Recent Publications
- P. Azerad, J.-L. Guermond, B. Popov,
Well-balanced
second-order approximation of the shallow water equation with
continuous finite elements, SIAM
J. Numer. Anal. 55:6
(2017) 3203--3224.
- J.-L. Guermond and B. Popov,
Invariant
domains and second-order continuous finite element approximation for
scalar conservation equations, SIAM
J. Numer. Anal. 55:6 (2017) 3120--3146.
- J.-L.GUERMOND,
M. NAZAROV, B. POPOV, I. Tomas, Second-order invariant domain preserving approximation of the Euler equations using convex limiting, (supplementary), SIAM J. Sci. Comput., 40 5 (2018) A3211--A3239.
- J.-L.GUERMOND,
B. POPOV,
LAURA
SAAVEDRA,
YONG
YANG,
Arbitrary
Lagrangian-Eulerian Finite Element Method Preserving Convex
Invariants of Hyperbolic Systems,
in
Contributions
to Partial Differential Equations and Applications, Chetverushkin,
B. N., Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmaki, P., Periaux,
J., Pironneau, O., Eds., Springer International Publishing, (2019)
251--272.
- J.-L. Guermond, B. Popov, I. Tomas, Invariant domain
preserving discretization-independent schemes and convex limiting for
hyperbolic systems, Computer
Methods in Applied Mechanics and
Engineering (2019), Vol. 347, No.15, 143-175.
- J.-L. Guermond, C. Klingenberg, B. Popov, I. Tomas, The Suliciu approximate Riemann
solver is not invariant domain preserving, J. Hyperbolic
Differ. Equ., 16 (2019), no. 1, 59-72.
- Guermond, Jean-Luc; Popov, Bojan; Saavedra, Laura; Second-order invariant domain preserving ALE approximation of hyperbolic systems. J. Comput. Phys. 401 (2020).
- Guermond, Jean-Luc; Popov, Bojan; Tovar, Eric; Kees, Chris; Robust explicit relaxation technique for solving the Green-Naghdi equations. J. Comput. Phys. 399 (2019).
- J.-L. Guermond, B. Popov, J. Ragusa; Positive asymptotic preserving approximation of the radiation transport equation, SIAM J. Numer. Anal. (2019).