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Stability of M-Cycles

Example 2. Let's return to our non-dimensionalized predator-prey
model

Vi — Y1 = ayi (1 — y1,) — y1.y2.
Y20 — Y2o = — ry2, +0y1,y2,, 0= cK.

—

le., this is yi+1 = f(y:), with
— J— 2 J—
F(7) = ( (1+a)y1 — ayf — vy )
Y2 = ry2+oy1y2
and we will use the parameter values we obtained from the

hare-lynx data, a = 1.4974, r = .5820, and § = 1.9675. (Also
¢ =.0239, K = 82.3206, and b = .0425.)



Stability of M-Cycles

We've already seen that this system doesn't have any stable fixed
points for these parameter values, and the natural next step is to
look for m-cycles. Our first question is: What value of m should we
be working with?

To answer this, let's look at two plots of solutions, initialized by
V1o = 32 and y,, = 4b (because of the non-dimensionalization).
First, we solve the model forward for 100 years, then in the next
plot we'll zoom in on the final years.
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Prey population

Figure: Predator-prey populations for 100 years.
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Figure: Predator-prey populatons for the final years.



Stability of M-Cycles

We see that we should be looking for a 10-cycle. Let's think about
this.

If we wanted to find a 2-cycle for this system, we would need to
solve

= =

9 =F(9) = F(F))-
Here,
2 1+a)y —ay? —
f(y) _ < ( )_yl )41 yiyo > ’
y2 — ry2 +0y1y»
o)
—*(—*)_ (1+a)f1—af12—f1f2
“\ homrnh )



Stability of M-Cycles

If we substitute our expressions for fi and £, we obtain

( (1+2a)((1+ a)y1 — ayf — yay2) — a((1 + a)ys — ayF — yay2)? S (@+ay - ay? — y1y2)(y2 — rv2 + Sy1y2)
(1= r)(y2 — rv2 + dy1y2) + 6((1 + a)ys — ayj — yay2)(y2 — ry2 + dy1y2)

This is only for a 2-cycle!
Nonetheless, we can find the 10-cycle numerically by solving
y =)

The values are as follows:

| prey | 26 | 40| .77 | 83 ] 61 | .31 [ .09 | .05 |.07 [ .13 |
| pred | 21] .20 ] 27| 53 [1.08 | 1.73[1.79 | 1.07 | .56 | .31 |

le, y1 = (3?) o = (:38)' etc.



Stability of M-Cycles

We've already seen in a previous lecture that the Jacobian matrix in
this case is

2 1+a—2an —y -n
' = .
()/1,)/2) ( 5}/2 1—r+ 5}/1

In order to check the stability of this 10-cycle, we need to compute
the eigenvalues of

F($10)F' (90)F' (98)F (92)F (96) F (56) F (94) £ (93) £ (92) £ (51).
We can compute this numerically, and we find

1.1829  .7600
—.4624 —.3224 )

Computing the eigenvalues of this matrix in the usual way, we get
A1 = —.0335, \» = .8940. We can conclude that this 10-cycle is
asymptotically stable.



Delay Difference Systems

As with single difference equations, it may be the case with systems
that the number of individuals in the next generation of a
population is determined by the number of individuals in several
previous generations.

In such cases, we can use a delay difference system

—

_Vt+1:f(ytaytfla'-"yt—-r)’ (*)

initialized by T + 1 vectors, yp, Y1, ..., YT € R".

Similarly as we did with single equations, we can express (*) as a
first-order system. We do this by setting

Y1, = Ve, Yo, = Vi-1,- -5 Y741, = Ve T-



Delay Difference Systems

From the previous slide,

Yi. =Yt Yoo = Vi1, YT41, = VT

With these choices, we can express (*) as

i =Ver1 = (Y1, Yo, .., Y1i1,)) Y1 = V1
Yoo =Ve= Y1, Yo, =y121
Y3t+1 :.)71_“71 = Y2t; Y3T = )77'—2
YTi1a=Ye(1-1) = Y1i: Y7141, = Y0
Each of the vectors \71:: Vgt, \77+1t has length n, so this is a

system with (T + 1) x n equations.



Delay Difference Systems

Notice particularly that the system for \71t, \72t, \77+1t is not a
delay system, so it can be analyzed by the techniques we've been
discussing in this section.



