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1 Overview

All modeling projects begin with the identification of a phenomenon of one form or another
that appears to have at least some aspect that can be described mathematically. The first two
steps of the project, often taken simultaneously, become: (1) gain a broad understanding
of the phenomenon to be modeled, and (2) collect and analyze data. Depending on the
project, (1) and (2) can take minutes, hours, days, weeks, or even years. Asked to model the
rebound height of a tennis ball, given an initial drop height, we immediately have a fairly
broad understanding of the problem and suspect that collecting data won’t take more than
a few minutes with a tape measure and a stopwatch. Asked, on the other hand, to model
the progression of Human Immunodeficiency Virus (HIV) as it attacks the body, we might
have to spend quite a bit of time learning enough biology to get started.

These notes address two important tools in the process of mathematical modeling, least
squares regression and dimensional analysis. For the former, the vast majority of mathe-
matical models that arise in practice include unspecified parameters, and the determination
of values for these parameters is generally accomplished with least squares regression. The
first half of these notes will comprise a discussion of this topic. In the second half of these
notes, we will discuss dimensional analysis, which is a collection of methods for understand-
ing physical events and processes based solely on the dimensions of the quantitites involved.
In the end, we will see that the two methods are often used together, and form a general
and powerful approach that can be productively employed in a wide range of applications.

2 Linear Least Squares Regression

Although the method of least squares regression is typically attributed to the German math-
ematician Carl Friedrich Gauss (1777-1855), the terminology regression was coined by the
British anthropologist Francis Galton (1822-1911). Galton first used it to describe studies
he was conducting on the correlation between the heights of offspring and the heights of
progenitors (i.e., parents). His first study in this regard involved sweet peas (1877), but
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we’ll discuss it in terms of his more famous analysis of human height (1886)1: predicting the
height of a child based on the heights of the parents.

In order to combine parent heights into a single height, Galton defined the midheight2 to
be

midheight =
father’s height + 1.08×mother’s height

2
.

Here, the factor 1.08 was introduced to match the data, and in computing the child heights
Galton multiplied the height of each daughter by 1.08.3 Galton’s goal was to identify a
functional relation of the form

child height = f(midheight),

and his expectation was that f would have a linear form so that

child height = m×midheight + b,

for some slope m and y-intercept b. Galton’s data is available at the following web site,
developed by Kyle Siegrist, at the University of Alabama, Huntsville:

http://www.randomservices.org/random/

Once the data has been downloaded in .csv form4, it can be processed with the follow-
ing M-file (galton heights.m), which writes the data as a set of vectors that can easily be
manipulated with MATLAB. (The .csv file has been saved as Galton Data.csv.)

%GALTON HEIGHTS: MATLAB script M-file that defines
%Galton’s original data from the .csv file
%Galton Data.csv.
%First, import the data as a table
T=readtable(’Galton Data.csv’);
%NOTE: On some systems, entries in Galton Data.csv need
%to be converted from strings to double precision values.
%For this, exchange the specifications for mother, father,
%and child with its alternative line in the code below.
%Mother heights
mother = T.Mother;
%mother = str2double(T.Mother);

1F. Galton, Regression toward mediocrity in hereditary stature, Anthropological miscellanea, 1886, 246-
263.

2Galton’s actual terminology was “mid-parental” height, where the quotes are his.
3In his article, Galton writes: “In every case I transmuted the female statures to their corresponding male

equivalents and used them in their transmuted form, so that no objection grounded on sexual difference of
stature need be raised when I speak of averages. The factor I used was 1.08, which is equivalent to adding
a little less than one-twelfth to each female height. It differs a little from the factors employed by other
anthropologists, who, moreover, differ a trifle between themselves; anyhow, it suits my data better than 1.07
or 1.09.”

4I.e., comma-separated values form, a rudimentary form of data file in which entries are separated by
(you guessed it) commas.
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%Father heights
father = T.Father;
%father = str2double(T.Father);
%Child heights
child = T.Height;
%child = str2double(T.Height);
%Gender
gender = T.Gender;
%Galton multiplied the height of each female
%child by 1.08. We can accomplish this as follows:
for k=1:length(gender)
if isequal(gender(k),{’F’}) == 1
child(k) = 1.08*child(k);
end
end
midheight = (father+1.08*mother)/2;

In order to begin analyzing this data, we plot it as points with

>>plot(midheight,child,’o’)

This command creates Figure 2.1.

64 66 68 70 72 74 76

60

62

64

66

68

70

72

74

76

78

80

Figure 2.1: Scatter plot of Francis Galton’s original data from 1886.

This arguably looks more like a blob than a line, but nonetheless we can fit it with the
“best possible” line. Below, we will see how to find such a line analytically, but for this
example, let’s find it with MATLAB. For this, we can go to the figure window and select
Tools, Basic Fitting, and then select the linear option. If we then click on the black

4



arrow at the bottom right of the pop-up menu, we will see that MATLAB has carried out
the linear fit and found m = .729 and b = 18.767. I.e., our model for predicting the height
of a child is

child height = .729×midheight + 18.767,

where for daughters we subsequently need to divide by 1.08.5 This gives us Figure 2.2.
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Figure 2.2: Scatter plot and “best fit” line for Galton’s 1886 data.

Before exiting the fitting window, we can choose Save to Workspace, and let’s save the
fit as galton, which by default will be a MATLAB structure with two fields. We can access
these in the Command Window as follows:

>>galton.type
ans =
’polynomial degree 1’
>>galton.coeff
ans =
0.7291 18.7670

Working with the plot window allows us to visually evaluate the data, but in some cases
we already know that we will fit the data with a line, and for this we can more quickly use
the MATLAB built-in function polyfit.m. For Galton’s data the command and output is as
follows:

>>polyfit(midheight,child,1)

ans =

5While Galton’s view of the data was the same as ours, his approach to identifying this best-fit line was
more visual, and he reported a slope of exactly 2

3 and an intercept of exactly 22.75.
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0.7291 18.7670

At this point, let’s pause to think about where the terminology regression comes from. For
this, consider the Figure 2.3, in which Galton’s data has been omitted, and his model has
been plotted along with the line y = x, which appears in red.

y = x

y = .7291x+ 18.7670

midheight

child height

small
midheight

child height greater
than midheight

large
midheight

child height less
than midheight

Figure 2.3: “Regression toward mediocrity” for Galton’s fit.

We see that if the midheight is relatively small then the child’s height will be greater than
the midheight, while if the midheight is relatively large, the child’s height will be less than the
midheight. Galton referred to this as “regression towards mediocrity,” often described now
as “regression toward the mean.” Although this method has come to be known as regression,
it’s clear that not all least-squares fits correspond with this dynamic. In particular, the key
point for the above argument is that the slope of the fit is on the interval (0, 1). Nonetheless,
this dynamic of regression toward the mean is quite common. As another example,6 studies
show that businesses regress toward the mean in the following way: if we take a collection of
businesses from the same sector (e.g., restaurants, retail stores, convenience stores etc.) and
try to predict their success in 2022 based on their success in 2012, we often find that the
level of success regresses toward the mean. I.e., the businesses that were most successful in
2012 will tend to be a bit less successful in 2022 (though possibly still well above average),
and the businesses that were least successful in 2012 will tend to be a bit more successful in
2022. Why does this happen?

Galton’s explanation in the case of heights ran as follows. He argued that height was
partly inherited from the parents and partly (though to a lesser extent) inherited from
previous ancestors (grandparents, great grandparents etc.). For the ancestor portion, he
writes, “Speaking generally, the further his [i.e., the child’s] genealogy goes back, the more
numerous and varied will his ancestry become, until they cease to differ from any equally
numerous sample taken at haphazard from the race at large. Their mean stature will then

6Taken from Jordan Ellenberg’s boldly entitled book How Not to Be Wrong: The Power of Mathematical
Thinking, Penguin Press 2014.
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be the same as that of the race; in other words, it will be mediocre.” In his view, if the
midheight was large, the child’s height would generally be reduced from this large value by
the contribution from his ancestry, and the opposite would happen if the midheight was
small. Generally, we might expect this phenomenon to occur whenever a trait depends on a
combination of determined and random factors (the parent heights viewed as determined, the
ancestral heights viewed as a random mix of the heights of countless ancestors). Returning
to our example of businesses, while planning and decision-making are fairly deterministic
matters, a certain amount of success of businesses is determined by luck. The most successful
businesses in 2012 likely benefited from both good decision-making and good fortune, and
while the decision-making may well have continued through 2022, there’s no reason to expect
that the luck would. On average, then, it stands to reason that these businesses won’t be
quite as successful as they were in 2012, leading to the observed regression.

So, why aren’t we all the same height? That is, if heights regress toward the mean, and
this has been going on for hundreds of thousands of years (homo sapiens date back about
300,000 years), why does there continue to be variability in height? Perhaps the easiest way
to understand this is to imagine a population in which all midheights had indeed become
uniform, so that every child was predicted to have the same height. In this case, the natural
variability from the ancestry (not to overly discount the natural variability in direct heredity
and enviroment) would naturally lead to variation in heights of the next generation. If we
tried to capture this in a line fit of the data, something very strange would happen: since
the midheights are all the same, the data would lie on a vertical line! If we return with this
idea to our original discussion, we see that our development of regression depended on the
assumption that we had a fairly robust spread of midheights. In this way, we can view the
random aspects of a process as an outward pressure, pushing traits away from uniformity.
To end this discussion with a final quote from Galton, he writes, “The answer is that the
process comprises two opposite sets of actions, one concentrative and the other dispersive,
and of such a character that they necessarily neutralize one another, and fall into a state of
stable equilibrium.”

2.1 Regression for Lines

In order to begin understanding how linear least squares regression works, let’s suppose we
have a set of data points {(xk, yk)}Nk=1, and that we would like to identify a line y = mx+ b
that best identifies its trend. (See Figure 2.4, drawn with N = 3.)

In Figure 2.4, the vertical distance between the point (x1, y1) and the line described by
y = mx + b is mx1 + b− y1, the vertical distance between the point (x2, y2) and this line is
y2−mx2−b, and the vertical distance between the point (x3, y3) and this line is mx3+b−y3.
One way to measure the distance between this set of points and the line is to sum up these
distances, giving (for N data points)

N∑
k=1

|yk −mxk − b|,

where absolute values have been introduced so that we don’t have to keep track of whether
a point is above or below the line. As we’ll discuss a bit more below, this is a perfectly

7



y = mx+ b

x

y

(x1, y1)

(x1,mx1 + b)

(x2, y2)

(x2,mx2 + b)

(x3, y3)

(x3,mx3 + b)

Figure 2.4: Line regression with three points.

reasonable measure of the distance between a set of points and a given line, but more
commonly we measure the distance with the sum of squared residuals (SSR)

E(m, b) =
N∑
k=1

(yk −mxk − b)2.

Alternatively, this same function E(m, b) is sometimes referred to as the residual sum of
squares (RSS) or the sum of squared errors (SSE). We emphasize here that since the values
{(xk, yk)}Nk=1 are all fixed numerical values, E is a function of only two variables, m and b,
as indicated.

It’s clear from our development that the SSR isn’t the only measure we could use. Al-
ternatives include sums involving:

• absolute values instead of squares, as we initially wrote;

• different even powers such as 4 or 6, or (reduced) fraction powers with even numerators
such as 2/3 or 4/5;

• horizontal distances;

• direct (shortest) distance between the points and the line;

• “weights” added to any of the above choices in order to emphasize the importance of
certain measurements over others.

In general, each of these methods will lead to different values of m and b, so while for these
notes we will set aside other options and focus exclusively on least squares regression, we
should be mindful that in doing so we are making a non-trivial choice.

Having decided to take E(m, b) as our measure of the distance between the set of points
and a line drawn through them, we see that in order to find the best possible line we should
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minimize E(m, b). This is a standard problem from calculus, and we proceed in the usual
way by finding values m and b so that

∂

∂m
E(m, b) = 0

∂

∂b
E(m, b) = 0.

Differentiating, we find

∂

∂m
E(m, b) =− 2

N∑
k=1

xk(yk −mxk − b) = 0,

∂

∂b
E(m, b) =− 2

N∑
k=1

(yk −mxk − b) = 0,

which we can solve as a linear system of two equations for the two unknowns m and b.
Rearranging terms and dividing by 2, we have

m
N∑
k=1

x2k + b
N∑
k=1

xk =
N∑
k=1

xkyk,

m
N∑
k=1

xk + b
N∑
k=1

1 =
N∑
k=1

yk. (2.1)

Observing that
∑N

k=1 1 = N , we multiply the second equation by 1
N

∑N
k=1 xk and subtract it

from the first to get the relation,

m
( N∑
k=1

x2k −
1

N
(
N∑
k=1

xk)
2
)

=
N∑
k=1

xkyk −
1

N
(
N∑
k=1

xk)(
N∑
k=1

yk),

or

m =

∑N
k=1 xkyk −

1
N

(
∑N

k=1 xk)(
∑N

k=1 yk)∑N
k=1 x

2
k − 1

N
(
∑N

k=1 xk)
2

.

Finally, upon substituting m into equation (2.1), we find

b =
1

N

N∑
k=1

yk − (
N∑
k=1

xk)

∑N
k=1 xkyk −

1
N

(
∑N

k=1 xk)(
∑N

k=1 yk)

N
∑N

k=1 x
2
k − (

∑N
k=1 xk)

2

=
(
∑N

k=1 yk)(
∑N

k=1 x
2
k)− (

∑N
k=1 xk)(

∑N
k=1 xkyk)

N
∑n

k=1 x
2
k − (

∑N
k=1 xk)

2
.

As long as the denominator in these expressions is not zero (and more on that possibility
just below), the values m and b are uniquely determined, so E(m, b) has precisely one local
extreme point. Since E is quadratic in m and b, opening upward, this point must be a
minimizer, as expected.
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2.1.1 Mean, Variance, and Covariance of the Data

The expressions for m and b obtained above are often expressed in terms of the mean,
variance, and covariance of the data. For data {(xk, yk)}Nk=1, it’s natural to define two
means,

µx :=
1

N

N∑
k=1

xk and µy :=
1

N

N∑
k=1

yk.

The variance for ~x (with ~x viewed here and below as a vector whose elements are the data
values {xk}Nk=1) is defined by

Var(~x) :=
1

N

N∑
k=1

(xk − µx)2,

and for reasons we will set aside for the moment, it’s often useful to work with the sample
variance7

SVar(~x) :=
1

N − 1

N∑
k=1

(xk − µx)2.

Likewise, we define the covariance of ~x and ~y to be

Cov(~x, ~y) :=
1

N

N∑
k=1

(xk − µx)(yk − µy),

with the sample covariance obtained by replacing N in the denominator with N − 1.
With this notation, it’s straightforward to check that the values m and b obtained above

can be expressed in the compact form

m =
Cov(~x, ~y)

Var(~x)

b =µy −mµx.

We see that m and b are uniquely defined unless Var(~x) = 0, and this condition is only
possible if xk is the same value for all k = 1, 2, . . . , N . This, of course, is the case in which
all data points lie on the same vertical line.

2.1.2 Correlation Coefficient and Coefficient of Determination

One of the things regression addresses is the extent to which two variables are correlated.
(This is another concept that substantially goes back to Galton.) For line regression, cor-
relation is often measured by the correlation coefficient , which has an elegant geometric

7In order to get some intuition about this, suppose there is only a single data point x1, so that µx = x1.
The variance is necessarily 0, and the sample variance is undefined. This is essentially a philosophical point:
with only one data point, do we think there is no variance, or do we think we have no information about the
variance (encoded mathematically as an undetermined ratio of the form 0

0 )? For readers with experience in
probability theory, if {xk}Nk=1 is a collection of realizations of a random variable then the sample variance is
an unbiased estimator of the variance of the random variable.
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interpretation. For data {(xk, yk)}Nk=1, let ~x and ~y denote data vectors, and set

~µx :=


µx
µx
...
µx

 , ~µy :=


µy
µy
...
µy

 .

The pair of vectors ~x − ~µx and ~y − ~µy determine a two-dimensional plane, which we can
sketch as in Figure 2.5.

θ

~x− ~µx

~y − ~µy

Figure 2.5: Geometric interpretation of the correlation coefficient.

The correlation coefficient is defined to be the value cos θ, which can be expressed as

cos θ =
(~x− ~µx) · (~y − ~µy)
|~x− ~µx||~y − ~µy|

,

where · denotes the usual dot product. Here, the purpose of subtracting the mean vectors ~µx
and ~µy respectively from ~x and ~y is to ensure that the resulting quantities (i.e., the differences
~x− ~µx and ~y − ~µy) are invariant under translations such as replacing ~x with ~x+ ~a, where ~a
is a vector with the same constant value a in every component.

Recalling our definitions of variance and covariance, we can express the correlation coef-
ficient, often denoted R, by

R = cos θ =
Cov(~x, ~y)√

Var(~x)Var(~y)
.

Since R is the cosine of an angle, its value must lie on the interval [−1, 1]. If R = 1,
corresponding with θ = 0, then the vectors ~x − ~µx and ~y − ~µy are colinear (i.e., lie on the
same line), so there must exist a constant c so that

~y − ~µy = c(~x− ~µx).

In this case, every point in our data set {(xk, yk)}Nk=1 must lie on the same line,

yk = cxk + (µy − cµx), ∀ k ∈ {1, 2, . . . , N},
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and the value c will just be the slope m of the line. Since R = 1, we must have Cov(~x, ~y) > 0,
and so m > 0. On the other hand, if R = −1 (corresponding with θ = π), then ~x− ~µx and
~y−~µy are again colinear, but this time m < 0. In general, if R > 0 we refer to the correlation
as positive, while if R < 0 we refer to the correlation as negative. In summary, values of
R near 1 correspond with strong positive correlation, and values of R near −1 correspond
with strong negative correlation. If R = 0, then Cov(~x, ~y) = 0, so m = 0. With a horizontal
regression line, the value of x gives no information about the corresponding value of y, and
we say the data is uncorrelated.

The coefficient of determination in the case of line regression is simply the value R2. The
value R2 generalizes more naturally than the value of R, so we will have more to say about
it later.

2.1.3 Generalizations of Regression for Lines

Our approach to finding a regression line to fit a set of data generalizes naturally to the
following cases.

1. Polynomials. For any polynomial relation

y = p(x; {aj}mj=0) =
m∑
j=0

ajx
j,

the SSR is

E(a0, a1, . . . , am) =
N∑
k=1

(yk −
m∑
j=0

ajx
j
k)

2.

Here, just as with regression for lines, E is quadratic in its variables, and so its partial
derivatives will be linear as functions of a0, a1, ..., am. This is still linear regression.

2. Multi-dimensional polynomials. For ~x ∈ R2, suppose we have a two-dimensional
polynomial relation

y = p(~x; {aij}`,mi,j=0) =
∑̀
i=0

m∑
j=0

aijx
i
1x

j
2.

In this case, we denote our data

{(~xk, yk)}Nk=1 = {(xk1, xk2, yk)}Nk=1,

and the SSR is

E({aij}`,mi,j=0) =
N∑
k=1

(yk −
∑̀
i=0

m∑
j=0

aijx
i
k1x

j
k2)

2.

Again, this is linear regression. We can proceed similarly for ~x ∈ Rn for any n ∈ N
simply by introducing more indices.
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3. Functions linear in their parameters. For ~x ∈ Rn, consider any family of functions
{fj(~x)}mj=1, which we often take to be the basis for some finite-dimensional linear space
(e.g., the space of polynomials up to order m− 1). The function

y = f(~x; ~p) =
m∑
j=1

pjfj(~x)

is linear in its parameters, and so regression with this expression is still linear. The
SSR in this case is

E(~p) =
N∑
k=1

(yk −
m∑
j=1

pjfj(~xk))
2.

In the same setting, suppose the parameters {pj}mj=1 appear nonlinearly in the form

y =
m∑
j=1

qj(~p)fj(~x)

for some functions {qj(~p)}mj=1. Then we can use linear regression to obtain optimal
values {q∗j}mj=1, and we can recover the optimal values ~p if we can solve the algebraic
system

~q(~p) = ~q∗.

We will see a specific example of this just below in Case 4.

4. Functions that can be converted to a form linear in their parameters. Con-
sider a relationship of the form

y = f(x; ~p) = p1e
p2x. (2.2)

The associated SSR is

E(~p) =
N∑
k=1

(yk − p1ep2xk)2, (2.3)

and it’s clear that if we take derivatives of E with respect to p1 and p2 we won’t obtain
relations linear in p1 and p2, so this is not linear regression. Nonetheless, if we take a
natural logarithm of (2.2), we obtain the relation

ln y = ln(p1e
p2x) = ln p1 + p2x.

We can view this as the relation

Y = q1 + q2x,

where Y = ln y, q1 = ln p1, and q2 = p2, and this relation is clearly linear in
the parameters (in fact, it’s just a line). If we now convert our data to the form
{(xk, Yk)}Nk=1 = {(xk, ln yk)}Nk=1, then we can carry out linear regression in the usual
way by minimizing the SSR

Ẽ(~q) =
N∑
k=1

(Yk − q1 − q2xk)2. (2.4)

13



We then solve for p1 and p2 with the relations p1 = eq1 and p2 = q2. This is a common
approach taken throughout the mathematical sciences, but we need to be aware that
the best-fit values for p1 and p2 obtained by directly minimizing (2.3) will generally be
different from the values for p1 and p2 obtained by minimizing (2.4) and solving for p1
and p2. We will return to this point in our discussion below of nonlinear regression.

