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The Non-dimensionalized Lotka-Volterra System

This lecture will focus on the Lotka-Volterra System

dy1

dt
= ay1 − by1y2; y1(0) = y10

dy2

dt
= − ry2 + cy1y2; y2(0) = y20 ,

and we’ll begin by non-dimensionalizing it. For this, we introduce
three dimensionless variables

τ =
t

A
; Y1(τ) =

y1(t)

B
; Y2(τ) =

y2(t)

C
.

The constant A will be chosen with the dimension time, and the
constants B and C will both be chosen with dimension biomass.



The Non-dimensionalized Lotka-Volterra System

First, using the chain rule, we compute

dy1

dt
=B

d

dt
Y1(τ) = B

d

dτ
Y1(τ)

dτ

dt
=

B

A

dY1

dτ
dy2

dt
=C

d

dt
Y2(τ) = C

d

dτ
Y2(τ)

dτ

dt
=

C

A

dY2

dτ
.

If we now substitute these dimensionless variables into the
Lotka-Volterra system, we get

B

A

dY1

dt
= aBY1 − bBCY1Y2; Y1(0) =

y10

B
C

A

dY2

dt
= − rCY2 + cBCY1Y2; Y2(0) =

y20

C
.



The Non-dimensionalized Lotka-Volterra System

We multiply by A and divide by B (respectively C ) to arrive at

dY1

dt
= aAY1 − bACY1Y2; Y1(0) =

y10

B
dY2

dt
= − rAY2 + cABY1Y2; Y2(0) =

y20

C
.

As always, our goal is to choose the constants A, B , and C in a
way that simplifies the system, while also ensuring that they have
the correct dimensions. We’ll take

A =
1
a
; B =

a

c
; C =

a

b
.

The system becomes

dY1

dt
=Y1 − Y1Y2; Y1(0) =

c

a
y10

dY2

dt
= − r

a
Y2 + Y1Y2; Y2(0) =

b

a
y20 .



The Non-dimensionalized Lotka-Volterra System

Recall that one of the things that we accomplish with
non-dimensionalization is that we identify useful combinations of
parameters. In this case, we set

s =
r

a
.

This allows us to write our system in the form we’ll use for analysis,

dY1

dt
=Y1 − Y1Y2; Y1(0) =

c

a
y10

dY2

dt
= − sY2 + Y1Y2; Y2(0) =

b

a
y20 .



Equilibrium Points and Stability

For the rest of the lecture, we’ll express the non-dimensionalized
Lotka-Volterra system as

dy1

dt
= y1 − y1y2; y1(0) = y10

dy2

dt
= − sy2 + y1y2; y2(0) = y20 .

We identify the equilibrium points ŷ =
(ŷ1
ŷ2

)
by solving the system

0 = ŷ1 − ŷ1ŷ2

0 = − sŷ2 + ŷ1ŷ2.

For the first equation, we have

ŷ1(1− ŷ2) = 0 =⇒ ŷ1 = 0 or ŷ2 = 1.

We now substitute each of these into the second equation.



Equilibrium Points and Stability

For ŷ1 = 0, the second equation becomes −sŷ2 = 0, and this
implies ŷ2 = 0. I.e., our first equilibrium point is ŷ =

(0
0

)
.

For ŷ2 = 1, the second equation becomes

−s + ŷ1 = 0 =⇒ ŷ1 = s,

our second equilibrium point is ŷ =
(s
1

)
. In total, we have two

equilibrium points, (
0
0

)
and

(
s

1

)
.

We’ll analyze the stability of each of these.



Equilibrium Points and Stability

We need to compute ~f ′(~y), and for this, we start by observing that

~f (~y) =

(
y1 − y1y2

−sy2 + y1y2

)
.

This gives
~f ′(~y) =

(
1− y2 −y1
y2 −s + y1

)
.

For ŷ =
(0
0

)
, we compute

~f ′(0, 0) =
(

1 0
0 −s

)
.

