
TALK 3: POWER OPERATIONS ON E-THEORY

PAUL VANKOUGHNETT

1. Introduction

This talk is about Burklund-Schlank-Yuan’s theorem that π0E is cofree as a ring with an action
of E-theory power operations. I spent a lot of it talking about power operations in general, as well
as the fundamental work on E-theory power operations by Ando, Hopkins, Strickland, and Rezk.
At tne end, I outlined the proof and the ingredients that went into it.

In these notes, I’m being a bit loose with K(n)-localizations. When I talk about CAlgE in general,
I mean the category of E∞-E-algebras, but when I talk about it for E-theory, I mean the category
of K(n)-local E∞-E-algebras. There are some technical obstacles to porting the unlocalized power
operations story to the K(n)-local realm, but to my knowledge they were dealt with by [BF15].
Additionally, let me point out that, since we’re primarily interested in how the power operations
act on π0E, we don’t have to worry about the bugbears presented by derived completeness or odd
degrees.

I write CRingA for discrete commutative rings over A, and CAlgA for E∞ algebras over A.

2. What are power operations?

Fix an E∞ ring spectrum E. Eventually, we’ll take this to be E-theory.

Definition 2.1. A power operation (on E∞-E-algebras) is a natural transformation

πm ⇒ πn

of the functors
πn : CAlgE → Sets.

An additive power operation is a natural transformation of the functors πn : CAlgE → Ab.

The functors πn are representable:

πnR = π0 MapsCAlgE (E ⊗ P(Sm), R),

where
P(Sm) =

∨
r

SmrhΣr

is the free E∞ algebra on Sm (so that E ⊗ P(Sm) is the free E∞-E-algebra on Sm). By the Yoneda
lemma,

Maps(πm, πn) = π0 MapsCAlgE (E ⊗ P(Sm), E ⊗ P(Sn))

= [Sm, E ⊗ P(Sn)]

= πm(E ⊗ P(Sn))

= Em

∨
r≥0

SnrhΣr

 .

The set of power operations has a huge amount of structure. It has three gradings: the input
and output degrees m and n, and the weight r that appeared in the above splitting. Because we’re
always mapping into the homotopy groups of an E∞-E-algebra, which form a graded commutative
E∗-algebra, the set of all power operations is also a graded commutative E∗-algebra. Because we’re
mapping out of the homotopy groups of an E∞-E-algebra, there is also a coalgebraic structure on
power operations. Finally, power operations can be composed.
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We’ll immediately use this structure to simplify the situation. If E is even periodic, then we can
use the periodicity to only think about power operations between degrees 0 and 1. For the purposes
of this talk, we’ll only talk about degree 0.

Definition 2.2. When E is E-theory, write

T(E0) = End(π0 : CAlgE → Sets) = E0P(S0) = E0

(∨
Σ∞+ BΣr

)
.

(The reason for the notation will be made apparent later.)

Remark 2.3. When E is E-theory, the theory of even-degree power operations is a retract of the
theory of power operations in all degrees. This isn’t completely formal, but boils down to the fact
that E∗BΣn is even, for all n.

Power operations act on the homotopy of an R ∈ CAlgE as follows. Given x ∈ π0R, we can
represent x as a map

S x−→ R.

Taking an extended power of this map and using the E∞ structure on R gives

Σ∞+ BΣr = S⊗rhΣr

x⊗r
hΣr−−−→ R⊗rhΣr

mult−−−→ R.

This construction defines a map
Powr : π0R→ R0BΣr,

called the total power operation of weight r. Now given a class α ∈ E0BΣr, we can pair it with
R0BΣr (using the E-module structure on R) to map back to π0R. Thus, R0BΣr is a sort of ring of
functionals on the power operations in E0BΣr.

The additive variant of this story uses the transfer maps

tr : Σ∞+ BΣr → Σ∞+ (BΣi ×BΣr+i).

Write Itr for the ideal in R0BΣr generated by the images of the transfers from R0(BΣi × BΣr−i),
where 1 ≤ i ≤ r− 1. The importance of this ideal is that it contains the failure of power operations
to preserve addition. Thus, the total additive power operation is the composition

τr : π0R
Powr−−−→ R0BΣr � R0BΣr/Itr.