2.2 General Linear Regression

The form we will use for general linear regression is

y = f(~x; ~p) =
m∑
j=1

pjfj(~x),

with data in the usual form {(xk, yk)}Nk=1. In order to get some intuition about how to
proceed, we can view each data point as corresponding with an equation that we would like
to solve:

k = 1 : y1 = p1f1(~x1) + p2f2(~x1) + · · ·+ pmfm(~x1)

k = 2 : y2 = p1f1(~x2) + p2f2(~x2) + · · ·+ pmfm(~x2)

...
...

k = N : yN = p1f1(~xN) + p2f2(~xN) + · · ·+ pmfm(~xN).

We expect to have N � m (many more data points than parameters), so this is an overdeter-
mined systems of N equations (one for each data point) for m unknowns (the m parameters).
In order to express this system in matrix form, we’ll write

~y =


y1
y2
...
yN

 , ~p =


p1
p2
...
pm

 ,

and specify the design matrix as8

F =


f1(~x1) f2(~x1) · · · fm(~x1)
f1(~x2) f2(~x2) . . . fm(~x2)

...
...

...
...

f1(~xN) f2(~xN) . . . fm(~xN)

 ∈ RN×m.

In matrix form, we can now express the above system as

F~p = ~y.

It’s important to keep in mind that we have already seen that this system is generally
overdetermined, and so won’t have an exact solution. In fact, if we could solve it exactly, it

8In statistics courses, the design matrix is often denoted X due to its dependence on the variable ~x.
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would mean that every single data point is exactly on our fit. For example, for a line, every
single data point would actually lie on the best-fit line. Since F isn’t a square matrix, it
certainly isn’t invertible, but there is a nice intuitive way to think about how we can find
the “best possible” values for ~p. Notice that if we multiply both sides of this system by the
matrix F T (i.e., the transpose of F ), we obtain the equation

F TF~p = F T~y. (2.5)

This is called the normal equation, and a key observation is that F TF is always a square
m × m matrix. Of course, this new system was obtained in an ad hoc way, so we don’t
immediately know that its solutions are the best-fit values of ~p that we’re looking for. In
order to check that they are, let’s express our SSR in the form

E(~p) =
N∑
k=1

(yk −
m∑
j=1

pjfj(~xk))
2.

and let’s observe that
m∑
j=1

pjfj(~xk) =
m∑
j=1

pjFkj = (F~p)k,

where the far right-hand side indicates the kth component of the vector F~p. Writing

E(~p) =
N∑
k=1

(yk −
m∑
j=1

Fkjpj)
2,

we compute (for each l = 1, 2, . . . ,m)

∂E

∂pl
=

N∑
k=1

2(yk −
m∑
j=1

Fkjpj)(−Fkl) = 0,

which can be expressed as
N∑
k=1

Fkl(F~p)k =
N∑
k=1

Fklyk,

or equivalently
N∑
k=1

F T
lk(F~p)k =

N∑
k=1

F T
lkyk.

This final equality is just the index form of the relation

(F TF~p)l = (F T~y)l,

and since this is true for all l = 1, 2, . . . ,m, we see that

F TF~p = F T~y,

which is precisely the normal equation.
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In the event that F TF is invertible, we can solve for the best-fit parameter values with

~p = (F TF )−1F T~y.

At the end of this section, we will review a few notions from linear algebra and then verify
that F TF is invertible if and only if the columns of F are linearly independent. In practical
terms, this means that F TF is almost always invertible in applications. To get a feel for why
this is true, we can think about the case of line regression, for which F will have exactly
two columns, the first with each element having the value 1, and the second with the kth

element having the value xk. I.e., if we think of the relation as y = p1 + p2x, then we will
have f1(x) = 1 and f2(x) = x so that

F =


1 x1
1 x2

1
...

1 xN

 .

These two columns are linearly dependent if and only if one is a multiple of the other: i.e.,
there exists a constant c ∈ R so that

x1
x2
...
xN

 = c


1
1
...
1

 ,

in which case xk = c for all k = 1, 2, . . . , N , and we are in the unlikely setting discussed
above in which all data points lie on the same vertical line.

2.2.1 Generalizing the Coefficient of Determination

For line regression, we saw that the correlation coefficient is

R =
Cov(~x, ~y)√

Var(~x)Var(~y)
,

and the coefficient of determination is R2. These values are closely tied to the geometry of
line regression (in particular to the slope of the regression line), but R2 generalizes fairly
naturally to the general case. To see this, let’s continue to denote by E the usual SSR, and
let’s now also set

T :=
N∑
k=1

(yk − µy)2 = NVar(~y), (2.6)

often called the total sum of squares . We will base our generalization on the following lemma.

Lemma 2.1. For line regression,

R2 = 1− E

T
.
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Proof. First, we recall that for line regression,

m =
Cov(~x, ~y)

Var(~x)
, b = µy −mµx.

Now, we compute:

E =
N∑
k=1

(yk −mxk − b)2

=
N∑
k=1

(yk −mxk − µy +mµx)
2

=
N∑
k=1

{
(yk − µy)2 + 2(yk − µy)(−mxk +mµx) + (−mxk +mµx)

2
}

=
N∑
k=1

(yk − µy)2 − 2m
N∑
k=1

(yk − µy)(xk − µx) +m2

N∑
k=1

(xk − µx)2

=T − 2mNCov(~x, ~y) +m2NVar(~x)

=T − 2N
Cov(~x, ~y)2

Var(~x)
+N

Cov(~x, ~y)2

Var(~x)

=T −NCov(~x, ~y)2

Var(~x)
.

Rearranging terms, we find that

1− E

T
=
T − E
T

=
NCov(~x, ~y)2

NVar(~y)Var(~x)
= R2,

which is precisely the sought relation. �
Since E and T are both defined in the general case, we can take Lemma 2.1 as justification

for defining the coefficient of determination in the general case to be

R2 := 1− E

T
.

The values E and T are both necessarily non-negative, so it’s clear that R2 ≤ 1. In addition,
if the model has an intercept so that we can express it as

y = p1 + p2f2(~x) + · · ·+ pmfm(~x),

then one possible set of parameter values is p1 = µy, p2 = p3 = · · · = pm = 0, in which
case E would equal T . Since E is the minimum over all possible parameter values, we must
have E ≤ T , and so R2 ≥ 0. More generally, despite the notation R2, it’s possible for the
coefficient of determination to have negative values.9

9This happens in cases for which the data clearly has a non-zero intercept, and so a model without an
intercept is certainly a bad fit. See, for example, Cautionary Note about R2, The American Statistician 39
(1985) 279-285, by Tarold O. Kv̊alseth, for a detailed discussion of related issues.
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2.2.2 Variance on Predictions and the Adjusted Coefficient of Determination

Recall that the sample variance for a data vector ~y is

SVar(~y) =
1

N − 1

N∑
k=1

(yk − µy)2 =
T

N − 1
.

The associated standard deviation is
√
T/(N − 1), and we often use this as a measure of how

far measurements on the dependent variable y may differ from the mean µy. For example,
under certain assumptions, we expect that about 68%10 of measured values y will lie on the
interval

(µy −
√

T

N − 1
, µy +

√
T

N − 1
).

(For a more precise discussion of this notion of confidence intervals, see the M442 course
notes Modeling with Probability.) More important for our current purposes, we would like
to estimate the variance and standard deviation on predictions of the independent variable
y made by our model. Again under appropriate assumptions, we can compute this as

s2 =
E

q
, q = N −m.

Notice that if N = m, then we have the same number of data points as parameters, and so
our model will generally be a perfect fit. In this case, we don’t expect to have any information
about the variance, and so we’re in a setting similar to that of Footnote 7. We can interpret
these considerations as follows: if our model is y = f(~x; ~p), and we want to predict a specific
value y0 corresponding with some given input ~x0, then there is a roughly 68% chance that
y0 will lie on the interval

(f(~x0; ~p)− s, f(~x0; ~p)− s).

We often write
y = f(~x0; ~p)± s.

Last, the same considerations lead to the adjusted coefficient of determination

R̄2 := 1−
1
q
E

1
N−1T

= 1− N − 1

q

E

T

= 1− N − 1

q
(1−R2).

In cases (as discussed above) for which R2 ranges on the interval [0, 1], R̄2 ranges on the
interval [1− N−1

q
, 1].

10Precisely, this is the percentage associated with plus or minus one standard deviation for the standard

normal random variable; i.e.,
∫ 1

−1
1√
2π
e−x

2/2dx ∼= .6827.
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2.2.3 MATLAB Implementation

In the MATLAB M-file fueltempwind.m provided below, we have data relating temperature
and wind speed to the amount of fuel required to heat a home.11 Our model for this data
will be

fuel = p1 + p2 ∗ temp + p3 ∗ wind,

and we will express this as
y = p1 + p2x1 + p3x2.

I.e., we have our general form

y =
m∑
j=1

pjfj(~x),

with m = 3, f1(~x) = 1, f2(~x) = x1, and f3(~x) = x2. As usual, we express our data as

{(~xk, yk)}Nk=1 = {(xk1, xk2, yk)}Nk=1.

If we write this out as we did for our general development of the design matrix F , we get

k = 1 : y1 = p1 + p2x11 + p3x12

k = 2 : y2 = p1 + p2x21 + p3x22
...

...

k = N : yN = p1 + p2xN1 + p3xN2,

and we obtain F~p = ~y, with

F =


1 x11 x12
1 x21 x22
...

...
...

1 xN1 xN2

 .

We have seen that the three columns of F will likely be linearly independent, and we
verify this in the code below by checking that det(F TF ) 6= 0. This allows us to compute the
least-squares parameter vector as

~p = (F TF )−1F T~y,

and the syntax for this calculation in the MATLAB code is

>>p=F\y

The code for this powerful and versatile MATLAB functionality was written by Tim Davis,
who is a professor at Texas A&M University, in the department of Computer Science and
Engineering. According to Professor Davis, the code runs to about 120,000 lines.

11This data is taken from the book Probability and Statistical Inference vol. 2: Statistical inference, second
edition, Springer-Verlag 1995, by J. G. Kalbfleisch.
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%FUELTEMPWIND1: MATLAB script M-file that computes parameter
%values for a multilinear fit to the fuel-temperature-wind
%example from "Probability and Statistical Inference, vol. 2:
%Statistical Inference," by J. G. Kalbfleisch (see p. 249).
fuel = [14.96 14.1 23.76 13.2 18.6 16.79 21.83 16.25 20.98 16.88]
temp = [-3 -1.8 -10 .7 -5.1 -6.3 -15.5 -4.2 -8.8 -2.3]
wind = [15.3 16.4 41.2 9.7 19.3 11.4 5.9 24.3 14.7 16.1]
%
F=[ones(size(fuel))’ temp’ wind’]
%Check invertibility of F’*F
det(F’*F)
%Brute force calculation of p
p = inv(F’*F)*F’*fuel’
%MATLAB calculation of p (much more efficient)
pmat=F\fuel’
%SSR
ssr = norm(fuel’-F*p)ˆ2
%Standard deviation for the fit
q = length(fuel)-length(p);
s = sqrt(ssr/q)
%R-squared calculations
fuelbar = mean(fuel);
T = norm(fuel-fuelbar)ˆ2;
%Coefficient of determination
Rsq = 1-ssr/T
%Adjusted coefficient of determination
Rsqa = 1-(1-Rsq)*(length(fuel)-1)/q

Running fueltempwind1.m, we find that

p1 = 11.9339

p2 = − .6285

p3 = .1298,

with corresponding standard deviation

s = 1.2267,

and coefficient of determination R2 = .9039. The modified coefficient of determination is
R̄2 = .8765.

2.2.4 Invertibility of F TF and Interpreting the relation F~p = ~y

For this discussion, we need to review two results from linear algebra, the first of which we
will state without proof. These address existence and uniqueness for matrix equations of the
form A~x = ~b, and we will start with uniqueness.

20



Theorem 2.1 (Uniquenesss Theorem for Matrix Equations). For any matrix A ∈
Cm×n (i.e., any m × n matrix with complex-valued entries, which of course includes any

m×n matrix with real-valued entries), and any column vector ~b ∈ Cm, a solution to A~x = ~b,
if it exists, is unique if and only if one (and so both) of the following equivalent conditions
hold:

(i) ~x = 0 is the only solution of A~x = 0;

(ii) The columns of A are linearly independent.

Moreover, if A is a square matrix, then Items (i) and (ii) are equivalent to the following:

(iii) detA 6= 0;

(iv) A is invertible;

(v) The rows of A are linearly independent.

For the next theorem (our existence theorem for solutions to equations of the form

A~x = ~b), we will denote by A∗ the adjoint of a matrix A, which is the matrix obtained
by transposing A and taking a complex conjugate of each entry. It’s clear from this defini-
tion that if the entries of A are all real-valued, then A∗ = AT . In addition, we will use the
notation 〈~x, ~y〉 to denote the usual inner product between two vectors ~x, ~y ∈ Cn,

〈~x, ~y〉 =
n∑
j=1

xj ȳj,

where the bar denotes complex conjugate. It’s straightforward to check that for any matrix
A ∈ Cm×n, and any vectors ~x ∈ Cn and ~y ∈ Cm, we have the relation

〈A~x, ~y〉 = 〈~x,A∗~y〉.

Theorem 2.2 (The Fredholm Alternative for Matrices).12 For any matrix A ∈ Cm×n,

and any column vector ~b ∈ Cm, the equation A~x = ~b has a solution if and only if 〈~b,~v〉 = 0
for every vector ~v satisfying A∗~v = 0.

Since the Fredholm Alternative is sometimes skipped in introductory courses in linear
algebra, we include a proof. For this, we need a couple of definitions and one preliminary
result, known as the Orthogonal Decomposition Theorem.

Definition 2.1. For any two subspaces X and Y of Cn such that X ∩ Y = {0}, we define
the direct sum

Z = X ⊕ Y

to be the collection of vectors ~z ∈ Cn that can be expressed as ~z = ~x + ~y, where ~x ∈ X and
~y ∈ Y .

Lemma 2.2. With X and Y as in Definition 2.1, the decomposition ~z = ~x + ~y is unique.
I.e., if ~z = ~u+~v for some ~u ∈ X and ~v ∈ Y , then it must be the case that ~u = ~x and ~v = ~y.

12This theorem is named for the Swedish mathematician Erik Fredholm (1866-1927).

21



Proof. Upon subtracting ~z = ~u+ ~v from ~z = ~x+ ~y, we obtain the relation

(~x− ~u) + (~y − ~v) = 0,

where by linearity ~x− ~u ∈ X and ~y − ~v ∈ Y . But we have

(~x− ~u) = −(~y − ~v) ∈ Y,

so ~x − ~u ∈ X ∩ Y . This implies ~x − ~u = 0, and we can conclude ~u = ~x. But then we
immediately have ~v = ~y as well. �
Definition 2.2. For any subspace X of Cn, we define the orthogonal complement of X to
be

X⊥ := {~y ∈ Cn : 〈~x, ~y〉 = 0 for all ~x ∈ X}.

Theorem 2.3 (Orthogonal Decomposition Theorem). If X is any subspace of Cn,
then

Cn = X ⊕X⊥.

Proof. First, let’s check that X∩X⊥ = {0}. For this, we suppose ~v ∈ X∩X⊥, and compute

|~v|2 = 〈~v,~v〉 = 0,

where we obtain 0 because ~v ∈ X⊥ implies that 〈~v, ~x〉 = 0 for all ~x ∈ X, and we are taking
~v ∈ X. Next, we need to show that given any ~z ∈ Cn we can write ~z = ~x+ ~y, where ~x ∈ X
and ~y ∈ X⊥. First, if dimX = 0 then the only element in X is 0, so X⊥ = Cn, and we see
that the statement holds with ~z = ~y. If dimX = ` ≥ 1, we let {~xj}`j=1 denote an orthogonal
basis for X.13 We then set

~x =
∑̀
j=1

〈~z, ~xj〉
|~xj|2

~xj.

Since ~x is a linear combination of the basis elements of X, we certainly have ~x ∈ X. We’ll
set ~y = ~z − ~x, and we will obtain the sought relation if we can show that ~y ∈ X⊥. To this
end, we take any ~v ∈ X, noting that we can express ~v as ~v =

∑`
j=1 cj~xj for some constants

{cj}`j=1. We need to show that 〈~y,~v〉 = 0, and for this we compute

〈~y,~v〉 = 〈~z − ~x,~v〉 = 〈~z,~v〉 − 〈~x,~v〉

= 〈~z,
∑̀
j=1

cj~xj〉 − 〈
∑̀
k=1

〈~z, ~xk〉
|~xk|2

~xk,
∑̀
j=1

cj~xj〉

=
∑̀
j=1

cj〈~z, ~xj〉 −
∑̀
k=1

〈~z, ~xk〉
|~xk|2

∑̀
j=1

cj〈~xk, ~xj〉

=
∑̀
j=1

cj〈~z, ~xj〉 −
∑̀
k=1

〈~z, ~xk〉
|~xk|2

ck|~xk|2 = 0,

13I.e., 〈~xi, ~xj〉 = 0 for all i 6= j; this is always possible by Gram-Schmidt orthogonalization.
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where in the step just before equating the relation to 0 we used the orthogonality. This gives
the claim. �
Proof of the Fredholm Alternative. First, suppose we can solve A~x = ~b with some
~x0 ∈ Cn. Let ~v be any vector in Cm satisfying A∗~v = 0. Then

〈~b,~v〉 = 〈A~x0, ~v〉 = 〈~x0, A∗~v〉 = 〈~x0, 0〉 = 0,

giving the forward implication.
On the other hand, suppose

A∗~v =⇒ 〈~b,~v〉 = 0. (2.7)

According to the Orthogonal Decomposition Theorem, we have

Cm = R(A)⊕R(A)⊥,

which means that we can express ~b uniquely as

~b = ~br +~b0,

where ~br ∈ R(A) and ~b0 ∈ R(A)⊥. Here, R(A) denotes the range of A, which is just every

vector ~b ∈ Cm for which there exists a vector ~x ∈ Cn so that A~x = ~b. Perhaps more simply,
R(A) is precisely the set of vectors ~b ∈ Cm for which we can solve the equation A~x = ~b. We
have then that for all ~x ∈ Cn,

0 = 〈~b0, A~x〉 = 〈A∗~b0, ~x〉,

where the zero on the left-hand side is because A~x ∈ R(A). Since ~x is arbitrary, we can take

~x = A∗~b0 to see that A∗~b0 = 0. But then by (2.7) we must have 〈~b,~b0〉 = 0. This allows us
to compute

|~b0|2 = 〈~b0,~b0〉 = 〈~b0,~b−~br〉
= 〈~b0,~b〉 − 〈~b0,~br〉 = 0,

because each summand is 0. We see that ~b0 = 0, so that ~b = ~br, and since ~br ∈ R(A), we

can solve A~x = ~br, completing the proof. �

In Fredholm’s Alternative, the “alternative” is that either A~x = ~b has a solution or
A∗~v = 0 has a solution so that 〈~b,~v〉 6= 0. One succinct way to express the theorem is to
write

R(A) = N (A∗)⊥,

where the set N (A∗) denotes the null space (or kernel) of A∗, which is just the collection of
all vectors ~v ∈ Cn so that A∗~v = 0. The orthogonal complement N (A)⊥ is precisely the set

of vectors ~b described in the theorem:

N (A∗)⊥ = {~b ∈ Cm : 〈~b,~v〉 = 0 for all ~v ∈ N (A∗)},
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so the Fredholm Alternative asserts that this equals the R(A), as stated. In addition,
according to the Orthogonal Decomposition Theorem, we have

Cm = N (A∗)⊕N (A∗)⊥,

giving the useful relation
Cm = N (A∗)⊕R(A).

Using Theorem 2.1 (though not yet Theorem 2.2), we can prove the following lemma
about invertibility of F TF .

Lemma 2.3. For any matrix F ∈ CN×m, the matrix F ∗F ∈ Cm×m is invertible if and only
if the columns of F are linearly independent.

Proof. According to Theorem 2.1, it suffices to show that ~x = 0 is the only solution of
F~x = 0 if and only if ~x = 0 is the only solution of F ∗F~x = 0. We will show

F~x = 0 ⇐⇒ F ∗F~x = 0,

which gives the claim. First, for ( =⇒ ), this is clear (just multiply by F ∗). For (⇐= ), we
suppose F ∗F~x = 0 and compute

0 = 〈F ∗F~x, ~x〉 = 〈F~x, F~x〉 = |F~x|2 = 0,

from which we conclude that F~x = 0. �
In addition, we can use the Fredholm Alternative to better understand how we should

interpret the relation F~p = ~y. These observations hold for F ∈ CN×m, but in order to be
consistent with our discussion of regression so far we will continue to take F ∈ RN×m. The
primary difference is that we will write F T instead of F ∗. To begin, we observe that if F TF
is invertible so that ~p = (F TF )−1F T~y, then we can express F~p = ~y as

F (F TF )−1F T~y = ~y.

This matrix M := F (F TF )−1F T is precisely the orthogonal projection onto the range of F ,
so while F~p isn’t generally precisely ~y, it is in some sense as close to being ~y as possible. But
what exactly do we mean when we say that M is an orthogonal projection onto the range
of F? To understand this, let’s first observe that based on our discussion above about the
Fredholm Alternative, we can write

RN = R(F )⊕N (F T ).

This means precisely that given any ~y ∈ RN , there exists a unique pair of vectors ~x ∈ R(F )
and ~z ∈ N (F T ) so that

~y = ~x+ ~z.

