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Non-dimensionalization

As with single difference equations, it’s convenient to
non-dimensionalize a system of difference equations before
analyzing it. Let’s see how this works with our predator-prey model

y1t+1 − y1t = ay1t (1−
y1t
K

)− by1ty2t

y2t+1 − y2t = − ry2t + cy1ty2t .

We set

Y1t =
y1t
A

Y2t =
y2t
B
,

where A and B are constants with the dimension of biomass that
will be chosen to put the system in a convenient form.



Non-dimensionalization

We substitute y1t = AY1t and y2t = BY2t into the system to obtain

AY1t+1 − AY1t = aAY1t (1−
AY1t
K

)− bABY1tY2t

BY2t+1 − BY2t = − rBY2t + cABY1tY2t .

We notice that A can be divided into the first equation, and B can
be divided into the second, giving

Y1t+1 − Y1t = aY1t (1−
AY1t
K

)− bBY1tY2t

Y2t+1 − Y2t = − rY2t + cAY1tY2t .

It’s natural to choose A = K and B = 1
b , and this leads to the

non-dimensionalized system

Y1t+1 − Y1t = aY1t (1− Y1t )− Y1tY2t

Y2t+1 − Y2t = − rY2t + δY1tY2t , δ = cK .



Fixed Points

As with single difference equations, we say that ŷ is a fixed point
for the system of difference equations

~yt+1 = ~f (~yt)

if
ŷ = ~f (ŷ).

Notice that in this case ŷ is a vector with the same number of
components as ~yt .

Example. Find all fixed points for the system

y1t+1 = y2
2t

y2t+1 = y1t .



Fixed Points

For this example, we have

~y =

(
y1

y2

)
and ~f (~y) =

(
y2
2
y1

)
.

The fixed point equation ŷ = ~f (ŷ) is

ŷ1 = ŷ2
2

ŷ2 = ŷ1.

Upon substitution of the second into the first, we see that

ŷ1 = ŷ2
1 =⇒ ŷ1(ŷ1 − 1) = 0 =⇒ ŷ1 = 0, 1.

We conclude that the fixed points are
(0
0

)
and

(1
1

)
.



Stability of Fixed Points

In order to discuss the stability of fixed points for systems, we need
one more review of multivariate differentiation: the case of vector
functions of a vector variable.

First, for a vector function of a vector variable ~f (~y), with ~y ∈ Rn

and ~f (~y) ∈ Rm (we typically write ~f : Rn → Rm), the Jacobian
matrix is

~f ′(~y) =


∂f1
∂y1

∂f1
∂y2

· · · ∂f1
∂yn

∂f2
∂y1

∂f2
∂y2

· · · ∂f2
∂yn

...
...

...
...

∂fm
∂y1

∂fm
∂y2

· · · ∂fm
∂yn

 .

Notice that ~f ′(~y) is an m × n matrix.



Some Technical Stuff

We say that a function ~f : Rn → Rm is differentiable at a point
~y ∈ Rn if the partial derivatives in ~f ′(~y) all exist at ~y , and

lim
|~h|→0

|~f (~y + ~h)− ~f (~y)− ~f ′(~y)~h|
|~h|

= 0.

Equivalently: if there exists a function ~ε(~h; ~y) so that

~f (~y + ~h) = ~f (~y) + ~f ′(~y)~h + ~ε(~h; ~y),

where

lim
|~h|→0

|~ε(~h; ~y)|
|~h|

= 0.

I.e., |~ε(~h; ~y)| = o(|~h|).



Back to Stability

Let ŷ denote a fixed point for

~yt+1 = ~f (~yt), (*)

and set
~yt = ŷ + ~zt . (**)

We want to determine whether ~yt approaches ŷ as t →∞
(asymptotic stability), and this means we want to determine
whether ~zt approaches 0 as t →∞. If we substitute (**) into (*),
we get:

ŷ + ~zt+1 = ~f (ŷ + ~zt)

= ~f (ŷ) + ~f ′(ŷ)~zt + ~ε(~zt ; ŷ).



Back to Stability

Since ŷ = ~f (ŷ) and ~ε(~zt ; ŷ) is smaller than ~zt , we have the
approximate equation

~zt+1 ∼= ~f ′(ŷ)~zt . (***)

This is a linear system of difference equations, and we know how to
solve such equations.

Let {λj}nj=1 denote the eigenvalues of ~f ′(ŷ), and for simplicity
assume these eigenvalues are distinct. In this case, we can associate
them with a linearly independent collection of eigenvectors {~vj}nj=1.
We’ve seen that we can solve (***) with

~zt =
n∑

j=1

cjλ
t
j ~vj ,

for some collection of constants {cj}nj=1.



Back to Stability

From the previous page,

~zt =
n∑

j=1

cjλ
t
j ~vj .

If the eigenvalues {λj}nj=1 all satisfy |λj | < 1 (possibly complex
modulus), then ŷ must be asymptotically stable. If |λj | > 1 for any
j , then ŷ must be unstable. If |λj | = 1, stability will be determined
by the nonlinear terms. In particular, stability is not determined by
this criterion.

This criterion is valid even if the eigenvalues of ~f ′(ŷ) are not
distinct.



Easy Example

Let’s return to our example

~yt+1 = ~f (~yt),

where
~f (~y) =

(
y2
2
y1

)
.

Recall that we’ve already found the fixed points to be
(0
0

)
and

(1
1

)
.

In order to write down the Jacobian matrix, we need to compute

∂f1
∂y1

= 0;
∂f1
∂y2

= 2y2

∂f2
∂y1

= 1;
∂f2
∂y2

= 0.

This gives
~f ′(~y) =

(
0 2y2
1 0

)
.



Easy Example

For ŷ =
(0
0

)
, we have

~f ′(0, 0) =
(

0 0
1 0

)
.

The eigenvalues of this matrix are λ1 = λ2 = 0 (repeated), so this
fixed point is asymptotically stable.

For ŷ =
(1
1

)
, we have

~f ′(1, 1) =
(

0 2
1 0

)
.

In this case, we compute

det
(
−λ 2
1 −λ

)
= λ2 − 2 = 0 =⇒ λ = ±

√
2.

Since
√
2 > 1, we can conclude that this fixed point is unstable.


