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Abstract. A complete description of the iterated monodromy groups of post-
critically finite backward polynomial iterations is given in terms of their actions
on rooted trees and automata generating them. We describe an iterative al-
gorithm for finding kneading automata associated with post-critically finite
topological polynomials and discuss some open questions about iterated mon-
odromy groups of polynomials.

1. Introduction

The topics of these notes are group-theoretical and combinatorial aspects of
iterations of post-critically finite polynomials, including topological polynomials
and post-critically finite non-autonomous backward iterations.

As the main object encoding the combinatorics of iterations we use the associ-
ated iterated monodromy groups and permutational bimodules. These algebraic
structures encode in a condensed form all topological information about the cor-
responding dynamical systems. More on iterated monodromy groups and their
applications in symbolic dynamics see [Nek05, Nek07b, BGN03].

In the context of polynomial iterations the iterated monodromy groups are
analogs or generalizations of the classical tools of symbolic dynamics of quadratic
and higher degree polynomials: kneading sequences, internal addresses, Hubbard
trees, critical portraits etc. In some cases the transition from the classical objects
to iterated monodromy groups and permutational bimodules are very straightfor-
ward, but in some cases they are more involved. For more on symbolic dynamics
of post-critical polynomials, see the works [BFH92, BS02, Kel00, Poi93a, Poi93b].
For relations of kneading sequences and iterated monodromy groups of quadratic
polynomials, see [BN06a].

We answer some basic questions about iterated monodromy groups of polynomi-
als and formulate some problems for further investigations. This area is fresh and
many questions are open, even though they might be not so hard to answer.

We give in our paper a complete description of the iterated monodromy groups
of post-critically finite backward iterations of topological polynomials. Here a post-
critically finite backward iteration is a sequence f1, f2, . . . of complex polynomials
(or orientation preserving branched coverings of planes) such that there exists a
finite set P such that all critical values of f1 ◦ f2 ◦ · · · ◦ fn belong to P for every n.

The iterated monodromy group of such a sequence is the automorphism group of
the tree of preimages

Tt =
⊔

n≥0

(f1 ◦ f2 ◦ · · · ◦ fn)−1(t),
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induced by the monodromy actions of the fundamental group π1(C \ P, t). Here t
is an arbitrary basepoint.

We prove that a group of automorphisms of a rooted tree is the iterated mon-
odromy groups of a backward polynomial iteration if and only if it is generated by
a set of automorphisms satisfying a simple planarity condition.

Namely, if A ⊂ S (X) is a set of permutations, then its cycle diagram D(A) is an
oriented 2-dimensional CW-complex in which for every cycle of each permutation
we have a 2-cell such that the corresponding cycle is read on the boundary of the
cell along the orientation. Two cycles of different permutations are not allowed to
have common edges in D(A).

We say that a set A ⊂ S (X) is dendroid (tree-like in [Nek05]) if the diagram
D(A) is contractible. A set of automorphisms A = {a1, a2, . . . , an} of a rooted tree
T is said to be dendroid if A acts on every level of the tree T as a dendroid set of
permutations.

The main result of Section 5 is the following complete description of the iterated
monodromy groups of polynomial iterations (given in Propositions 5.1 and 5.2,
which contain more details).

Theorem 1.1. An automorphism group of a rooted tree T is an iterated monodromy
group of a post-critically finite backward iteration of polynomials if and only if it is
generated by a dendroid set of automorphisms of T .

Very little is known about the class of groups generated by dendroid sets of
automorphisms. This class contains many interesting examples of groups (especially

in relation with questions of amenability and growth of groups see [GŻ02, BV05,
BP06, Nek07a, BKNV06]), and further study of such groups is of great interest for
group theory and dynamics.

We also give in our paper a general receipt for construction of dendroid sets
of automorphisms of rooted trees using automata. We define a class of dendroid
automata and prove in Theorem 4.4 that dendroid sets of automorphisms of a
rooted tree are defined using sequences of dendroid automata. General definitions
of automata are given in Subsection 3.5; dendroid automata are described in Defini-
tion 4.4. See paper [Nek07a], where three dendroid automata were used to construct
an uncountable set of groups with unusual properties.

We see that combinatorics of post-critically finite backward iterations is de-
scribed by the corresponding sequences of dendroid automata and that composition
of polynomials corresponds to a certain composition of automata.

It is natural in the case of iterations of a single post-critically finite polynomial f
to ask if we are able to describe the iterated monodromy group by one automaton
of some special kind (i.e., by a special constant sequence of automata). It was
shown in [Nek05] that for any post-critically finite polynomial f there exists n such
that the iterated monodromy group of the nth iteration of f is described by a
particularly simple kneading automaton (one can take n = 1 if f is hyperbolic).
The kneading automaton is found using the technique of external angles to the
Julia set, i.e., using analytic techniques.

The last section of the paper deals with the problem of finding the kneading au-
tomaton associated with a post-critically finite polynomial using purely topological
information and group-theoretical techniques. We propose an iterative algorithm,
which seems to work in many cases, which we call a combinatorial spider algorithm.
It takes as input the dendroid automaton associated with the polynomial (called
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twisted kneading automaton), which can be easily found from the action of the topo-
logical polynomial on the fundamental group of the punctured plane, and simplifies
it until we get the associated kneading automaton, or a twisted kneading automa-
ton close to it. Note that associated automata together with a cyclic ordering of
its states uniquely determines the Thurston combinatorial class of the polynomial
(hence determines the complex polynomial uniquely, up to an affine conjugation),
see Proposition 6.1.

The algorithm seems to work in most examples, but the general question of
convergence of the combinatorial spider algorithm is still not very clear. We show
that this algorithm is equivalent to some simple computations in a permutational
bimodule over a subgroup of the outer automorphisms of the free group. Con-
vergence problem of the combinatorial spider algorithm is closely related to the
(sub)-hyperbolicity of this bimodule, which is also open.

The structure of the paper is as follows. Section 2 studies elementary properties
of dendroid subsets of the symmetric group. Section 3 is an overview of notions and
basic results of the theory of groups acting on rooted trees, including permutational
bimodules, wreath recursions and automata. The techniques and language of this
section is used in all subsequent sections of the paper.

Section 4 gives a complete description of dendroid sets of automorphisms of a
rooted tree. We introduce the notion of a dendroid automaton (Definition 4.4) and
prove that dendroid sets of automorphisms of a rooted tree are exactly automor-
phisms defined by sequences of dendroid automata (Theorem 4.4).

In Section 5 we apply the developed techniques and give a complete description of
iterated monodromy groups of post-critically finite backward polynomial iterations,
as described in Theorem 1.1 above. In particular, we give an explicit description
of the associated sequence of dendroid automata (Proposition 5.5), and discuss
cyclic ordering of states of a dendroid automaton and its relation with topology
(Subsection 5.3).

The last section “Iterations of a single polynomial” deals with iterations of post-
critically finite polynomials. We describe the twisted kneading automata, which
are the automata, which we obtain, if apply the general techniques of dendroid
automata to the case of iterations of a single polynomial. This automaton, in
principle, already describes the iterated monodromy group of the polynomial, but
it may be too complicated. So, a natural question is to transform it to the simplest
possible form. This can be done analytically (using external angles and invariant
spiders), as in Chapter 6 of [Nek05], but this approach may be not available, if the
polynomial is given by purely topological information.

The suggested algorithm for simplification of the twisted kneading automata is
described in Subsection 6.3. The underlying algebraic structure of a permutational
bimodule over a subgroup of the outer automorphism group of the free group is
described in Subsection 6.4. In the last subsection we give some simple criterion of
absence of obstructions (i.e., realizability as complex polynomials) for topological
polynomials given by their kneading automata.

Acknowledgement. The author wishes to thank Dierk Schleicher for encour-
aging to write this paper and to Laurent Bartholdi and Kevin Pilgrim for useful
discussions.
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Figure 1. A cycle diagram

Figure 2. Dendroid sets of permutations

2. Dendroid sets of permutations

Let X be a finite set and denote by S (X) the symmetric group of all permu-
tations of X. Let A = (ai)i∈I be a sequence of elements of S (X). Draw an
oriented 2-dimensional CW-complex with the set of 0-cells X in which for every
cycle (x1, x2, . . . , xn) of every permutation ai we have a 2-cell with the vertices
x1, x2, . . . , xn so that their order on the boundary of the cell and in the cycle of
the permutation coincide. We label each cycle by the corresponding permutation.
Two different 2-cells are not allowed to have common 1-cells.

The constructed CW-complex is called the cycle diagram of the sequence A and
is denoted D(A). For example, Figure 1 shows the cycle diagram for X = {1, 2, 3, 4}
and A = {(12)(34), (1234), (123)}.

Definition 2.1. A sequence A of elements of S (X) is said to be dendroid if its
cycle diagram D(A) is contractible.

Note that if A is dendroid, then only trivial cycles can appear twice as cycles of
elements of A. In particular, only the trivial permutation can appear more than
once in the sequence A. Moreover, any two cycles of A are either disjoint (hence
commute) or have only one common element.

See Figure 2 for all possible types of cycle diagrams of dendroid sets of permu-
tations of X for |X| ≤ 5. We do not show there the trivial cycles.

Proposition 2.1. Let A be a sequence of elements of S (X) generating a transitive
subgroup. Denote by N the total number of cycles of the elements of A (including
the trivial ones).

Then the sequence A is dendroid if and only if

N − 1 = |X| · (|A| − 1).
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Here and later |A| denotes the length of the sequence A (the size of the index
set).

Proof. Choose a point in each face of the cycle diagram D(A) and replace each face
by a star, i.e., by the graph connecting the chosen point with the vertices of the
face. The obtained one-dimensional complex Γ is homotopically equivalent to the
diagram D(A), hence the sequence is dendroid if and only if the graph Γ is a tree.
The graph Γ has |X|+N vertices and |X| · |A| edges (every permutation contributes
|X| edges). It is well known that a graph is a tree if and only if it is connected
and the number of vertices minus one is equal to the number of edges. Hence, A is
dendroid if and only if D(A) is connected and |X|+N − 1 = |X| · |A|. �

Corollary 2.2. Let A = (ai ∈ S (X))i∈I be a dendroid sequence. Suppose that the
sequence B = (bi ∈ S (X))i∈I is such that bi is conjugate to ai or to a−1

i in S (X)
for every i ∈ I and that the permutations bi generate a transitive subgroup of S (X).
Then B is also dendroid.

Proof. The numbers of cycles in A and B are the same and |A| = |B|. �

Corollary 2.3. Let A = (a1, a2, . . . , am) be a dendroid sequence. Then the se-
quences (a−1

1 , a2, . . . , am) and (ag
1, a2, . . . , am) for g ∈ 〈a2, . . . , am〉 are dendroid.

Proposition 2.4. Suppose that a1, a2, . . . , am is a dendroid sequence of elements
of S (X). Then the product a1a2 · · ·am is a transitive cycle.

Proof. It is sufficient to prove the proposition for the case when each ai is a cycle,
since we can replace ai by the sequence of its cycles without changing the cycle
diagram.

Suppose that two cycles (x1, x2, . . . , xn) · (y1, y2, . . . , ym) have only one common
point, i.e., |{x1, x2, . . . , xm} ∩ {y1, y2, . . . , ym}| = 1. Without loss of generality we
may assume that ym = x1. Then

(ym, x2, . . . , xn) · (y1, y2, . . . , ym) = (y1, y2, . . . ym−1, x2, . . . , xn, ym).