The orthogonal projection of ~y onto the range of F (i.e., onto R(F )) is the part of this
decomposition in R(F ), namely ~x.14 To see that M is indeed the orthogonal projection onto

14The projection is orthogonal because its range R(M) is orthogonal to its null space N (M). That is, if
~y ∈ R(M), then there exists some ~x ∈ RN so that M~x = ~y, and if ~z ∈ N (M) it means that M~z = 0. But
then 〈~y, ~z〉 = 〈M~x, ~z〉 = 〈~x,M~z〉 = 〈~x, 0〉 = 0.
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R(F ), we just compute

M~y =M(~x+ ~z) = M~x+M~z

=F (F TF )−1F T~x+ F (F TF )−1F T~z

=F (F TF )−1F T~x,

because F T~z = 0. But also since ~x ∈ R(F ) there must exist some ~v ∈ Rm so that ~x = F~v,
and this allows us to continue this calculation by writing

M~y = F (F TF )−1F T~x = F (F TF )−1F TF~v = F~v = ~x,

where in obtaining the final equality we observed that (F TF )−1F TF = I by the usual
property of inverses.

2.3 Linear Regression for Systems

So far, our dependent variable y has been a scalar, but in many cases we want to carry out
regression on a system. Suppose we have data {(~xk, ~yk)}Nk=1, which we can express as

{(xk1, xk2, . . . , xkl, yk1, yk2, . . . , ykn)}Nk=1.

Here, for each k ∈ {1, 2, . . . , N}, we have ~xk ∈ Rl and ~yk ∈ Rn. We will express our general
linear regression relation as

~y = ~f(~x; ~p),

which can be expressed in component form as

y1 = f1(~x; ~p) =
m∑
j=1

pjf1j(~x)

y2 = f2(~x; ~p) =
m∑
j=1

pjf2j(~x)

...
...

yn = fn(~x; ~p) =
m∑
j=1

pjfnj(~x).

Of course, we could analyze each component equation separately as a single equation, allow-
ing us to proceed as before, but we would generally get different values for the parameters
from each equation, and in addition some parameters may be omitted entirely from an
equation.15 In view of this, we generally treat the system cohesively by specifying the SSR

E(~p) =
N∑
k=1

|~yk − ~f(~xk; ~p)|2

=
N∑
k=1

n∑
i=1

(yki − fi(~xk; ~p))2,

15For example, if f21(~x) ≡ 0, then p1 does not appear in the second equation.
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where |~yk − ~f(~xk; ~p)| denotes the usual Euclidian norm of the vector ~yk − ~f(~xk; ~p). In this
case, we can think of the data as giving us n systems of N equations, namely

i = 1, k = 1 : y11 = p1f11(~x1) + p2f12(~x1) + · · ·+ pmf1m(~x1)

k = 2 : y21 = p1f11(~x2) + p2f12(~x2) + · · ·+ pmf1m(~x2)

...
...

k = N : yN1 = p1f11(~xN) + p2f12(~xN) + · · ·+ pmf1m(~xN)

i = 2, k = 1 : y12 = p1f21(~x1) + p2f22(~x1) + · · ·+ pmf2m(~x1)

...
...

i = n, k = N : yNn = p1fn1(~xN) + p2fn2(~xN) + · · ·+ pmfnm(~xN).

In this case, we will set

~Yi :=


y1i
y2i
...
yNi

 , Fi :=


fi1(~x1) fi2(~x1) · · · fim(~x1)
fi1(~x2) fi2(~x2) . . . fim(~x2)

...
...

...
...

fi1(~xN) fi2(~xN) . . . fim(~xN)

 , (2.8)

so that our equations are
Fi~p = ~Yi, i = 1, 2, . . . , n.

If we subsequently set

~Y :=


~Y1
~Y2
...
~Yn

 ∈ RnN , F =


F1

F2
...
Fn

 ∈ RnN×m,

then we can express our linear system of equations as

F~p = ~Y .

Proceeding almost identically as in the case of a single equation, we can check that minimizers
~p of the SSR can again be computed as

~p = (F TF )−1F T ~Y ,

as long as F TF is invertible. We will work through a specific example below, but first we
need to introduce a key new feature that becomes important in the case of systems.

2.3.1 Weighting the Dependent Variable

In practice, we often encounter the following complication when carrying out regression
for systems: different components of ~y may take values on entirely different scales. For
example, a common system encounted in ecology is a plant-herbivore interaction, in which
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case y1 might denote a measure of vegetation (measured by something like total mass, mass
density, acreage covered etc.), while y2 denotes a measure of herbivore presence (measured
by something like total number of herbivores, herbivore density, etc.). Since the units of
measurement aren’t comparable, it may be the case that one set of values is much less than
the others. For purposes of this discussion, let’s suppose the values of y1 are substantially
smaller than those of y2, and let’s express the SSR as

E(~p) =
N∑
k=1

(yk1 − f1(~xk; ~p))2 +
N∑
k=1

(yk2 − f2(~xk; ~p))2

=:E1(~p) + E2(~p).

Generally, we will find that E1(~p) is much smaller than E2(~p), and so the parameter values
will be determined almost entirely by the values of y2. I.e., the model will fit the herbivore
population well, but will not fit the plant population well. On an intuitive level, we can see
this easily: if the values of y1 and y2 are treated equally, then the error on each will be the
same, but this error will be a much higher percentage of the values of y1 than of the values
of y2.

We typically address this situation by scaling the dependent variables with “weights”
that capture in some sense the general sizes of the variables. We will denote these weights
w1, w2, etc., so for a system of two equations we specify two weighted dependent variables

z1 =
y1
w1

, z2 =
y2
w2

.

In this case,

z1 =
y1
w1

=
1

w1

f1(~x; ~p) =: g1(~x; ~p)

z2 =
y2
w2

=
1

w2

f2(~x; ~p) =: g2(~x; ~p).

With scaled data {(~xk, zk1, zk2)}Nk=1 = {(~xk, yk1w1
, yk2
w2

)}Nk=1, we can work with the new weighted
SSR

Ẽ(~p) =
N∑
k=1

(zk1 − g1(~xk; ~p))2 +
N∑
k=1

(zk2 − g2(~xk; ~p))2

=
N∑
k=1

(
yk1
w1

− f1(~xk; ~p)

w1

)2 +
N∑
k=1

(
yk2
w1

− f2(~xk; ~p)

w2

)2

=
N∑
k=1

{
(yk1 − f1(~xk; ~p))2/w2

1 + (yk2 − f2(~xk; ~p))2/w2
2

}
.

More generally, the weighted SSR will be

Ẽ(~p) =
N∑
k=1

n∑
i=1

(yki − fi(~xk; ~p))2/w2
i ,
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and we will typically omit the tilde if we’re not specifically comparing the weighted SSR to
an unweighted SSR. For our matrix formulation, we let the vectors {~Yi}ni=1 and {Fi}ni=1 be
as in (2.8), and set

~Y :=


~Y1/w1

~Y2/w2
...

~Yn/wn

 ∈ RnN , F =


F1/w1

F2/w2
...

Fn/wn

 ∈ RnN×m.

Then we can find the regression values for ~p by thinking in the usual way about the system

F~p = ~Y .

One caveat here is that if we could solve the system F~p = ~Y exactly, the weights would all
cancel out and would turn out to be unnecessary, which is fair, since in that case we would
have an exact fit for every component. As usual, the best-fit parameter values can generally
be computed as ~p = (F TF )−1F T ~Y .

Of course, in order to complete our discussion of using weights, we need a method for
actually choosing the weights. For example, for our plant-herbivore system we might scale
each variable by some maximum size so that y1 and y2 are both confined to the interval [0, 1],
and thereby presumably more comparable. While any number of such ad hoc choices can
work in a sense, a more systematic approach, justified in part by statistical considerations,
is to weight the dependent variables by their sample standard deviations. I.e., to weight yi
by

wi =

√√√√ 1

N − 1

N∑
k=1

(yki − µyi)2, i = 1, 2, . . . , n.

Working a bit loosely, we can understand how this is a reasonable choice by thinking in
terms of the adjusted coefficient of determination for yi, R̄

2
i . First, the sample variance for

the variable yi is

w2
i =

1

N − 1

N∑
k=1

(yki − µyi)2 =
Ti

N − 1
,

where Ti is the total sum of squares for the component yi as defined in (2.6). Likewise, the
variance on predictions of yi can reasonably be approximated by

s2i =
1

N −mi

Ei,

where mi denotes the number of parameters that appear in the equation for yi, and Ei
denotes the SSR for the ith equation, namely

Ei(~p) =
N∑
k=1

(yki − fi(~xk; ~p))2.

(Here, s2i would be precisely the usual variance we use, if we were obtaining the values ~p
only from the ith equation; as it is, we are obtaining ~p from the full system, so this is only

28



an intuitive approximation.) If we add a weight wi in our calculation of Ei, then s2i will be
replaced by s2i /w

2
i , and if w2

i is chosen to be sample variance, this will give

s2i
w2
i

=
1

N−mi
Ei

1
N−1Ti

=
N − 1

N −mi

Ei
Ti

= 1− R̄2
i . (2.9)

The variance on predictions for the full fit is

s2 =
1

Nn−m

N∑
k=1

n∑
i=1

(yki − fi(~xk; ~p))2/w2
i ,

and this is related to the individual variances by si = swi. I.e.,

yi
wi

= prediction ± s

so that
yi = prediction ∗ wi ± swi.

We see that the ratio si
wi

is the same for all components, and if wi is specified as above so

that (2.9) holds, then it follows that R̄2
i is the same for all components as well. In particular,

with this choice of weights, the equation for y1 is no more or less effective, as measured by
the adjusted coefficient of determination, than the equation for y2, and similarly for all other
pairs of equations.

2.3.2 MATLAB Implementation

Suppose we have a system of two equations

y1 = p1 + p2x1 + p3x2

y2 = p4 + p3x1 + p5x2,

where p3 appears in both equations. Data for this system is given below in the MATLAB
script M-file sysreg.m, in which values for the parameters are obtained by weighted linear
least squares regression. In particular, the dependent variables y1 and y2 are weighted by
standard deviation as described above.

%SYSREG: MATLAB script M-file with an example of
%regression for a linear system.
%
%Define the data
[x1 x2]=meshgrid(linspace(-1,1,5),linspace(-1,1,5));
y1 = [-3.8656 -3.3269 -2.3375 -1.0512 0.1679;
-2.0415 -1.6084 0.2587 0.4690 1.1981;
-1.5647 0.0857 1.1814 2.3724 3.1793;
0.7155 2.3946 2.4842 3.8523 4.9076;
2.0797 3.6924 4.1787 5.3543 6.1222];

29



%
y2 = [-17.3183 -3.8368 -15.4453 -8.0703 -10.0780;
12.3868 9.6517 15.1628 9.0420 21.7404;
30.9294 40.3569 42.7626 37.7885 42.0379;
56.4325 62.3721 70.5031 61.1921 72.4431;
86.9658 94.0868 97.7211 103.2523 89.1758];
%
%Define dependent vectors; use [],1 to select a single column
%and any number of rows (for portability)
Y1 = reshape(y1,[],1);
Y2 = reshape(y2,[],1);
%Define columns of ones and columns of zeros
col1 = ones(size(reshape(y1,[],1)));
col0 = zeros(size(reshape(y1,[],1)));
%Use standard deviation as weights
w1=std(Y1);
w2=std(Y2);
%
%Define design matrix
F1=[col1 reshape(x1,[],1) reshape(x2,[],1) col0 col0];
F2=[col0 col0 reshape(x1,[],1) col1 reshape(x2,[],1)];
%
F = [F1/w1;F2/w2]; Y=[Y1/w1;Y2/w2];
p = F\Y
%Standard deviation
q = length(Y)-length(p);
ssr = norm(Y-F*p)ˆ2
s = sqrt(ssr/q);
s1 = s*w1
s2 = s*w2
%Adjusted coefficient of determination
Ybar = mean(Y);
T = norm(Y-Ybar)ˆ2
Rsq = 1-ssr/T
Rsqa = 1-(1-Rsq)*(length(Y)-1)/q

In the top lines of sysreg.m, the data is given in a grid format, and the reshape command is
simply used to convert the values into a pair of column vectors Y1 and Y2, corresponding
precisely with the vectors ~Y1 and ~Y2 in our general development. The output from sysreg.m
is given below.

>>sysreg
p =
1.1559
2.0105
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3.1930
40.0502
52.2744
ssr =
0.7014
s1 =
0.3421
s2 =
4.7592
T =
52.9417
Rsq =
0.9868
Rsqa =
0.9856

We see that the parameter values are estimated to be

p1 = 1.1559

p2 = 2.0105

p3 = 3.1930

p4 = 40.0502

p5 = 52.2744.

The estimated standard deviations on predictions are

s1 = .3421

s2 = 4.7592,

effectively distinguising between the relatively small values associated with y1 and the rela-
tively large values associated with y2.

3 Nonlinear Least Squares Regression

For most applications, we will model data {(~xk, ~yk)}Nk=1 with a relation

~y = ~f(~x; ~p)

that is nonlinear in the parameters ~p. For example, we’ve briefly discussed the relation

y = p1e
p2x,

which arises commonly as a model of population growth, radioactive decay, and other pro-
cesses in which the rate of change of the quantity under investigation (i.e., dy

dx
) is proportional
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to the value of the quantity itself16. Just as with linear least squares regression, we proceed
by minimizing the SSR

E(~p) =
N∑
k=1

|~yk − ~f(~xk; ~p)|2,

or more generally a weighted version of this SSR. The main new difficulty we encounter with
nonlinear regression is that E(~p) can now have multiple local minima.

Example 3.1. Consider the single-parameter nonlinear relation

y = sin(px),

for which data {(xk, yk)}Nk=1 will be randomly generated (see the MATLAB M-file nlssr.m
below). The SSR for this relation and data is

E(p) =
N∑
k=1

(yk − sin(pxk))
2,

and E is plotted against p for a particular set of data in Figure 3.1. In this case, the data
was generated with the parameter value p = 2, and we see that the global minimum of E is
indeed near p = 2. However, it’s clear that any numerical method for identifying this global
minimum must be able to avoid becoming trapped near a local minimum. 4
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Figure 3.1: SSR for a relation nonlinear in a single parameter.

Example 3.2. Consider the two-parameter nonlinear relation

y = sin(p1x) + cos(p2x),

16Precisely, y = p1e
p2x solves the differential equation dy

dx = p2y subject to the initial condition y(0) = p1.
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for which data {(xk, yk)}Nk=1 will be randomly generated (see the MATLAB M-file nlssr.m
below). The SSR for this relation and data is

E(~p) =
N∑
k=1

(yk − sin(p1xk)− cos(p2xk))
2,

and E is plotted against ~p for a particular set of data in Figure 3.2. In this case, by using
the 3D-panning feature in MATLAB’s figure window it’s possible to check that the global
minimizer is near the point (p1, p2) = (2, 3), which was used in the generation of the data.
For two parameters, the proliferation of local minima is already striking, and this effect
generally becomes more pronounced as the number of parameters increases. 4

Figure 3.2: SSR for a relation nonlinear in two parameters.

The data and fits for Examples 3.1 and 3.2 were generated with the MATLAB script
M-file nlssr.m, included below.

%NLSSR: MATLAB script M-file written to plot
%sums of squared residuals for some example
%nonlinear fits.
%
%Single parameter, y = sin(px)
%
%GENERATE RANDOM DATA
x = 5*randn(1,5)+2;
p = 2; %FOR GENERATING Y
y = sin(p*x)+randn(1,5);
avals = linspace(0,5,1000);
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for k = 1:length(avals)
E1(k) = norm(y - sin(avals(k)*x))ˆ2;
end
plot(avals, E1)
title(’SSR for $y(x) = \sin (px)$’,’Interpreter’,’latex’,’Fontsize’,16)
xlabel(’$p$’,’Interpreter’,’latex’,’Fontsize’,14)
ylabel(’$E$’,’Interpreter’,’latex’,’Fontsize’,14)
%
pause
%Two parameters, y = sin(p1*x)+cos(p2*x)
x = 5*randn(1,25)+2;
p1 = 2; p2 = 3; %FOR GENERATING Y
y = sin(p1*x)+cos(p2*x)+randn(1,25);
p1vals = linspace(0,5,100);
p2vals = linspace(0,5,100);
for k=1:length(p1vals)
for j = 1:length(p2vals)
E2(j,k) = norm(y - sin(p1vals(k)*x) - cos(p2vals(j)*x))ˆ2;
end
end
[p1grid,p2grid]=meshgrid(p1vals,p2vals);
figure
mesh(p1grid,p2grid,E2);
title(’SSR for $y(x) = \sin (p 1 x) + \cos(p 2 x)$’,’Interpreter’,’latex’,’Fontsize’,16)
xlabel(’$p 1$’,’Interpreter’,’latex’,’Fontsize’,14)
ylabel(’$p 2$’,’Interpreter’,’latex’,’Fontsize’,14)
zlabel(’$E$’,’Interpreter’,’latex’,’Fontsize’,14)

For nonlinear regression, there is no general solution formula17, so we proceed by minimizing
the SSR numerically. Numerical methods for carrying out this minimization efficiently can
be quite sophisticated, but most are centered on the simple idea of gradient descent. For
this, we fix some initial approximation ~p0 of our parameter vector ~p, and we evaluate the
gradient of E(~p) at ~p0, namely

DpE(~p0) = (
∂E

∂p1
(~p0),

∂E

∂p2
(~p0), . . . ,

∂E

∂pm
(~p0)).

This vector indicates the direction (in Rm) in which ~p could be moved to maximize the
increase in E(~p), so we take a small step in the opposite direction. I.e., we update our initial
approximation ~p0 to

~p1 = ~p0 − εDpE(~p0),

where ε > 0 is suitably small (and is generally taken to vary as the minimizer is approached).
Repeating, we obtain the recursion relation

~pn+1 = ~pn − εnDpE(~pn),

17I.e., no analogue to ~p = (FTF )−1FT~y for the linear case.
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where the index on ε indicates loosely that it will vary from step to step, setting aside the
complicated question of how to optimize its values. It’s clear from these considerations and
the multiple local minimizers we see in Examples 3.1 and 3.2 that a key element of nonlinear
regression is choosing an appropriate starting approximation ~p0. In general, this can be a
difficult step, but in most of the examples relevant for us we will be able to take advantage of
the following simple observation: while solutions to ODE and PDE are generally nonlinear
in the parameters, the ODE and PDE themselves are often linear in the parameters. We will
see how this plays out in the following important example.

Example 3.3. We will fit the logistic population model

dy

dt
= ry(1− y

K
), y(0) = y0, (3.1)

to US census data 1790-2020. Here, r is called the “growth rate” of the population, K
is called the “carrying capacity,” and y0 denotes the initial number of individuals in the
population. We observe that for this model the population is assumed to have a maximum
possible number of individuals, K. We can see this by observing that if y(0) < K, then
as y(t) increases toward K, dy

dt
decreases to 0, so that the growth gets slower and slower.

The population never actually reaches K, but rather approaches it asymptotically in large
time. (This behavior can be seen directly from the explicit solution given just below.) On
the other hand, if the population starts above the value K, then it will decline to K as t
increases. Equation (3.1) can be solved by separation of variables and partial fractions, and
we find

y(t; r,K, y0) =
y0K

(K − y0)e−rt + y0
. (3.2)

We will take year 0 to be 1790, and we will assume the estimate that year was fairly crude
and obtain a value of y0 by fitting the entirety of the data. In this way, we have three
parameters to contend with, r, K, and y0, and it’s clear that the relation (3.2) is nonlinear
in each of these. The data we will use for this fit is given in uspop.m.

%USPOP: Defines decades and corresponding U.S. populations.
%Year 0 corresponds with the first census in 1790,
%and year 230 corresponds with the most recent census in 2020.
decades=0:10:230;
pops=[3.93 5.31 7.24 9.64 12.87 17.07 23.19 31.44 39.82 50.16 62.95 75.99...
91.97 105.71 122.78 131.67 151.33 179.32 203.21 226.5 249.63 281.42 308.75...
331.45];

Since the regression will be nonlinear, we will need appropriate initial approximations for
the values r, K, and y0. In order to identify these initial approximations, we observe that
the logistic equation (3.1) can be expressed as

dy

dt
= ry − r

K
y2,

which can be viewed as a relation between dy
dt

and two variables y and y2, linear in the
parameters r and q2 := − r

K
. Even better, if we divide by y we obtain the relation

1

y

dy

dt
= r − r

K
y,
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which can be viewed as a line relation between the variables Y = 1
y
dy
dt

and X = y, with slope
m = − r

K
and intercept b = r. We will proceed by fitting Y as a function of X, but for

this we need data-based values for the derivatives dy
dt

, and these aren’t generally known. We
proceed by approximation.

3.1 Approximating Derivatives

In order to understand methods for approximating derivatives, we recall that the Taylor
polynomial with remainder for a sufficiently differentiable function f(x) near a value a can
be expressed as

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +

f (n+1)(c)

(n+ 1)!
(x− a)n+1

=
n∑
k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(c)

(n+ 1)!
(x− a)n+1,

where c is some value between a and x (and so varies with both).18

3.1.1 Forward Difference Derivative Approximation

Given a sufficiently differentiable function y(t) and a discrete set of times {tk}Nk=1, we can
Taylor expand y(tk+1) about y(tk) to see that

y(tk+1) = y(tk) + y′(tk)(tk+1 − tk) +
y′′(c)

2
(tk+1 − tk)2,

where c is some value between tk and tk+1. If y′′(c) is bounded on the interval [tk, tk+1], then
there exists a constant C so that∣∣∣y′′(c)

2
(tk+1 − tk)2

∣∣∣ ≤ C(tk+1 − tk)2

for all c ∈ [tk, tk+1]. For brevity, we often introduce “big-O” notation, and write

y′′(c)

2
(tk+1 − tk)2 = O((tk+1 − tk)2).

