
TALK 1: OVERVIEW OF THE PAPER (BURKLUND)

Disclaimer

These notes were typed by me (Paul VanKoughnett) from my own handwritten notes. It’s highly
probable that there are mistakes or omissions, which are all my fault. Notes in square brackets are
also mine. If in doubt, consult the paper!

1. The Nullstellensatz

Proposition 1.1 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. If R is a finitely
presented k-algebra and R ̸= 0, then k → R admits a retraction R → k. (In other words, SpecR
has a k-point.)

We should really think of “finitely presented” as “compact”. If we do this, then we can completely
abstract away from commutative algebra:

Definition 1.2. Let C be an ∞-category. An object X ∈ C is nullstellensatzian if every non-
terminal object R ∈ (CX/)

ω has a retraction X → R → X.

Thus, Hilbert’s Nullstellensatz says that algebraically closed fields are nullstellensatzian in CRing.

Question 1.3. Are there nullstellensatzian objects in other categories?

Answer: Yes! In fact, suppose that C is presentable, compactly generated, and has a strict
terminal object 0, meaning that

MapsC(0, X) =

{
∅ X ̸≃ 0

∗ X ≃ 0

Then every X ∈ C maps to some nullstellensatzian object.

Question 1.4. What are the nullstellensatzian objects in other categories?

Answer: Hard to say! In CRing, one can show that nullstellensatzian objects are precisely alge-
braically closed fields. The paper will identify nullstellensatzianobjects in CAlg(LK(n)Sp)

1. These are
currently the only categories for which a full characterization of nullstellensatzianobjects is known.

Remark 1.5. For the category Ring of associative rings, one imagines that the answer is something
like “infinite-dimensional matrix algebras over algebraically closed fields.” These are objects which
are at least admit a lot of maps into them. But proving this would involve some difficult algebra.

Theorem 1.6 (Main theorem). In CAlg(LK(n)Sp), the nullstellensatzianobjects are precisely the
Lubin-Tate theories E(k) for k an algebraically closed field.

2. Redshift

The redshift conjecture is that algebraic K-theory increases height – thus, if R is a height n E∞
ring, K(R) should be height at least n+ 1. Given the theorem, we can deduce redshift as follows:

Let R be a height n E∞ ring. The theorem gives us a map to some E(k) for k algebraically closed.
Applying K-theory and localizing, we have an E∞ map

LK(n+1)K(R) → LK(n+1)K(E(k)).

The target is nonzero by a theorem of Yuan, so the source must be nonzero because this is a ring
map. This proves redshift.

1Everything discussed here also works for CAlg(LT (n)Sp), but for simplicity we’ll just talk aboutK(n)-local spectra.
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Yuan’s result is proved by using blueshift, which says that En is closely related to the Tate

construction E
tCp

n+1. Then we can understand the K-theory of this Tate construction by doing
something with the Tate diagonal [I missed this part].

3. Proving a baby version of the theorem

Theorem 3.1 (Baby version). If R ∈ CAlgK(n), then there is an E∞ map R → E(k) for some
algebraically closed field k.

Example 3.2 (An easy case). Suppose that R = E(k). Then we can pick the identity map.

Of course, this example is a little silly. But the idea of the proof is that we can reduce to this
trivial example by a transfinite procedure which transforms R until it is an E-theory. The maps
used in this transfinite procedure have to have a certain technical property.

Definition 3.3. A map of E∞ rings A → B detects nilpotence if, for all f : M → N of A-modules
such that f ⊗A B = 0, we have that some tensor power

f⊗n : M⊗An → N⊗An

is zero.

Lemma 3.4. Nilpotence-detecting maps are closed under base change. That is, if f : A → B detects
nilpotence and

A
f //

��

B

��
C

g
// D

is a pushout diagram of E∞ rings, then g also detects nilpotence.