Thus, product of two cycles having one common point is a cycle involving the
union of the points moved by the cycle. This finishes the proof, since any two cycle
in a dendroid sequence of permutations have at most one common point. If two
cycles are disjoint, then they commute; if we replace two cycles having a common
point by their product, which is a cycle on their union, then we will not change the
homotopy type of the cycle diagram. �

Corollary 2.5. Suppose that A = (a1, a2, . . . , am) is a dendroid sequence and let

(ai1,1
, . . . ai1,k1

), (ai2,1
, . . . , ai2,k2

), . . . , (ail,1
, . . . , ail,kl

)

be any partition of the sequence A into disjoint sub-sequences. Then the sequence
of products

(ai1,1
· · ·ai1,k1

, ai2,1
· · · ai2,k2

, . . . , ail,1
· · · ail,kl

)

is dendroid.

Proof. By Proposition 2.4 the sets of vertices of the connected components of the
cycle diagram of (aij,1

, . . . , aij,kj
) are exactly the sets of vertices of the cycles of

the product aij,1
· · · aij,kj

, hence the cycle diagrams of A and of the sequence of

products are homotopically equivalent. �
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3. Automorphisms of rooted trees and bimodules

3.1. Rooted trees. A rooted tree is a tree T with a fixed vertex, called the root
of the tree. We consider only locally finite trees.

The level number n (or the nth level) of a rooted tree T is the set of vertices on
distance n from the root. The set of vertices of T is then a disjoint union of its
levels L0, L1, . . ., where the 0th level contains only the root. Two vertices may be
connected by an edge only if they belong to consecutive levels.

We say that a vertex u is below a vertex v if the path from the root to u passes
through v. The set of vertices below v together with v as a root form a rooted
subtree Tv.

An automorphism of a rooted tree T is an automorphism of the tree T fixing the
root. Every automorphism of a rooted tree preserves the levels.

A group acting on a rooted tree is said to be level transitive if it is transitive on
the levels of the tree. A level-homogeneous rooted tree is a rooted tree admitting a
level transitive automorphism group.

A level-homogeneous rooted tree is uniquely determined, up to an isomorphism
of rooted trees, by its spherical index (d1, d2, . . .), where d1 is degree of the root
and dk + 1 is the degree of a vertex of the kth level for k ≥ 2. In other words, dk is
the number of vertices of the kth level adjacent to a common vertex of the (k−1)st
level.

For a given sequence κ = (d1, d2, . . .) a rooted tree with spherical index κ can
be constructed as a tree of words in the following way. Choose a sequence of finite
sets (alphabets) X = (X1, X2, . . .) such that |Xk| = dk. The nth level of the tree of
words X

∗ is equal to

X
n = X1 ×X2 × · · · ×Xn = {x1x2 . . . xn : xk ∈ Xk},

so that X
∗ =

⊔

k≥0 X
k. Here X

0 consists of a single empty word ∅, which will be
the root of the tree X

∗.
We connect two words v ∈ X

n and u ∈ X
n+1 if and only if u is a continuation of

v.
If X is a finite alphabet, then the regular tree X

∗ is defined as above for the
constant sequence (X,X, . . .), i.e., X

∗ is the set of all finite words over the alphabet
X (in other terms, it is the free monoid generated by X).

For an arbitrary rooted tree T the boundary ∂T is the set of simple infinite paths
in T starting in the root. By ∂Tv we denote the subset of paths passing through a
given vertex v. The set of subsets ∂Tv for all vertices v of T is a basis of a natural
topology on ∂T .

If T is a tree of words X
∗ over a sequence of alphabets (X1, X2, . . .), then the

boundary ∂X
∗ is naturally identified with the direct product

X
ω = X1 × X2 × · · · .

For more on groups acting on rooted trees and related notions, see [GNS00,
Sid98, Nek05].

3.2. Permutational bimodules. Let G be a level-transitive automorphism group
of a rooted tree T . Let v be a vertex of the nth level Ln of T and let Gv be the
stabilizer of v in G. The subtree Tv is invariant under Gv. Denote by G|v the
automorphism group of Tv equal to the restriction of the action of Gv onto Tv.
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Since we assume that G is level transitive, the conjugacy class of Gv in G, and
hence the isomorphism class of the action of G|v on Tv depend only on the level of
the vertex v and do not depend on the choice of v.

Denote by M∅,v the set of isomorphisms φ : Tv −→ Tu for u ∈ Ln induced by
the action of an element g ∈ G (different u give different elements of M∅,v).

Note that for every φ ∈M∅,v and g ∈ G|v the composition φ · g belongs to Mv,
since g is an automorphism of Tv induced by the action of an element of G.

Similarly, for every g ∈ G the composition g · φ (restricted to Tv) is an element
of M∅,v. It is easy to see that in this way we get a right action of G|v and a left
action of G on M∅,v and that these actions commute.

Note that the right action of G|v on M∅,v is free, i.e., that φ · g = φ implies that
g is trivial, and that two elements φ1 : Tv −→ Tu1

and φ2 : Tv −→ Tu2
belong to

one G|v-orbit if and only if u1 = u2.
Let us formalize the obtained structure in the following definition.

Definition 3.1. Let G and H be groups. A permutational (G−H)-bimodule is a
set M with a left action ofG and right action ofH , which commute. More explicitly,
we have maps G ×M −→ M : (g, x) 7→ g · x and M × H −→ M : (x, h) 7→ x · h
satisfying the following conditions:

(1) 1 · x = x · 1 = x for all x ∈M;
(2) g1 · (g2 ·x) = (g1g2) ·x and (x ·h1) ·h2 = x · (h1h2) for all x ∈M, g1, g2 ∈ G

and h1, h2 ∈ H ;
(3) (g · x) · h = g · (x · h) for all x ∈M, g ∈ G and h ∈ H .

A covering bimodule is a bimodule in which the right group action is free and
has a finite number of orbits.

We have seen that M∅,v is a covering permutational (G − G|v)-bimodule. In
general, if v1, v2 are vertices of T such that v2 is below v1, then Mv1,v2

is the (G|v1
−

G|v2
)-bimodule consisting of the isomorphisms Tv2

−→ Tu induced by elements of
G|v1

(or, equivalently, of Gv1
).

We will say that M is a G-bimodule if it is a (G−G)-bimodule.

Definition 3.2. Two (G−H)-bimodules M1 and M2 are isomorphic if there exists
a bijection F : M1 −→M2 which agrees with the actions, i.e., such that

F (g · x · h) = g · F (x) · h

for all g ∈ G, x ∈M and h ∈ H .

3.3. Tensor products and bases.

Definition 3.3. Let M1 and M2 be a (G1 − G2)-bimodule and a (G2 − G3)-
bimodule, respectively. Then the tensor product M1 ⊗M2 = M1 ⊗G2

M2 is the
(G1−G3)-bimodule equal as a set to the quotient of M1×M2 by the identification

x1 ⊗ g · x2 = x1 · g ⊗ x2

for x1 ∈M1, x2 ∈M2, g ∈ G2. The actions are defined by the rule

g1 · (x1 ⊗ x2) · g3 = (g1 · x1)⊗ (x2 · g3)

for gi ∈ Gi and xi ∈Mi.

It is an easy exercise to prove that M1⊗M2 is a well defined (G1−G3)-bimodule.
Moreover, if M1 and M2 are covering bimodules, then M1 ⊗M2 is also a covering
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bimodule. It is also not hard to prove that tensor product of bimodules is an
associative operation, i.e., that (M1 ⊗M2) ⊗M3 is isomorphic to M1 ⊗ (M2 ⊗
M3), where the isomorphism is induced by the natural identification of the direct
products of sets.

Proposition 3.1. Let v1 and v2 be vertices of T such that v2 is below v1. Then
the bimodule M∅,v2

is isomorphic to M∅,v1
⊗Mv1,v2

.

Proof. Let φ1 : Tv1
−→ Tu1

and φ2 : Tv2
−→ Tu2

be elements of M∅,v1
and Mv1,v2

.
Then u2 is below v1, since φ2 is restriction of an element of Gv1

onto Tv2
⊂ Tv1

.
Define

F (φ1 ⊗ φ2) = φ1 ◦ φ2 : Tv2
−→ Tφ1(u2).

Since both φ1 and φ2 are restrictions of elements of G, the isomorphism F (φ1 ⊗
φ2) belongs to M∅,v2

. We leave to the reader to prove that F is a well defined
bijection preserving the actions. �

Corollary 3.2. Let ∅, v1, v2, . . . be a path in the tree T starting at the root, such
that vn belongs to the nth level of T . Denote Gn = G|vn

(called nth upper com-
panion group in [Gri00]). Then the (G−Gn)-bimodule M∅,vn

is isomorphic to the
tensor product

M∅,v1
⊗Mv1,v2

⊗ · · · ⊗Mvn−1,vn
.

In particular, the action of G on the nth level of the tree T is conjugate with the
action of G on the right Gn-orbits of this tensor product.

Covering bimodules can be encoded symbolically using the notion of a basis of
the bimodule.

Definition 3.4. Let M be a covering (G−H)-bimodule. A basis of M is an orbit
transversal for the right H-action, i.e., a set X ⊂M such that every H-orbit of M

contains exactly one element of X.

If X is a basis of M, then every element of M can be written uniquely as x · h
for some x ∈ X and h ∈ H .

Then for every g ∈ G and x ∈ X there exists a unique pair y ∈ X, h ∈ H such
that

g · x = y · h.

If X1 and X2 are bases of the bimodules M1 and M2, respectively, then the set
X1 ⊗ X2 = {x1 ⊗ x2 : x1 ∈ X1, x2 ∈ X2} is a basis of the bimodule M1 ⊗M2 (see
Proposition 2.3.2 of [Nek05]).

By induction, if Mi for i = 1, 2, . . . is a (Gi−1−Gi)-bimodule, and Xi is its basis,
then

X1 ⊗ X2 ⊗ · · · ⊗ Xn ⊂M1 ⊗M2 ⊗ · · · ⊗Mn

is also a basis of the (G0 −Gn)-bimodule M1 ⊗ · · · ⊗Mn.
If the sequence X = (X1,X2, . . .) of bases is fixed, then we denote by X

n the basis
X1 ⊗ · · · ⊗ Xn and by X

∗ the disjoint union of X
n for n ≥ 0. Here X

0 contains only
one element ∅ with the property ∅ ⊗ v = v for all v ∈ X

∗. We will often write
elements x1 ⊗ x2 ⊗ · · · ⊗ xn ∈ X

n just as words x1x2 . . . xn.
Then every element of the bimodule M1 ⊗ · · · ⊗Mn can be uniquely written in

the form v · h for v ∈ X
n and h ∈ Gn. In particular, for any v ∈ X

n and every
g ∈ G0 there exist a unique u ∈ X

n and h ∈ Gn such that

g · v = u · h.
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We denote u = g(v) and h = g|v. We have then the following properties, which are
easy corollaries of the definitions:

g1(g2(u)) = (g1g2)(u), 1(u) = u,

g(u⊗ v) = g(u)⊗ g|u(v).

Consequently, we get in this way a natural action of G0 on the rooted tree X
∗.

The natural action of G0 on X
∗ does not depend, up to a conjugacy of the actions,

on the choice of the bases Xi. The most direct way to see this is to note that this
action coincides with the natural action of G0 on the set

⊔

n≥0 M1 ⊗ · · · ⊗Mn/Gn

of the right orbits of the tensor product bimodules. An orbit is mapped by the
conjugacy to the unique element of X

∗ contained in it. For more on the tree of
right orbits see [Nek07b].

3.4. Wreath recursions. Let M be a covering (G − H)-bimodule and let X be
its basis. Then for every g ∈ G and x ∈ X there exist unique elements h ∈ H and
y ∈ X such that

g · x = y · h.

