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Non-dimensionalization

This lecture will focus on the competition model

dy1

dt
= r1y1(1−

y1 + s1y2

K1
); y1(0) = y10

dy2

dt
= r2y2(1−

s2y1 + y2

K2
); y2(0) = y20 ,

and we’ll begin by non-dimensionalizing it. For this, we introduce
three dimensionless variables

τ =
t

A
; Y1(τ) =

y1(t)

B
; Y2(τ) =

y2(t)

C
.

The constant A will be chosen with the dimension time, and the
constants B and C will both be chosen with dimension biomass.



Non-dimensionalization

First, using the chain rule, we compute

dy1

dt
=B

d

dt
Y1(τ) = B

d

dτ
Y1(τ)

dτ

dt
=

B

A

dY1

dτ
dy2

dt
=C

d

dt
Y2(τ) = C

d

dτ
Y2(τ)

dτ

dt
=

C

A

dY2

dτ
.

If we now substitute these dimensionless variables into the
competition model, we get

B

A

dY1

dt
= r1BY1(1−

BY1 + s1CY2

K1
); Y1(0) =

y10

B
C

A

dY2

dt
= r2CY2(1−

s2BY1 + CY2

K2
); Y2(0) =

y20

C
.



Non-dimensionalization

We multiply by A and divide by B to arrive at
dY1

dt
= r1AY1(1−

BY1 + s1CY2

K1
); Y1(0) =

y10

B
dY2

dt
= r2AY2(1−

s2BY1 + CY2

K2
); Y2(0) =

y20

C
.

As always, our goal is to choose the constants A, B , and C in a
way that simplifies the system, while also ensuring that they have
the correct dimensions. We’ll take

A =
1
r1
; B = K1; C = K2.

The system becomes
dY1

dt
=Y1(1− Y1 −

s1K2

K1
Y2); Y1(0) =

y10

K1
dY2

dt
=

r2
r1
Y2(1−

s2K1

K2
Y1 − Y2); Y2(0) =

y20

K2
.



Non-dimensionalization

Recall that one of the things that we accomplish with
non-dimensionalization is that we identify useful combinations of
parameters. In this case, we set

a =
s1K2

K1
; b =

r2
r1
; c =

s2K1

K2
.

This allows us to write our system in the form we’ll use for analysis,

dY1

dt
=Y1(1− Y1 − aY2); Y1(0) =

y10

K1
dY2

dt
= bY2(1− cY1 − Y2); Y2(0) =

y20

K2
.



Equilibrium Points

For a first-order autonomous system of ODE

d~y

dt
= ~f (~y); ~y(0) = ~y0,

we say that ŷ ∈ Rn is an equilibrium point if

~f (ŷ) = 0.

As with single equations, if ~y0 = ŷ , the constant function ~y(t) = ŷ
for all t ∈ R is a solution to the system (because both sides of the
equation are 0).



Equilibrium Points

Example. Let’s find all equilibrium points for the
non-dimensionalized competition model,

dy1

dt
= y1(1− y1 − ay2)

dy2

dt
= by2(1− cy1 − y2).

We need to find ŷ =
(ŷ1
ŷ2

)
so that

0 = ŷ1(1− ŷ1 − aŷ2)

0 = bŷ2(1− cŷ1 − ŷ2).

For the first equation, we can either have ŷ1 = 0 or ŷ1 = 1− aŷ2. If
we substitute ŷ1 = 0 into the second equation, we get

0 = bŷ2(1− ŷ2) =⇒ ŷ2 = 0, 1.

This gives us our first two equilibrium points:
(0
0

)
and

(0
1

)
.



Equilibrium Points

Next, we substitute ŷ1 = 1− aŷ2 into the second equation, giving

0 = bŷ2(1− c(1− aŷ2)− ŷ2).

We see that ŷ2 = 0 solves this equation, and for the second
solution we have

0 = 1− c + (ac − 1)ŷ2 =⇒ ŷ2 =
1− c

1− ac
.

In order to find the values of ŷ1 associated with these values of ŷ2,
we substitute back into ŷ1 = 1− aŷ2. For ŷ2 = 0, we see that
ŷ1 = 1, while for ŷ2 = 1−c

1−ac , we compute

ŷ1 = 1− a
1− c

1− ac
=

1− ac − a+ ac

1− ac
=

1− a

1− ac
.

This gives us our next two equilibrium points:
(1
0

)
and

( 1−a
1−ac
1−c
1−ac

)
.



Equilibrium Points

In total, we have four equilibrium points(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

( 1−a
1−ac
1−c
1−ac

)
.

Recalling that we scaled y1 by dividing by K1, and scaled y2 by
dividing by K2, we see that we can interpret these equilibrium
points in the original variables as described on the next slide.