Definition 3.1. For a real-valued function f(x) defined in an open interval containing a
value x0 ∈ R, we write f = O(|x− x0|k) if there exists a constant C so that

|f(x)| ≤ C|x− x0|k

for all x sufficiently close to x0.

Here, Definition 3.1 is made for a function f taking real values to real values, but it im-
mediately extends to functions taking complex values to complex values. With this notation,
we can write

y(tk+1) = y(tk) + y′(tk)(tk+1 − tk) + O((tk+1 − tk)2).
18See Theorem A.2 in the appendix for a precise statement of Taylor polynomials with remainder.
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Solving for y′(tk), we find that

y′(tk) =
y(tk+1)− y(tk)

tk+1 − tk
− O((tk+1 − tk)2)

tk+1 − tk
.

If follows from the specification of the big-O notation that we can write

−O((tk+1 − tk)2)
tk+1 − tk

= O(|tk+1 − tk|),

leading to the convenient relation

y′(tk) =
y(tk+1)− y(tk)

tk+1 − tk
+ O(|tk+1 − tk|).

We see that as long as the step size |tk+1 − tk| is sufficiently small, the derivative y′(tk) will
be well approximated by the “forward difference” derivative approximation

y′(tk) ∼=
y(tk+1)− y(tk)

tk+1 − tk
.

This suggests we can approximate data values {(dy
dt

)k}N−1k=1 by computing

(
dy

dt
)k =

yk+1 − yk
tk+1 − tk

, k = 1, 2, . . . , N − 1.

In practice, we can readily implement this approximation in MATLAB using the built-in diff
command, which takes a vector ~y ∈ RN as input and returns a vector of differences

diff(~y) = (y2 − y1, y3 − y2, . . . , yN − yN−1) ∈ RN−1.

This allows use to compute the vector of data values {(dy
dt

)k}N−1k=1 with the command

diff(y)./diff(t)

In the MATLAB M-file uspop1.m, we use this approximation to fit values Yk = 1
yk

(dy
dt

)k
against Xk = yk, and we obtain values of r and K from the resulting slope and intercept.
It’s important to notice that in this case, the differences tk+1 − tk are not small (we have
tk+1− tk = 10 for all k = 1, 2, . . . , N − 1), and yet the resulting fit is still fairly promising as
an initial step prior to nonlinear regression.

%USPOP1: MATLAB script M-file that uses a
%forward difference derivative approximation
%to approximate parameter values for a logistic
%model to U.S. population growth.
%
%Define data
uspop;
%

37



dydt = diff(pops)./diff(decades);
plot(pops(1:end-1),dydt./pops(1:end-1),’o’)
title({’Plot of per capita growth vs populations’ ’forward differences’},...
’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Populations’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’Per capital growth rate’,’Interpreter’,’latex’,’FontSize’,14)
pause
p=polyfit(pops(1:end-1),dydt./pops(1:end-1),1);
r=p(2)
K= -r/p(1)
pause
%
%Plot regression line
plot(pops(1:end-1),dydt./pops(1:end-1),’o’,pops(1:end-1),p(1)*pops(1:end-1)+p(2))
title({’Plot of per capita growth vs populations’, ’forward differences, ...
with regression line’},’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Populations’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’Per capital growth rate’,’Interpreter’,’latex’,’FontSize’,14)
pause
%
%Plot ODE solution vs data
y0 = pops(1);
logistic = @(t) y0*K./(y0+(K-y0)*exp(-r*t));
modelpops = logistic(decades);
plot(decades, pops, ’o’, decades, modelpops)
title({’Plot of data and model’, ’parameters found by forward differences’},...
’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Decades, 1790-2020’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’U. S. Populations’,’Interpreter’,’latex’,’FontSize’,14)

The linear fit obtained by this code is given on the left-hand side of Figure 3.3, while the fit
of the logistic model along with data is given on the right. The parameter values obtained
are

r = .0314

K = 335.3112.

3.1.2 Central Difference Derivative Approximation

Suppose the independent variables are evenly spaced, so that

h = tk+1 − tk, ∀ k = 1, 2, . . . , N − 1.

Proceeding similarly as with the forward-difference derivative approximation, we find that

y′(tk) =
y(tk + h)− y(tk − h)

2h
+ O(h2), k = 2, 3, . . . , N − 1,
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Figure 3.3: Figures associated with our fit of US population data to the logistic model, based
on the forward difference derivative approximation.

which, for small values of h, is better than the forward difference approximation (for which
the error would be O(h)). This suggests that in some cases it can be useful to approximate
values {(dy

dt
)k}N−1k=2 with the “central difference” derivative approximation

(
dy

dt
)k =

yk+1 − yk−1
2h

, k = 2, 3, . . . , N − 1.

We carry this out with uspop2.m, from which we find

r = .0277

K = 362.3526.

%USPOP2: MATLAB script M-file that uses a
%central difference derivative approximation
%to approximate parameter values for a logistic
%model to U.S. population growth
%
%Define data
uspop;
%
dydt = (pops(3:end)-pops(1:end-2))/20;
plot(pops(2:end-1),dydt./pops(2:end-1),’o’)
title({’Plot of per capita growth vs populations’, ’central differences’},...
’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Populations’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’Per capital growth rate’,’Interpreter’,’latex’,’FontSize’,14)
pause
p=polyfit(pops(2:end-1),dydt./pops(2:end-1),1);
r=p(2)
K= -r/p(1)
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pause
%
%Plot regression line
plot(pops(2:end-1),dydt./pops(2:end-1),’o’,pops(2:end-1),p(1)*pops(2:end-1)+p(2))
title({’Plot of per capita growth vs populations’,...
’central differences, with regression line’},...
’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Populations’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’Per capital growth rate’,’Interpreter’,’latex’,’FontSize’,14)
pause
%
%Plot ODE solution vs data
y0 = pops(1);
logistic = @(t) y0*K./(y0+(K-y0)*exp(-r*t));
modelpops = logistic(decades);
plot(decades, pops, ’o’, decades, modelpops)
title({’Plot of data and model’, ’parameters found by central differences’},...
’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Decades, 1790-2020’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’U. S. Populations’,’Interpreter’,’latex’,’FontSize’,14)
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Figure 3.4: Figure associated with our fit of US population data to the logistic model, based
on the central difference derivative approximation.

3.1.3 The Nonlinear Fit

We will carry out the nonlinear fit for Example 3.3 in two different ways, using MATLAB’s
built-in M-files lsqcurvefit.m and fminsearch.m. The program lsqcurvefit.m is designed es-
pecially for regression, but we will find that fminsearch.m is ultimately more general. Using
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(3.2), we can express the nonlinear SSR for this example as

E(r,K, y0) =
N∑
k=1

(yk −
y0K

y0 + (K − y0)e−rtk
)2,

and our goal is to find the triple (r,K, y0) that minimizes this function. First, for lsqcurve-
fit.m, the general syntax is as follows:

>>[p, ssr] = lsqcurvefit(function, i.p.v., xdata, ydata, l.b.p., u.b.p., options),

where

i.p.v. = initial parameter values

l.b.p. = lower bound on parameters

u.b.p. = upper bound on parameters,

with the entrees l.b.p., u.b.p., and options being optional. Nonlinear regression for Example
3.3 is carried out using lsqcurvefit.m in uspop3.m.

%USPOP3: MATLAB script M-file that uses MATLAB’s built-in
%least squares regression function lsqcurvefit to find
%least squares values for r, K, and y0, for a logistic
%fit of U.S. population data
%
%define data
uspop;
%Define logistic solution
y = @(p,t) p(2)*p(3)./(p(3)+(p(2)-p(3))*exp(-p(1)*t));
%Initial estimate of parameters
%Forward differences
%p0 = [.0314 335.3112 pops(1)];
%Central differences
p0=[.0277 362.3526 pops(1)];
[p ssr]=lsqcurvefit(y,p0,decades,pops)
N=length(decades); m = length(p);
q = N-m;
sd=sqrt(ssr/q)
%Adjusted coefficient of determination: keep in mind that
%it’s not entirely clear what this means for nonlinear regression.
popsbar = mean(pops);
T = norm(pops-popsbar)ˆ2;
Rsq = 1-ssr/T
Rsqa = 1-(1-Rsq)*(length(decades)-1)/q
pause
%
%Plot model along with data
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modelpops = y(p,decades);
plot(decades,pops,’o’,decades,modelpops)
title({’Plot of data and model’, ’parameters found by nonlinear regression’},...
’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Decades, 1790-2020’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’U. S. Populations’,’Interpreter’,’latex’,’FontSize’,14)
%Prediction for 2020
disp([’The prediction for 2030 is ’ num2str(y(p,240)) ’ +/- ’ num2str(sd)])

MATLAB’s output is as follows.

>>uspop3
p =
0.0205 500.6513 8.3979
ssr =
503.7926
sd =
4.8980
Rsq =
0.9980
Rsqa =
0.9978
The prediction for 2030 is 351.8384 +/- 4.898

In this setting, the coefficient of determination and adjusted coefficient of determination
aren’t particularly important, but the parameter values obtained are reasonable, and the
ultimate fit is quite good (see Figure 3.5). The parameter values are

r = .0205

K = 500.6513

y0 = 8.3979.

Next, the general syntax for fminsearch.m is as follows:

>>[p, ssr] = fminsearch(ssr function, initial parameter value, options)

We observe, in particular, that while lsqcurvefit.m takes as input the function to be fit,
fminsearch.m takes as input the SSR to be minimized. Nonlinear regression for Example 3.3
is carried out using fminsearch.m in uspop3a.m.

%USPOP3A: MATLAB script M-file that uses MATLAB’s built-in
%function fminsearch to to find least squares values for r,
%K, and y0, for a logistic fit of U.S. population data
%
%define data
uspop;
%Define logistic solution
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Figure 3.5: US population data along with nonlinear logistic fit.

y = @(p,t) p(2)*p(3)./(p(3)+(p(2)-p(3))*exp(-p(1)*t));
%Define the error
E = @(p) norm(pops-y(p,decades))ˆ2;
%Initial estimate of parameters
%Forward differences
%p0 = [.0314 335.3112 pops(1)];
%Central differences
p0=[.0277 362.3526 pops(1)];
[p ssr]=fminsearch(E,p0)
N=length(decades); m = length(p);
q = N-m;
sd=sqrt(ssr/q)
pause
%
%Plot model along with data
modelpops = y(p,decades);
plot(decades,pops,’o’,decades,modelpops)
title({’Plot of data and model’, ’parameters found by nonlinear regression’},...
’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Decades, 1790-2020’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’U. S. Populations’,’Interpreter’,’latex’,’FontSize’,14)
pause
%Prediction for 2030
disp([’The prediction for 2030 is ’ num2str(y(p,240)) ’ +/- ’ num2str(sd)])

The MATLAB output is as follows:
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>>uspop3a
p =
0.0205 500.6525 8.3979
ssr =
503.7926
sd =
4.8980
The prediction for 2030 is 351.8385 +/- 4.898
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Figure 3.6: US population data along with nonlinear logistic fit.

3.2 Multiple Independent Variables

Suppose we have a relation
y = p1x

p2
1 e

p3x2 ,

along with data {(~x, yk)}Nk=1. We can again find least-squares regression values for the
parameters with either fminsearch.m or lsqcurvefit.m. In either case, we begin by taking a
natural logarithm of the relation to obtain

ln y = ln p1 + p2 lnx1 + p3x2,

and obtaining approximate parameter values by fitting Y = ln y as a function of lnx1 and
x2, linear in the parameters ln p1, p2, and p3. We then carry out the nonlinear fit. This
is done with fminsearch.m in nlreg1.m and by lsqcurvefit.m in nlreg1a.m. (In both cases,
randomly generated data is stored in nlregdata1.mat.)
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%NLREG1: Matlab script M-file for analyzing the
%data stored in nlregdata1
%Data has the form y, x1, x2
load nlregdata1
%First, carry out a linear fit of a transformed equation
%log y = log p1 + p2 log x1 + p3 x2
F = [ones(size(y)) log(x1) x2];
ptemp = F\log(y)
p0 = [exp(ptemp(1)) ptemp(2) ptemp(3)]
%
%Define the error
E = @(p) norm(y-p(1)*x1.ˆp(2).*exp(p(3)*x2))ˆ2;
%Minimize the error with fminsearch
[p ssr]=fminsearch(E,p0)
q = length(y)-length(p);
sd = sqrt(ssr/q)

and

%NLREG1A: Matlab script M-file for analyzing the
%data stored in nlregdata1
%Data has the form y, x1, x2. Uses lsqcurvefit.
load nlregdata1
%First, carry out a linear fit of a transformed equation
%log y = log p1 + p2 log x1 + p3 x2
F = [ones(size(y)) log(x1) x2];
ptemp = F\log(y)
p0 = [exp(ptemp(1)) ptemp(2) ptemp(3)]
%
%Define the function (note the syntax)
yfunction=@(p,x) p(1)*x(:,1).ˆp(2).*exp(p(3)*x(:,2));
[p ssr] = lsqcurvefit(yfunction,p0,[x1 x2],y)
q = length(y)-length(p);
sd = sqrt(ssr/q)

The output is almost identical in the two cases, and we give it only for the fminsearch.m
implementation:

>>nlreg1
ptemp =
1.0080
0.8401
0.0399
p0 =
2.7402 0.8401 0.0399
p =
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2.8095 0.8241 0.0393
ssr =
230.5329
sd =
0.7255

3.3 Systems Nonlinear in their Parameters

In practice, we are often interested in using these techniques to analyze systems of ODE or
PDE, but before we embarck on such cases, we consider a contrived example for which we
won’t require the additional step of solving the relevant ODE or PDE. Suppose we have the
system relation

y1 = p1e
−p2x1 + p3e

p4x2

y2 = p5e
−p2x1 + p6e

p4x2 ,

along with data {(~xk, ~yk)}Nk=1. For an ODE or PDE, we would typically use linearity of the
equation to obtain approximate parameter values, but for this contrived case we will suppose
such an approximation is known,

~p0 = (.01, .1, .01, .1, 1, 1).

The built-in MATLAB M-file lsqcurvefit.m cannot accommodate systems, so in this case
we will proceed only with fminsearch.m. We carry this out with nlreg2g.m for randomly
generated data stored in systemregressiondata.mat.

%NLREG2g: Matlab script M-file for analyzing the
%data stored in systemregressiondata
load systemregressiondata
%Define the error
f1 = @(p) p(1)*exp(-p(2)*x1) + p(3)*exp(p(4)*x2);
f2 = @(p) p(5)*exp(-p(2)*x1) + p(6)*exp(p(4)*x2);
w1 = std(y1);
w2 = std(y2);
E = @(p) norm(y1-f1(p))ˆ2/w1ˆ2 + norm(y2-f2(p))ˆ2/w2ˆ2;
%Minimize the error with fminsearch
%For initial guess, get orders correct
p0 = [.01 .1 .01 .1 1 1];
[p ssr]=fminsearch(E,p0) %Using p instead of pstar
q = 2*length(y1)-length(p0);
s = sqrt(ssr/q)
%
s1 = w1*s
s2 = w2*s

46



3.4 Fitting Data to an ODE System

In this subsection, we assume we have data {(tk, ~yk)}Nk=1 that we would like to fit to the
vector solution ~y(t; ~p) of a system or ordinary differential equations

d~y

dt
= ~f(~y, ~p), ~y(t0) = ~y0.

As usual, our goal is to find a parameter vector ~p that minimizes the SSR

E(~p) =
N∑
k=1

|~yk − ~y(tk; ~p)|2,

or a weighted SSR

E(~p) =
N∑
k=1

n∑
i=1

(yki − yi(tk; ~p))2/w2
i ,

but we now have the additional complication that most nonlinear ODE that arise in practical
applications cannot be solved exactly. To handle such cases, we will need to numerically
generate solutions to such equations as part of the regression calculations. We’ll see how to
do this in the next example.

Example 3.4. In the News and Notes section of the March 4, 1978 issue of the British
Medical Journal, there is a brief article on p. 587 describing the progression of a strain of flu
through a boys’ boarding school in the north of England. As is all too common with articles
along these lines, the data is never explicitly given, and is only available in the form of a
plot provided in the article. By the method of magnifying and squinting, I’ve estimated the
data to be approximately as given in Table 3.1.

Day 0 3 4 5 6 7 8 9 10 11 12 13 14

Susceptible 762 740 650 400 250 120 80 50 20 18 15 13 10
Infected 1 20 80 220 300 260 240 190 120 80 20 5 2

Table 3.1: Approximate data from the British Medical Journal, Mar. 4, 1978.

In this example, we will fit the data in Table 3.1 to the SIR epidemic model, which gets
its name from dividing a population into the following three categories:

S(t) = number of susceptible individuals at time t

I(t) = number of infected/infective individuals at time t

R(t) = number of recovered/removed individuals at time t.

The model consists of the following system of ODEs:

dS

dt
= − aSI

dI

dt
= aSI − bI

dR

dt
= bI.
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The rationale for such a model is straightforward. We begin by assuming that the number
of individuals infected per unit time by a single infected individual is proportional to the
number of susceptible individuals in the population. I.e., there exists a proportionality con-
stant a so that this number of infections is aS. If this is the number of individuals infected
by each infective individual, then the total number of individuals infected per unit time by
I infective individuals is aSI. This change is then precisely the rate at which individuals
are leaving the susceptible population, giving the first equation dS

dt
= −aSI. Next, each

of these individuals leaving the susceptible population transitions to the infected/infective
population, leading to the first summand on the right-hand side of the equation for dI

dt
. In

addition, it is assumed that the rate of recovery/removal is proportional to the number of in-
fected/infective individuals in the population, giving the second summand on the right-hand
side of the equation for dI

dt
. Finally, each individual leaving the infected/infective population

transitions to the recovered/removed population. For the SIR model, it is assumed that no
individual in the recovered/removed population returns to the susceptible population.

We will proceed with nonlinear regression, in which case we first need to use linear
regression to obtain initial approximations for the parameter values a and b. The easiest
way to do this is with the second equation, which we can express as

1

I

dI

dt
= aS − b.

We can now fit Y = 1
I
dI
dt

as a function of S to obtain a as the slope and −b as the intercept.
We keep in mind here that we could proceed similarly with the first equation to estimate a
and with the third equation to estimate b. This would give a different pair of values, but
that pair would also be sufficient as initial approximations for the nonlinear regression. In
this case, the time steps are not uniform, which suggests we might want to use the forward
difference derivative approximation, but it turns out that the central difference derivative
approximation works substantially better, so that’s the one we’ll use. The linear fit is carried
out with sirlinear1.m. The linear fit is depicted in Figure 3.7, and the fit against data with
the linearly obtained parameter values is depicted in Figure 3.8. The parameter values are
computed to be

a = .0036

b = .9395.