The eigenvalues of this matrix are −s and 1, and since 1 is positive,
we can conclude that

(0
0

)
is unstable.



Equilibrium Points and Stability

For ŷ =
(s
1

)
, we compute

~f ′(s, 1) =
(

0 −s
1 0

)
.

In this case, we find the eigenvalues by computing

det
(
−λ −s
1 −λ

)
= λ2 + s = 0 =⇒ λ± = ±i

√
s.

We see that Reλ± = 0, and so the derivative test is inconclusive.

In cases like this, we need some other way of understanding the
system dynamics. We’ll discuss two methods for obtaning additional
information, but we note at the outset that while our stability
criterion works for systems with any number of equations, these
two methods are generally only useful for systems of two equations.



Nullcline Diagrams

We’re still considering the non-dimensionalized Lotka-Volterra
system

dy1

dt
= y1 − y1y2; y1(0) = y10

dy2

dt
= − sy2 + y1y2; y2(0) = y20 ,

and in this case we’ll work with nullclines for the system. These
are:

I y1-nullclines: curves along which dy1
dt = 0;

I y2-nullclines: curves along which dy2
dt = 0.

For the Lotka-Volterra system, these are easy to identify.



Nullcline Diagrams

For the y1-nullclines, we require

y1 − y1y2 = 0 =⇒ y1(1− y2) = 0 =⇒ y1 = 0 or y2 = 1.

Likewise, for the y2-nullclines, we require

−sy2 + y1y2 = 0 =⇒ y2(−s + y1) = 0 =⇒ y2 = 0 or y1 = s.

The associated nullclines are depicted on the next slide.





Nullcline Diagrams

Let’s observe the following:
I If a y1-nullcline intersects a y2-nullcline, the point of

intersection is an equilibrium point;
I The direction of change can only be vertical along a

y1-nullcline (because dy1
dt = 0);

I The direction of change can only be horizontal along a
y2-nullcline (because dy2

dt = 0).
In order to determine directions along these nullclines, we use the
equations in our system. For y1-nullclines, we use

dy2

dt
= −sy2 + y1y2.

For y1 = 0, we have dy2
dt = −sy2 < 0, so the motion is downward.

For y2 = 1, dy2
dt = −s + y1. In this case, the direction is downward

for y1 < s and upward for y1 > s.



Nullcline Diagrams

For y2-nullclines, we use

dy1

dt
= y1 − y1y2.

For y2 = 0, we have dy1
dt = y1, and so the motion is to the right.

For y1 = s, we have dy1
dt = s(1− y2), so the motion is to the right

for y2 < 1 and to the left for y2 > 1.

We typically add this information to our diagram with arrows, as
depicted on the next slide.





Nullcline Diagrams

Solutions have to follow the arrows, so we’re starting to get a
better of idea of how they behave. For example, solutions near
(0, 0) tend to move toward it from above, but then away from it to
the right, corresponding with instability. Solutions near (s, 1) seem
to be cycling around it.

We can say more as well, because up-down direction and right-left
direction can’t change except at nullclines. E.g., if dy1

dt > 0, then it
cannot become negative without first satisfying dy1

dt = 0, which can
only occur along a y1-nullcline.

From this, we see that all arrows in the bottom left quadrant must
be downward and to the right, all arrows in the bottom right
quadrant upward and to the right etc. This is depicted on the next
slide.





Nullcline Diagrams

Suppose we now want to trace out the trajectory of a solution
starting at some point (y10 , y20), and to be precise, let’s suppose
(y10 , y20) lies in the lower left quadrant.

Then we can trace out its trajectory as depicted on the next slide
by following the arrows indicating the direction it can follow.





Nullcline Diagrams

Let’s notice two things about this trajectory. First, the trajectory
can never hit either the y1-axis or the y2-axis. This is because if a
solution is ever on one of these axes it will remain there for all time
(because the motion is either entirely horizontal or entirely
vertical), and this includes both forward in time and backward in
time. But if a trajectory were to hit one of these axes, then in
backward time it would be leaving it.