Equilibrium Points(0
0

)
: Both species die out;( 0

K2

)
: Species y1 dies out and species y2 goes to its carrying

capacity;(K1
0

)
: Species y2 dies out and species y1 goes to its carrying

capacity;(K1−s1K2
1−s1s2

K2−s2K1
1−s1s2

)
: If K1 − s1K2, K2 − s2K1, and 1− s1s2 are all positive,

the two species reach an equilibrium in which neither dies out. In
principle, the same statement is true if these quantities are all
negative, but we’ll see below that that case isn’t as interesting.



Equilibrium Points

For the fourth equilibrium point, let’s interpret what positivity of
these quantities K1 − s1K2, K2 − s2K1, and 1− s1s2 corresponds
with. First, s1K2 denotes the amount resources available to species
y1 that species y2 consumes at its carrying capacity. The
requirement that K1 − s1K2 > 0 asserts that species y2 cannot use
up the entirety of these resources, even at its carrying capacity.

The condition K2 − s2K1 > 0 can be interpreted similarly, with the
roles of the species reversed.

For the condition 1− s1s2 > 0, recall our example in which y1
corresponds with a population of rabbits and y2 corresponds with a
population of deer. Focusing on resources available to rabbits (and
possibly available to the deer), suppose each individual in the deer
population uses up twice the amount of these resources as an
individual in the rabbit population. Then s1 = 2.



Equilibrium Points

Correspondingly, we might expect that if we focus on resources
available to the deer (and possibly available to the rabbits), then
each individual in the rabbit population will use up half as much of
these resources as an individual in the deer population. I.e., we
would have s2 = 1

2 .

In this case, we would have s1s2 = 1.

But suppose individuals in the deer population have access to
resources unavailable to the rabbits. Then it might be the case that
an individual rabbit uses less than half the resources of an individual
deer. In that case, we would have s2 <

1
2 , and so s1s2 < 1.

Generally, the condition 1− s1s2 > 0 indicates that at least one of
the species has access to resources that are unavailable to the other
species.



Stability

Suppose ŷ ∈ Rn is an equilibrium point for the ODE system

d~y

dt
= ~f (~y); ~y(0) = ~y0.

I.e., ~f (ŷ) = 0. As usual, we want to understand what will happen if
we start with ~y0 near ŷ . To understand this, we write

~y(t) = ŷ + ~z(t), (*)

and we’ll analyze the behavior of ~z(t) as t increases. If we
substitute (*) into our ODE system, and assume ~f is differentiable
at ŷ , we get

d~z

dt
= ~f (ŷ + ~z) = ~f (ŷ) + ~f ′(ŷ)~z + ~ε(~z ; ŷ),

where
lim
|~z|→0

|~ε(~z ; ŷ)|
|~z |

= 0.



Stability

Using the relation ~f (ŷ) = 0 and observing that ~ε(~z ; ŷ) is small
relative to ~f ′(ŷ)~z , we obtain the linearized equation

d~z

dt
= ~f ′(ŷ)~z ; ~z(0) = ~y0 − ŷ . (**)

This is a first-order linear system of ODE with constant
coefficients, and so we know how to solve it using the eigenvalues
and eigenvectors of ~f ′(ŷ).

Let {λj}nj=1 denote the eigenvalues of ~f ′(ŷ), and assume these
values are distinct. In this case, we can associate the eigenvalues
with a linearly independent collection of eigenvectors {~vj}nj=1.



Stability

Using these eigenvalues and eigenvectors, we can express the
general solution to (**) as

~z(t) =
n∑

j=1

cje
λj t~vj ,

for some constants {cj}nj=1.

Even if the entries of ~f ′(ŷ) are all real, it may have complex
eigenvalues,

λj = Reλj + iImλj .

In this case, the complex modulus of eλj t is

|eλj t | = |etReλj+itImλj | = |etReλj e itImλj |
= |etReλj ||e itImλj | = etReλj .



Stability

In obtaining the final equality on the previous page, we observed
that etReλ is always a positive real number, and

|e itImλj |2 = e itImλj e−itImλj = 1 =⇒ |e itImλj | = 1.

We see that:
I If Reλj < 0 for all j = 1, 2, . . . , n, then ŷ will be

asymptotically stable;
I If Reλj > 0 for at least one j ∈ {1, 2, . . . , n}, then ŷ will be

unstable.
I If Reλj ≤ 0 for all j = 1, 2, . . . , n, and Reλj = 0 for at least

one j ∈ {1, 2, . . . , n}, then this test for stability is inconclusive.

These conditions remain valid if the eigenvalues {λj}nj=1 are not
distinct.



Stability

Example. For the non-dimensionalized competition model

dy1

dt
= y1(1− y1 − ay2)

dy2

dt
= by2(1− cy1 − y2),

with a, b, c > 0, analyze the stability of each of the four equilibrium
points (

0
0

)
,

(
0
1

)
,

(
1
0

)
,

( 1−a
1−ac
1−c
1−ac

)
.