%SIRLINEAR1: MATLAB script M-file in which SIR parameter
%values a and b are approximated by a linear fit based
%on the central difference derivative approximation and
%the infected/infective equation from the first-order
%SIR system.
%
%DATA FROM THE BRITISH MEDICAL JOURNAL, MAR. 4, 1978.
S=[762 740 650 400 250 120 80 50 20 18 15 13 10];
I=[1 20 80 220 300 260 240 190 120 80 20 5 2];
days=[0 3 4 5 6 7 8 9 10 11 12 13 14];
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Figure 3.7: Linear fit for SIR example.
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Figure 3.8: Fit of SIR model with data for linearly obtained parameters.
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%CENTRAL DIFFERENCE FIT
dIdt = (I(4:end)-I(2:end-2))./2;
Y = dIdt./I(3:end-1);
X = S(3:end-1);
plot(X,Y,’o’);
title(’Plot of $\frac{1}{I} \frac{dI}{dt}$ vs. $S$’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’$S$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’$\frac{1}{I} \frac{dI}{dt}$’,’Interpreter’,’latex’,’FontSize’,14)
pause
c = polyfit(X,Y,1);
a = c(1)
b = -c(2)
plot(X,Y,’o’,X,c(1)*X+c(2))
title(’Plot of $\frac{1}{I} \frac{dI}{dt}$ vs. $S$, with regression line’, ...
’Interpreter’,’latex’,’FontSize’,16)
xlabel(’$S$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’$\frac{1}{I} \frac{dI}{dt}$’,’Interpreter’,’latex’,’FontSize’,14)
%
pause
hold off
sirrhs = @(t,y) [-a*y(1)*y(2);a*y(1)*y(2)-b*y(2)];
[t,y]=ode45(sirrhs,[0 14],[762;1]);
subplot(2,1,1)
plot(days,S,’o’,t,y(:,1))
title(’Susceptible Population, model and data’,’Interpreter’,’latex’,’FontSize’,16)
subplot(2,1,2)
plot(days,I,’o’,t,y(:,2))
title(’Infected Population, model and data’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Days’,’Interpreter’,’latex’,’FontSize’,14)
%
%To compute the standard deviation
[t,y]=ode45(sirrhs,days,[762;1]);
lE = norm(S’-y(:,1))ˆ2+norm(I’-y(:,2))ˆ2;
q = 2*(length(S)-1)-2;
ls = sqrt(lE/q)

Using the linearly-obtained values as initial approximations, we now carry out the nonlinear
fit with sirnonlinear1.m. We obtain the parameter values

a = .0022

b = .4408,

and a fit of the SIR model along with data is depicted in Figure 3.9.
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Figure 3.9: Fit of SIR model with data for nonlinearly obtained parameters.

function sirnonlinear1
%SIRNONLINEAR1: MATLAB function M-file that takes an initial
%approximation of parameter values and carries out nonlinear
%regression to obtain best-fit parameter values for the SIR
%system and the British Medical Journal influenza data.
global days S I w1 w2;
S=[762 740 650 400 250 120 80 50 20 18 15 13 10];
I=[1 20 80 220 300 260 240 190 120 80 20 5 2];
days=[0 3 4 5 6 7 8 9 10 11 12 13 14];
%Weights
w1 = std(S(2:end));
w2 = std(I(2:end));
guess = [.0036 .9395];
[p,error]=fminsearch(@sirerr, guess);
a = p(1)
b = p(2)
q = 2*(length(S)-1)-length(p);
s = sqrt(error/q)
s1 = w1*s
s2 = w2*s
%
[t,y]=ode45(@sirpe,[0,14],[S(1); I(1)],[],p);
subplot(2,1,1)
plot(t,y(:,1),days,S,’o’)
title(’Susceptible population, model and data’,’Interpreter’,’latex’,’FontSize’,16)
subplot(2,1,2)
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plot(t,y(:,2),days,I,’o’)
title(’Infected population, model and data’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Days’,’Interpreter’,’latex’,’FontSize’,14)
%
function error = sirerr(p)
%LVERR: Function defining error function for
%example with SIR equations.
global days S I w1 w2;
[t,y] = ode45(@sirpe,days,[S(1);I(1)],[],p); %Notice that we pass
%a parameter vector
error = norm(y(:,1)-S’)ˆ2/w1ˆ2+norm(y(:,2)-I’)ˆ2/w2ˆ2;
%
function value = sirpe(t,y,p)
%LVPE: ODE for example SIR paramter
%estimation example. p(1)=a, p(2) = b.
value=[-p(1)*y(1)*y(2);p(1)*y(1)*y(2)-p(2)*y(2)];

3.5 Neural Networks and Deep Learning

At the most basic level, deep learning with neural networks is an application of nonlinear
regression, so we conclude our discussion of nonlinear regression with a brief introduction
to this important topic. As background, starting in 1943, the American neurophysiologist
Warren McCulloch (1898-1969) and American logician Walter Pitts (1923-1969) worked to
create a mathematical model for computer implementation based on neural networks in the
human brain. This work led to the development we’ll discuss.

Our starting point will be the mathematical notion of a neuron, and in particular a type
of neuron called a perceptron, named by the American psychologist Frank Rosenblatt (1928-
1971) in the 1950s. The idea is straightforward: we have some number of binary (e.g., 0/1)
inputs x1, x2, ..., xn, and we would like to produce a single binary output (a neuron either
fires or it doesn’t). Schematically, with three inputs, we can view this as in Figure 3.10.

x1

x2

x3

output

Figure 3.10: Schematic of a single neuron.

The inputs for a neuron may not be equally important for determining its output, so we
generally associate a weight wi with each input xi. We can then think of the neuron’s output
as being determined by the weighted sum

~w · ~x =
n∑
i=1

wixi
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(i.e., the usual dot product). One way to do this is to set some threshold value v, and if
~w · ~x ≤ v, we set the output to 0, while if ~w · ~x > v we set the output to 1. We can express
this as

output =

{
0 if ~w · ~x ≤ v

1 if ~w · ~x > v

=

{
0 if ~w · ~x− v ≤ 0

1 if ~w · ~x− v > 0.

In lieu of v, it’s traditional in the context of neural networks to introduce a bias b = −v, so
that

output =

{
0 if ~w · ~x+ b ≤ 0

1 if ~w · ~x+ b > 0.

If we set z = ~w · ~x+ b, then graphically the output is described by the Heaviside function19

H(z) =

{
0 z ≤ 0

1 z > 0,

as depicted in Figure 3.11.

z

H

Figure 3.11: Heaviside function.

In fact, nothing about this discussion requires binary inputs, so we can just as well take
x1, x2, ..., xn to be any values we like. In practice, we often take each xi to be some value
on the interval [0, 1]. Likewise, we can also work with continuous output, and one way to do
this is to approximate the Heaviside function H(z) with the sigmoid function

σ(z) =
1

1 + e−z
,

depicted in Figure 3.12. In this case, the neuron’s output is taken to be σ(~w · ~x + b). We
might make a decision by rounding this value up or down, or we might want continuous
output. Whether we choose this function to be H(z), σ(z), or something else, we refer to
it as the activation function. Another commonly used activation function is the “rectified
linear unit” (ReLU)

r(z) =

{
0 z ≤ 0

z z > 0.
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z

σ

1

Figure 3.12: Sigmoid function.

A neural network consists of a combination of interconnected neurons. For example, we
might have the neural network depicted in Figure 3.13. Each circle is a neuron or node,
and each column of nodes is referred to as a layer. Every neural network has an input layer
and an output layer, and any layers between these are called “hidden” layers. It’s clear that
the neural network depicted in Figure 3.13 has two hidden layers. By custom, we refer to a
neural network with two or more hidden layers as a deep neural network.

x1

x2

x3

x4

output 1

output 2

input
layer

first
hidden
layer second

hidden
layer

output
layer

Figure 3.13: Neural network with two hidden layers.

As we will see in a specific example at the end of this section, neural networks can be
quite large in practice, so it’s important to have succinct notation for describing them. As a
starting point, we will say the input layer is layer 0, and the subsequent layers (left to right)
will be labeled layers 1, 2, 3 etc, up to the final layer L. (For the neural network in Figure
3.13, L = 3.) Within each layer, we will number the nodes top to bottom. We need to
associate a weight vector and a scalar bias to each node, so we will use both subscripts and

19The Heaviside function is named for the English mathematician and physicist Oliver Heaviside (1850-
1925).
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superscripts, with the superscript denoting the layer and the subscript denoting the node.
For example, for the second node from the top in the first hidden layer, we will denote the
(4-component) weight vector ~w1

2 and the scalar bias b12. Likewise, we will denote the output
associated with this node

α1
2 = σ(~w1

2 · ~x+ b12).

Here, we’re using a superscript to leave room for yet another index, which will be a second
subscript. In particular, we will view ~w1

2 as a row vector, and express it as

~w1
2 = (w1

21, w
1
22, w

1
23, w

1
24).

The first hidden layer in the neural network in Figure 3.13 has three nodes, so there will
correspondingly be three weight vectors, ~w1

1, ~w
1
2, and ~w1

3. We combine these into a weight
matrix for level 1,

W 1 =

 ~w1
1

~w1
2

~w1
3

 =

 w1
11 w1

12 w1
13 w1

14

w1
21 w1

22 w1
23 w1

24

w1
31 w1

32 w1
33 w1

34

 .

Similarly, we specify a bias vector

~b1 =

 b11
b12
b13

 .

If we now compute the 3-vector
W 1~x+~b1,

we see that its first component is the quantity ~w1
1 · ~x+ b11 required for the top node in level

1, its second component is the quantity ~w1
2 · ~x + b12 required for the middle node in level 1,

and its third component is the quantity ~w1
3 · ~x+ b13 required for the bottom node in level 1.

The output from the top node in level 1 is

α1
1 = σ(~w1

1 · ~x+ b11),

the output from the middle node in level 1 is

α1
2 = σ(~w1

2 · ~x+ b12),

and the output from the bottom node in level 1 is

α1
3 = σ(~w1

3 · ~x+ b13).

We typically combine these expressions into

~α1 = σ(W 1~x+~b1),

where we view σ as acting on one component at a time, returning the vector

~α1 =

 α1
1

α1
2

α1
3

 .
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Moving to the next level, the three components of ~α1 become the three outputs from
level 1, playing now the roles of the components of ~x as the initial inputs. Level 2 has four
nodes, and since there are three inputs, each node will have a corresponding 3-vector weight
and scalar bias. Respectively, the corresponding weight matrix and bias vector are

W 2 =


w2

11 w2
12 w2

13

w2
21 w2

22 w2
23

w2
31 w2

32 w2
33

w2
41 w2

42 w2
43

 and ~b =


b21
b22
b23
b24

 .

The output from level 2 can now be computed as

~α2 = σ(W 2~α1 +~b2).

Notice particularly that this last expression is the same no matter how many nodes there
are in levels 1 and 2 (that information is all contained in the objects W 2, ~b2, and ~α1.)

Last, we arrive at the output layer L = 3, for which wave have

W 3 =

(
w3

11 w3
12 w3

13 w3
14

w3
11 w3

12 w3
13 w3

14

)
and ~b3 =

(
b31
b32

)
.

The final output of the neural network is seen to be

output = ~α3 = σ(W 3~α2 +~b3).

Combining these observations, we see that the full calculation can be viewed as an iterative
process: for a neural network with L layers (L+ 1 if the input layer 0 is counted), we have

~α` =σ(W `~α`−1 +~b`), ` = 1, 2, . . . , L, (3.3)

~α0 = ~x.

The final output of the neural network is the vector ~αL. We emphasize that with the notation
that we’ve developed, the recursion system (3.3) describes a general neural network with any
number of layers and nodes.

Certainly, the final vector ~αL depends on the initial input ~x, and we observe that it also
depends on all of the weights and biases, which even for this simple example are numerous:
12 weights and 3 biases for level 1, 12 weights and 4 biases for level 2, and 8 weights and 2
biases for level 3, for a grand total of 41 parameters. This differs markedly from our previous
cases arising in this section on regression, in which the goal was generally to introduce the
least number of parameters impossible. Indeed, one of the hallmarks of deep learning is the
appearance (and, more important, the need for) a huge number of parameters.

Slightly abusing notation, we can express the final output of a general neural network
with L levels as ~αL(~x; ~p), where as usual ~x denotes the input vector, and where ~p denotes
a vector comprising all weights and biases in the network. E.g., for the neural network in
Figure 3.13, ~p is a vector with 41 components.20 We can now think of expressing the relation
associated with our neural network in the standard form

~y = ~αL(~x; ~p),

20Ordered in any way we choose, as long as we do it consistently.
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which is precisely the sort of relation we know how to handle with nonlinear least squares
regression. Precisely, in order to “train” our neural network on a set of data {(~xk, ~yk)}Nk=1,
we minimize the usual SSR

E(~p) =
N∑
k=1

|~yk − ~αL(~xk; ~p)|2,

or often, since these values get so large,

E(~p) =
1

N

N∑
k=1

|~yk − ~αL(~xk; ~p)|2.

In many cases, this turns out to be an extremely effective way to handle applied problems,
so much so, in fact, that one of the main questions researchers in the area of neural networks
are trying to address is, Why is the method so effective? Among the numerous other aspects
of deep learning under intense investigation are the following:

• As is always the case with nonlinear regression, it’s important to have good initial
approximations for the best-fit parameter values. How can these be obtained in the
setting of neural networks?

• Given a specific application, what “architecture” should one choose for the neural
network describing it; i.e., how many layers should the network have, and how many
nodes should be in each layer. Also, what activation function should be chosen?

• With large numbers of parameters and enormous data sets, minimizing the SSR for
a neural network can be computationally intensive. Several techniques have been
introduced in order to make this process more efficient, and research into additional
possibilities is ongoing.

3.5.1 Application to Image Recognition

One standard application of neural networks is to the science of image recognition, and in
order to illustrate how neural networks can be implemented in practice, we will discuss a
simple such example. To keep things tractable, we will suppose our images are the sorts of
block letters that might be used in filling in a form by hand:

Our goal is to determine how we could apply the previous considerations to develop a
neural network that will correctly identify the letter in a single box. Since these boxes are
small, we can use a relatively small number of pixels for each image; in particular, let’s
suppose our images are 28× 28 and grayscale. I.e., each letter is broken up into a square
grid of 28× 28 = 784 pixels, and each pixel corresponds with a numerical value on the
interval [0, 1], with 0 corresponding with white and 1 corresponding with black. This
means that our inputs will be vectors of length 784.
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The most direct way to contruct the output is as a vector with 26 components, each
corresponding with a letter in the alphabet. If the output associated with a letter is 0, then
that is not the letter recognized, while if the output associated with a letter is 1, then that
is the letter recognized, so in practice we should always have 25 outputs near 0 and 1 output
near 1. (The output for the training data will always comprise vectors with precisely 25
zeros and one 1.) At this point, we have decided to use 784 inputs and 26 outputs, but we
still need to determine the full architecture of our network. There is no standard way of
choosing either the number of hidden layers to use or the number of nodes in each layer, and
in practice there is often a trial-and-error approach to this process. For our example, let’s
suppose we use a single hidden layer with 40 nodes, which would at least be a reasonable
thing to try. This would get us to 40× 784 = 31, 360 weights in level 1, with also 40 biases,
and 26 × 40 = 1, 040 weights in the output layer, with also 26 biases. In total, we have
32, 466 parameters. In principle, the neural network can now be trained and implemented
precisely as described above, though the practical implementation requires considerable care.
We won’t pursue it further in these notes.

4 Parameter Estimation using Equilibrium Points

Another useful, though considerably less stable method for evaluating parameters involves a
study of the equilibrium points for the problem (for a definition and discussion of equilibrium
points, see the M442 course notes Modeling with ODE and (separately) Analysis of ODE
Models).

Example 4.1. Suppose a certain parachutist is observed to reach a terminal velocity vT =
−10 m/s, and that his fall is modeled with constant gravitational acceleration and linear
drag. Determine the drag coefficient b.

In this example, we are taking the model

y′′ = −g − by′,

which can be expressed in terms of velocity v = y′ as

v′ = −g − bv.

By definition, terminal velocity is that velocity at which the force due to air resistance
precisely balances the force due to gravity and the parachutist’s velocity quits changing.
That is,

0 = v′ = −g − bvT .

Put another way, the terminal velocity vT is an equilibrium point for the system. We can
now solve immediately for b as

b =
9.81

10
= .981 s−1.

4
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5 Dimensional Analysis

Dimensional analysis refers to a collection of methods for understanding physical phenomena
and relations based entirely on the dimensions of the quantities involved. As a start, we
recall that a dimension is any quantity such as length, mass or time that can be measured.
It’s constructive to contrast this with a unit, which is a gauge we might use to measure a
dimension. For example, the dimension length can be measured by several different units,
including inches, feet, meters, light years etc. We refer to length as a fundamental dimension,
and similarly for mass and time. Quantities such as velocity, acceleration, force etc. are
considered to be derived dimensions. According to the International System of Units (SI),21

there are seven fundamental dimensions, which we list in Table 5.1 along with their associated
base units. (When discussing population dynamics, we will often refer to population as
biomass and treat this is an eighth fundamental dimension, B.) Some typical physical
quantities and their associated dimensions are listed in Table 5.2.

Dimension Base SI Unit

length L meter (m)
mass M kilogram (kg)
time T second (s)

temperature Θ kelvin (K)
electric current E ampere (A)

luminous intensity I candela (cd)
amount of substance A mole (mol)

Table 5.1: Fundamental dimensions and their base units.

Quantity Dimensions

Length L
Time T
Mass M

Velocity LT−1

Acceleration LT−2

Force MLT−2

Energy ML2T−2

Momentum MLT−1

Work ML2T−2

Quantity Dimensions

Frequency T−1

Density ML−3

Angular momentum ML2T−1

Viscosity ML−1T−1

Pressure ML−1T−2

Power ML2T−3

Entropy ML2T−2Θ−1

Heat energy ML2T−2

Voltage ML2T−3I−1

Table 5.2: Dimensions of common physical quantities.

Although the SI choices for the fundamental dimensions are sensible, they are by no
means inevitable. For example, while velocity is viewed as a derived dimension, electric cur-
rent (which, as charge per unit time, is analogous to velocity) is taken to be a fundamental

21Taken from the French: Système Internationale d’Unitès.
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dimension, with charge then being considered a derived dimension. The method of dimen-
sional analysis does not depend on these choices as long as: (1) some choice of fundamental
dimensions is used consistently, and (2) the fundamental dimensions include all dimensions
arising in the problem under consideration. It’s also worth observing that considerable effort
has gone into choosing standards for the units. Early units for length were based on indi-
vidual physical attributes; for example, a cubit was the length of an individual’s arm from
the elbow to the tip of the middle finger. This convention had the convenience that a person
never found himself without a “cubit stick,” but it suffered from the obvious drawback that
every cubit was different. These notions of measure began to be standardized in about 1100
AD by Henry I, who decreed that a yard would be the distance between the tip of his nose
and the end of his outstretched thumb. Later, a meter was taken to be the distance between
two indicated positions on a platinum-iridium bar kept in a laborator in France, and is now22

defined so that the speed of light in a vacuum is precisely 299,792,458 m/s.23

In general, choosing a base unit can be tricky, and in order to gain an appreciation of
this, we will consider the case of temperature. While we could fairly easily define and use our
own length scale in the lecture hall (choose for example the cubit of any particular student),
temperature would be more problematic. In general, we measure an effect of temperature
rather than temperature itself. For example, the element mercury expands when heated,
so we often measure temperature by measuring the height of a column of mercury. Under
fixed atmospheric conditions, we might take a column of mercury, mark its height in ice
and label that 0, mark its height in boiling water and label that 100, and evenly divide the
distance between these two marks into units of measurement. The clear drawback of this
approach is that the resulting unit depends on the choice of atmospheric conditions, and
so isn’t universal. For many years (1967–2019), the SI convention for temperature hinged
on the observation that liquid water, solid ice, and water vapor can coexist at only one set
of values for temperature and pressure, which could then be viewed as a canonical choice
of atmospheric conditions. By international agreement in 1967, the triple point of water
was taken to correspond with a temperature of 273.16 K (with corresponding pressure 611.2
Pascals). More succinctly, 1 Kelvin was precisely 1/273.16 of the (unique) temperature for
the triple point of water. In 2019, this definition changed again, and currently a Kelvin
is defined so that a value known as the Boltzmann constant24 is precisely 1.380649 ×10−23

J/K.
When thinking about physical processes, it’s often instructive simply to make sure we

understand the dimensions involved. For example, we see from Table 5.2 that energy E
and work W have the same dimensions, and this might remind us that the Work-Energy
Principle asserts that the work done on a particle equals the change in kinetic energy of the

22Skipping a brief phase (1960-1983) in which it was defined in terms of a transition of energy levels in
the Krypton-86 atom.

23This definition requires that the second be previously defined, and the second is defined based on a
certain transition frequency associated with the cesium-133 atom.

24For an ideal gas, the product of pressure p and volume V is proportional to the product of temperature
T and the number of molecules in the gas N (i.e., pV ∝ NT ), and the Boltzmann constant is precisely the
proportionality constant. I.e., if we denote the Boltzmann constant by κ, then pV = κNT . The constant is
named for the Austrian physicist Ludwig Boltzmann (1844-1906).
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particle,
W = ∆K.

5.1 Finding Simple Relations

Dimensional analysis can be an effective tool for determining basic relations between physical
quantities.

Example 5.1. Suppose an object is fired directly up from the earth’s surface with initial
velocity v, where v is assumed small enough so that the object will remain close to the earth.
Ignoring air resistance, we can use dimensional analysis to determine a general form for the
time at which the object will land.

We begin by determining what quantities the final time will depend on, in this case
only initial velocity and acceleration due to gravity, g. We can summarize this by writing
t = t(v, g). Next, we assume the relationship between t, v, and g has the simple form

t = kvagb, (5.1)

where k is a dimensionless constant and values for a and b will be found just below. Later,
we’ll see what happens if such a relationship doesn’t in fact hold, but for now let’s assume
that it does, which turns out to be true for this example. At this point, we assume that
for physical processes the dimensions on each side of an equation must agree (we say the
equation is “dimensionally consistent”). For this to be true, we must have the following
relationship, obtained by equating the dimensions on each side of (5.1):

T = LaT−aLbT−2b.

In order for this equation to hold, the exponents of the individual dimensions must match,
leading to the dimensions equations,

T : 1 = −a− 2b

L : 0 = a+ b,

from which we observe that b = −1 and a = 1. We conclude that t = k v
g
, where it’s

important to note that we have not found an exact form for t, only proportionality. This is
as far as dimensional analysis will take us. At this point, we should check our expression to
ensure it makes sense physically. According to our expression, the larger v is, the longer it
will be before the object lands, which agrees with our intuition. Also, the stronger g is, the
more rapidly the object will descend.

Though in this case the constant of proportionality, k, is straightforward to determine
from basic Newtonian mechanics (we find that k = 2), we generally obtain values for the
undetermined constants that arise in dimensional analysis by collecting data (in this case,
launching the object with different velocities) and using regression 4

Example 5.2. Use dimensional analysis to determine a general form for the radius created
on a moon or planet by the impact of a meteorite.

We begin by simply listing the quantities we suspect might be important: mass of the
meteorite, m, density of the moon or planet, ρ, volume of the meteorite, V , impact velocity
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of the meteorite, v, and gravitational attraction of the moon or planet, g (which affects how
far the dirt is displaced). (In a more advanced model, we might also consider density of the
atmosphere, heat of the meteorite, etc.) We see immediately that we’re going to run into the
problem of having three equations (one for each of M , L, and T ) and five unknowns (for the
exponents of m, ρ, V , v, and g). In order to apply the method outlined in Example 5.1, we
will need to make some reductions. First, let’s suppose we don’t need to consider both the
mass and volume of the meteorite and remove V from our list. Next, let’s try to combine
quantities. Noticing that m and v can be combined into kinetic energy (E = 1

2
mv2), we

can drop them and consider the new quantity of dependence E. Finally, we are prepared to
begin our analysis. We have,

R = R(E, ρ, g) = kEaρbgc =⇒ L = MaL2aT−2aM bL−3bLcT−2c,

from which we obtain the dimensions equations,

M : 0 = a+ b

L : 1 = 2a− 3b+ c

T : 0 = −2a− 2c.