(My notation differs from Burklund-Schlank-Yuan: what they call τr, I call τpr .) We can pair this
with classes in

ker

(
tr : E0BΣr →

r−1⊕
i=1

E0(BΣi ×BΣr−i)

)
to get individual additive power operations valued in π0R.

2.1. Plethories. We can formally summarize the algebraic structure on T(E0) by saying that it is
a plethory on CRingE0

. In other words,

• it’s a commutative E0-algebra,
• it represents a functor CRingE0

→ CRingE0
(which means that it has some additional coal-

gebraic structure), and
• this functor is a comonad (via composition of power operations).

An algebra over a plethory is a coalgebra over the corresponding comonad. Many sorts of things
we’d consider “commutative rings with extra algebraic structure”, including λ-rings, θ-algebras/δ-
rings, and group and Lie algebra actions on commutative rings, can be defined in this language.

It turns out that for formal reasons [BW05], algebras over a plethory are both comonadic and
monadic over the underlying category of commutative rings. Thus, we have adjunctions

AlgT
UT // CRingE0

.

FTss

WT

kk

Explicitly,
WT(R) = HomCRingE0

(T(E0), R).
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The left adjoint FT is slightly harder to describe explicitly, but is determined by what it does to the
free commutative E0-ring on one generator:

FT(E0[x]) = T(E0).

(The functor T itself is a monad on ModE0
which was defined by Rezk [Rez09]. In this language,

it’s FT ◦ SymE0
.)

Exercise 2.4. “Taking a logarithm” of the previous paragraph, let A ∈ CRing, and show that a
corepresentable comonad on ModA is precisely an A-algebra (which is not necessarily commutative,
and where A is not necessarily central). Given such an A-algebra B, describe the corresponding
monad.

Example 2.5 (Key example). At height 1, E0 = Zp, and AlgT is the category of θ-algebras (also
called δ-rings). A θ-algebra is equipped with operations ψ and θ such that

ψ(x) = xp + pθ(x),

θ(x+ y) = θ(x) + θ(y) +

p−1∑
i=1

1

p

(
p

i

)
xiyp−i,

and

θ(xy) = xpθ(y) + ypθ(x) + pθ(x)θ(y).

The way to remember this is that these are exactly the identities on θ required to make ψ a ring
homomorphism. In fact, if the underlying ring is torsion-free, then ψ determines θ and it suffices to
say that ψ is a ring homomorphism lifting the mod p Frobenius. But in general, θ determines ψ, so
we have to state the algebraic identities on θ.

As power operations, both θ and ψ are in weight p. In fact, E0BΣp is free on the two generators
θ, ψ.

One can also show [Bou96] that T(E0), the free θ-algebra on one generator, is polynomial:

T(E0) ∼= Zp[x, θx, θ2x, . . . ].

We have

WT(R) = HomCRingZp
(T(E0), R) ∼= W (R),

the p-typical Witt vectors of R (explaining the notaion WT).
In particular, if R ∈ PerfFp

, then WT(R) = W (R) = π0E(R). That is,

π0E : PerfFp
→ AlgT

is precisely the cofree functor. In other words, we have an adjunction

(1) (UT(·)/p)] : AlgT � PerfFp
: π0E(·),

obtained by composing the UT aWT adjunction with the adjunction

((·)/p)] : CRingZp
� PerfFp : inc.

2.2. The theorem. The main theorem of this section of the paper is a generalization of (1) to
higher heights.

Theorem 2.6. Let E be a height n E-theory over a perfect field k. Then there is an adjunction

(UT(·)/m)
]

: AlgT � Perfk : π0E(·),

and the right adjoint is fully faithful.

For full faithfulness, observe that the counit is

(π0E(A)/m)] → A,

which is an isomorphism for A ∈ Perfk. Thus, it remains to establish the adjunction, or equivalently
that

π0E(·) ∼= WT(·).
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Also, we have a natural map π0E(A)→WT(A), given by the composite

π0E(A)
unit−−→WTUTπ0E(A)

WT(·/m)−−−−−→WT(A).