Second, while a trajectory can approach an equilibrium point, and
in that case will move slower and slower, it can never stop. (It can’t
ever actually hit the equilibrium point for exactly the same reason
as above: if it is ever at the equilbrium point, then it must remain
there for all time, forward and backward.)

Notice that we’re still left with the following question: does the
trajectory actually complete a full loop and start over? To answer
this, we’ll need to look at integral curves.



Integral Curves

Recall from our discussion of the phase line that the phase variables
for an equation are those that determine all future behavior. For
the Loktka-Volterra system, or any other first order system of two
equations, these are y1 and y2. That is, if we ever know the values
of y1 and y2 at some time, then we will know their values for all
future times. In fact, we saw an example of how this works with the
trajectory we drew on our nullcline diagram.

Let’s see how we can be more precise about such diagrams than we
were with our nullcline diagrams.



Integral Curves

As a start, we can we can think about how we might plot y2 as a
function of y1, cutting out the middle-man t.

Suppose we have a general first-order autonomous system of two
equations

dy1

dt
= f1(y1, y2)

dy2

dt
= f2(y1, y2).

Formally, we can obtain an equation for y2 as a function of y1 by
writing

dy2

dy1
=

dy2
dt
dy1
dt

=
f2(y1, y2)

f1(y1, y2)
.

In some cases, we can solve this single ODE to get an explicit
relationship between y1 and y2.



Integral Curves

Let’s see how this works for the non-dimensionalized Lotka-Volterra
system

dy1

dt
= y1 − y1y2; y1(0) = y10

dy2

dt
= − sy2 + y1y2; y2(0) = y20 .

In this case, we have

dy2

dy1
=

dy2
dt
dy1
dt

=
−sy2 + y1y2

y1 − y1y2
.

The question is, can we solve this ODE
dy2

dy1
=
−sy2 + y1y2

y1 − y1y2
?



Integral Curves

We can solve this equation by separating variables. If we write

dy2

dy1
=

y2(−s + y1)

y1(1− y2)
,

then we see that
1− y2

y2
dy2 =

−s + y1

y1
dy1,

which is
(
1
y2
− 1)dy2 = (− s

y1
+ 1)dy1.

We now integrate both sides to see that

ln |y2| − y2 = −s ln |y1|+ y1 + C ,

where C is a constant of integration.



Integral Curves

Since we’re interested in positive populations, we can drop the
absolute values and rearrange terms to see that

ln y2 + ln y s1 = y1 + y2 + C =⇒ ln(y2y
s
1 ) = y1 + y2 + C .

Exponentiating both sides, we find

y2y
s
1 = ey1+y2+C = ey1ey2eC .

Let’s write K = eC (not a carrying capacity!), so that we have the
relation

y2y
s
1 = Key1ey2 .

This is an algebraic relationship between y1 and y2, and for each
positive constant K it defines a curve in the (y1, y2)-plane (or has
no solutions). These curves are called integral curves.



Integral Curves

In order to get an idea of what these integral curves look like, we’ll
plot a few with MATLAB. We’ll fix s = 1

2 , and consider a range of
values for K .

The one calculation we’ll do by hand is to find a starting value for
K . For this, we’re particularly interested in the dynamics near the
equilibrium point (s, 1), and at this point, our relationship between
y1 and y2 becomes

ss = Ke(1+s).

For s = 1
2 , this is

K =
(1
2)

1/2

e3/2 = .1578.

In order to avoid plotting a dot (which is difficult to see), we’ll start
with K = .1577. Additional values will be given on the figures. In
each case, the previous integral curves have been kept on the figure
for comparison.



Integral Curves

The direction of flow can be obtained as with nullclines by using
derivative values from the system of equations.













Integral Curves

Final note: We see from this that the equilibrium point
(1/2

1

)
is

stable, but not asymptotically stable, and in fact this is true in
general for the equilibrium point

(s
1

)
.