Subsituting a = −b into the second two equations, we find a = 1
4
, b = −1

4
, and c = −1

4
, so

that

R = k(
E

ρg
)1/4.

Again, we observe that the basic dependences make sense: higher energies create larger
craters, while planets with greater density or gravitational pull end up with smaller craters.
4

One useful application of this method is that it can help remind us of the form a known
relation must have. The next two examples illustrate this.

Example 5.3. Consider an object of mass m rotating with velocity v a distance r from a
fixed center, in the absence of gravity or air resistance (see Figure 5.1). The centripetal force
on the object, Fp, is the force required to keep the object from leaving the orbit. We can
use dimensional analysis to determine a general form for Fp.

We begin by supposing that Fp depends only on the quantities m, r, and v, so that,

Fp = Fp(m, r, v) = kmarbvc =⇒ MLT−2 = MaLbLcT−c,

from which we obtain the dimensions equations,

M : 1 = a

L : 1 = b+ c

T : − 2 = −c.

Solving, we find that a = 1, c = 2, and b = −1, so that

Fp = k
mv2

r
.
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r

v

Fp

m

Figure 5.1: Centripetal force on a rotating object.

This calculation may serve to remind us that we can in fact use Newtonian mechanics to
show that Fp = mv2

r
(i.e., in this case, k = 1). 4

Example 5.4. Given that the force of gravity between two objects depends on the mass
of each object, m1 and m2, the distance between the objects, r, and Newton’s gravitational
constant G, where

[G] = M−1L3T−2,

we can determine Newton’s law of gravitation.25 We begin by writing F = F (m1,m2, r, G),
which is simply a convenient way of expressing that the force due to gravity depends only on
these four variables. We now guess that the relation is a simple multiple of powers of these
variables and write

F (m1,m2, r, G) = ma
1m

b
2r
cGd.

In this case, we leave off the usual proportionality constant k, which we can view as being
absorbed into G. Recalling that the dimensions of force are MLT−2, we set the dimensions
of each side equal to obtain,

MLT−2 = MaM bLcM−dL3dT−2d.

Equating the exponents of each of our dimensions, we have three equations for our four
unknowns:

M : 1 = a+ b− d
L : 1 = c+ 3d

T : − 2 = −2d.

25Following standard notation, we are denoting dimension by square brackets [·], so if t is a time, we will
write [t] = T , and likewise if v is a velocity we will write [v] = LT−1 and so on.
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We see immediately that d = 1 and c = −2, though a and b remain undetermined since we
have more equations than unknowns. By symmetry, however, we can argue that a and b
must be the same, so that a = b = 1. We conclude that Newton’s law of gravitation must
take the form

F = G
m1m2

r2
.

4

5.2 More General Dimensional Analysis

Example 5.1a. Let’s consider the following slight variation to Example 5.1 (we’ll refer to it
as Example 5.1a): suppose that instead of launching the object from the earth’s surface, we
launch it from a height h above the earth’s surface. If we still want to determine the time t
at which the object will return to the earth’s surface, then we must assume that this time
depends on three quantities, v, g, and h. Proceeding similarly as before, we now have

t = t(v, g, h) = kvagbhc =⇒ T = LaT−aLbT−2bLc,

from which we obtain the dimensions equations,

L : 0 = a+ b+ c

T : 1 = −a− 2b.

Since mass M does not appear in any of our quantities of dependence (and according to
Galileo it shouldn’t), we have two equations and three unknowns. We overcame a similar
difficulty in Example 5.2 by dropping a quantity of dependence and by combining variables,
but in general, and here in particular, we cannot reasonably do this.

Before introducing our more general method of dimensional analysis, let’s see what’s
happening behind the scenes. According to Newton’s second law of motion, the height of
our object at time t is given by

y(t) = −gt2/2 + vt+ h,

and in order to find the time at which our object strikes the earth, we need only solve
y(t) = 0, which gives

t =
−v ±

√
v2 + 2gh

−g
. (5.2)

Of course the time we’re looking for is positive26, so

t =
v +

√
v2 + 2gh

g
,

and we see that this relation does not have the simple form t = kvagbhc. In light of this, we
see that our initial approach can’t possibly work for this example, and so we will need to
proceed in a more general way. To this end, we will introduce the notion of dimensionless
products.

26The corresponding negative time is precisely the time at which the object would have to be fired from
the ground to achieve the height h and velocity v at time t = 0.
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5.2.1 Dimensionless Products

Precisely as the name suggests, a dimensionless product is a multiplicative combination of
variables that has no dimension. For example, recall from our Example 5.1a the equation

−1

2
gt2 + vt+ h = 0.

If we divide this equation by h, we obtain

−1

2

gt2

h
+
vt

h
+ 1 = 0, (5.3)

and each summand in this new equation must be dimensionless. In particular, the multi-
plicative combinations gt2

h
and vt

h
are dimensionless, and so serve as our first examples of

dimensionless products.
One advantage of dimensionless products is that if we change our units of measurement,

their values don’t change. For example, suppose we evaluate the dimensionless product
vt
h

with the units feet for length and seconds for time, and likewise we evaluate the same
dimensionless product with the units inches for length and milliseconds for time. If we let
v1, t1, and h1 denote the measurements in the first units, and likewise we let v2, t2, and h2
denote the measurements in the second units, then we have

t2 = 1000t1

h2 = 12h1

v2 =
12

1000
v1,

so that
v2t2
h2

=
12

1000
v1 · 1000t1

12h1
=
v1t1
h1

.

In most cases, we don’t have an equation such as (5.3) to work with, so we need a
more general approach for identifying dimensionless products. First, we typically denote a
dimensionless product by π (for product).27 For Example 5.1a, the variables we’re working
with are v, g, h, and t, and so we look for multiplicative combinations of these variables

π = π(v, g, h, t) = vagbhctd. (5.4)

In this case, we don’t include a proportionality constant, because for the moment we’re only
interested in how the variables combine. If we equate the dimensions on either side of (5.4),
we obtain the relation

1 = LaT−aLbT−2bLcT d,

where the 1 on the left-hand side records that π is dimensionless. From this last relation,
we obtain the dimensions equations

L : 0 = a+ b+ c

T : 0 = −a− 2b+ d.

27Dimensionless products also typically have subscripts, so there isn’t much danger of confusing them with
the standard constant π.
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In the usual way, we can express this as a matrix system

(
1 1 1 0
−1 −2 0 1

)
a
b
c
d

 =

(
0
0

)
, (5.5)

where for convenient reference we will designate the matrix on the left-hand side by A.
Importantly, we see that the exponents we’re trying to identify will correspond precisely
with vectors in the null space (a.k.a., the kernel) of A: i.e., the vectors ~v so that A~v = 0.
For such calculations, it’s convenient to put A in row reduced echelon form, which can
be accomplished by hand (at least for relatively small matrices), and more generally with
MATLAB’s built-in rref command. The RRE form of our system is

(
1 0 2 1
0 1 −1 −1

)
a
b
c
d

 =

(
0
0

)
,

where (again for convenient reference) we will designate the matrix on the left-hand side by
Ã.

At this point, let’s recall that the rank of any matrix A is the dimension of its range,
which is equal to the number of linearly independent columns it has, and is also equal to the
number of linearly independent rows it has. In particular, for a matrix in RRE form, the
rank is just the number of non-zero rows that remain. Here, the rank of Ã is clearly 2, and
rank does not change under row operations, so the rank of A must be 2 as well.28

In identifying dimensionless products, we’re more interested in the the nullity of a matrix
(i.e., the dimension of its null space), and this is related to the rank via the Rank-Nullity
Theorem.29

Theorem 5.1 (Rank-Nullity Theorem). For any matrix A ∈ Cm×n,

rankA+ nullityA = n.

For Example 5.1a, we have n = 4 and rankA = 2, so nullityA = 2. This means:

1. We will be able to find two linearly independent solutions of the system A~v = 0, and
these solutions will comprise a basis for the null space of A;

2. The linearly independent vectors described in Item 1 will correspond with a complete
set of dimensionless products for this example in the following sense: any additional
dimensionless products can be expressed as a multiplicative combination of these two.

28See Section 5.3 for rigorous statements and proofs of the results from linear algebra being used here.
29A proof of the Rank-Nullity Theorem is given in Section 5.3.
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We can express the system Ã~v = 0 as

a = − 2c− d
b = c+ d, (5.6)

in which we can think of c and d as values to be chosen and a and b as values that will
subsequently be determined.

Choosing π1. For these notes, our convention will be to exclude the dependent variable
from the first dimensionless product π1. Recalling (5.4), we can accomplish this by choosing
d = 0. If we choose c = 0 as well, then a, b, c, and d will all be 0, which isn’t useful, so we
need to take c 6= 0. Most simply, we can take c = 1. Having selected d = 0 and c = 1, we
find immediately a = −2 and b = 1, giving us

π1 =
gh

v2
.

Choosing π2. For the final (in this case second) dimensionless product, we will ensure
that the dependent variable appears in a simple way. For this, we choose d = 1 and c = 0,
and we compute a = −1 and b = 1, giving us

π2 =
gt

v
.

Below, we will continue working with π1 and π2, but first let’s recall the standard approach
from introductory courses in linear algebra for identifying the null space of a matrix. Using
the relations (5.6), we can express any element ~v of the null space of A in the form

~v =


−2c− d
c+ d
c
d

 = c


−2
1
1
0

+ d


−1
1
0
1

 .

In this way, we readily see that the null space of A is a linear combination of the vectors

~v1 =


−2
1
1
0

 , ~v2 =


−1
1
0
1

 .

Recalling the connection

~v =


a
b
c
d

←→ π = vagbhctd,

we see that the vectors ~v1 and ~v2 correspond respectively with the dimensionless products
π1 = gh

v2
and π2 = gt

v
.
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Suppose we would like to check directly that π1 and π2 comprise a complete set of
dimensionless products for Example 5.1a. By virtue of (5.4) any third dimensionless product
π can be expressed as

π = v−2c−dgc+dhctd = πc1π
d
2 .

This corresponds precisely with the linear combination ~v = c~v1 + d~v2. In summary, the fact
that π1 and π2 forms a complete set of dimensionless products for this example is equivalent
to the observation that ~v1 and ~v2 comprise a basis for the null space of A, and we have the
useful correspondence

~v = c~v1 + d~v2 ←→ π = πc1π
d
2 .

5.2.2 Buckingham’s Theorem

At this point, we can state the main theorem associated with dimensional analysis, Buck-
ingham’s Theorem.30

Theorem 5.2 (Buckingham’s Theorem). Suppose an algebraic equation is dimensionless
(i.e., each summand is dimensionless), and additionally that {πj}nj=1 comprises a complete
set of dimensionless products for the variables in the equation. Then there exists a function
f so that the equation can be expressed as

f(π1, π2, . . . , πn) = 0.

We’ll prove Buckingham’s Theorem in Section 5.4, but for now let’s be clear about what
it’s asserting. For this, we’ll return to Example 5.1a, keeping in mind that we typically
wouldn’t use Buckingham’s Theorem in cases for which we can identify f by other means.
For the example, the algebraic equation referenced by Buckingham’s Theorem is

−1

2
gt2 + vt+ h = 0,

except it’s assumed that we’re working with a dimensionless form such as

−1

2

gt2

h
+
vt

h
+ 1 = 0.

Buckingham’s Theorem asserts that we can write this equation entirely in terms of π1 and
π2, and in this case, we can do it explicitly

−1

2

π2
2

π1
+
π2
π1

+ 1 = 0.

30Named for the US physicist Edgar Buckingham (1867-1940), Buckingham’s Theorem was first observed
by the French mathematical physicist Aimé Vaschy (1857-1899). This is yet another example of Stigler’s
Law of Eponymy, which states that no scientific discovery is named for its original discoverer. Stigler’s Law
is named for the US statistician Stephen M. Stigler (b. 1941), though is properly due to the US sociologist
Robert Merten (1910-2003).
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The left-hand side of this relation is an example of the function f guaranteed by Bucking-
ham’s Theorem to exist, as is (upon multiplying by π1)

f(π1, π2) = −1

2
π2
2 + π2 + π1.

(Notice that Buckingham’s Theorem doesn’t claim anything about uniqueness.) Having
come this far, we can now solve f(π1, π2) = 0 with the quadratic formula to obtain

π2 =
−1±

√
1 + 2π1
−1

.

We want the positive solution
π2 = 1 +

√
1 + 2π1,

and in the original variables this is

gt

v
= 1 +

√
1 + 2

gh

v2
=⇒ t =

v

g
+
v

g

√
1 + 2

gh

v2
, (5.7)

which is the same time we found before.
More generally, suppose we’re analyzing a more complicated phenomenon, and we have

a complete set of dimensionless products {πj}nj=1 for the variables in the problem. Then
Buckingham’s Theorem asserts that the equation we’re looking for can be expressed as

f(π1, π2, . . . , πn) = 0. (5.8)

At this point, let’s recall a standard theorem from analysis known as the Implicit Function
Theorem. In the current setting, this theorem asserts that if f is continuously differentiable
and there is a vector ~π∗ so that f(~π∗) = 0 and ∂f

∂πn
(~π∗) 6= 0, then at least near ~π∗ we can

solve (5.8) with
πn = φ(π1, . . . , πn−1)

for some function φ.31 For example, we see from our calculations above that for Example
5.1a we have

φ(π1) = 1 +
√

1 + 2π1.

To be clear, just as we don’t generally have an explicit form for f , we don’t generally have
an explicit form for φ, and in addition to this, since we don’t have an explicit form for f
we can’t generally even check that the Implicit Function Theorem applies. Nonetheless, in
applications of the general method of dimensional analysis, we typically assume such a φ
exists.

At this point, there are two standard ways to take advantage of the method: (1) regression
and (2) structured experiments. We will start with the former.

31See the appendix for a full statement of the Implicit Function Theorem.
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5.2.3 Dimensional Analysis with Regression

Returning yet again to Example 5.1a, suppose we have data

{(vk, gk, hk, tk)}Nk=1,

and as usual we would like to find t as a function of v, g, and h. We can use this data to
compute dimensionless data {(πk1, πk2)}Nk=1, where

πk1 =
gkhk
v2k

, πk2 =
gktk
vk

, k = 1, 2, . . . , N,

and we can then use this data and regression to identify the function φ that arises from the
combination of Buckingham’s Theorem and the Implicit Function Theorem. It’s important
to observe at this point that a critical simplification has occurred. Originally, we wanted
to find t = t(v, g, h), that is, t as a function of three independent variables. In principle,
we could do this directly from our data with regression, but we would have a quite difficult
regression problem, impossible to visualize since it would be in four-dimensional space. On
the other hand, now that we’ve reduced the relationship to one between only two values, π1
and π2, we have a two-dimensional regression problem, easy to visualize. In general, each
fundamental, dimension in an application will allow us to reduce the number of independent
variables by one. This is because the number of variables is the number of columns of A and
the number of fundamental dimensions is the number of rows, which is generally (though
not always) the rank of A. So, according to the Rank-Nullity Theorem, the number of
dimensionless products is the number of variables minus the number of dimensions. For the
example at hand, there are two fundamental dimensions, L and T , so we expect the number
of independent variables to reduce by two, as observed.

Turning now to the full analysis, we emphasize that our goal is to use our dimensionless
data {(πk1, πk2)}Nk=1 and regression to find φ so that

π2 = φ(π1).

We will carry this out with the M-file da1.m, which accomplishes the following:

• plots the dimensionless data;

• fits the dimensionless data to a regression line;

• compares model times with precise times (computed from the solution formula), with
times viewed as a function of height, with v and g held fixed.

%DA1: MATLAB script M-file that carries out a dimensional
%analysis calculation for the example in which an object is
%fired up from a height h with velocity v.
%
%Data
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g = 9.81; v = 8.61;
h = 0:.2:2;
t = [1.76 1.78 1.80 1.82 1.84 1.86 1.89 1.91 1.92 1.94 1.96];
%
pi1 = g*h/vˆ2;
pi2 = g*t/v;
%
plot(pi1, pi2, ’o’)
axis equal
title(’Dimensionless Products for the Data’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’$\pi 1$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’$\pi 2$’,’Interpreter’,’latex’,’FontSize’,14)
set(get(gca,’YLabel’),’Rotation’,0.0)
pause
p = polyfit(pi1,pi2,1)
plot(pi1,pi2,’o’,pi1,p(1)*pi1+p(2))
axis equal
title(’Dimensionless Products, Data and Fit’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’$\pi 1$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’$\pi 2$’,’Interpreter’,’latex’,’FontSize’,14)
set(get(gca,’YLabel’),’Rotation’,0.0)
pause
%
%Compare model with exact solution
modelt = p(1)*h/v+p(2)*v/g;
exactt = (v/g)+sqrt(vˆ2+2*g*h)/g;
plot(h,modelt,’o’,h,exactt,’*’)
legend(’Model Times’,’Calculated Times’,’location’,’Northwest’,’Interpreter’,’latex’)
title(’Model Time Predictions with Calculated Values ’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Height $h$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’Time $t$’,’Interpreter’,’latex’,’FontSize’,14)
pause
%
h=0:.2:5;
modelt = p(1)*h/v+p(2)*v/g;
exactt = (v/g)+sqrt(vˆ2+2*g*h)/g;
plot(h,modelt,’o’,h,exactt,’*’)
legend(’Model Times’,’Calculated Times’,’location’,’Northwest’,’Interpreter’,’latex’)
title(’Model Time Predictions with Calculated Values ’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Height $h$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’Time $t$’,’Interpreter’,’latex’,’FontSize’,14)
pause
h=0:1:50;
modelt = p(1)*h/v+p(2)*v/g;
exactt = (v/g)+sqrt(vˆ2+2*g*h)/g;
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plot(h,modelt,’o’,h,exactt,’*’)
legend(’Model Times’,’Calculated Times’,’location’,’Northwest’,’Interpreter’,’latex’)
title(’Model Time Predictions with Calculated Values ’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’Height $h$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’Time $t$’,’Interpreter’,’latex’,’FontSize’,14)

First, when working with dimensionless products, since scaling issues have typically been
eliminated, it’s often convenient to set the axes equal on plots, as done in da1.m. The first
step is to identify φ(π1), and we see from Figure 5.2 that in this case a linear fit is natural.
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Figure 5.2: Fit for π2 = φ(π1) for Example 5.1a.

We find m = .8727 and b = 2.0058, so that

φ(π1) = .8727π1 + 2.0058,

giving us the model

t =
v

g
(.8727

gh

v2
+ 2.0058). (5.9)

We can now compute landing times t in two different ways, the first based on our exact
solution (5.7), and the second based on (5.9). For comparison, we evaluate t as h varies, first
for small values of h and then for larger values. See Figure 5.3.

From the figure, we find that for small values of h (and so small values of π1), our model
is quite good, but as h increases it degrades substantially. In order to understand why this
happens, let’s recall that the exact form of φ in this case is φ(π1) = 1 +

√
1 + 2π1. If we

compute a Taylor polynomial approximation of φ about π1 = 0, we find

φ(π1) = 2 + π1 + O(π2
1).
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Figure 5.3: Comparison of model values and exact values for Example 5.1a.
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Since our values of π1 are fairly small, this is the behavior our model is capturing: the
intercept is almost exact, and the slope isn’t all that far off. But since φ(π1) isn’t a linear
function, there is no chance that with the data we have we will be able to find an appropriate
form of φ for all values of the variables. Generally, given a sufficiently small range of data,
the function φ will be linear; for a slightly larger range of data it will be quadratic (second
order Taylor expansion) and so on. This observation is especially important in the case of
multiple parameters for which the fit becomes difficult to visualize.

By the way, the choice π1 = 0 is convenient for the intuitive discussion above, but it’s
not quite right conceptually. It makes more sense to view the line as an approximation in
the middle of the data, so we might Taylor expand φ about the average π̄1 of the values of
π1 used for the fit. In this case, π̄1 = .1323, and we find φ(π̄1) = 2.1246 and φ′(π̄1) = .8892
so that

φ(π1) ∼= φ(π̄1) + φ′(π̄1)(π1 − π̄1)
= 2.1246 + .8892(π1 − .1323)

= .8892π1 + 2.0070,

closer to the line obtained from our regression fit.
Before considering a more involved example of this method, we review the key steps.

1. Identify the variables of dependence.

2. Determine a complete set of dimensionless products, {π1, π2,...,πn}, making sure that
the dependent variable appears in only one, say πn.

3. Apply Buckingham’s Theorem to obtain the existence of a (typically unknown) function
f , for which the (also unknown) equation relating the variables in our problem can be
expressed as

f(π1, π2, ..., πn) = 0.

4. Apply the Implicit Function Theorem to obtain the existence of a (typically unknown)
function φ presumably satisfying

πn = φ(π1, π2, ..., πn−1).

5. Use experimental data to determine the form of φ from Step 4.

6. Replace the dimensionless products with the multiplicative variable combinations they
denote, and solve the equation from Step 4 for the dependent variable.