Recall that we denote y = g(x) and h = g|x.
For a fixed g ∈ G we get then a permutation σg : x 7→ g(x) of X induced by g

and a sequence of sections (g|x)x∈X. For g1, g2 ∈ G we have σg1g2
= σg1

σg2
and

(g1g2)|x = g1|σg2
(x)g2|x.

Hence we get a homomorphism from G to the wreath product S (X) oH = S (X) n

HX:

ψ : g 7→ σg(g|x)x∈X,

since the elements of the wreath product are multiplied by the rule

σ1(gx)x∈X · σ2(hx)x∈X = σ1σ2(gσ2(x)hx)x∈X.

We call the homomorphism ψ the wreath recursion associated with the bimodule
M and the basis X.

We will usually order the basis X = {x1, x2, . . . , xd} and write the elements of
the wreath product as sequences

σ(gx)x∈X = σ(gx1
, gx2

, . . . , gxd
),

thus implicitly identifying the wreath product S (X) o H with S (d) o H (where
S (d) = S ({1, 2, . . . , d})).

If we change the basis X, then we compose the wreath recursion with an inner
automorphism of the group S (d) oH . More explicitly, if Y = {y1, . . . , yd} is another
basis of M, then yi = xπ(i) · hi for some π ∈ S (d) and hi ∈ H . Then the wreath
recursions ψX and ψY are related by

ψY(g) = α−1ψX(g)α,

where α = π(h1, h2, . . . , hd), see Proposition 2.3.4 of [Nek05] and Proposition 2.12
of [Nek07b].

In particular, conjugation of all coordinates of HX in the wreath product by an
element of the group H is equivalent to a change of the basis of the bimodule.

If G is a finitely generated group, then the wreath recursion, and hence the
bimodule, are determined by a finite number of equations of the form

gi = σi(h1,i, h2,i, . . . , hd,i),
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where {gi} is a finite generating set of G and hj,i are elements of H . Equations of
this form is the main computational tool in the study of coverings using iterated
monodromy groups.

3.5. Automata. Permutation bimodules and wreath recursions can be encoded by
automata. We interpret equalities

g · x = y · h

in a bimodule as a work of an automaton, which being in a state g and reading an
input letter x, gives on the output the letter y and goes to the state h, ready to
process further letters.

More formally, we adopt the following definition.

Definition 3.5. An automaton over the alphabet X is a set of internal states A
together with a map

τ : A× X −→ X×A.

For a ∈ A and x ∈ X, the first and second coordinates of τ(a, x) as functions from
A× X to X and A are called the output and the transition functions, respectively.

If M is a covering G-bimodule and X is a basis of M, then the associated au-
tomaton A(G,X,M) is the automaton with the set of internal states G, defined
by

τ(g, x) = (y, h), iff g · x = y · h,

i.e., by

τ(g, x) = (g(x), g|x).

We will use similar notation for all automata, so that for a state q and a letter
x we have

τ(q, x) = (q(x), q|x),

i.e., q(x) denotes the value of the output function and q|x denotes the value of the
transition function.

We will also usually write

g · x = y · h

instead of

τ(g, x) = (y, h).

Automata are conveniently described by their Moore diagrams. It is an oriented
graph with the set of vertices equal to the set A of internal states of the automaton.
For every pair q ∈ A and x ∈ X there is an arrow going from q to q|x labeled by
the pair (x, q(x)).

We will need to deal also with the (G−H)-bimodules for different groups G and
H . Therefore, we will also use the following generalized notion.

Definition 3.6. An automaton over alphabet X is given by its input set A1, output
set A2 and a map

τ : A1 × X −→ X×A2.

We also use the notation q(x) for the first coordinate of τ(q, x) and q|x for the
second coordinate of τ(q, x).

Definition 3.7. An automaton is called a group automaton if for every element a
of the input set the transformation x 7→ a(x) of the alphabet is a permutation.
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We assume implicitly that the input and the output sets of a group automaton
contain special trivial states denoted 1 with the property that

1 · x = x · 1

for all letters x of the alphabet.
Perhaps it would be less confusing to dualize Definition 3.6 and say that X, A1

and A2 are the set of internal states, input and output alphabets, respectively. But
since we think of the groups acting on words, and not words acting on groups, we
stick to terminology of Definition 3.6.

Moore diagrams is not an appropriate way of describing such generalized au-
tomata. Therefore, we will usually describe them using dual Moore diagrams. It is
a directed graph with the set of vertices X in which for every x ∈ X and q in the
input set there is an arrow from x to q(x) labeled by (q, q|x).

Products of automata correspond to tensor products of bimodules and are de-
scribed in the following way.

Definition 3.8. Let A1 and A2 be automata over the alphabets X1 and X2, input
sets A1 and A2, output sets A2 and A3, respectively. Their product A1 ⊗A2 is the
automaton over the alphabet X1×X2 with the input set A1 and the output set A2,
with the output and transition functions given by the rules

q1(x1, x2) = (q1(x1), q1|x1
(x2))

and

q1|(x1,x2) = (q1|x1
) |x2

.

Product of automata is different from the dual notion of composition, which is
defined only for automata with coinciding input and output sets. Namely, if A1

and A2 are automata over the alphabet X with the sets of internal states A1 and
A2, respectively, then their composition is the automaton with the set of internal
states A1 × A2 over the alphabet X in which the output and transition functions
are defined by the rules

(q1, q2)(x) = q1 (q2(x))

and

(q1, q2)|x =
(

q1|q2(x), q2|x
)

.

Definition 3.9. Let A1,A2, . . . be a sequence of group automata over alphabets
X1, X2, . . ., respectively. Suppose that Ai has input set Ai−1 and output set Ai.
Then the action of A0 on X

∗, for X = (X1, X2, . . .), is the action defined on the
nth level X

n =
∏n

i=1Xi of X
∗ as the action of the input set A0 of the product

automaton A1 ⊗A2 ⊗ · · · ⊗ An on its alphabet X
n.

It is not hard to see that the action defined by a sequence of automata is an
action by automorphisms of the rooted tree X

∗.

3.6. Hyperbolic and sub-hyperbolic bimodules.

Definition 3.10. Let M be a covering G-bimodule and let X be its basis. We say
that the bimodule M is hyperbolic if there exists a finite set N ⊂ G such that for
every g ∈ G there exists n0 ∈ N such that g|v ∈ N whenever v ∈ X

n and n ≥ n0.
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It is proved in [Nek05] (Corollary 2.11.7) that the property of being hyperbolic
does not depend on the choice of the basis X (though the set N does).

If the group G is finitely generated, then hyperbolicity can be expressed in terms
of a uniform contraction of the length of the group elements under restriction.

Definition 3.11. Let G be a finitely generated group and let l(g) denote the word
length of g ∈ G with respect to some fixed finite generating set of G (i.e., the
minimal length of a representation of g as a product of the generators and their
inverses).

Then the number

ρ = lim sup
n→∞

n

√

lim sup
l(g)→∞

max
v∈Xn

l(g|v)

l(g)

is called the contraction coefficient of the bimodule M (with respect to the basis
X).

It is not hard to prove that the contraction coefficient does not depend on the
choice of the generating set. It is also proved in [Nek05] (Proposition 2.11.11) that
it does not depend on the basis X, if ρ < 1. Moreover, the following holds

Proposition 3.3. The bimodule M is hyperbolic if and only if its contraction co-
efficient is less than 1.

It is possible that the action of G on X
∗ associated with M is not faithful. Then

the kernel K of the action is uniquely determined as the maximal subgroup with
the property that it is normal and if g ·x = y ·h for x, y ∈M and g ∈ K, then h ∈ K.
Then the set M/K of the right K-orbits of M is naturally a G/K-bimodule such
that the action of G/K on the tree X

∗ is faithful (and coincides with the action of
G/K on X

∗ induced by G). The G/K-bimodule M/K is called the faithful quotient
of the bimodule M.

Definition 3.12. A bimodule is said to be sub-hyperbolic if its faithful quotient is
hyperbolic.

In general, we say that a normal subgroup N C G is M-invariant, if g|x ∈ N
for all g ∈ N and x ∈ X. This property does not depend on the choice of X. The
kernel of the induced action on X

∗ is the maximal M-invariant normal subgroup.
If N is a normal M-invariant subgroup, then the set M/N of the right N -orbits is
naturally a G/N -bimodule. It is easy to see that if M is hyperbolic, then M/N is
also hyperbolic and that the faithful quotient of M/N coincides with the faithful
quotient of M. Consequently, we have the following version of the definition of a
sub-hyperbolic bimodule.

Proposition 3.4. A G-bimodule M is sub-hyperbolic if and only if there exists a M-
invariant normal subgroup N CG such that the G/N -bimodule M/N is hyperbolic.

Examples. If f is a hyperbolic post-critically finite rational function, then the
bimodule Mf over the fundamental group of the sphere minus the post-critical set
is hyperbolic. For the definition of Mf see Subsection 5.2. It follows from uniform
expansion of f on a neighborhood of the Julia set of f , which does not contain the
post-critical points.

On the other hand, if f is sub-hyperbolic, then Mf is hyperbolic only as a
bimodule over the fundamental group of the associated orbifold. The bimodule over
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the fundamental group of the punctured sphere is sub-hyperbolic. For more on the
bimodules associated with post-critically finite rational functions, see Section 6.4
of [Nek05].

4. Dendroid automata

4.1. Dendroid sets of automorphisms of a rooted tree.

Definition 4.1. A sequence (a1, a2, . . . , am) of automorphisms of a rooted tree
T is said to be dendroid if for every n the sequence of permutations defined by
(a1, a2, . . . , am) on the nth level of T is dendroid.

If A = (a1, a2, . . . , am) is a dendroid sequence of automorphisms of a rooted tree
T , then it generates a level-transitive subgroup of Aut (T ). Consequently, the tree
T is spherically homogeneous.

We will assume that A does not contain trivial automorphisms of T . Then all
elements of A are different, and we may consider it as a set.

Denote by Dn the cycle diagram of the action of the sequence A on the nth level
Ln of the tree T . We say that an oriented edge e of Dn corresponds to ai ∈ A if it
is an edge of a 2-cell corresponding to a cycle of ai.

If γ = (e1, e2, . . . , ek) is a path in the 1-skeleton of Dn (we are allowed to go
against the orientation), then we denote by π(γ) the element gkgk−1 . . . g1, where gi

is the element of A corresponding to the edge ei, if we pass it along the orientation;
and its inverse, if we go against the orientation. In particular, if e is an oriented
edge of Dn, then π(e) is the corresponding element of A.

Proposition 4.1. Let A = {a1, a2, . . . , am} be a dendroid set of automorphisms of
a rooted tree T generating a group G < Aut (T ). Then for every vertex v of T the
group G|v is also generated by a dendroid set.

Recall, that G|v is restriction of the action of the stabilizer Gv on the sub-tree
Tv.

Proof. The stabilizer Gv of v in G is generated by π(γ), where γ runs through a
generating set of the fundamental group of the 1-skeleton of the cycle diagram Dn

of the action of A on the nth level Ln of T .
Choose one edge in each 2-cell of Dn. Let E be the set of chosen arrows (called

marked edges). Let D′
n be the union of non-marked edges. It is a spanning tree of

the 1-skeleton of Dn.
For every edge e ∈ E let γe be the path going from v to the beginning of e

through edges belonging to D′
n, then along e and then back to v using only the

edges from D′
n. Since D′

n is a tree, this description gives a unique automorphism
π(γe) of T .

It is well known that then the set of the loops {γe}e∈E is a free generating set
of the fundamental group of the 1-skeleton of Dn. Hence the elements of the form
π(γe) give a generating set of Gv.

