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Non-dimensionalized Predator-Prey Model

Consider the non-dimensionalized predator-prey model,

y1t+1 − y1t = ay1t (1− y1t )− y1ty2t

y2t+1 − y2t = − ry2t + δy1ty2t , δ = cK .

We’ll identify the fixed points for this system and analyze the
stability of each.

The equation for fixed points is

0 = aŷ1(1− ŷ1)− ŷ1ŷ2

0 = − r ŷ2 + δŷ1ŷ2.

We can write this as

0 = ŷ1(a− aŷ1 − ŷ2)

0 = ŷ2(−r + δŷ1).



Fixed Points

From the previous slide:

0 = ŷ1(a− aŷ1 − ŷ2)

0 = ŷ2(−r + δŷ1).

There are two possibilities for solving the second equation:

ŷ1 =
r

δ
or ŷ2 = 0.

We can substitute each of these into the first equation, and
determine the corresponding value of the other component. We
have:

ŷ1 =
r

δ
=⇒ r

δ
(a− a

r

δ
− ŷ2) = 0 =⇒ ŷ2 = a(1− r

δ
)

ŷ2 = 0 =⇒ ŷ1(a− aŷ1) = 0 =⇒ ŷ1 = 0, 1.



Fixed Points

We see that there are three fixed points:( r
δ

a(1− r
δ )

)
,

(
0
0

)
,

(
1
0

)
.

We’re interested in positive parameter values a > 0, r > 0, and
δ > 0. Also, for the first fixed point, we’re primarily interested in
the case r

δ ≤ 1 (since populations are non-negative). Notice what
the fixed points correspond with:( r

δ
a(1− r

δ
)

)
: The two species reach an equilibrium in which neither

dies out.(0
0

)
: Both species die out.(1

0

)
: The predator species dies out, and the prey reaches its carrying

capacity.



The Jacobian Matrix

In order to analyze the stability of these fixed point, we need to
construct the Jacobian matrix. If we write our system in the
standard form

~yt+1 = ~f (~yt),

we get

y1t+1 = y1t + ay1t (1− y1t )− y1ty2t

y2t+1 = y2t − ry2t + δy1ty2t .

We see that for ~f (~y) =
(f1(y1,y2)
f2(y1,y2)

)
,

f1(y1, y2) = (1+ a)y1 − ay2
1 − y1y2

f2(y1, y2) = y2 − ry2 + δy1y2.



The Jacobian Matrix

From the previous slide,

f1(y1, y2) = (1+ a)y1 − ay2
1 − y1y2

f2(y1, y2) = y2 − ry2 + δy1y2.

The partial derivatives we need are as follows:

∂f1
∂y1

= 1+ a− 2ay1 − y2

∂f1
∂y2

= − y1

∂f2
∂y1

= δy2

∂f2
∂y2

= 1− r + δy1.



The Fixed Point
(0
0

)
The Jacobian matrix is

~f ′(y1, y2) =

(
1+ a− 2ay1 − y2 −y1

δy2 1− r + δy1

)
.

Let’s start with ŷ =
(0
0

)
. In this case,

~f ′(0, 0) =
(

1+ a 0
0 1− r

)
.

The eigenvalues of this matrix are λ1 = 1− r and λ2 = 1+ a. For
asymptotic stability, we require both of the following conditions to
hold:

−1 < 1− r < 1 =⇒ 1 > r − 1 > −1 =⇒ 2 > r > 0
−1 < 1+ a < 1 =⇒ −2 < a < 0.

We see that
(0
0

)
is always unstable for a > 0.



The Fixed Point
(1
0

)
The Jacobian matrix is

~f ′(y1, y2) =

(
1+ a− 2ay1 − y2 −y1

δy2 1− r + δy1

)
.

For ŷ =
(1
0

)
, we have

~f ′(1, 0) =
(

1− a −1
0 1− r + δ

)
.

The eigenvalues of this matrix are λ1 = 1− r + δ and λ2 = 1− a.
For asymptotic stability, we require both of the following conditions
to hold:

−1 < 1− r + δ < 1 =⇒ 1 > (r − δ)− 1 > −1 =⇒ 2 > (r − δ) > 0
−1 < 1− a < 1 =⇒ 1 > a− 1 > −1 =⇒ 2 > a > 0.



The Fixed Point
(1
0

)
For

(1
0

)
, we have asymptotic stability if:

2 > (r − δ) > 0 and 2 > a > 0.

Recall that the remaining fixed point is
( r

δ
a(1− r

δ
)

)
. If

(1
0

)
is

asymptotically stable, then r > δ, and the predator population in
this remaining fixed point is negative.

Let’s check the parameter values we obtained from the hare-lynx
data. We found:

a = 1.4974, b = .0425, K = 82.3206, r = .5820, c = .0239.

We can compute δ = cK = .0239 ∗ 82.3206 = 1.9675. In this case

r − δ = −1.3855.

This fixed point is unstable for these parameter values.



The Fixed Point
( r

δ

a(1− r
δ )

)
The Jacobian matrix is

~f ′(y1, y2) =

(
1+ a− 2ay1 − y2 −y1

δy2 1− r + δy1

)
.

In this case,

~f ′(
r

δ
, a(1− r

δ
)) =

(
1+ a− 2a r

δ − a+ a r
δ − r

δ
δa− ar 1− r + r

)
=

(
1− a r

δ − r
δ

a(δ − r) 1

)
.

For the eigenvalues of this matrix, we need to compute

det
(

1− a r
δ − λ − r

δ
a(δ − r) 1− λ

)
= 0.