We begin by computing the Jacobian matrix ~f ′(~y). First:

~f (~y) =

(
f1(y1, y2)

f2(y1, y2)

)
=

(
y1 − y2

1 − ay1y2

by2 − bcy1y2 − by2
2

)
.



Stability

This allows us to compute

~f ′(~y) =

(
1− 2y1 − ay2 −ay1
−bcy2 b − bcy1 − 2by2

)
.

We can now use this to evaluate each of the four equilibrium points.

For ŷ =
(0
0

)
, we have

~f ′(0, 0) =
(

1 0
0 b

)
.

The eigenvalues are 1 and b, which are both positive values, so this
equilibrium point is unstable.

For ŷ =
(0
1

)
, we have

~f ′(0, 1) =
(

1− a 0
−bc −b

)
.



Stability

The eigenvalues of this matrix are 1− a and −b. Since −b < 0,
the only condition that this imposes is

1− a < 0 =⇒ a > 1.

In terms of the original parameters, this asserts that the equilibrium
point

( 0
K2

)
will be asymptotically stable provided

a =
s1K2

K1
> 1 =⇒ s1K2 > K1.

I.e., the second species will win if at its carrying capacity it uses
more resources than are available to the first species.

Here, keep in mind that when talking about stability, we’re always
talking about solutions that start near the equilibrium point.
Strictly speaking, this tells us that if s1K2 > K1, and the
populations are initially near

( 0
K2

)
, then the second species will win.



Stability

Recall that the Jacobian matrix is

~f ′(~y) =

(
1− 2y1 − ay2 −ay1
−bcy2 b − bcy1 − 2by2

)
.

For ŷ =
(1
0

)
, we have

~f ′(1, 0) =
(
−1 −a
0 b − bc

)
.

The eigenvalues are −1 and b(1− c). Since −1 is negative, the
only condition this imposes is

b(1− c) < 0 =⇒ c > 1.



Stability

In terms of the original parameters, this asserts that the equilibrium
point

(K1
0

)
will be asymptotically stable provided

c =
s2K1

K2
> 1 =⇒ s2K1 > K2.

We can interpret this precisely as we did the previous equilibrium
point, with the roles of the two species reversed.



Stability

Recall again the Jacobian matrix

~f ′(~y) =

(
1− 2y1 − ay2 −ay1
−bcy2 b − bcy1 − 2by2

)
.

For the last equilibrium point ŷ =
( 1−a

1−ac
1−c
1−ac

)
, it’s helpful to recall that

the equations we solved to find these values were

1− ŷ1 − aŷ2 = 0
1− cŷ1 − ŷ2 = 0.

If we use these relations while evaluating ~f ′(ŷ), we obtain

~f ′(ŷ) =

(
1− 2ŷ1 − aŷ2 −aŷ1
−bcŷ2 b − bcŷ1 − 2bŷ2

)
=

(
−ŷ1 −aŷ1
−bcŷ2 −bŷ2

)
.



Stability

In this case, we compute the eigenvalues by writing

det
(
−ŷ1 − λ −aŷ1
−bcŷ2 −bŷ2 − λ

)
= (−ŷ1 − λ)(−bŷ2 − λ)− abcŷ1ŷ2

=λ2 + (ŷ1 + bŷ2)λ+ b(1− ac)ŷ1ŷ2 = 0.

Solving this with the quadratic formula, we find

λ± =
−(ŷ1 + bŷ2)±

√
(ŷ1 + bŷ2)2 − 4b(1− ac)ŷ1ŷ2

2
.

We need to determine conditions under which both λ− and λ+ will
be negative, and since λ− ≤ λ+, we only need to check λ+. For
this, notice that λ+ will be negative as long as

4b(1− ac)ŷ1ŷ2 > 0,

because in that case the radical will be smaller than (ŷ1 + bŷ2).



Stability

We see that our condition for stability is simply

1− ac > 0.

In our original coordinates, this is

1− s1K2

K1

s2K1

K2
= 1− s1s2 > 0 =⇒ s1s2 < 1.

This is precisely the condition already discussed above in the
context of the signs of the populations associated with this
equilibrium point. Notice that the instability of this equilibrium
point in the case s1s2 > 1 is why it was described above as
uninteresting.

On this next slide, we’ll summarize these observations.



Stability

We found the following:
I ŷ =

(0
0

)
is always unstable;

I If s2K1 > K2, then ŷ =
(1
0

)
is asymptotically stable;

I If s1K2 > K1, then ŷ =
(0
1

)
is asymptotically stable;

I If s2K1 < K2, s1K2 < K1, and 1− s1s2 > 0, then there is an

equilibrium point ŷ =
( 1−a

1−ac
1−c
1−ac

)
with two positive populations,

and it is asymptotically stable.