Let us denote by be the restriction of π(γe) onto the sub-tree Tv. Then {be}e∈E

is a generating set of G|v. Let us prove that it is dendroid.
Let Lm be a level of T below the level Ln of v. Denote by Dm the cycle diagram

of the action of A on Lm.
The 1-skeleton of Dm covers the 1-skeleton of Dn by the natural map Lm −→ Ln

sending a vertex v to its ancestor (i.e., to the vertex of Ln below which v is). Let



14 VOLODYMYR NEKRASHEVYCH

Figure 3.

D′′
m be the inverse image of D′

n under this covering map. Since D′
n is a tree, the

graph D′′
m is a disjoint union of |Lm|/|Ln| trees, which are mapped isomorphically

onto D′
n by the covering. In particular, every connected component of D′′

m contains
exactly one vertex, which is below v. We get hence a natural bijection between the
set of connected components of D′′

m and Tv ∩ Lm.
For every e ∈ E and every connected component C of D′′

m there exists exactly
one preimage of e in Dm starting in a vertex v1 of C and exactly one preimage
ending in a vertex v2 of C, since the projection Dm −→ Dn is a covering of the
1-skeletons. The vertex v2 is connected to the vertex v1 by a directed chain of edges
belonging to C and corresponding to the same element of A as e does, since e must
belong to a cycle.

It follows from the definition of the generators γe that the inverse images of
the edges e ∈ E connect the components of D′′

m exactly in the same way as the
generators be act on Tv ∩ Lm (if we identify the components with the vertices of
Tv ∩ Lm that they contain).

Contract the components of D′′
m in Dm to points. We will obtain a CW-complex

homotopically equivalent to Dm, i.e., contractible. Every preimage of e ∈ E in Dm

belongs to boundary of a disc, which after contraction becomes a disc corresponding
to a cycle of be. Hence the obtained CW-complex is isomorphic to the cycle diagram
of {be}e∈E and is contractible. �

Note that some of the generators be from the proof may be trivial. In this case
we can remove them from the generating set.

Let us call the generating set {be}e∈E (with trivial elements removed) the induced
generating set of G|v.

The induced generating set of G|v depends on the choice of marked edges, how-
ever, it is not hard to see that the conjugacy classes in Aut (Tv) of its elements
depend only on A.

In particular, the cardinality of the induced generated set depends only on A
and the level number of v. It can be also found in the following way.

Definition 4.2. A support of a group H < Aut (T ) is the set of vertices v ∈ T
such that the stabilizer Hv acts non-trivially on the sub-tree Tv.

It is easy to see that the support of a group H is a sub-tree containing the root
of the tree.

Definition 4.3. We call a cycle of the action of an automorphism a ∈ Aut (T ) on
vertices active if it is contained in the support of 〈a〉.
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Proposition 4.2. Let A ⊂ Aut (T ) be a dendroid set and let G = 〈A〉 be the group
it generates. The cardinality of the induced generating set of G|v is equal to the
sum over a ∈ A of the number of active cycles of a on the level of v.

Proof. Let x1, x2, . . . , xk be a cycle of the action of a ∈ A on the level of v. If ak

acts trivially on the subtrees Txi
, then the vertices xi do not belong to the support

of 〈a〉 and also the corresponding generator be of G|v will be trivial, since it is
conjugate to the restriction of ak onto Tv. Otherwise, if be is not trivial, then the
action of ak on the subtrees Txi

will be conjugate to be, and thus non-trivial. In
this case the points xi will belong to the support of 〈a〉. �

4.2. Dendroid automata. Let A = {a1, a2, . . . , an} be a dendroid set of auto-
morphisms of a rooted tree T . Denote by Dn the cycle diagram of the action of
A on the nth level Ln of T . Recall, that a marking of Dn is a set E of (marked)
edges containing exactly one edge from the boundary of every 2-cell.

Choose a vertex v ∈ Ln of Dn. Our aim is to describe the bimodule M∅,v.
Denote, for u ∈ Ln, by γv,u a path in Dn from v to u not containing marked

edges. Let hu = π(γv,u). The automorphisms hu does not depend on the choice of
γv,u, since the complement D′

n of the set of marked edges is a spanning tree of the
1-skeleton of Dn.

Denote by xu : Tv −→ Tu the element of M∅,v equal to the restriction of hu

onto the sub-tree Tv. The set {xu}u∈Ln
is a basis of the bimodule M∅,v.

Let us describe now the bimodule M∅,v with respect to the basis X = {xu}u∈Ln
,

the generating set A = {a1, . . . , am} of G and the induced generating set {be}e∈E

of G|v, constructed in the proof of Proposition 4.1.
Recall that be is the restriction of h−1

r(e)π(e)hs(e) onto Tv, where s(e) is the be-

ginning and r(e) is the end of the edge e.
Let ai ∈ A and xu ∈ X be arbitrary. Denote by eai,xu

the edge of Dn starting in
u and corresponding to ai. If eai,xu

is not marked, then ai · hu = hai(u), hence

(4.1) ai · xu = xai(u).

If eai,xu
is marked, then beai,xu

= h−1
ai(u)aihu, hence

(4.2) ai · xu = xai(u) · beai,xu
.

Let us generalize the properties of the obtained automaton in the following def-
inition.

Definition 4.4. A group automaton with the set of states X, input set A and
output set B is said to be a dendroid automaton if the following conditions are
satisfied:

(1) The set of permutations defined by A on X is dendroid.
(2) For every b ∈ B there exists a unique pair a ∈ A, x ∈ X such that a ·x = y ·b

for some y ∈ X.
(3) For any cycle (x1, x2, . . . , xk) of the action of a ∈ A on X we have a · xi =

xi+1 · 1 for all but possible one index i. (Here indices are taken modulo k.)

We will draw the dual Moore diagram of dendroid automata as the cycle diagram
of A in which a cell is labeled by the corresponding element of A. If a · x = y · b for
a ∈ A and b ∈ B, then we label the edge from x to y corresponding to a by b ∈ B.
If a · x = y · 1, then we do not label the corresponding edge (since we typically
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Figure 4. A dendroid automaton

ignore trivial states). This labeled diagram completely describes the automaton. It
coincides (up to a different labeling convention) with its dual Moore diagram.

Condition (1) of Definition 4.4 is equivalent to contractibility of the diagram;
condition (2) means that every element b ∈ B appear exactly once as a label of
an edge; and condition (3) means that every 2-cell of the diagram has at most one
label of its boundary edge. See an example of a diagram of a dendroid automaton
on Figure 4.

By equations (4.1) and (4.2), the automaton describing the bimodule M∅,v with
respect to the basis {xu}u∈Ln

, the (input) generating set A and the (output) in-
duced generating set {be} is a dendroid automaton. The third condition follows
from the fact that every cycle of a has exactly one marked edge. (The element be
might be trivial, though).

Our aim now is to show that dendroid sets of automorphisms of a rooted tree
are exactly the sets defined by sequences of dendroid automata.

Proposition 4.3. Product of two dendroid automata is a dendroid automaton.

The proof of this proposition also gives a description of a procedure of construct-
ing the diagram of the product of dendroid automata.

Proof. The proof essentially coincides with the proof of Proposition 6.7.5 of [Nek05].
We rewrite it here, making the necessary changes.

Let A1 be a dendroid automaton over the alphabet X1, input set A1 and output
set A2. Let A2 be a dendroid automaton over X2 with input and output sets A2

and A3, respectively.
If we have a1 · x1 = y1 · 1 in A1, then a1 · x1x2 = y1x2 · 1 in A1 ⊗ A2. If

a1 · x1 = y1 · a2 in A2, then a1 · x1x2 = y1 · a2 · x2.
Consequently, the diagram of the automaton A1 ⊗ A2 can be described in the

following way.
Take |X2| copies of the diagram D1 of A1. Each copy will correspond to a letter

x2 ∈ X2 and the respective copy will be denoted D1x2. If x1 ∈ X1 is a vertex of
D1, then the corresponding vertex of the copy D1x2 will become the vertex x1x2

of the diagram of A1 ⊗A2.
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Figure 5. Diagram of A⊗A

Figure 6. A cell of the diagram of A1 ⊗A2

If we have an arrow labeled by a2 in the copy D1x2, (i.e., if we have a1 · x1 =
y1 · a2) then we detach it from its end y1x2 ∈ D1x2 and attach it to the vertex
y1a2(x2) ∈ D1a2(x2). If a2|x2

6= 1, then we label the obtained arrow by a2|x2
. The

rest of the arrows of
⊔

x2∈X2
D1x2 are not changed.

It is easy to see that in this way we get the diagram of A1 ⊗ A2. We see that
the copies of D1 are connected in the same way as the vertices of D2 are. See,
for example, in Figure 5 the diagram of A ⊗ A, where A is the automaton from
Figure 4.

It follows immediately that every element a3 ∈ X3 is a label of exactly one arrow
of the diagram of A1 ⊗A2.

Let us reformulate the procedure of construction of the diagram of A1 ⊗ A2

in a more geometric way. The diagram is obtained by gluing discs, correspond-
ing to the cells of D2, to the copies of D1 along their labeled edges. Namely, if
the edge (a1, x1) is labeled in D1 by a2 = a1|x1

and x2 ∈ X2 belongs to a cycle
(

x2, a2(x2), . . . , a
k−1
2 (x2)

)

of length k under the action of a2, then we have to take
a 2k-sided polygon and glue its every other side to the copies of the edge (a1, x1) in

the diagrams D1x2, D1a2(x2), . . . , D1a
k−1
2 (x2) in the given cyclic order. We will

glue in this way the k copies of a cell of D1 together and get a cell of the diagram
of A1 ⊗A2. See, for example, Figure 6, where the case k = 4 is shown. It is easy
to see that in this procedure is equivalent to the one described before.
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Figure 7. Products of dendroid automata

It follows that we can contract the copies of D1 in the diagram of A1 ⊗ A2 to
single points, and get a cellular complex homeomorphic toD2, which is contractible.
This proves that the diagram of A1 ⊗A2 is contractible.

We also see that every cell of this diagram has at most 1 labeled side, since the
labels come only from the attached 2k-sided polygons, whose sides are labeled in
the same way as the corresponding cell of D2. �

Theorem 4.4. A set A = {a1, . . . , am} is a dendroid set of automorphisms of T if
and only if there exists a sequence of automata An, n ≥ 1, and sequences of finite
sets Bn and Xn such that B0 = A and

• An is a dendroid automaton over alphabet Xn, input set Bn−1 and output
set Bn;
• the action of the elements ai on the rooted tree X

∗ =
⋃

n≥0X1 × · · · ×Xn

defined by the sequence of automata An is conjugate to the action of ai on
T .

In other words, all dendroid sets of automorphisms of a rooted tree are defined
taking products of kneading automata.

The actions defined by sequences of automata is described in Definition 3.9.

Proof. Sequence of dendroid automata define dendroid sets of automorphisms of a
rooted tree by Proposition 4.3.

On the other hand, we have seen in Proposition 4.2 that the automaton describ-
ing the bimodules M∅,v with respect to the basis xv and the generating set A is
a dendroid automaton with a dendroid output set B, which is the generating set
of 〈A〉|v. It follows now from Corollary 3.2 that the action of A on the tree T is
conjugate to the action defined by a sequence of dendroid automata. �

See on Figure 7 an example of products of a sequence of dendroid automata.
It shows two dendroid automata A1 and A2 over the binary alphabet and their
products A1⊗A1, A1⊗A1⊗A2 and A1⊗A1⊗A2⊗A1. We use colors “grey” and
“white” instead of letters to mark the cells and arrows of the dual Moore diagrams
(arrows are marked by dots near them). The diagrams of the products are shown
without marking of the edges and orientation.
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5. Backward polynomial iteration

5.1. Iterated monodromy groups. Let fn be a sequence of complex polynomials
and consider them as an inverse sequence of maps between complex planes:

C
f1
←− C

f2
←− C

f3
←− · · · .