Example 5.5. The first atomic bomb, code-named Trinity, was detonated in the New
Mexico desert on July 16, 1945. The energy released was classified, but in 1947 photographs
of the explosion were declassified. Based on these images, the British mathematician and
physicist Geoffrey Ingram (G.I.) Taylor (1886-1975) was able to estimate the energy released.
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His analysis was published in 1950 in Proceedings of the Royal Society of London.32 The
Trinity explosion tested a plutonian-based design (like the “fat man” bomb detonated over
Nagasaki), the date chosen because President Truman would be meeting with Churchill and
Stalin on July 17, and Truman thought it would strengthen his position. In this example,
we will use dimensional analysis to obtain most of Taylor’s results, with the exception of one
calculation requiring partial differential equations, which he did in a companion paper (also
listed in Footnote 32).

To begin, let’s suppose we would like to find an expression for the radius R of the shock
wave associated with the explosion, based on the following variables (with ambient terms
prior to explosion):

time since explosion t

energy released in exlosion E

ambient air density ρ

ambient air pressure p

As usual, we first identify the dimensionless products for the problem, writing

π = π(t, E, ρ, p, R) = taEbρcpdRe.

Equating dimensions on the two sides of this relation, we obtain

1 = T aM bL2bT−2bM cL−3cMdL−dT−2dLe,

leading to the dimensions equations

L : 0 = 2b− 3c− d+ e

M : 0 = b+ c+ d

T : 0 = a− 2b− 2d.

We can express this system in matrix form,

 0 2 −3 −1 1
0 1 1 1 0
1 −2 0 −2 0




a
b
c
d
e

 =

 0
0
0

 .

For convenient reference, we will denote the matrix in this last relation A. Reducing A to
RRE form, we obtain

 1 0 0 −6
5

2
5

0 1 0 2
5

1
5

0 0 1 3
5
−1

5




a
b
c
d
e

 =

 0
0
0

 .

32G.I. Taylor, The formation of a blast wave by a very intense explostion II: the atomic explosion of 1945,
Proceedings of the Royal Society of London, Series A, vol. 201 (1950), no. 1065, pp. 175-186. We will
also refer to Taylor’s earlier paper, The formation of a blast wave by a very intense explosion I: theoretical
discussion, Proceedings of the Royal Society of London, Series A, vol. 201 (1950), no. 1065, pp. 159-174.
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We see from this expression that rank A = 3 so that nullity A = 2, and we expect to find
two dimensionless products (forming a complete set). We can express the RRE form of our
system as

a =
6

5
d− 2

5
e

b = − 2

5
d− 1

5
e

c = − 3

5
d+

1

5
e.

For π1, we choose e = 0 and d = 1 so that a = 6
5
, b = −2

5
, and c = −3

5
, giving

π1 =
pt6/5

E2/5ρ3/5
.

For π2, we choose e = 1 and d = 0 so that a = −2
5
, b = −1

5
, and c = 1

5
, giving

π2 =
Rρ1/5

t2/5E1/5
.

At this point, Buckingham’s Theorem asserts that there exists a function f so that we can
express the relation between our variables that we’re searching for as

f(π1, π2) = 0,

and the Implicit Function Theorem suggests that we can solve this by finding a function φ
so that

π2 = φ(π1).

For the standard (regression-based) approach, we would collect data at this point of the form

{(tk, Ek, ρk, pk, Rk)}Nk=1,

and use it to compute dimensionless data {(πk1, πk2)}Nk=1. For this application, however, the
value we’re trying to identify is E (which is the same for all k), so no such data is available.
In order to get around this difficulty, let’s first observe that since E is presumably quite large,
we can assert, at least for small times, that π1 ∼= 0. In this case, the relation π2 = φ(π1)
reduces to approximately π2 ∼= φ(0), which we an express as

Rρ1/5

t2/5E1/5
∼= φ(0) =⇒ R(t) ∼= (

E1/5φ(0)

ρ1/5
)t2/5.

Notice that we can view φ(0) as a zeroth order Taylor polynomial for φ, so it would be in
the spirit of our approach to obtain a value for φ(0) by carrying out experiments with light
explosives, for which π1 can be kept small by taking measurements at small times. In lieu of
this, in the second paper listed in Footnote 32 G.I. Taylor used an analysis based on partial
differential equations to show that φ(0) ∼= 1.0316.33

33In fact, Taylor had written this paper in 1941, but it was classified by the British government, and
wasn’t published until 1950.

76



Rather than the full set of data mentioned above, the data Taylor had to work with,
taken from the images declassified in 1947, had the form {(tk, Rk)}Nk=1. Observing that the
quantity

c =
E1/5φ(0)

ρ1/5

is constant, we can use this data to find a best-fit value for c from the relation R = ct2/5.
Once c is identified, we can use Taylor’s value for φ(0) along with the measured ambient air
density ρ = 1.25 kg/m3 to compute

E = (
cρ1/5

φ(0)
)5.

This will be the energy released by the detonation.
Turning to the specific calculations, we will use the MATLAB M-file taylordatafit.m,

given below. First, we check the basic form of our model by writing

lnR = ln c+
2

5
ln t,

and checking that if we fit lnR as a function of ln t, we indeed obtain a slope of 2
5
. Next,

we carry out the fit for R = ct2/5 in our usual way, which involves (since we only have one
parameter) the design matrix

F =


t
2/5
1

t
2/5
2
...

t
2/5
N

 .

(We observe that we cannot simply fit R as a function of t2/5 and take c to be the slope,
because that would introduce a non-zero intercept.) Last, we will repeat Taylor’s approach,
which was to write

5

2
log10R− log10 t =

5

2
log10 c,

and to think of fitting Y := 5
2

log10R− log10 t with only an intercept.
The data associated with these calculation is provided in the MATLAB M-file taylor-

data.m.

%TAYLORDATA: MATLAB script M-file that defines data
%for the first atomic explosion in New Mexico (code-named Trinity,
%July 16, 1945). This is taken from p. 176 of Taylor’s
%paper "The formation of a blast wave by a very intense explosion II:
%the atomic explosion of 1945," in Proceedings of the Royal Society
%of London, Series A, vol. 201 (1950), no. 1065, pp. 175-186.
%The companion paper is "The formation of a blast wave by a
%very intense explosion I: theoretical discussion," in
%in Proceedings of the Royal Society of London, Series A,
%vol. 201 (1950), no. 1065, pp. 159-174.
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t = 1e-3*[.1 .24 .38 .52 .66 .80 .94 1.08 1.22 1.36 1.50 1.65 1.79 1.93 3.26 3.53
3.80 4.07 4.34 4.61 15.0 25.0 34.0 53.0 62.0]; %in seconds

R = [11.1 19.9 25.4 28.8 31.9 34.2 36.3 38.9 41.0 42.8 44.4 46.0 46.9 48.7 59.0
61.1 62.9 64.3 65.6 67.3 106.5 130.0 145.0 175.0 185.0]; %in meters

rho = 1.25; %kg/mˆ3
phi0 = 1.0316; %dimensionless

The described calculations are now carried out with the MATLAB M-file taylordatafit.m.

%TAYLORDATAFIT: MATLAB script M-file that analyzes the data stored
%in taylordata.m
%
%define and fit the data
taylordata;
%
%VERIFICATION OF THE 2/5 POWER LAW
plot(log(t),log(R),’o’)
title(’Data Plot: ln R Against ln t’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’$\ln t$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’$\ln R$’,’Interpreter’,’latex’,’FontSize’,14)
pause
p=polyfit(log(t),log(R),1);
plot(log(t),log(R),’o’,log(t),p(1)*log(t)+p(2))
title(’Data and Fit: ln R Against ln t’,’Interpreter’,’latex’,’FontSize’,16)
xlabel(’$\ln t$’,’Interpreter’,’latex’,’FontSize’,14)
ylabel(’$\ln R$’,’Interpreter’,’latex’,’FontSize’,14)
legend(’Data’,’Fit’,’location’,’Northwest’,’Interpreter’,’latex’)
fprintf(’Slope = %5.4f; Should be .4000.\n’,p(1));
pause
%
%METHOD 1 FOR COMPUTING C: DIRECT FIT
c = t’.ˆ(2/5)\R’ %i.e., F = t’.ˆ(2/5)
%
%Compute E
E = (c*rhoˆ(1/5)/phi0)ˆ5 %in Joules (kg mˆ2/sˆ2)
pause
%One metric ton (1,000 kg or 2,204.62 lbs) of TNT corresponds, by definition,

to
%an energy of 4.184e9 Joules, but the definition was different in 1950,
%and Taylor used 4.25e9.
Etons = E/4.25e9;
fprintf(’This corresponds with %7.2f metric tons of TNT\n’,Etons);
pause
%
%METHOD 2 FOR COMPUTING C: TAYLOR’S APPROACH
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%NOTE: Taylor used cm, and log10
Y = (5/2)*log10(100*R)-log10(t);
F = ones(size(R))’;
ctemp = F\Y’
fprintf(’Taylor reported 11.915; see p. 176. Probably round-off error (on his

part).\n’)
pause
our taylorc = 10ˆ((2/5)*ctemp)
our taylorc our units = our taylorc/100 %Return from cm to m.
ourEtaylor = (our taylorc our units*rhoˆ(1/5)/phi0)ˆ5 %in Joules (kg mˆ2/sˆ2)
pause
ourEtaylortons = ourEtaylor/4.25e9;
fprintf(’This corresponds with %7.2f metric tons of TNT\n’,ourEtaylortons);
pause
fprintf(’Here is the calculation Taylor actually did.\n’)
taylorc = 10ˆ((2/5)*11.915)
fprintf(’This corresponds with cˆ5 = %7.2e \n’,taylorcˆ5)
fprintf(’The value he computed with was cˆ5 = 6.67 x 10ˆ23 cmˆ5 sˆ-2. More

round-off error? \n’)
pause
%There seems to be a typesetting error on p. 177 of Taylor’s second paper.
%The value of cˆ5 is reported as cˆ5 = 6.67 x 10ˆ2, suggesting the 3 was
%dropped off by the typesetter. In our units, cˆ5 = 6.67 x 10ˆ13.
Etaylor = (6.67e13*rho/phi0ˆ5)/4.25e9
fprintf(’This corresponds with %7.2f metric tons of TNT\n’,Etaylor);
fprintf(’Taylor reported 16,800 metric tons. In most references the energy

is\n’)
fprintf(’now reported as 20,000 metric tons.\n’)

The full output from taylordatafit.m is included below.

>>taylordatafit
Slope = 0.4058; Should be .4000.
c =
570.5925
E =
6.4712e+13
This corresponds with 15226.31 metric tons of TNT
ctemp =
11.9038
Taylor reported 11.915; see p. 176. Probably round-off error (on his part).
our taylorc =
5.7748e+04
our taylorc our units =
577.4770
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ourEtaylor =
6.8711e+13
This corresponds with 16167.31 metric tons of TNT
Here is the calculation Taylor actually did.
taylorc =
5.8345e+04
This corresponds with cˆ5 = 6.76e+23
The value he computed with was cˆ5 = 6.67 x 10ˆ23 cmˆ5 sˆ-2. More round-

off error?
Etaylor =
1.6792e+04
This corresponds with 16791.53 metric tons of TNT
Taylor reported 16,800 metric tons. In most references the energy is
now reported as 20,000 metric tons.

The first thing we observe from the output is that in the fit of lnR as a function of ln t we
obtain a slope of .4058, very close to the expected 2

5
(see Figure 5.4). Next, by finding c with

out standard technique (i.e., using the design matrix F given above), we find that the energy
released in the detonation was approximately E = 6.4712× 1013 Joules, which translates to
about 15,226.31 metric tons of TNT.34 If we find the value of c by Taylor’s method, but with
our computational technolgy (i.e., MATLAB), we obtain an energy of 16,167.31 metric tons
of TNT, and finally if we use Taylor’s value of c we obtain 16,791.53 metric tons of TNT. The
value Taylor actually reported was 16,800 metric tons of TNT. In most references, the energy
released in the Trinity explosion is now reported to be about 20,000 metric tons of TNT.
For a quick comparison, the uranium-based “little boy” bomb detonated over Hiroshima on
Aug. 6, 1945 is typically reported to have released about 12,00 metric tons of TNT, and
the plutonium-based “fat man” bomb detonated over Nagasaki is typically reported to have
released about 20,000 metric tons. Hydrogen bombs, fortunately never detonated over any
city, are reported to release about 25 million metric tons of TNT.35

5.2.4 Dimensional Analysis with Structured Experiments

Once again let’s start with Example 5.1a before considering a more realistic application.
We recall (though, at this point, how could we forget?) that for that example, we have the
dimensionless products π1 = gh

v2
and π2 = gt

v
, related by the equation π2 = φ(π1). Suppose

we’re interested in computing the landing time t for some particular values v, g, and h, but
that for some reason it would be difficult to arrange an experiment with those values. For
example, v or h could be prohibitively large, or we could be trying to determine t on the

34The energy released in large explosions is often measured in metric tons of TNT, i.e., in the number of
metric tons of TNT that would be required to achieve that energy. By the current definition, one metric ton
of TNT is equivalent to exactly 4.184 × 109 Joules of energy, though at the time that Taylor was working
this definition was slightly different, and one metric ton of TNT was defined to be exactly 4.25× 109 Joules
of energy.

35The first design for an atomic bomb was designated “thin man,” but researchers soon found that it was
too simplistic and would release low energy over a long period of time, rather than the blast they were trying
to achieve. “Thin man” was plutonium-based.
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Figure 5.4: Fit of lnR as a function of ln t for the Trinity detonation.

moon or Mars via an experiment on Earth. In this case, we can view v, g, and h as given
values, and we can design (i.e., structure) an experiment with values ve, ge, and he so that
π1 = πe1, where πe1 = gehe

v2e
. For example, if v is large, we might take ve smaller, but also

take he smaller to achieve the equality. With these choices of ve, ge, and he, we carry out an
experiment and measure a value te. This allows us to compute πe2 = gete

ve
, so that π1, πe1,

and πe2 are fully specified numerical values. From these values, we can obtain the value of
π2 by computing

π2 = φ(π1) = φ(πe1) = πe2,

which we often summarize by writing

π1 = πe1 =⇒ π2 = πe2.

Having identified π2, we can solve for the time t that we’re looking for,

t =
v

g
π2 =

v

g
πe2.

Example 5.6. Suppose we want to compute the landing time t for g = 1.63 m/s2 (i.e., on
the moon), with v = 2 m/s and h = 5 m.

First, we compute

π1 =
gh

v2
= 2.0375.

This means that we need to arrange an experiment so that

πe1 =
gehe
v2e

= 2.0375.
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Notice that we have considerable flexibility in how we go about this: we can choose any
two of the values of ge, he, and ve and solve for the third. For this example, let’s take
ge = 9.81 m/s2 and ve = 8.61 m/s, the latter of which is the velocity with which darts fire
from a particular dart gun that will be used to carry out the experiment. Having chosen
values for ge and ve, we can compute

he = 2.0375
8.612

9.81
= 15.3970 m.

At this point, we carry out an experiment, and in this case the value

te = 2.85 s

was measured. This allows us to compute

πe2 =
gete
ve

=
9.81 · 2.85

8.61
= 3.2472.

Finally, we can find the time t we’re looking for by computing

t =
v

g
πe2 =

2

1.63
3.2472 = 3.9843 s.

4
Example 5.7. When designing airplanes, it’s impractical to carry out experiments on full-
sized planes, so one approach engineers take is to use dimensional analysis to design wind
tunnel experiments. In this example, we’ll see how this process works.

Very roughly, an airplane wing in flight (the shape of which is called an airfoil) can be
characterized by the following variables:

angle of inclination (or “attack”) θ

length in the direction of flight (“chord”) r

length from fuselage to wingtiop s.

θ

rair velocity v

Figure 5.5: Airfoil for Example 5.7.

It’s customary to depict an airfoil in the configuration of Figure 5.5, because we typically
analyze it by thinking of the airfoil as remaining still while air flows in from the left. In
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addition to the values θ, r, and s, the lift force Fl and the drag force Fd depend on the
following:

air density ρ

air viscosity µ

velocity of the plane (or air flow) v

Mach number M =
v

vs
,

where vs denotes the speed of sound in the medium (about 340.3 m/s (761.2 mph) in air).36

The lift force Fl and drag force Fd can be analyzed separately, and the analysis of each
is precisely the same up to the point of actually conducting experiments, so we will focus
on only one, lift force. At this point, we have eight variables to work with, so we look for
dimensionless products of the form

π = π(θ, r, s, ρ, µ, v,M, Fl) = θarbscρdµevfMgF h
l .

Equating the dimensions on either side of this relation, we have (noting that θ and M are
dimensionless)

1 = LbLcMdL−3dM eL−eT−eLfT−fMhLhT−2h,

from which we obtain the dimensions equations

L : 0 = b+ c− 3d− e+ f + h

M : 0 = d+ e+ h

T : 0 = − e− f − 2h.

In matrix form, we can express this system as

 0 1 1 −3 −1 1 0 1
0 0 0 1 1 0 0 1
0 0 0 0 −1 −1 0 −2





a
b
c
d
e
f
g
h


=

 0
0
0

 .

If we put the matrix in RRE form, we get

 0 1 1 0 0 −1 0 0
0 0 0 1 0 −1 0 −1
0 0 0 0 1 1 0 2





a
b
c
d
e
f
g
h


=

 0
0
0

 .

36The Mach number is named for the Austrian physicist and philosopher Ernst Mach (1838-1916). It’s
important in the determination of whether a fluid can be treated as incompressible; typically, small Mach
numbers (M < .2) correspond with incompressibility.
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We see that the rank of the matrix is 3, and since it has eight columns this means the nullity
is 5, from which we know to identify five dimensionless products. Keying on the embedded
identity matrix associated with c, d, and e, we can express solutions of this system as

c = − b+ f

d = f + h

e = − f − 2h.

We have the freedom to choose five values a, b, f , g, and h, from which the values c, d, and
e will be determined. We will do this in a systematic way, choosing each of the free values
to be 1 with the others all zero: for π1, a = 1, so c = 0, d = 0, and e = 0, giving π1 = θ. For
π2, b = 1, so c = −1, d = 0, and e = 0, giving π2 = r

s
. For π3, f = 0, so c = 1, d = 1, and

e = −1, giving π3 = sρv
µ

.37 For π4, g = 1, so c = 0, d = 0, and e = 0, giving π4 = M. For

π5, h = 1, so c = 0, d = 1, and e = −2, giving π5 = ρFl

µ2
.

According to Buckingham’s Theorem and the Implicit Function Theorem, we expect to
have the relation

π5 = φ(π1, π2, π3, π4)

for some appropriate function φ. Now, suppose we want to compute Fl for some values θ,
r, s, ρ, µ, v, and M for which it would be difficult to carry out an experiment in practice.
We can design a wind tunnel experiment with values θe, re, se, ρe, µe, ve, andMe chosen so
that

θe = θ
re
se

=
r

s
seρeve
µe

=
sρv

µ

Me =M.

It follows that
Flρ

µ2
=
Fleρe
µ2
e

.

In this way, we can measure Fle from our wind tunnel experiment and find Fl by computing

Fl =
µ2

ρ

Fleρe
µ2
e

.

37The combination sρv
µ is an important quantity in fluid mechanics known as Reynolds number (in recog-

nition of the Irish engineer Osbourne Reynolds (1842-1912)). If we replace s with any other length such as
r we continue to call the result a Reynolds number. The Reynolds number can often be used to predict the
onset of turbulent flow; in particular, turbulent flow typically corresponds with large values of the Reynolds
number. The threshold varies according to the fluid and flow configuration (e.g., pipe, channel, etc.), but is
typically in the range of about 1,000 to 5,000.

84



5.2.5 Aside on Viscosity

As we saw in Example 5.7, viscosity has an important role in the study of fluid dynamics,
so it’s worth taking some time to make sure we understand how it works. First, to get some
intuition, let’s imagine that we’re walking across the Texas A&M campus, trying to get to
class etc. Density would be analogous to the number of students out walking around, and so
high density would certainly impede our progress. Viscosity, on the other hand, is analogous
to the number of people we actually know and might stop and talk to. It also impedes our
progress, but in a different way. Likewise, for fluids, viscosity is a measure of the tendency
of molecules to stick together.

For a precise definition of viscosity, we suppose a thin plate with area A is moved through
a viscous fluid with velocity v, above a fixed flat surface, as depicted in Figure 5.6. By
definition, the fluid is referred to as Newtonian if the force required to keep the plate moving
with velocity v is proportional to Av

h
; i.e., if there exists a constant µ so that this force F

can be expressed as

F = µ
Av

h
.

This constant µ is typically the value we give as a measure of viscosity.38 In order to
understand the dimensions of viscosity, we can solve for µ, writing then

[µ] =
[F ][h]

[A][v]
=

(MLT−2)L

L2(LT−1)
= ML−1T−1.

The standard unit for viscosity is the Pascal-second, which has units kg m−1s−1. Common
Newtonian fluids include air, water, and thin motor oil. At 20o C (68o F), these have
respective viscosities 1.983 × 10−5 Pa · s, .001 × 10−5 Pa · s, and about .250 × 10−5 Pa · s.
Common non-Newtonian fluids include thicker motor oil, blood, ketchup, honey, and of
course oobleck.39 The viscosity of a non-Newtonian fluid varies depending on the force
applied.

A

h

v

Figure 5.6: Thin plate moving through a viscous fluid.

5.3 More Matrix Theory

In this section, we include details about the matrix theory that arose in our discussion of
the general method of dimensional analysis. We start with the following definition.

