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Self-similar groups and virtual endomorphisms IR ETFETS

Let ®: G — S41 G be a wreath recursion. Denote by K¢ the kernel of
the associated action on the tree.

If g ¢ Ko, then there exists a finite word v € X* moved by g. Hence there
exists an algorithm, which stops if and only if g is not trivial in the
self-similar group defined by .

Let E; be the kernel of ®. Denote
Eny1 =071 ({1} - EY),
and Exo = U,>1 En-

If E.c = Ko and the word problem is solvable in G, then the word problem
is solvable in G/Ko.
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S atnilar o
Sections

Fix a wreath recursion ® : G — S50 G. Define g|, for g € G and v € X*

inductively by g|z = g and
(D(g‘v) = Tr(g|V1’g‘V2? cee ag|Vd)'
We have

g(w) = g(v)glv(w)

for all v,w € X*.
For all g,h € G and v, u € X* we have

(gh)|V:g|h(v)h‘V? g|vu:g|v|u-
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el bl
Virtual endomorphisms

Let ®: G — 5S4 G be a wreath recursion. Suppose that the projection
of ®(G) onto S, is transitive.

The associated virtual endomorphism of G is the map ¢ : g — g|x from
the stabilizer of x € X to G.

The virtual endomorphism uniquely determines the wreath recursion (up to
an equivalence). If {r,r,...,ry} is a coset representative system for
Dom ¢ < G, then we define

®1(g) = m(81,---,84d)s

where (i) = j iff griDom ¢ = r; Dom ¢; and g; = ¢(rj_1gr;). Then & is
equivalent to ®.
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Virtual|endomorphisms
The virtual endomorphism of Z associated with the wreath recursion
®(y) = (01)(1,7)
associated with IMG (z?) is

o(v*) =1,

n|—>n/2

on Z.
The virtual endomorphism associated with IMG (—z%/2 + 3z/2), i.e.,
with the wreath recursion

®(a) = (01)(1,a,1), ®(b) = (02)(1,1,b)

a®—a, blab—1

b? — b, alba 1.
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Self-similar groups and virtual endomorphisms  BAVATEIE| RENT LTl i TS

If ¢ : G --+ G is the virtual endomorphism associated with a wreath
recursion P, then the kernel K¢ of the self-similar action is

Ko = ﬂ g ! -Dom¢"-g.
geG,n>1

If p: My — M is a partial self-covering, then m1(M3) is a subgroup of
finite index in (M) and the virtual endomorphism associated with the
iterated monodromy action is the map m1(Mj) — m1(M) induced by
the inclusion M; — M.
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Self-similar groups and virtual endomorphisms Contracting groups

Contracting groups

Definition
A wreath recursion over G is contracting if there exists a finite set V' C G
such that for every g € G there exists n € N such that

glveN

for all words v of length at least n.
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Self-similar groups and virtual endomorphisms Contracting groups

Theorem

Let ¢ : G --» G be a virtual endomorphism of a finitely generated group.
The number

I(¢"(8))

p=limsup [ limsup —_—
n—oo g€Dom ¢",/(g)—o0 /(g)

does not depend on the choice of the generating set and is less than one
iff the associated wreath recursion is contracting.
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Self-similar groups and virtual endomorphisms Contracting groups

Hyperbolic dynamical systems

Theorem
If the partial self-covering p : M1 — M is expanding, then IMG (p) is a
contracting self-similar group.

In particular, the iterated monodromy groups of post-critically finite
rational functions are contracting.
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Self-similar groups and virtual endomorphisms Contracting groups

Algebraic properties of contracting groups

Theorem

The word problem in a contracting self-similar group is solvable in
polynomial time.

If p is the contraction coefficient of the associated virtual endomorphism,

then for ever %/ € > 0 there is an algorithm solving the word problem in

log(IX] ;
degree “jogp T € time.
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Self-similar groups and virtual endomorphisms Contracting groups

Theorem
Contracting groups have no free subgroups. J

It is a corollary of

Theorem

Let G be a group acting faithfully on a locally finite rooted tree T. Then
one of the following is true

© G has no free subgroups;
© there is a free subgroup F < G and a point £ € OT such that the
stabilizer F¢ is trivial;

@ thereis a point £ € OT and a free subgroup F < G¢ such that F acts
faithfully on all neighborhoods of €.

v
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Self-similar groups and virtual endomorphisms Open questions

Open questions

@ |s the conjugacy problem solvable in contracting groups? Most of the
other algorithmic problems are open.

@ Are contracting groups amenable?

@ Which contracting groups are finitely presented? (Only if they are
virtually nilpotent?)

@ Given a wreath recursion decide if it defines a contracting group.
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Self-similar groups and virtual endomorphisms Open questions

The following is a corollary of a more general result of L. Bartholdi,
V. Kaimanovich and V. N.

Theorem
If f is a post-critically finite polynomial, then IMG (f) is amenable. J

The first non-trivial partial case of this theorem (IMG (z2 —1)) was
shown by L. Bartholdi and B. Virag.
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Self-similar groups and virtual endomorphisms IMG of a correspondence

IMG of correspondences

There is no reason to restrict to the case of partial self-covering. A
topological correspondence is a pair of maps p: M; — M and
t: Mi — M, where p is a finite covering and ¢ is a continuous map.

The associated virtual endomorphism of m1(M) is the homomorphism
Ly 2 m(M1) — w1 (M), where m1(M;) is identified with a subgroup of
71(M) by the isomorphism p..

The virtual endomorphism ¢, defines a self-similar group, which is the
iterated monodromy group of the correspondence.
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LIS G2 caesariis:
Dual Moore diagrams

Every virtual endomorphism ¢ of the free group can be realized as ¢, for a
map ¢ : M1 — M, where M is a bouquet of circles, Mj is a finite
covering graph of M defining the domain of ¢.

Consequently, every self-similar group is an iterated monodromy group of a
correspondence on graphs.
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SISO ET@-dIT-ET (RVTS IE N T[T T IS IMG of a correspondence

Arithmetic-geometric mean of Gauss

Consider the multivalued map on PC!:

or, in non-homogeneous coordinates:

1+2z
(g
2y/z

z

Gauss used iterations of this map (on the positive real axis) to compute

the integrals

/-7r/2 dt
0 a2cos?t+ b?sin?t

V. Nekrashevych (Texas A&M) Iterated monodromy groups

August, 2009 Bath

16 /1



LIS G2 caesariis:
Arithmetic-geometric mean of Gauss

Uniformizing the square root, we get a correspondence

Fi\ (0,41} — O\ {01z LS
1:C\{0,+£1} — C\ {0,1} : z — 22

m1(C\ {0, 1}) is naturally identified with the free group ((3%),(39)).
Then the associated virtual endomorphism is:

a b (2 b/2
c d 2c d '
The action of the free group is faithful and is given by

a=o(l,0), B=(5 (8 'a)?).
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LIS G2 caesariis:
Lattices in Lie groups

Theorem (M. Kapovich)

Let T be an irreducible lattice in a semisimple algebraic Lie group G. Then
the following are equivalent:

O T is virtually isomorphic to an arithmetic lattice in G, i.e., contains a
finite index subgroup isomorphic to such arithmetic lattice.

Q T admits a faithful self-similar action, which is transitive on the first
level.

All such lattices are IMGs of correspondences on the corresponding
symmetric spaces.
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