We call such sequences backward iterations. More generally, we may consider back-
ward iterations of topological polynomials. Here a topological polynomial is a con-
tinuous map f : R2 −→ R2 which is an orientation preserving local homeomorphism
at all but a finite number of (critical) points of R2. For more on topological poly-
nomials, see [BFH92] and [BN06b].

A backward iteration (fn)n≥1 is said to be post-critically finite if there exists a
finite set P ⊂ C such that the set of critical values of the composition f1◦f2◦· · ·◦fn

is contained in P for all n. The smallest such set P is called the post-critical set of
the iteration.

Example 1. Every sequence (f1, f2, . . .) such that fi is either z2 or 1− z2 is post-
critically finite with post-critical set a subset of {0, 1}.

If the backward iteration f1, f2, . . . is post-critically finite, then the shifted iter-
ation f2, f3, . . . is also post-critically finite. Let us denote by Pn the post-critical
set of the iteration fn, fn+1, . . ..

Choose a basepoint t ∈ C \ P1 and consider the rooted tree of preimages

Tt = {t} t
⊔

n≥1

(f1 ◦ f2 ◦ · · · ◦ fn)−1(t),

where a vertex z ∈ (f1 ◦ f2 ◦ · · · ◦ fn)−1(t) is connected by an edge with the vertex
fn(z) ∈ (f1 ◦ f2 ◦ · · · ◦ fn−1)

−1(t) and the vertex t is considered to be the root.
The fundamental group π1(C \ P1, t) of the punctured plane acts on the tree

Tt by the monodromy action. The image of a point z ∈ (f1 ◦ f2 ◦ · · · ◦ fn)−1(t)
under the action of a loop γ ∈ π1(C \ P1, t) is the end of the unique lift of γ by
f1 ◦ f2 ◦ · · · ◦ fn starting at z. This is clearly an action by automorphisms of the
tree Tt. This action is called the iterated monodromy action.

The iterated monodromy group of the iteration f1, f2, . . . is the quotient of the
fundamental group by the kernel of the iterated monodromy action, i.e., the group
of automorphisms of Tt defined by the loops γ ∈ π1(C \ P1, t).

Example 2. This is a slight generalization of a construction due to Richard Pink
(see also [AHM05] and [BJ07]). Consider the field of rational functions C(t) and
the polynomial over C(t)

Fn(z) = f1 ◦ f2 ◦ · · · ◦ fn(z)− t.

Let Ωn be the splitting field of Fn in an algebraic closure of C(t). It is not hard
to see that Ωn+1 ⊃ Ωn. Denote by Ω the field

⋃

n≥1 Ωn. Then the Galois group of

the extension Ω/C(t) is isomorphic to the closure of the iterated monodromy group
of the iteration f1, f2, . . . in the automorphism group of the tree of preimages Tt

(see [Nek05] Proposition 6.4.2).

Definition 5.1. Let P = {z1, z2, . . . , zn} be a finite subset of the plane R2. A
planar generating set of the fundamental group π1(R

2 \ P, t) is a collection of
simple (i.e., without self-intersections) loops γi such that the region Γi bounded
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Figure 8. A planar generating set

by γi contains only one point zi of P , γi goes around the region in the positive
direction and Γi are disjoint for different i.

See Figure 8 for an example of a planar generating set of the fundamental group
of a punctured plane.

There exists a unique cyclic order γ1, γ2, . . . , γn on a planar generating set such
that the loop γ1γ2 · · · γn has no transversal self-intersections. We call this order the
natural cyclic order of the planar generating set.

Proposition 5.1. Let f1, f2, . . . be a post-critically finite backward iteration of topo-
logical polynomials. Let P be its post-critical set and let t ∈ R2 \ P be a basepoint.
Let {γz}z∈P be a planar generating set of π1(R

2 \P, t), where γz goes around z. Let
az be the corresponding elements of the iterated monodromy group of the backward
iteration. Then the set (az)z∈P of automorphisms of the tree of preimages Tt is
dendroid and generates the iterated monodromy group of the backward iteration.

Proof. The loops γz generate the fundamental group, hence the elements az gener-
ate the iterated monodromy group. Denote F = f1 ◦ f2 ◦ · · · ◦ fn. Let us prove that
the generators az define a dendroid set of permutations of the nth level F−1(t) of
the tree Tt.

Let ∆ =
⋃

z∈P Γz be the closed part of the plane bounded by the curves γz.
Then the set C \∆ contains no critical values of F and is a homeomorphic to the
cylinder. Consequently, the map F : F−1(C \ ∆) −→ C \ ∆ is a degF -covering.
In particular, F−1(C \∆) is also an annulus, hence the set F−1(∆) is contractible.
But it is easy to see that F−1(∆) is homeomorphic to the cycle diagram of the
action of the set (az)z∈P on the nth level F−1(t) of the tree Tt. Hence the set of
permutations of F−1(t) defined by (az)z∈P is dendroid. �

Consequently, the iterated monodromy group of any post-critically finite back-
ward iteration is defined by a sequence of dendroid automata, due to Theorem 4.4.

Example 3. Consider, as in Example 1, a backward iteration (f1, f2, . . .), where
fi(z) = z2 or fi(z) = 1 − z2 for every i. Then the iterated monodromy group is
defined by the sequence of automata (Ai1 ,Ai2 , . . .), where Aij

is the automaton A1

from Figure 7, if fi(z) = 1− z2 and A2 if fi(z) = z2.

Let us show that converse to Proposition 5.1 is also true.

Proposition 5.2. Let (a1, . . . , am) be a cyclically ordered dendroid set of automor-
phisms of a rooted tree T . Then there exists a post-critically finite backward iteration
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of complex polynomials f1, f2, . . . with post-critical set P = {z1, z2, . . . , zm}, a pla-
nar generating set {γi}i=1,...,m of π1(C \ P, t) with the natural order (γ1, . . . , γm)
(where γi goes around the point zi), and an isomorphism of T with the preimage
tree Tt conjugating the iterated monodromy action of the loops γi with the automor-
phisms ai.

Proof. Denote by Dn the cycle diagram of the sequence of permutations induced
by (a1, . . . , am) on the nth level Ln of the tree T . The product am · · ·a1 acts on
Ln as a transitive cycle by Proposition 2.4. Choose a vertex x ∈ Ln of Dn and
consider the path γn starting at x and passing along the arrows

e1, e2, . . . , em, em+1, em+2, . . . , em·|Ln|,

where ei is the edge corresponding to the action of ai, where the indices of ai are
taken modulo m. The path γn is closed and contains every arrow of Dn exactly
once.

Embed Dn into the plane so that γn is embedded as the path going around the
image of Dn in the positive direction (without transverse self-intersections). Choose
a point in each of the (images of the) 2-cells of Dn, which we will call centers.

The 1-skeleton of Dn+1 covers of the 1-skeleton of Dn by the map carrying
a vertex v ∈ Ln+1 to the adjacent vertex u ∈ Ln. This covering induces an
|Ln+1|/|Ln|-fold covering of the curve γn by the curve γn+1. Let us extend this
covering to a covering of the complement of the image of Dn in the plane by
the complement of the image of Dn+1, so that we get a covering of the union of
the complements with the images of the 1-skeletons of diagrams. We can then
extend this covering inside the image of the diagrams so that we get an orientation-
preserving branched covering of the planes, mapping Dn+1 onto Dn so that the
1-skeletons are mapped as before, while the branching points are the centers of the
2-cells of Dn+1 (not all centers must be branching points). We also require that
images of centers are centers. See a more explicit construction in Theorem 6.10.4
of [Nek05], which can be easily adapted to our more general situation.

We get in this way a sequence of branched coverings R2 f1
←− R2 f2

←− · · · with
embedded diagrams D0, D1, . . .. Note that D0 is a bouquet of m circles going
around m centers. The backward iteration f1, f2, . . . is post-critically finite with
the post-critical set equal to the set of centers of D0. The set of preimages of the
basepoint of D0 under f1 ◦ · · · ◦ fn is equal to the image of Ln ⊂ Dn. It follows
from the construction of the maps fi that the action of the loops of Dn on the tree
of preimages of the basepoint of D0 coincides with the action of the corresponding
elements ai.

It remains now to introduce a complex structure on the first plane and pull it
back by the branched coverings f1 ◦ · · · ◦ fn so that the maps fi become complex
polynomials. �

5.2. Bimodules associated with coverings. We multiply paths (in particular
in the fundamental groups) as functions: in a product γ1γ2 the path γ2 is passed
first.

Definition 5.2. Let P1, P2 ⊂ R2 be finite sets of points and let f : R2 −→ R2 be
a continuous map such that f : R2 \ f−1(P2) −→ R2 \ P2 is a d-fold covering and
f−1(P2) ⊇ P1. Denote Mi = R

2 \ Pi. We say that f is a partial covering of M2
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by (a subset of)M1. Choose a basepoint t2 ∈M2 and let t1 ∈ f−1(t2) be some of
its preimages.

The bimodule Mf associated with the covering f is the (π1(M2, t2)−π1(M1, t1))-
bimodule consisting of homotopy classes of paths in M2 starting in t1 and ending
in any point of f−1(t2). The right action π1(M1, t1) is appending the loop γ ∈
π1(M1, t1) at the beginning of the path ` ∈ Mf . The left action of π1(M2, t2) is
appending the f -lift of the loop γ ∈ π1(M2, t2) to the end of the path ` ∈Mf .

It is not hard to prove that the bimodule Mf does not depend (up to an iso-
morphism) on the choice of the basepoints t1 and t2, if we identify the respective
fundamental groups in the usual way using paths.

Moreover, if P1 = P2, then we may identify the fundamental groups π1(M1, t1)
and π1(M2, t2) by a path from t1 to t2, and assume that Mf is a π1(M)-bimodule,
where M = M1 = M2. The isomorphism class of the π1(M)-bimodule Mf will
not depend on the choice of the connecting path.

Note also that the bimodule Mf has free right action and that two elements be-
long to the same orbit of the right action if and only if the ends of the corresponding
paths coincide. Hence the number of the right orbits is equal to the degree of the
covering f . The induced left action of the group π1(M2, t2) on the right orbits co-
incides with the monodromy action on the fiber f−1(t2), if we identify orbits with
the corresponding endpoints.

Proposition 5.3. Let P1, P2, P3 ⊂ R2 be finite sets and let fi : R2 −→ R2 for
i = 1, 2 be branched coverings such that the set of critical values of fi is contained
in Pi and fi(Pi+1) ⊆ Pi for i = 1, 2. Let Mfi

be the bimodules associated with the
respective partial coverings fi of R2 \ Pi by a subset of R2 \ Pi+1.

Then the bimodule Mf1
⊗Mf2

is isomorphic to the bimodule Mf1◦f2
associated

with the partial covering of R2 \ P1 by a subset of R2 \ P3.

Proof. Denote Mi = R2 \ Pi and let the basepoints ti ∈ Mi be chosen so that
fi(ti+1) = ti. Then Mfi

consists of the homotopy classes of paths inMi+1 starting

in ti+1 and ending in a point from the set f−1
i (ti).

For `i ∈ Mfi
for i = 1, 2 be arbitrary elements. Then it is an easy exercise to

prove that the map

`1 ⊗ `2 7→ f−1
2 (`1)`2`2

is an isomorphism of bimodules, where f−1
2 (`1)`2 is the lift of `1 by f2 to a path

starting at the end of `2. �

Proposition 5.4. Let fn be a post-critically finite backward iteration of topological
polynomials. Let Pn be the post-critical set of the iteration fn, fn+1, . . .. Then the
iterated monodromy action of π1(R

2 \P1) is conjugate to the action associated with
the infinite tensor product Mf1

⊗Mf2
⊗ · · · .

