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DEMTHIHEENRNETE  Definition

Definition

Let p: M3 — M be a covering of a space by a subset (a partial
self-covering).
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DEMTHIHEENRNETE  Definition

Double self-covering of the circle

Consider the map p : x — 2x of the circle R/Z.

s

_

The fundamental group of the circle is generated by the loop v equal to
the image of [0, 1] in R/Z.

The lifts of v by p” are the images of [2ﬂ,,, ’"24,71] form=0,...,2" — 1.
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Definitions and examples Computation

Encoding of the tree

Choose an alphabet X, |X| = deg p, a bijection A : X — p~1(t), and a path
£(x) from t to A(x) for every x € X.

Define the map A : X* — T inductively by the rule:
A(xv) is the end of the plVI-lift of £(x) starting at A(v).

The map A : X* — T is an isomorphism of rooted trees, where v is
connected to vy in X*.

A(vy)
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Definitions and examples Computation

Recurrent formula

Let us identify the trees T and X* using the isomorphism A. Then the

iterated monodromy group acts on the tree X*. Let v be an element of
the fundamental group 71(M, t).

Proposition

For x € X, let ~y, be the lift of 7y by p starting at N(x). Let y € X be such
that A(y) is the end of . Then for every v € X* we have

Y(xv) =y (L) 1lly) ™) (v).

t
O WAy
v
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Definitions and examples

A(xv)
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DTN HENEET I Examples

Example: z2

p: z+— 22 induces a double self-covering of C \ {0} (homotopically
equivalent to the 2-fold self-covering of the circle).

Chose the basepoint t = 1. p~1(1) = {1, —1}. Let £(0) be trivial, and let
£(1) be the unit upper half-circle. Let «y be the unit circle based at t with
the positive orientation.

70

V1

We get v(0v) = 1v, y(1v) = 0~(v). This is known as the adding
machine.
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DTN HENEET I Examples
8
4 3z
Example: —% + 3

A rational function f(z) € C(z) is post-critically finite if orbit of every
critical point of f is finite. The union Pr of the orbits of critical values is
the post-critical set of f.

If f is post-critically finite, then it is a partial self-covering of @\ Pr.

Consider f(z) = —273 + 372 It has three critical points 0o, 1, —1, which are
fixed under f.

Hence it is post-critically finite and is a covering of C\ {£1} by the subset
C\ f1({#£1}) = C\ {=£1, £2}.
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DTN HENEET I Examples

8
Example: —% + 352

Let t = 0. It has three preimages 0, +v/3. Choose the following
connecting paths and generators of 71(C \ {£1},0) (4(0) is trivial):

{(2)
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DTN HENEET I Examples
8
4 3z
Example: —% + 3

The generators a and b are lifted to the following paths:
‘(2

f(a)

a(0v) =1v, a(lv)=0a(v), a(2v)=2v,
b(0v) =2v, b(1v)=1v, b(2v)= 0b(v).
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£l
A multi-dimensional example

Consider the map F of C2:
2
y 1
e (12 1)

It can be naturally extended to the projective plane.
(x:y:z)m (x> —y?: x> =22 x%).

The set {x =0} U{y = 0} U {z = 0} is the critical locus. The
post-critical set is the union of the line at infinity with the lines
x=0x=1Ly=0y=1x=y.

They are permuted as follows:

{x=0}—{z=0}—{y=1} - {x=y} — {x=0}

{y=0—{x=1}—{y=0}h

V. Nekrashevych (Texas A&M) Iterated monodromy groups August, 2009 Bath 12 /17



DTN HENEET I Examples

The iterated monodromy group of F (as computed by J. Belk and
S. Koch) is generated by the transformations:

a(lv) =1b(v), a(2v)=2v, a(3v)=3v, a(4v)=4b(v),
b(lv) = 1c(v), b(2v) =2c(v), b(3v)=3v, b(4v)=4v,
c(1v) = 4d(v), c(2v) = 3(ceb) 1 (v), c(3v) = 2(fa) *(v), c(4v) = 1v,
d(lv) =2v, d(2v)=1a(v), d(3v)=4v, d(4v)=3a(v),
e(lv) =1f(v), e(2v)=2v, e(3v)=3f(v), e(4v)=4v,
f(lv) =3b"1(v), f(2v)=4v, f(3v)=1eb(v), f(4v)=2e(v).
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Self-similar groups and virtual endomorphisms IR ETFETS

We have seen that for every g € IMG (p) and for every x € X there exists
y € X and gy € IMG (p) such that

g(xv) = ygx(v)

for all v € X*.

Groups satisfying this condition are called self-similar.

The map 7z : x — y is a permutation (describing the action of g on the
first level of the tree. Hence we get a map

g = Wg(g17g27~~~ 7gd)7

from IMG (p) to Sq L IMG (p), where X = {1,2,...,d}. It is easy to
check that this map is a homomorphism.
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Self-similar groups and virtual endomorphisms IR ETFETS

Definition
A wreath recursion on a group G is a homomorphism

d:G— 541G.

The wreath defining IMG (p) depends on the choice of the bijection of X
with p~1(t) and on the choice of the connecting paths /(x). Different
choices produce wreath recursions, which differ from each other by
application of an inner automorphism of S5 G.

We say that 1,95 : G — 54 G are equivalent if there exists an inner
automorphism 7 of S5 G such that ®, = 70 ®;.
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Self-similar groups and virtual endomorphisms IR ETFETS

Every wreath recursion defines an action on the tree {1,2,...,d}*. If
¢(g—) = 7T(g17g27 A 7gd) then
g(iv) = m(i)gi(v)
forallve{1,2,...,d}* and x € {1,2,...,d}.
These recurrent rules uniquely define the action of G associated with ®.

The associated faithful self-similar group is the quotient of G by the kernel
of the action. Equivalent wreath recursions define conjugate self-similar
groups.
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Self-similar groups and virtual endomorphisms IR ETFETS

If G is generated by a finite set {g1,82,...,8k}, then the wreath recursion
is determined by its values on the generators:

d>(g1) = 7r1(g11,g12,...,g1d),
d>(g2) = 7r2(g21,g22,...,g2d),

®(gk) = mi(gk1,8k2: - - - Bkd)-

If we write gj; as groups words in g1,..., gk, we get a finite description of
the associated self-similar group. (As a wreath recursion over the free

group.)
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