Remark 3.5. As a bit of foreshadowing, if f : A → B detects nilpotence and A is nonzero, then B
is also nonzero. (If B were 0, the identity map on A would be nilpotent.) Thus, this condition will
be used to prove that certain objects we construct are nonzero. It should be thought of as a more
well-behaved version of the property that the base change functor · ⊗A B is conservative on module
categories – well-behaved in exactly the ways necessary to do a Quillen small object argument.

The proof works by constructing three basic examples of nilpotence-detecting maps. Each of
these maps is designed to fix some feature of the original E∞ ring R, making it closer to E-theory.
Because the maps detect nilpotence, so do their base changes to R, and so the pushout is nonzero
if R is.

3.1. First issue: odd homotopy. One way in which R could fail to be an E-theory is by having
odd homotopy. Suppose that α ̸= 0 ∈ π1R. Without loss of generality (replacing R with E ⊗ R)
we can assume that R is an algebra over an E-theory. Then we can kill α in an E∞ way using the
following base change:

E(k){x1}
x1 7→0 //

x1 7→α

��

E(k)

��
R // R = R//∞α

Here the curly braces mean the free E∞ ring, and x has degree 1.

Claim 3.6. h : E(k){x1} → E(k) (sending x1 to 0) detects nilpotence.

If the claim is true, then R → R also detects nilpotence, and thus R ̸= 0.
We can do this for every element in the odd homotopy of R. Unfortunately, each of these pushouts

has the potential to introduce new odd homotopy. But by doing it transfinitely often [I think ℵ2

works], we end up with R → R′ where R′ is even and nonzero.
How do we prove the claim? Basically, π∗E(k){x1} is exterior on odd degree classes, which are

the E-theory power operations on x1. Odd degree classes square to 2-torsion, and by the May
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nilpotence conjecture (proved by Mathew-Naumann-Noel) this implies that they are nilpotent in
the homotopy of an E∞ ring. Thus E(k){x1} → E(k) is a quotient by a bunch of nilpotent stuff,
and one can prove from this that it’s nilpotence-detecting.

3.2. Second issue: non-perfect residue ring. Another way that R could fail to be E-theory is
if a class x ∈ π0R/m doesn’t have all pth power roots. [I think R is still supposed to be an algebra
over an E-theory, in which case we can define m by pushing forward the maximal ideal of π0E, but
I could be wrong.] We fix this by the diagram

E(k){x0}
g//

��

E((π0E(k){x}/m)perf)

��
R // R

Here Aperf is the direct limit perfection of A, i.e., the colimit of A along the Frobenius maps.
How do we construct g? We’re mapping out of a free E∞ algebra, so it suffices to specify the

image of x0 in π0 of the target. And we know what the map on residue rings (meaning π0/m) is
supposed to be: it’s the direct limit perfection map,

π0E(k){x0}/m → (π0E(k){x0}/m)perf .

But lifting the image of x0 in the residue ring to something actually in π0 of the target amounts
to solving some equations between power operations. It turns out that these equations admit a
solution, because E0 is cofree as a ring acted on by these power operations. This is one of the major
technical hurdles in the paper.

Again, after applying g transfinitely, we can get something with perfect residue ring.

3.3. Third issue: nilpotence. Another way in which R could fail to be E-theory is if its residue
ring π0R/m has a nilpotent element x. To construct the map dealing with this requires the spherical
Witt vectors. These fit into an adjunction

SW : PerfFp
⇆ CAlg∧p : π0(·)♭,

where (·)♭ is the inverse limit perfection (the limit along the Frobenius maps).
In particular,

SW(Fp[t
1/p∞

]) = S[t1/p
∞
]∧p .

The diagram that will deal with the nilpotent is

S[t1/p∞
]∧p

f //

��

S[t±1/p∞
]∧p × S∧p

��
R // R

The map f inverts t on the first factor and kills all powers of t on the second factor. The left-hand
vertical map sends t to x – this exists because we’ve already made π0R/m perfect by using g.

The map f should geometrically be thought of as (a sort of spherical perfectoid version of)
decomposing A1 into a closed point and its open complement. This detects nilpotence because,
more or less, if a map of sheaves over A1 is zero over a point and zero over its complement, then it’s
zero.
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