Proof. The bimodule Mf1
⊗ · · · ⊗Mfn

is isomorphic to the bimodule Mf1◦···◦fn
,

hence the corresponding left action on the right orbits coincides with the mon-
odromy action associated with the covering f1 ◦ · · · ◦ fn. �

We have seen that the bimodules associated with dendroid sets of automorphisms
of a rooted tree can be put in a simple form of dendroid automata. Let us describe
how it is done for the bimodule Mf associated with a partial covering directly and
interpret the dendroid automata geometrically. The construction that we are going
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to describe is nothing more than just a translation of the proof of Proposition 4.1
in terms of paths and monodromy actions.

Let, as above P1, P2 be finite subsets of the plane and let f : R2 −→ R2 be an
orientation preserving branched covering such that P2 contains all critical values
of f and f(P1) ⊆ P2. Denote Mi = R

2 \ Pi and choose a basepoint t2 ∈ M2 and
f1 ∈ f−1(t2). Let Mf be the associated (π1(M2, t2)− π1(M1, t1))-bimodule.

Let γ1, . . . , γn be a planar generating set of π1(M2, t2), where γi goes around a
point zi ∈ P2.

The union of the preimages of γi under f is a oriented graph isomorphic to the 1-
skeleton of the cycle diagram of the monodromy action of the sequence γ1, γ2, . . . , γn

on the set f−1(t2). Every connected component of the total inverse image f−1(γi)
corresponds to a cycle of the monodromy action of γi and is a closed simple path
containing a unique point of f−1(P2). If this point belongs to P1, then we call
the component active. The topological disc bounded by a component of f−1(γi)
is called a cell. Every cell corresponds to a 2-cell of the cycle diagram of the
monodromy action.

Choose one lift ei of γi in each active component of f−1(γi) and call the chosen
arcs marked. The choice of the marked paths (together with the choice of the
generators γi) determine a basis of Mf and a generating set of π1(M1, t1) with
respect to which it is given by a dendroid automaton. Namely, for z ∈ P1 define
γ′z as the loop going along unmarked paths of f−1(γ1γ2 · · · γn) to the beginning
of the marked path e of the component containing z, then going back to t1 along
unmarked paths. Since the union of unmarked paths is contractible in M1, this
description defines γ′z ∈ π1(M1, t1) uniquely. It is also easy to see that the loops
γ′z generate freely the fundamental group π1(M1, t1).

For every t ∈ f−1(t2) the corresponding element xt of the basis of Mf is the
path connecting t1 to t along the unmarked paths of f−1(γ1γ2 · · · γn).

The following proposition is checked directly.

Proposition 5.5. The recursion defined by the generating sets γi, γ
′
z and the basis

xt is given by a dendroid automaton. The generating set {γ′z} of π1(M1, t1) is
planar.

5.3. Cyclically ordered dendroid automata. Let A be a dendroid automaton
over the alphabet X with the input set A and output set B. Let D be the dual
Moore diagram of A. Let (a1, a2, . . . , am) be a cyclic order on the input set A.
Dendroid automata with a cyclic order of the input set are called cyclically ordered.

It follows from Proposition 2.4 that the product a = am · · ·a2a1 of the permu-
tations of X defined by the states ai acts transitively on the alphabet X.

Let us denote by (ai, y) for y ∈ X the edge of D corresponding to ai and starting
in y. Pick a letter x ∈ X. Since the product a = am · · ·a2a1 is transitive on X, the
oriented edge path

(a1, x), (a2, a1(x)), . . . , (am, am−1 · · · a2a1(x))

(a1, a(x)), (a2, a1a(x)), . . . , (am, am−1 · · · a1a(x))

...

(a1, a
d−1(x)), (a2, a1a

d−1(x)), . . . , (am, am−1 · · · a1a
d−1(x)),
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where d = |X|, is a closed cycle containing every edge of D exactly once. Conse-
quently, the sequence of their labels

a1|x, a2|a1(x), . . . , am|am−1···a2a1(x)

a1|a(x), a2|a1a(x), . . . , am|am−1···a1a(x)

...

a1|ad−1(x), a2|a1ad−1(x), . . . , am|am−1···a1ad−1(x),

contains every element of the output set B of the dendroid automaton A once
(while the rest of its elements are trivial). Let (b1, b2, . . . , bk) be the cyclic order on
B of appearance in the above sequence. We call it the induced cyclic ordering of
the output set. The cyclic ordering of the induced generating set depends only on
the cyclic ordering of the original set (a1, a2, . . . , am). Note that different choice of
the initial letter x changes only the initial point of the sequence (b1, b2, . . . , bk), but
does not change the cyclic ordering.

Suppose that we have a sequence A1,A2, . . . of dendroid automata over a se-
quence of alphabets (X1, X2, . . .), such that Ai has an input set Ai−1 and output
set Ai. Then every cyclic order on A0 induced a cyclic order on the output set A1

of A1, which in turn induces a cyclic order on the output set A2 of A2 (since A1

is the input set of A1), and so on. Thus, every cyclic order on A0 induces cyclic
orders on each of the sets Ai.

We leave the proof of the following proposition to the reader.

Proposition 5.6. Let Mf be the (π1(M2), π1(M1))-bimodule of a partial covering
f of punctured planes. Let A = (γ1, γ2, . . . , γn) be a planar generating set of π1(M2)
in its natural order. Choose a marking of the inverse image of this generating set
and let A be the corresponding dendroid automaton. Then the cyclic ordering on
the output set of A induced by the natural ordering of A coincides with its natural
cyclic ordering as a planar generating set of π1(M1).

5.4. Action of the braid groups. Let us denote the set of all dendroid sequences
of length m of elements of Aut (T ) by ∆m(T ). If (a1, a2, . . . , am) ∈ ∆m(T ) and g
belongs to the group generated by {a1, . . . , am}, then the sequence (ag

1, a
g
2, . . . , a

g
m)

belongs to ∆m(T ) and generates the same group.
We also know that the map

βi : (a1, a2, . . . , ai, ai+1, . . . , am) 7→ (a1, a2, . . . , ai+1, a
ai+1

i , . . . , am)

is an invertible transformation of ∆m(T ) (by Corollary 2.3), which does not change
the group generated by the sequence.

The transformations βi satisfy the usual defining relations for the generators of
the braid group Bm on m strands, hence we get an action of Bm on ∆m(T ).

We will need the action of the braid group on dendroid sequence due to the
following fact.

Proposition 5.7. If (γ1, γ2, . . . , γn) and (δ1, δ2, . . . , δn) are planar generating sets
of the fundamental group of a punctured plane in their natural orders, then there
exists an element of the braid group α ∈ Bn and an element γ of the fundamental
group such that

(γγ
1 , γ

γ
2 , . . . , γ

γ
n)α = (δ1, δ2, . . . , δn).
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Proof. By a classical result, the braid group is the mapping class group of the n-
punctured disc. Conjugating by γ, we may achieve that (γ1γ2 · · · γn)γ = δ1δ2 · · · δn.
After that α is the braid representing the isotopy class of the homeomorphisms
mapping γγ

i to δi. �

6. Iteration of a single polynomial

6.1. Planar generating sets. Let f : R2 −→ R2 be a post-critically finite topo-
logical, so that the backward iteration (f, f, . . .) is post-critically finite. Let P be
the post-critical set of this iteration. Denote M = R2 \ P and let t ∈ M be an
arbitrary basepoint.

Consider a planar generating set {γz}z∈P of π1(M, t). Then construction of
Proposition 5.5 gives a basis {xp}p∈f−1(t) of Mf and the induced planar generating

set {γ′z}z∈P of the fundamental group π1(M, t1), where t1 ∈ f−1(t).
Let us identify the fundamental groups π1(M, t) and π1(M, t1) by a path, i.e.,

by the isomorphism

L : π1(M, t) −→ π1(M, t1) : γ 7→ `−1γ`,

where ` is a path starting at t1 and ending in t. This identification is well defined,
up to inner automorphisms of the fundamental groups.

After the identification by the isomorphism L the bimodule Mf becomes a bi-
module over one group. More formally, denote by Fn the free group with the
free generating set g1, g2, . . . , gn. Let us identify Fn with the fundamental group
π1(M, t) by the isomorphism φ0 : gi 7→ γzi

and with π1(M, t1) by the isomorphism
L ◦φ0. Then, by Proposition 5.7, (L ◦φ0)

−1(γ′zik
) = ggα

k for some g ∈ Fn and braid

α ∈ Bn < Aut (Fn). Composing the wreath recursion with an inner automorphism
of the wreath product S (d) o Fn, we may assume that g = 1.

Then the bimodule Mf is described by an ordered automaton with the input set
(g1, g2, . . . , gn) and the output set (g1, g2, . . . , gn)α. Here the ordering of the output
set is induced by the ordering of the input set and corresponds, by Proposition 5.6,
to the natural ordering of the respective planar generating set.

Definition 6.1. A twisted kneading automaton is a dendroid automaton with a
cyclically ordered input set (g1, . . . , gn) and output set (g1, . . . , gn)α for some α ∈
Bn.

Question 1. Is every bimodule given by a twisted kneading automaton sub-
hyperbolic.

The twisted kneading automaton comes with a cyclic orderings of the input and
output sets agreeing with the natural order on the corresponding planar generating
sets of the fundamental groups. The cyclic order on the output set coincides with
the order induced by the cyclic order on the input set (see Proposition 5.6).

For the definition of Thurston combinatorial equivalence of post-critically finite
branched coverings of the sphere, see [DH93].

Proposition 6.1. The twisted kneading automaton associated to the topological
polynomial f together with the cyclic order g1, g2, . . . , gn of the generators of Fn

uniquely determines the Thurston combinatorial class of the polynomial f .

Proof. The Proposition is a direct corollary of the following fact, which is Theo-
rem 6.5.2 of [Nek05].
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Theorem 6.2. Let f1, f2 be post-critically finite orientation preserving self-coverings
of the sphere S2 with post-critical sets Pf1

, Pf2
and let Mfi

, i = 1, 2, be the respec-
tive π1

(

S2 \ Pfi

)

-bimodules.
Then the maps f1 and f2 are combinatorially equivalent if and only if there exists

an isomorphism h∗ : π1

(

S2 \ Pf1

)

−→ π1

(

S2 \ Pf2

)

conjugating the bimodules
M(f1) and M(f2) and induced by an orientation preserving homeomorphism h :
S2 −→ S2 such that h (Pf1

) = Pf2
.

Here we say that an isomorphism conjugates the bimodules if the bimodules
become isomorphic if we identify the groups by the isomorphism. �

Of course, it would be nice to be able to find the simplest possible twisted
kneading automaton describing Mf . In particular, we would like to know if α can be
made trivial. We will call the generating set {γzi

} invariant (for a given marking), if
α = 1, i.e., if L(γzi

) = γ′zi
. In this case the twisted kneading automaton describing

the bimodule Mf is called a kneading automaton (see Section 6.7 of [Nek05]).
The following theorem is proved in [Nek05] (Theorems 6.8.3 and 6.9.1), where

more details can be found.

Theorem 6.3. If a post-critically finite polynomial f is hyperbolic (i.e., if every
post-critical cycle contains a critical point), then π1(M, t) has an invariant gener-
ating set for some choice of marking.

In general, if f is post-critically finite, then there exists n such that there exists
an invariant generating set of π1(M, t) for the nth iteration of f .