The Fixed Point
( r

δ

a(1− r
δ )

)
The characteristic equation is

(1− a
r

δ
− λ)(1− λ) + ar

δ
(δ − r) = 0,

which we can write as

1− λ− a
r

δ
+ a

r

δ
λ− λ+ λ2 +

ar

δ
(δ − r) = 0.

Rearraning terms, we obtain

λ2 + (
ar

δ
− 2)λ+ (1− ar

δ
+

ar

δ
(δ − r)) = 0.

We can solve this with the quadratic formula:

λ± =
−(arδ − 2)±

√
(arδ − 2)2 − 4(1− ar

δ + ar
δ (δ − r))

2
.



The Fixed Point
( r

δ

a(1− r
δ )

)
Let’s simplify the discriminant:

(
ar

δ
− 2)2 − 4(1− ar

δ
+

ar

δ
(δ − r))

=
a2r2

δ2
− 4

ar

δ
+ 4− 4+ 4

ar

δ
− 4

ar

δ
(δ − r)

=
a2r2

δ2
− 4

ar

δ
(δ − r).

This allows us to write

λ± = 1− ar

2δ
± 1

2

√
a2r2

δ2
− 4

ar

δ
(δ − r).

We need to think about two cases:

a2r2

δ2
− 4

ar

δ
(δ − r) ≥ 0 and

a2r2

δ2
− 4

ar

δ
(δ − r) < 0.



The Fixed Point
( r

δ

a(1− r
δ )

)
First, for

a2r2

δ2
− 4

ar

δ
(δ − r) ≥ 0,

we have

ar

δ
− 4(δ − r) ≥ 0 =⇒ (4+

a

δ
)r ≥ 4δ =⇒ r ≥ 4δ

4+ a
δ

.

For asymptotic stability, we need

−1 < λ−, λ+ < +1.

Since λ− ≤ λ+, we can check two things:

−1 < λ− and λ+ < +1.



The Fixed Point
( r

δ

a(1− r
δ )

)
The condition λ+ < 1 is

1− ar

2δ
+

1
2

√
a2r2

δ2
− 4

ar

δ
(δ − r) < 1,

which we can rearrange as√
a2r2

δ2
− 4

ar

δ
(δ − r) <

ar

δ
=⇒ a2r2

δ2
− 4

ar

δ
(δ − r) <

a2r2

δ2
.

I.e.,

−4ar
δ
(δ − r) < 0 =⇒ r < δ.

We’re already assuming this, so there’s nothing new in this case.



The Fixed Point
( r

δ

a(1− r
δ )

)
The condition −1 < λ− is

−1 < 1− ar

2δ
− 1

2

√
a2r2

δ2
− 4

ar

δ
(δ − r),

which we can rearrange as

ar

δ
−4 < −

√
a2r2

δ2
− 4

ar

δ
(δ − r) =⇒ 4−ar

δ
>

√
a2r2

δ2
− 4

ar

δ
(δ − r)

This is only possible if 4− ar
δ > 0, which we can express as δ > ar

4 .
In this case, we can square both sides to get

16− 8
ar

δ
+

a2r2

δ2
>

a2r2

δ2
− 4ar + 4

ar2

δ
.

Rearranging again, we find

(4+ ar)δ > ar(2+ r) =⇒ δ >
ar(2+ r)

4+ ar
.



The Fixed Point
( r

δ

a(1− r
δ )

)
We can summarize this as follows: our first criterion for stability is:

4δ
4+ a

δ

≤ r < δ

ar

4
<δ

ar(2+ r)

4+ ar
<δ.



The Fixed Point
( r

δ

a(1− r
δ )

)
The remaining case is

r <
4δ

4+ a
δ

,

for which λ± are complex. In this case

λ± = 1− ar

2δ
± 1

2

√
a2r2

δ2
− 4

ar

δ
(δ − r)

= 1− ar

2δ
± i

2

√
−a2r2

δ2
+ 4

ar

δ
(δ − r).

We can compute

|λ±|2 =(1− ar

2δ
)2 +

1
4

(
− a2r2

δ2
+ 4

ar

δ
(δ − r)

)
= 1− ar

δ
+

a2r2

4δ2
− a2r2

4δ2
+

ar

δ
(δ − r)

= 1+
ar

δ
(δ − r − 1).



The Fixed Point
( r

δ

a(1− r
δ )

)
We need

1+
ar

δ
(δ − r − 1) < 1 =⇒ ar

δ
(δ − r − 1) < 0 =⇒ δ < r + 1.

We can summarize this as follows: our second criterion for stability
is:

δ − 1 < r <
4δ

4+ a
δ

.

We also require r > 0, and we’re observing that

4δ
4+ a

δ

< δ.



The Fixed Point
( r

δ

a(1− r
δ )

)
Again, let’s check the parameter values we obtained from the
hare-lynx data. We found:

a = 1.4974, b = .0425, K = 82.3206, r = .5820, c = .0239.

We can compute δ = cK = .0239 ∗ 82.3206 = 1.9675.

First, to see which case we’re in, we compute

4δ
4+ a

δ

=
4 ∗ 1.9675
4+ 1.4974

1.9675
= 1.6530.

Since this value is larger than r = .5820, we’re in the complex case.
Last, we check

δ − 1 = .9675.

Since this value of larger than r , we conclude that this fixed point
is unstable.



The Fixed Point
( r

δ

a(1− r
δ )

)
Final comment: The instability of this fixed point for our example
parameters makes sense, because the solution in that case seemed
to be periodic, so we actually expect to find a stable periodic
m-cycle. We’ll consider that next.


