ = 〈α, β, γ〉
of IMG (F ) is normal and coincides with the subgroup of IMG (F ) leaving the sub-
trees

Ti1i2... =
⋃

n≥0

Ei1Ei2 · · ·Ein

invariant.

The quotient IMG (F ) /Γ is isomorphic to IMG

((
1− 2

p

)2
)

. It is isomorphic

to the group of isometries of the lattice Z2.

The canonical epimorphism IMG (F ) −→ IMG (F ) /Γ ∼= IMG
(
(1− 2/p)2

)
is

induced (due to functoriality of the iterated monodromy construction, see [Nek08c])
by the projection (z, p) 7→ p onto the second coordinate, which transforms the map

F : (z, p) 7→
(
(1− 2z/p)

2
, (1− 2/p)

2
)

into the map p 7→ (1 − 2/p)2. The kernel

Γ of the epimorphism is related hence with the first coordinate of the function F .
Recall that on the first coordinate of F we have quadratic polynomials depending
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on a parameter p. This leads to the following generalization of iterations of a
post-critically finite polynomial.

Definition 12. A sequence

C
f1←− C

f2←− C
f3←− · · ·

of polynomials is post-critically finite if there is a finite set P ⊂ C such that for
every n the set of critical values of f1 ◦ f2 ◦ · · · ◦ fn is contained in P .

Examples of post-critically finite sequences of polynomials are constant sequences
of post-critically finite polynomials or any sequence of polynomials z2 and 1 −
z2. The latter is post-critically finite, since both polynomials leave the set {0, 1}
invariant, and this set contains the critical values of both polynomials.

An example of a post-critically finite sequence of polynomials is the first coordi-
nate of iterations of the function F , namely any sequence

(11) C
fp1←− C

fp2←− C
fp3←− · · ·

such that fpk
(z) =

(
1− 2z

pk

)2

and pk =
(
1− 2

pk+1

)2

for all k. The critical value

of fp(z) = (1 − 2z/p)2 is 0, fp(0) = 1 and fp(1) = (1 − 2/p)2. Therefore, the set
P = {0, 1, p1} satisfies the conditions of Definition 12 for the sequence fpk

.
Iterated monodromy groups of post-critically finite sequences of polynomials are

defined in the same way as the iterated monodromy groups of a single post-critically
finite polynomial. If P is as in Definition 12, then the fundamental group π1(C\P, t)
acts naturally on the tree of preimages

⊔
n≥0(f1 ◦ f2 ◦ · · · ◦ fn)−1(t). The iterated

monodromy groups of post-critically finite sequence of polynomials are described
in [Nek09].

We are ready now to interpret the iterated monodromy groups of the sequences
of the form (11) in terms of the iterated monodromy group of F . Denote by Dw

the quotient of the group Γ, given by the wreath recursion (10), by the kernel of
the action on the tree Tw (see Theorem 5.15). Then the groups Dw are the iterated
monodromy groups of the polynomial iterations (11).

Denote by Γw, w ∈ {0, 1}∞ the quotient of Γ by the subgroup of elements acting
trivially on a neighbourhood of ∂Tw in ∂X

∗. The group Γw is different from Dw if
and only if the sequence w is cofinal with 1111 . . .. We get an uncountable family
{Γw} of three-generated groups. The set of all quotients of the free group generated
by tree elements x, y, z is naturally identified with the set

G3 = {(H, x, y, z) : H = 〈x, y, z〉}
of three-generated groups H with marked generating set. There is a natural topol-
ogy on G3 in which two groups are close if big balls around the identity in the
marked Cayley graphs of the groups coincide (see [Gri85, Gro81a]). Equivalently,
it is the restriction of the direct product topology on the set 2F3 of subsets of the
free group F3 = 〈x, y, z : ∅〉 onto the subspace of normal subgroups, which is
naturally identified with G3.

Theorem 5.16. The map w 7→ (Γw, α, β, γ) is a homeomorphism of the Cantor
set {0, 1}∞ with a subset of the space of 3-generated groups. Two groups Γw1 and
Γw2 are isomorphic if and only if w1 and w2 are co-final.
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For any marked group G and a finite generating set S define the exponent of
growth as

e(G,S) = lim
n→∞

n
√
|B(n)|,

where B(n) is the set of elements of G which are products of at most n generators
g ∈ S ∪ S−1. The group G has exponential growth if and only if e(G,S) > 1. A
group is said to be of non-uniform exponential growth if it is of exponential growth,
but infimum of eG,S for all finite generating sets S is equal to one.

Proposition 5.17. The group Γ000... = D000... is IMG
(
z2 + i

)
and thus has in-

termediate growth. The group Γ111... is an extension of C∞4 by a Grigorchuk group
D111... and contains the lamplighter group, hence is of exponential growth.

Here D111... coincides with the group Gx2+1 from the family of iterated mon-
odromy groups of the tent map, described in Subsection 5.3, and with the group
K (0, 11).

It follows from Theorem 5.16 that the sequence Γ0n111... converges to Γ000... as
n → ∞. One can show that the function (G, x, y, z) 7→ eG,{x,y,z} from G3 to R is
upper semi-continuous. We get hence the following corollary of the last theorem.

Corollary 5.18. The group Γ111... has non-uniform exponential growth.

The question of existence of groups of non-uniform exponential growth was
asked by M. Gromov in [Gro81b, Remark 5.2] (see also [Gro99, Remark 5.B.5.12]
and a survey article [Har02]). The first examples of groups of non-uniform ex-
ponential growth were constructed by J. Wilson [Wil04b, Wil04a] and later by
L. Bartholdi [Bar03b], using self-similar groups.
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allélogrammes, Mémoires présentés à l’Académie Impériale des science de St-
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[GŠ07] Rostislav Grigorchuk and Zoran Šunić, Self-similarity and branching in group theory,
Groups St. Andrews 2005. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 339,
Cambridge Univ. Press, Cambridge, 2007, pp. 36–95.
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main. II. Projective and inductive limits of polynomials, Real and complex dynamical
systems (Hillerød, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 464,
Kluwer Acad. Publ., Dordrecht, 1995, pp. 89–132.

[IS08] Yutaka Ishii and John Smillie, Homotopy shadowing, (preprint), 2008.
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