Sketch of the proof. The idea of the proof is to find an invariant spider of the
polynomial using external angles, i.e., a collection of disjoint curves pzi

connecting
the post-critical points to infinity such that

⋃

zi∈P f
−1(pzi

) contains
⋃

zi∈P pzi
(up

to homotopies). If we can find such a spider, then the generators γzi
are uniquely

defined by the condition that γzi
is a simple loop going around zi in the positive

direction and intersects only pzi
and only once.

Every active component of f−1(γzi
) will go around one post-critical point, and

hence will intersect only one path pzj
. The arc intersecting pzj

will be marked. It
is easy to show that the chosen generating set will be invariant with respect to the
given marking, if we identify π1(M, t) with π1(M, t1) by a path disjoint with the
legs (i.e., paths) of the spider.

If f is hyperbolic, then there exists an invariant spider constructed using “external-
internal” rays. In the general case there will be no way to choose an invariant col-
lection of external rays, but any such collection will be periodic, hence after passing
to some iteration of f , we may find an invariant spider. �

6.2. Example: quadratic polynomials. If f is a post-critically finite hyperbolic
quadratic polynomial, then Mf can be described by a planar kneading automaton
(see Theorem 6.3). The following description of such kneading automata is proved
in [BN06a] (see also [Nek05] Section 6.11).

If (x1x2 . . . xn∗)ω is the kneading sequence of the polynomial f (for a definition
of the kneading sequence see the above references and [BS02]), then the bimodule
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Mf is described by the following wreath recursion

a1 = σ(1, an)

ai+1 =

{

(ai, 1) if xi = 0
(1, ai) if xi = 1

, i = 1, . . . , n− 1,

where σ ∈ S (2) is the transposition.
In general, if one deletes the trivial state and all arrows coming into it in the

Moore diagram of a kneading automaton and inverts the direction of all arrows,
then one will get a graph isomorphic to the graph of the action of f on its post-
critical set.

Not for every sub-hyperbolic polynomial f the bimodule Mf can be represented
by a kneading automaton. However, it follows from the results of [BN06a] that
for every sub-hyperbolic iteration (f, f, . . .) of the same post-critically finite qua-
dratic polynomial there exists a constant sequence of kneading automata (A,A, . . .),
such that the iterated monodromy action is conjugate to the action defined by this
sequence of automata. However, the input-output set of the automaton A will cor-
respond to different generating sets of the fundamental group for different instances
of the bimodule in the sequence (the sequence of generating sets is though periodic).

6.3. Combinatorial spider algorithm. The proof of Theorem 6.3 is analytic,
which seems to be not satisfactory. At least it would be interesting to understand
invariance of generating sets (or, which is equivalent, of spiders) in purely algebraic
terms. For instance, it would be nice to be able to find algorithmically the simplest
automaton describing the bimodule Mf starting from a given twisted kneading
automaton (which can be easily found for a given topological polynomial). This
will give a way to decide when two given topological polynomials are combina-
torially equivalent (due to Proposition 6.1 below) and possibly will give a better
understanding of Thurston obstructions of topological polynomials.

We propose here an algorithm, inspired by the “spider algorithm” by J. Hubbard
and D. Schleicher from [HS94] and by the solution of the “Hubbard’s twisted rab-
bit problem” in [BN06b]. Note that this algorithm provides only a combinatorial
information about the polynomial and it lacks an important part of the original
spider algorithm of J. Hubbard and D. Schleicher: numerical values of coefficients
of the polynomial.

Suppose that we have a post-critically finite topological polynomial f and sup-
pose that we have chosen an arbitrary planar generating set {γzi

}zi∈P of π1(M, t)
and a marking, so that we have a bimodule over the free group Fn given by a twisted
kneading automaton with the input generating set (g1, . . . , gn) and the output gen-
erating set (g1, . . . , gn)α for some braid α ∈ Bn. Let ψ : Fn −→ S (X) o Fn be the
associated wreath recursion. We write it as a list

ψ(gi) = σi(h1,i, h2,i, . . . , hd,i).

The elements hk,i ∈ Fn are either trivial or of the form gα
j .

Our aim is to simplify α by changing the generating set of Fn. Namely, we
replace the ordered generating set (gi) of Fn by the generating set (gi,1) = (gi)

α,
computing the images of gα

i under ψ and rewriting the coordinates of the wreath
product as words in the generating set {gi,1}.
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The new wreath recursion on the ordered generating set (gi,1) will not correspond
to a dendroid automaton, but since the corresponding generating set of the funda-
mental group is planar we can post-conjugate the recursion (i.e., change the basis
of the bimodule), using Proposition 5.5, so that the new recursion will correspond
to a twisted kneading automaton, i.e., to a dendroid automaton with the output set
(i.e., the induced generating set) of the form (gi,1)

α1 for some new element α1 ∈ Bn.
Note that the element α1 is defined only up to an inner automorphism of Fn. This
means that we actually work with the quotient Bn of the braid group Bn by its
center.

The idea is that α1 will be shorter than α and therefore iterations of this proce-
dure will give us simple wreath recursions. In many cases an invariant generating
set can be found in this way. We will formalize the algorithm and the question of
its convergence in more algebraic terms in the next subsection. Here we present
examples of work of this algorithm.

Example 4. A detailed analysis of this example (in a more general setting) is
described in [BN06b]. Consider the “rabbit polynomial”, which is a quadratic
polynomial f for which the bimodule Mf is described by the wreath recursion

a = σ(1, c),

b = (1, a),

c = (1, b),

with the cyclic order (a, b, c), where σ ∈ S (2) is the transposition. Note that
abc = σ(1, cab), hence this cyclic order agrees with the structure of the kneading
automaton.

Let us pre-compose now this polynomial with the Dehn twist around the curve
bc. The obtained post-critically finite topological polynomial will correspond to the
following wreath recursion

a = σ(1, cbc),

b = (1, a),

c = (1, bbc),

which is now a twisted kneading automaton with the same cyclic order of the
generators. Let us run the combinatorial spider algorithm on this example. With
respect to the new generating set a1 = a, b1 = bbc = bc, c1 = cbc the wreath recursion
is

a1 = σ(1, c1),

b1 = (1, a)(1,bc) = (1, ab1
1 ),

c1 = (1, bc)(1,a)(1,bc) = (1, ba1b1
1 ).

This is still not a kneading automaton, but a dendroid automaton with the output
set a2 = ab1

1 , b2 = ba1b1
1 , c2 = c1. We have to rewrite now the last recursion in terms

of the new generating set a2, b2, c2 (with the cyclic order (a2, b2, c2)).

a2 = (1, ab1
1 )−1σ(1, c1)(1, a

b1
1 ) = σ((ab1

1 )−1, c1a
b1
1 ) = σ(a−1

2 , c2a2),

b2 = (1, ab1
1 )σ(1,c1)(1,a

b1
1

) = (ab1
1 , 1) = (a2, 1),

c2 = (1, b2).
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This is not a planar automaton, but composing the wreath recursion with conju-
gation by (a2, 1), we get

a2 = σ(1, ca2

2 )

b2 = (a2, 1)

c2 = (1, b2).

Again, we have to change the generating set to a3 = a2, b3 = b2, c3 = ca2

2 . Note
that this generating set is ordered (a3, c3, b3), since we have applied one generator
of the braid group and c2a2b2 = a2c

a2

2 b2 = a3c3b3. Then

a3 = σ(1, c3),

b3 = (a3, 1),

c3 = (1, b2)
σ(1,c3) = (b2, 1) = (b3, 1).

Hence this topological polynomial is described by the kneading automaton

a3 = σ(1, c3), b3 = (a3, 1), c3 = (b3, 1),

with the cyclic order (a3, c3, b3) of the generators. Conjugating the wreath recursion
by σ, we get

a3 = σ(c3, 1), b3 = (1, a3), c3 = (1, b3),

which is exactly the recursion for a−1, b−1, c−1. This implies that this recursion
corresponds to the polynomial, which is complex conjugate to the original “rabbit
polynomial”.

6.4. The bimodule of twisted kneading automata. We will need some more
technical notions related to permutational bimodules.

Definition 6.2. If α is an automorphism of a group G, then the associated bimod-
ule [α] is the set of expressions of the form α · g for g ∈ G, where the actions are
given by

(α · g) · h = α · gh

and

h · (α · g) = α · hαg.

We denote the element (α · 1) just by α.

Proposition 6.4. If α is an inner automorphism, then the bimodule [α] is isomor-
phic to the trivial bimodule G with the natural left and right actions of G on itself.
In particular, if M is a G-bimodule, then M ⊗ [α] and [α] ⊗M are isomorphic to
M.

Proof. Suppose that α is conjugation by g, i.e., that hα = hg for all h ∈ G. Then
the map x 7→ α · g−1x is an isomorphism of the bimodules G and [α], since

h · (α · g−1x) = α · g−1hg · g−1x = α · g−1 · hx

and

(α · g−1x) · h = α · g−1 · (xh)

for all h, x ∈ G.
The rest of the proposition follows from the fact that M ⊗ G and G ⊗M are

isomorphic to M by the isomorphisms x⊗ g 7→ x · g and g ⊗ x 7→ g · x. �
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Let, as above, f be a post-critically finite topological polynomial with the post-
critical set P . Fix a basepoint t ∈ M = R2 \ P and t1 ∈ f−1(t). Let Mf be the
associated (π1(M, t)− π1(M, t1))-bimodule.

Denote by Fn the free group of rank n = |P | with the basis g1, g2, . . . , gn. Let
us choose, as in the previous subsections, a planar generating set {γi} of π1(M, t).
Choose marked lifts of γi and let γ′1, γ

′
2, . . . , γ

′
m be the induced generating set of

π1(M, t1). Connect t and t1 by a path and let L : π1(M, t) −→ π1(M, t1) be the
corresponding isomorphism of fundamental groups.

We get then a pair of isomorphisms φ : Fn −→ π1(M, t) and φ1 : Fn −→
π1(M, t1) given by

φ(gi) = γi, φ1(gi) = L(γi).

Let M0 be the Fn-bimodule obtained from Mf by identification of the group Fn

with π1(M, t) and π1(M, t1) by the isomorphisms φ and φ1. More formally, it is
the bimodule equal to Mf as a set, with the actions given by

g · x · h = φ(g) · x · φ1(h),

where on the right hand side the original action of π1(M, t) and π1(M, t1) are used.
Note that it follows from Proposition 6.4 that the isomorphism class of M0 does

not depend on a particular choice of the connecting path defining the isomorphism
L.

Recall, that the outer automorphism group of the free group Fn is

Out(Fn) = Aut (Fn) / Inn(Fn),

where Inn(Fn) is the group of inner automorphisms of Fn. Let Gn be the image in
Out(Fn) of the group generated by the automorphisms of Fn of the form

g
aij

k =

{

gk if k 6= i,
g

gj

i if k = i.

Note that it follows from Corollary 2.3 that image of a dendroid sequence of auto-
morphisms of a tree under the action of the elements of Gn is a dendroid sequence.

Denote by Gf the set of isomorphism classes of Fn-bimodules [α]⊗M0 ⊗ [β] for
all pairs α, β ∈ Gn.

Recall that for every α ∈ Out(Fn) and every Fn-bimodule M the bimodules
[α] ⊗M and M ⊗ [α] are well defined, up to an isomorphism of bimodules, by
Proposition 6.4.

Note also that the automorphisms of Fn coming from the braid groupBn become
also elements of Gn, if we permute the images of the generators, so that the image
of every generators gi is conjugate to gi.

Proposition 6.5. Every element of Gf is equal to M ⊗ [α] for some α ∈ Gn and
an Fn-bimodule M given with respect to the input set {gi} by a kneading automaton
(in some basis of M).

Recall that a kneading automaton is a dendroid automaton with the same input
and output sets.