38The value µ is sometimes referred to as dynamic viscosity, as opposed to kinematic viscosity. Kinetmatic
viscosity is ν = µ

ρ , where ρ is the density of the fluid.
39One part water, two parts corn starch.
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Definition 5.1. For any matrix A ∈ Cm×n, the column rank is the dimension of the linear
space spanned by the columns of the matrix, and the row rank is the dimension of the linear
space spanned by the rows of the matrix.

Next, we introduce a lemma that we often use without explicit reference.

Lemma 5.1. For any matrix A ∈ Cm×n, the column rank is conserved under both column
and row operations, and likewise the row rank is conserved under both column and row
operations.

Proof. We’ll prove this for the case of row operations; the proof in the case of column
operations is similar. First, since row operations on a matrix simply correspond with lin-
ear combinations of the rows in the matrix, the statement about row rank is fairly clear.
Nonetheless, let’s write out a short calculation to drive the point home. Precisely, a single
row operation on a matrix (that isn’t just a row exchange) corresponds with replacing one
of the rows in the matrix with a linear combination of that row and another. For example,
if the rows of the original matrix A are expressed as row vectors {~rj}mj=1, and a multiple of
the second row is added to the first row, the resulting matrix has first row ~r ′1 = ~r1 + c~r2 and
remaining rows unchanged (i.e., {~rj}mj=2). We now easily check that any vector ~v ∈ Cm can
be obtained as a linear combination of the rows of A if and only if it can be obtained as a
linear combination of the rows of the reduced matrix. First, if

~v =
m∑
j=1

cj~rj

then

~v = c1~r
′
1 + (c2 − cc1)~r2 +

m∑
j=2

cj~rj,

and second if

~v = c1~r
′
1 +

m∑
j=2

cj~rj

then

~v = c1~r1 + (c2 + cc2)~r2 +
m∑
j=2

cj~rj.

A similar calculation can be carried out for any row operation, giving the statement about
row ranks.

Turning to the case of column ranks, we recall from introductory courses in linear algebra
that row operations can be carried out by multiplying the matrix A on the left by an
appropriate elementary matrix, and that all elementary matrices are invertible with inverses
being elementary matrices of the same type.40 We let E denote some elementary matrix, and
we express the columns of A as vectors {~aj}nj=1 and the columns of EA as vectors {~bj}nj=1.
I.e., we can view A and EA as

A =
(
~a1 ~a2 · · · ~an

)
, EA =

(
~b1 ~b2 · · · ~bn

)
.

40See, for example, Section 1.5 in Linear algebra with applications, 9th Ed., by Steven J. Leon.
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Now, suppose the matrix A has column rank r ∈ {0, 1, . . . , n− 1} so that any r+ 1 columns
of A must be linearly dependent. For ease of notation, let’s denote these columns {~aj}r+1

j=1,
though of course they do not need to be the first r + 1 columns of A. Since the vectors
{~aj}r+1

j=1 are linearly dependent, it must be the case that there exists a linear combination∑r+1
j=1 cj~aj = 0, where the coefficients {cj}nj=1 are not all 0. In this case, we can write

0 = E(
r+1∑
j=1

cj~aj) =
r+1∑
j=1

cjE~aj =
r+1∑
j=1

cj~bj,

so the corresponding columns of EA are also linearly dependent. Since this is true for all
collections of r + 1 columns of EA, we can conclude that

column rank (EA) ≤ r = column rank (A). (5.10)

In the event that r = n (the one case left out above), this inequality holds trivially with
r = n since the column rank of the m × n matrix EA cannot exceed n. Since elementary
matrices are invertible, if we set Ã = EA, then we will have A = E−1Ã, from which the
above argument, applied to Ã, with elementary matrix E−1, yields

column rank (E−1Ã) ≤ column rank (Ã),

which is precisely the converse of (5.10). We conclude that

column rank (EA) = column rank (A),

as claimed. �

Theorem 5.3. For any matrix A ∈ Cm×n, the rank of A, the column rank of A, and the
row rank of A are equivalent.

Proof. First, we recall that the rank of a matrix is the dimension of its range, where its
range is the collection of all vectors that can be obtained by acting with the matrix on some
vector. Precisely, the range R(A) is defined to be

R(A) := {~b ∈ Cm : A~v = ~b for some ~v ∈ Cn}.

Next, let’s notice that the action of a matrix on a vector (i.e., the product A~v) can be viewed
as the evaluation of a linear combination of the columns of A. That is, if we denote the n
columns of A as vectors {~aj}nj=1 so that A can be viewed as

A =
(
~a1 ~a2 · · · ~an

)
,

then
A~v = v1~a1 + v2~a2 + · · ·+ vn~an,

where as usual the values {vj}nj=1 denote the components of the vector ~v.
Turning now to the statements of the theorem, we see that the claim that the rank is

equivalent to the column rank follows immediately from our two preliminary observations,
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because R(A) is seen to be precisely the collection of vectors ~b that can be obtained as linear
combinations of the columns of A.

For the claim that the row rank is equivalent to the column rank (and so also to the rank,
by the first part), we let A′ denote the RRE form of A (which, by Lemma 5.1 has the same
row rank and column rank as A), and we note that if A has row rank s then in RRE form Ã
will necessarily have s rows with leading 1’s (and all other rows 0).41 At this point, we can
perform column operations on Ã (i.e., take linear combinations of the columns) to reduce
the number of non-zero columns to at most s. (If this number was greater than s, we would
have more than s linearly independent vectors of length s, and this is a contradiction.) Since
the number of non-zero columns must be the column rank (and so the rank) of A, we can
conclude that r ≤ s. I.e., we see that

column rank A ≤ row rank A.

On the other hand,

row rank A = column rank AT

≤ row rank AT

= column rank A,

allowing us to conclude
column rank A = row rank A.

This completes the proof. �
We end this section with a short proof of the Rank-Nullity Theorem.

Proof of the Rank-Nullity Theorem. First, suppose nullityA = 0, in which case ~x = 0
is the only solution of A~x = 0. According to our Uniqueness Theorem for Matrices, we can
conclude that the n columns of A are linearly independent, so that the column rank of A is
n. But we saw in Theorem 5.3 that the column rank of A is equal to the rank of A, allowing
us to conclude that rankA = n, so that in this case

rankA+ nullityA = n+ 0 = n,

as claimed.
Next, suppose nullityA = ` ≥ 1, and let {~vj}`j=1 denote a basis for the null space of

A. We can extend this to a full basis of Rn, {~vj}nj=1, in which case the collection of vectors
{A~vj}nj=1 must span R(A). But we know that A~vj = 0 for all j = 1, 2, . . . , `, so in fact
{A~vj}nj=`+1 must span R(A). In addition, we can check that the set {A~vj}nj=`+1 is linearly
independent. To this end, suppose we have any linear combination from this set satisfying

n∑
j=`+1

cjA~vj = 0.

41Here, we need to set aside the fact that we “know” that this is actually the rank of A, because that’s
effectively what we’re proving.

88



This means A(
∑n

j=`+1 cj~vj) = 0 so that the linear combination
∑n

j=`+1 cj~vj is in the null
space of A. But this contradicts our assumption that the vectors {~vj}nj=1 form a linearly
independent set. We can conclude that the vectors {A~vj}nj=`+1 form a basis for R(A), and
so rank(A) = n− `. But then

rankA+ nullityA = (n− `) + ` = n,

as claimed. �

5.4 Proof of Buckingham’s Theorem

Before proving Buckingham’s Theorem in the general case, we’ll work through what the
proof looks like for Example 5.1a.

5.4.1 Proof of Buckingham’s Theorem: Special Case

Let’s recall once again that for Example 5.1a, we express our dimensionless products as

π = vagbhctd,

and we have a complete set of dimensionless products

π1 =
gh

v2
, π2 =

gt

v
.

These correspond respectively with the linearly independent vectors

~v1 =


−2
1
1
0

 , ~v2 =


−1
1
0
1

 ,

which comprise a basis for the null space of the matrix A for this problem (the matrix in
(5.5)). Let’s also recall that we have the correspondence between multiplicative combinations
of the dimensionless products

π = πα1
1 πα2

2 , with π = vagbhctd

and linear combinations of the associated vector of coefficients

~v = α1~v1 + α2~v2, with ~v =


a
b
c
d

 .

Starting with ~v1 and ~v2, we can complete a basis for R4 by adding any two additional
vectors ~v3 and ~v4 so that the full collection {~vj}4j=1 is linearly independent. For our purposes,
a convenient choice will be

~v3 =


0
0
1
0

 , ~v4 =


0
0
0
1

 . (5.11)
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We can readily check that the vectors {~vj}4j=1 are linearly independent by verifying that
det(~v1, ~v2, ~v3, ~v4) 6= 0; in this case, we find det(~v1, ~v2, ~v3, ~v4) = 1.

Remark 5.1. According to the Fredholm Alternative, we have the relation

R4 = N (A)⊕R(AT ).

Since ~v1, ~v2 ∈ N (A), we could take ~v3 and ~v4 to be any two linearly independent vectors in
R(AT ). As discussed in the proof of Theorem 5.3, the range of AT is just its column space,
which of course includes both its columns, so we can just use those. E.g., in this case we
have

A =

(
1 1 1 0
−1 −2 0 1

)
=⇒ AT =


1 −1
1 −2
1 0
0 1

 ,

so we could take

~v3 =


1
1
1
0

 , ~v4 =


−1
−2
0
1

 .

We could also use the RRE form of A to obtain yet another viable pair. Nonetheless, we’ll
stick with (5.11), because this choice clarifies an important part of the proof.

These new vectors ~v3 and ~v4 (from (5.11)) correspond with dimensioned products π3 = h
and π4 = t. Since {~vj}4j=1 is a basis for R4, we can express any vector in R4 as a linear
combination of these vectors. Correspondingly, we can express any multiplicative combina-
tion of the variables in our problem as multiplicative combinations of the dimensionless and
dimensioned products {πj}4j=1. In particular, we can express each individual variable v, g,
h, and t as a multiplicative combination of the products {πj}4j=1. This guarantees that we
can express the equation we’re looking for as

ψ(π1, π2, π3, π4) = 0 (5.12)

for some function ψ, because we can simply replace each variable with precisely the multi-
plicative combination of the products {πj}4j=1 to which it is equal. Of course, what Buck-
ingham’s Theorem claims is that we can express our equation entirely in terms of π1 and π2,
so we still have some work to do.

At this point, let’s be careful to observe that the relation (5.12) describes the relationship
between the four quantities {πj}4j=1 , but the function ψ itself is not identically zero. To
be clear about this, let’s recall that for this example we know that we can use f(π1, π2) =
−1

2
π2
2 + π2 + π1 to express the equation we’re searching for as

f(π1, π2) = −1

2
π2
2 + π2 + π1 = 0.

But of course the function f itself is not identically zero; e.g., f(1, 1) = 3
2
. It’s just that

(π1, π2) = (1, 1) is not a solution. In particular, if we vary either π1 or π2, we must also vary
the other to ensure that f(π1, π2) = 0 continues to hold.
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Returning to ψ, for the specific choices of π3, and π4 in the current case, we have

ψ(π1, π2, h, t) = 0. (5.13)

Here’s the key: we claim that ψ is actually independent of h and t. To see this, let’s recall
that under any change of units the values π1 and π2 will remain fixed. On the contrary, by
changing our unit of length we can change the value of h, and by changing our unit of time
we can change the value of t. Focusing on h, this means that by changing the unit of length
we can vary h without varying any of the other variables that ψ depends on. (We emphasize
here the contrast with our discussion of f in the previous paragraph.). Since each summand
in ψ is dimensionless, even if ψ is not 0, its value will not vary as the units change, and so
it will not vary in h; i.e., it will be constant in h as claimed.42 Exactly the same reasoning
can be applied in the case of t, and we can conclude that ψ does not depend on t either. It
follows that the function guaranteed to exist by Buckingham’s Theorem can be taken to be

f(π1, π2) = ψ(π1, π2, h, t).

5.4.2 Proof of Buckingham’s Theorem: General Case

For the general proof of Buckingham’s Theorem, we will let d denote the number of dimen-
sions involved (i.e., L, M , T etc.), and we will denote by p the number of physical variables
involved (i.e., v, g, h etc.) We let {πj}nj=1 denote the complete set of dimensionless prod-
ucts assumed in the theorem statement, and we let {~vj}nj=1 denote the associated vectors of
exponents.

In this context, the matrix A that we obtain from our usual dimensions equations will be
size d× p, corresponding with one row for each dimension and one column for each physical
variable. We know that nullity A = n (the number of dimensionless products), so by the
Rank-Nullity Theorem

rankA = p− n.
First, let’s consider the special case p = n for which rankA = 0, implying that A is

identically 0 (i.e., 0 in every entry). This can only happen if every variable in the equation is
dimensionless (and so a possible dimensionless product), but if every variable in the equation
is dimensionless, then each can be written as a multiplicative combination of the {πj}nj=1

(by definition of a complete set of dimensionless products). If we can write each variable in
terms of the {πj}nj=1, then we can certainly write the full equation in terms of this set, from
which we can conclude that the theorem holds for p = n.

If n < p, we complete a basis for Rp, writing the full basis as {~vj}pj=1, where the additional
vectors {~vj}pj=n+1 are not in the null space of A, and so correspond with dimensioned products
{πj}pj=n+1. Next, since every element of Rp can be expressed as a linear combination of the
vectors {~vj}pj=1, it must be the case that every variable in the problem can be written as
a multiplicative combination of the dimensionless and dimensioned products {πj}pj=1. This
means that we can certainly express the equation we’re searching for as

ψ(π1, π2, . . . , πp) = 0

42We note that our assumption that the equation is in dimensionless form rules out a case such as
ψ(π1, π2, h, t) = h(− 1

2π
2
2 + π2 + π1), which is a perfectly valid form of ψ, except with every term having

dimension length. Of course, we just divide by h to get the assumed dimensionless form.
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for some function ψ. At this point, we make an important claim regarding an issue that got
strategically swept under the rug in our special case.

Claim 5.1. The dimensioned products {πj}pj=n+1 can be chosen so that each contains at
least one dimension that does not appear in any of the others.

Let’s first check that this claim allows us to finish the proof, and then we’ll go back at
the end and prove it. If the claim is true, then by changing units selectively, we can vary the
value of each of the {πj}pj=n+1 without varying the value of any other product, dimensionless
or dimensioned. This means that ψ must be independent of all of the dimensioned products,
and we can set

f(π1, π2, . . . , πn) = ψ(π1, π2, . . . , πp).

This completes the proof, except for the verification of Claim 5.1, which we do now. As
a start, we observe that for each dimensioned product πj, we can associate a new vector
~uj ∈ Rd whose components are the dimension exponents of πj. For example, if the only
dimensions are L, M , and T , and πj = v (i.e., velocity) then ~uj = (1, 0,−1). Now, the
vectors {~uj}pj=n+1 must be linearly independent, because otherwise we could find a non-
trivial linear combination of them that would be 0 (i.e.,

∑p
j=n+1 αj~uj = 0), and this would

necessarily correspond with a multiplicative combination of the {πj}pj=n+1 with no dimension

(i.e., Πp
j=n+1π

αj

j ), which is a contradiction.
At this point, let’s arrange the vectors {~uj}pj=n+1 as the rows of a (p− n)× d matrix

— ~un+1 —
— ~un+2 —

—
... —

— ~up —

 ,

so that each row corresponds with a dimensioned product and each column corresponds with
a dimension. In particular, a dimension appears in a dimensioned product if and only if the
entry where the row corresponding with the dimensioned product and the column corre-
sponding with the dimension intersect has a non-zero entry. We now think of performing
row operations on this matrix, which correspond with linear combinations of the vectors
{~uj}pj=n+1, which in turn correspond with multiplicative combinations of the associated di-
mensioned products {πj}pj=n+1. If we put this matrix in RRE form, we ensure that each
row (corresponding with each dimensioned product) contains at least one non-zero entry in
a column (corresponding with a dimension) that is 0 in all other rows. This new set of rows
corresponds with an alternative choice of dimensioned products for which each dimensioned
product includes at least one dimension that is not included in the others. This completes
the proof of the claim, which completes the proof of Buckingham’s Theorem. �

5.5 Non-dimensionalizing Equations

It’s often useful to non-dimensionalize an ODE or PDE before studying its qualitative prop-
erties (e.g., whether or not it has periodic solutions, the long-time behavior of solutions,
chaotic behavior etc.) This process produces a simpler form of the equation and identifies
dimensionless combinations of parameters that determine qualitative behavior.
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Example 5.8. The equation for the height y(t) of an object falling from far above the
earth’s surface is

y′′ = − GM

(R + y)2
− b|y′|y′,

where G denotes Newton’s gravitational constant, M denotes the mass of the earth, R
denotes the radius of the earch, and b > 0 is a coefficient of air resistance. Here, [y′′] = LT−2,
so each summand in the equation must have the dimensions of acceleration. We can use this
observation to determine the dimensions of G and b as

[G] =
[y′′][(R + y)2]

[M ]
=

(LT−2)L2

M
= L3M−1T−2

[b] =
[y′′]

[y′]2
=

LT−2

L2T−2
= L−1.

The idea of non-dimensionalization is to replace each independent and dependent variable
in the equation with a corresponding dimensionless variable. For this, we’ll set

τ =
t

A
, Y (τ) =

y(t)

B
,

where A will be chosen as a constant with dimension T (so that τ is dimensionless) and B
will be chosen as a constant with dimension L (so that Y will be dimensionless). Before
making these choices, we observe that

y′(t) =
d

dt
BY (τ) = BY ′(τ)

dτ

dt
=
B

A
Y ′(τ),

and likewise y′′(t) = B
A2Y

′′(τ). This allows us to express our original equation in the form

B

A2
Y ′′ = − GM

(R +BY )2
− b|B

A
Y ′|B

A
Y ′.

We will take A and B to be positive constants, so we can express this as

Y ′′ = − GM

(R +BY )2
A2

B
− bB|Y ′|Y ′.

It’s natural to choose B = b−1 (which has the right dimensions), and in this case the first
summand on the right-hand side becomes

− GM

(R + 1
b
Y )2

bA2 = − GMb

(1 + 1
bR
Y )2

A2

R2
.

To simply things, let’s choose A so that

GMbA2

R2
= 1.

I.e., we take

A =
R√
GMb

.
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Just to be sure we have our dimensions right, we can check

[A] =
[R]

[
√
GMb]

=
L

L3/2M−1/2T−1M1/2L−1/2
= T,

as expected. We can now express our equation in the non-dimensionalized form

Y ′′ = − 1

(1 + 1
bR
Y )2
− |Y ′|Y ′.

This suggest that the qualitative behavior of our projectile is primarily determined by the
(often small) parameter ε := 1

bR
. 4

Example 5.9. Consider the Lotka–Volterra system for a population of prey y1(t) and a
population of predators y2(t),

dy1
dt

= ay1 − by1y2
dy2
dt

=− ry2 + cy1y2,

where a, b, c, and r are taken to be positive constants. Here, [y1] = [y2] = B (i.e., biomass),
and we can check that [a] = [r] = T−1 and [b] = [c] = B−1T−1. We set

τ =
t

A
, Y1(τ) =

y1(t)

C
, Y2(τ) =

y2(t)

D
,

where we’re skippingB as a constant since it’s the symbol for one of our dimensions. Similarly
as with the previous example, we find that y′1 = C

A
Y ′1 and y′2 = D

A
Y ′2 , so that the Lotka-

Volterra system can be expressed as

C

A
Y ′1 = aCY1 − bCDY1Y2

D

A
Y ′2 = − rDY2 + cCDY1Y2.

Upon multiplying the first of these equations by A
C

and the second by A
D

, we arrive at the
system

Y ′1 = aAY1 − bADY1Y2
Y ′2 = − rAY2 + cACY1Y2.

We make the choices A = 1
a
, C = a

c
, and D = a

b
, to arrive at the system

Y ′1 =Y1 − Y1Y2
Y ′2 = − r

a
Y2 + Y1Y2.

In this case, we see that the qualitative behavior is primarily determined by the single
parameter δ = r

a
. 4
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Appendix

One of the most useful theorems from calculus is the Implict Function Theorem, which
addresses the question of existence of solutions to algebraic equations. Instead of stating its
most general version here, we will state exactly the case we use.

Theorem A.1. (Implicit Function Theorem). Suppose the function f(x1, x2, ..., xn) is
C1 in a neighborhood of the point (p1, p2, ..., pn) (the function is continuous in a neighborhood
of ~p, and its derivatives with respect to each variable are also continuous in a neighborhood
of ~p). Suppose additionally that

f(p1, p2, ..., pn) = 0

and
∂xnf(p1, p2, ..., pn) 6= 0.

Then there exists a neighborhood Np of (p1, p2, ..., pn−1) and a function φ : Np → R so that

pn = φ(p1, p2, ..., pn−1),

and for every x ∈ Np,

f(x1, x2, ..., xn−1, φ(x1, x2, ..., xn−1)) = 0.

Another fundamental theorem of applied mathematics is the Taylor theorem, whereby infor-
mation at a single point can provide information about a function on an entire set.

Theorem A.2. (Taylor polynomial with remainder). Suppose f(x) and its first n
derivatives are continuous for x ∈ [a, b], and suppose the (n+ 1)st derivative f (n+1)(x) exists
for x ∈ (a, b). Then there is a value X ∈ (a, b) so that

f(b) = f(a) + f ′(a)(b− a) + ...+
f (n)(a)

n!
(b− a)n +

f (n+1)(X)

(n+ 1)!
(b− a)n+1.
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