Proof. It is sufficient to show that for any kneading automaton A defining a bimod-
ule M and every generator aij of Gn the bimodule [aij ]⊗M is of the form M′⊗ [α]
for some α ∈ Gn and a bimodule M′ given by a kneading automaton.

We can find an ordering of the generating set of Fn such that aij is a generator
of the braid group (one just has to put the generators gi and gj next to each other).
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We can assume then that [aij ]⊗M is a bimodule associated with a post-critically
finite topological polynomial. But any such a bimodule can be represented as a
twisted kneading automaton, i.e., is of the form M′ ⊗ [α] for some bimodule M′

given by a kneading automaton and an element α ∈ Gn. �

The combinatorial spider algorithm can be formalized now in the following way.
The cyclically ordered generating set (φ−1

1 (γ′1), . . . , φ
−1
1 (γ′n)) of Fn corresponding

to the induced generating set of π1(M, t1) is the image of the standard generating
set (gi = φ−1(γi)) of Fn under an element of the braid group, which modulo per-
mutation of the images of the generators is equal to some α ∈ Gn. Consequently,
M0 = M′

0⊗ [α], where M′
0 is an Fn-bimodule given by a kneading automaton. Our

aim is to find a planar generating set of π1(M, t) for which α is trivial, or as short as
possible. Since all planar generating sets are obtained from any planar generating
set by application of elements of the braid group, we will change the generating set
of Fn applying elements of Gn.

Changing the generating set of Fn from (gi) to (gi)
α corresponds to conjugation

of the bimodule M0 by α−1, i.e., to passing from M′
0 ⊗ [α] to M1 = [α] ⊗M′

0.
The bimodule [α] ⊗M′

0 can be also written in the form M′
1 ⊗ [α1], where M′

1 is a
kneading bimodule and α1 ∈ Gn. Our hope is that α1 will be shorter than α and
iterating this procedure we will find a simple representation of the bimodule Mf .
Keeping track of the cyclic order of the generators of Fn (and passing each time to
the induced order) will hopefully provide an ordered kneading automaton.

Question 2. Is the bimodule Gf always sub-hyperbolic?

If the bimodule Gf is sub-hyperbolic, then the combinatorial spider algorithm
will always converge to a finite cycle of kneading automata.

If the bimodule Gf is always sub-hyperbolic, then the answer on Question 1 is
positive, since then for every bimodule M given by a twisted kneading automaton
there will exist (by Proposition 2.11.5 of [Nek05]) a finite subset N ⊂ Gn and a
number m ∈ N, such that M⊗km is isomorphic to Mk

1 ⊗ αk for some αk ∈ N and
a bimodule M1 not depending on k and given by a kneading automaton. Since
bimodules given by kneading automata are sub-hyperbolic (as kneading automata
are bounded, see [BN03] and Section 3.9 of [Nek05]), this implies sub-hyperbolicity
of M.

6.5. An example of the bimodule Gf . The following example is considered
in [Nek07a]. Let F3 be the free group on three free generators a, b, c. Denote by
M0 and M1 the bimodules given by the recursions

a = σ(1, c), b = (1, a), c = (1, b)

and

a = σ(1, c), b = (a, 1), c = (1, b),

respectively.
Consider the following elements of the group G3:

aα = a, bα = ba, cα = c,

aβ = a, bβ = b, cβ = cb,

aγ = ac, bγ = b, cγ = c.
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Note that these three automorphisms of F3 generate G3 (for instance, the automor-
phism a 7→ a, b 7→ b, c 7→ ca is equal to α, modulo conjugation by a, i.e., modulo an
inner automorphism).

The bimodule [α]⊗M0 is given by the recursion

a = σ(1, c),

b = (1, a)σ(1,c) = (a, 1),

c = (1, b),

hence [α]⊗M0 = M1.
The bimodule [α]⊗M1 is given by

a = σ(1, c),

b = (a, 1)σ(1,c) = (1, ac),

c = (1, b),

hence [α]⊗M1 = M0 ⊗ [γ]. Similarly, [β]⊗M0 = M0 ⊗ [α] and [β]⊗M1 = M1.
The bimodule [γ]⊗M0 is given by

a = (1, b−1)σ(1, c)(1, b) = σ(b−1, cb),

b = (1, a),

c = (1, b),

composing with conjugation by (b, 1), we get

a = σ(1, cb),

b = (1, a),

c = (1, b),

hence [γ]⊗M0 is isomorphic M0 ⊗ [β]. Similarly, [γ]⊗M1 is isomorphic to M1.
We see that the bimodule Gf is given by the recursion

α = σ(1, γ),

β = (α, 1),

γ = (β, 1).

Note that in this case G3 is isomorphic to the free group on 3 generators, and the
bimodule Gf is conjugate with the bimodule M0, i.e., with the bimodule associated
with the “rabbit polynomial”.

The computations in the example of Subsection 6.3 can be written now as a the
following sequence of equalities in Gf . We have started with the twisted kneading
automaton M0 ⊗ [βγ−1], since

aβγ−1c = a, bβγ−1c = bc, cβγ−1c = cbc.

Then we have run through the following sequence of automata

[βγ−1]⊗M0 = M0 ⊗ [αβ−1],

[αβ−1]⊗M0 = M1 ⊗ [α−1],

[α−1]⊗M1 = M0.

Looking at the parity of the corresponding braids, we see that the cyclic order of
the input set has been changed.
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Now it is easy to run the combinatorial spider algorithm for any composition of
the rabbit polynomial with a homeomorphism of the plane fixing the post-critical
set pointwise. The corresponding computations is the essence of a solution of
J. Hubbard’s “twisted rabbit problem”, given in [BN06b].

6.6. The bimodule over the pure braid group. The quotient Pn of the pure
braid group Pn by the center (i.e., its image in Out(Fn)) is a subgroup of Gn.
Consequently, instead of looking at the bimodule Gf of the isomorphism classes

of the bimodules [α] ⊗M0 ⊗ [β] for α, β ∈ Gn, one can consider the Pn-bimodule
of the isomorphism classes of the bimodules [α] ⊗M0 ⊗ [β] for α, β ∈ Pn. This
bimodule was considered in [Nek05] (see Proposition 6.6.1 about the bimodule F)
and in [BN06b]. It is isomorphic to the bimodule associated with a correspondence
on the moduli space of the puncture sphere coming from the pull-back map of
complex structures by the topological polynomial f .

In particular, in the above example of the rabbit polynomial, the pure braid
group P3 < G3 is the sub-group generated by the automorphisms T = β−1α and
S = γ−1β. It follows from the recursion defining α, β, γ, that

T = (α−1, 1)σ(1, γ) = σ(1, α−1γ) = σ(1, T−1S−1)

and

S = (β−1, 1)(α, 1) = (β−1α, 1) = (T, 1).

This recursion was used in [BN06b] and it is the recursion associated with the
post-critical rational function 1 − 1/z2, which is the map on the moduli space in-
duced by the rabbit polynomial. For more details see [BN06b, Nek07a] and [Nek05]
Section 6.6.

Question 3. Does there exist an analytic interpretation of the bimodule Gf similar
to the description of the bimodule over the pure braid group? In particular, are
they always associated with some post-critically finite multidimensional rational
maps (correspondences)?

6.7. Limit space and symbolic presentation of the Julia set. Let M be a
hyperbolic G-bimodule. Fix a basis X of M. By X

−ω = {. . . x2x1 : xi ∈ X} we
denote the space of the left-infinite sequences with the direct product topology.

Definition 6.3. We say that two sequences . . . x2x1 and . . . y2y1 are equivalent if
there exists a finite set N ⊂ G and a sequence gk ∈ N , k = 1, 2, . . ., such that

gk(xk . . . x1) = yk . . . y1

for all k.

The quotient of X
−ω by the equivalence relation is called the limit space of the

bimodule M and is denoted JM.
Note that the equivalence relation on X

−ω is invariant under the shift . . . x2x1 7→
. . . x3x2, hence the shift induces a continuous self-map s : JM −→ JM of the limit
space. The obtained dynamical system (JM, s) is called the limit dynamical system
of the bimodule.

In some cases the following description of the equivalence relation on X
−ω may

be more convenient. For its proof see [Nek05] Proposition 3.2.7.
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Proposition 6.6. Let S be a state-closed generating set of G, i.e., such a gener-
ating set that for every g ∈ S and x ∈ X we have g|x ∈ S.

Let S ⊂ X
−ω × X

−ω be the set of pairs of sequences read on the labels of the
left-infinite paths in the Moore diagram of S, i.e.,

S = {(. . . x2x1, . . . y2y1) : there exist gk ∈ S such that gk · xk = yk · gk−1}.

Then the asymptotic equivalence relation on X
−ω is the equivalence relation gener-

ated by S.

If M is a sub-hyperbolic bimodule, then its limit dynamical system (JM, s) is
defined to be the limit dynamical system of its faithful quotient.

More about the limit spaces of hyperbolic bimodules, see Chapter 3 of [Nek05].
A corollary of Theorem 5.5.3 of [Nek05] is the following description of a topo-

logical model of the Julia set of a post-critically finite rational map.

Theorem 6.7. Let f be a post-critically finite rational function with post-critical
set P . Then the π1(PC

2\P )-bimodule Mf is sub-hyperbolic and the limit dynamical
system (JM, s) is topologically conjugate with the restriction of f on its Julia set.

Question 4. Find an interpretation of the limit space of the bimodule Gf , defined
in Subsection 6.4. An interpretation of the limit space of the bimodule over the
pure braid group can be found in [BN06b, Nek07a].

6.8. Realizability and obstructions.

Proposition 6.8. Every twisted kneading automaton over Fn is associated with
some post-critically finite topological polynomial.

Proof. It is proved in Theorem 6.10.4 of [Nek05] that every cyclically ordered knead-
ing automaton can be realized by a topological polynomial (see also the proof of
Proposition 5.2 in this paper). It remains to compose it with the homeomorphism
realizing the respective element of the braid group. �

A natural question now is which twisted kneading automata can be realized by
complex polynomials. This question for kneading automata was answered in [Nek05]
in Theorem 6.10.7. We reformulate this theorem here perhaps in slightly more
accessible terms.

Let A be an ordered kneading automaton over the alphabet X and input-output
set A. Denote by D the set of sequences x1x2 . . . ∈ X

ω such that there exists a
non-trivial element g ∈ A ∪A−1 such that g|x1...xm

is non-trivial for every k ≥ 1.
Note that then g(x1x2 . . .) also belongs to D. Connect x1x2 . . . to g(x1x2 . . .), if

g ∈ A, by an arrow, thus transforming D into a graph (multiple edges and loops
are allowed, since elements of A may have fixed points or act in the same way on
some sequences). We call D the boundary graph of the kneading automaton A.

It also follows directly from the definition of a kneading automaton that every
element of D is periodic and there is no more than one sequence x1x2 . . . ∈ D for
every g ∈ A∪A−1\{1}. More explicitly, if m is sufficiently big (e.g. bigger than the
lengths of cycles in the Moore diagram of A), then D is isomorphic to the subgraph
of the dual Moore diagram of A⊗m consisting of the edges marked by non-finitary
elements of A. (Here a state g of A is called finitary if there exists k such that
g|v = 1 in A⊗k for all v ∈ X

k.) In particular, every component of the boundary
graph is a tree with loops.
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Theorem 6.9. The kneading automaton A can be realized by a complex polynomial
if and only if every connected component of its boundary graph has at most one loop.

We leave to the reader to check that the condition of this theorem is equivalent
to the condition of Theorem 6.10.7 of [Nek05].

Question 5. Find a simple criterion of absence of obstruction for a topological
polynomial given by an arbitrary twisted kneading automaton.
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