BSY call this the reduced evaluation map, evA. (I think it’s more of a reduced coevaluation
map.) Remembering that

WTUTπ0E(A) = HomCRingE0
(T(E0), π0E(A)),

what evA is doing is saying, for each element in π0E(A), how each power operation in T(E0) is
acting on it, mod the ideal mπ0E(A). The proof will show that this map is an isomorphism.

3. More on power operations for E-theory

Now let’s state some specific details on how power operations work for E-theory. I’ll try to
compare things to the familiar height 1 case. This is all work of Strickland [Str98], Ando-Hopkins-
Strickland [AHS04], and Rezk [Rez09].

First, the theory is algebraically well-behaved because:

Proposition 3.1 (Strickland). E∧∗ BΣr is finite free and even as an E∗-module.

Strickland also calculates the ranks of these free modules. One way to say this is to write d(r)
for the number of subgroups of order pr in (Qp/Zp)n. Then:

Theorem 3.2 (Strickland). T(E0) is polynomial on generators in p-power weights, and the inde-
composables of weight pr are free of rank d(r).

For example, at height 1, T(E0) = Zp[x, θ(x), θ◦2(x), . . . ]. This has a rank 1 module of indecom-
posables in weight pr, generated by θr(x).

Next, write

Γ ⊆ T(Eo)

for the subalgebra of additive power operations. This is a ring, though not with the same multipli-
cation as T(E0)! Of course, if we multiply two additive operations, the product may not preserve
addition. Instead, the composition on T(E0) makes Γ a (not necessarily commutative) ring. Recall
that

Γr = ker

(
tr : E∗BΣr →

r−1⊕
i=1

E∗(BΣi ×BΣr−i).

)
We also have:

Theorem 3.3 (Strickland). Each Γr is finite free and even as an E∗-module (so we’re justified in
calling it an E0-module). The inclusions Γr → E0BΣr split. Finally, Γr is only nonzero if r is a
power of p.

At height 1,

Γ = Zp[ψ],

generated by ψ (under composition, not multiplication). As ψ has weight p, ψ◦r has weight pr; thus,
Γpr is a free rank 1 E0-module for each r.

The next thing to know is that the additive power operations carry a modular interpretation in
terms of formal groups. Writing G0 for the formal group over k used to define E, recall that we can
identify

Spf E0
∼= Def(G0),

the moduli of deformations of G0.

Definition 3.4. Write G(pr)
0 , the r-fold Frobenius twist of G0, for the base change of G0 along

Frobr : k → k.
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The r-fold relative Frobenius isogeny is the map φr of formal groups over k defined by the
following diagram:

G0
Frobr

&&

��

φr

""
G(pr)

0
//

��

G0

��
Spec k

Frobr
// Spec k

Definition 3.5. The moduli of deformations of φr is the functor Def(φr) assigning to each
complete local ring R the set of the following data:

• A deformation G of G0 over R;

• A deformation G′ of G(pr)
0 over R;

• An isogeny ψ : G→ G′ of formal groups over R, that reduces over the special fiber to φr.

(See [BSY22, Definition 3.37] for a more precise definition. As they point out, this definition
makes sense with φr replaced by any isogeny of formal groups over k.)

Observe that Def(φr) has a functor to Def(G0) given by forgetting to the source G, and a functor

to Def(G(pr)
0 ) given by forgetting to the target G′. Since k is perfect, we in fact have Def(G(pr)

0 ) ∼=
Def(G0): roughly speaking, we can always untwist a deformation of G(pr)

0 by precomposing with the
r-fold Frobenius of k.

Theorem 3.6 (Ando-Hopkins-Strickland). The functor Def(φr) is a formal scheme, isomorphic
to Spf E0BΣpr/Itr. The source and target maps Def(φr) ⇒ Def(G0) correspond, respectively, to
the E0-algebra unit E0 → E0BΣpr/Itr, and to the total prth additive power operation, τpr : E0 →
E0BΣpr/Itr. Composition of power operations corresponds to composition of isogenies.

As a result, we can treat the collection of all Def(φr) as a “lax formal stack”, i.e., a category
object in formal schemes, describing deformations of G0 and isogenies between them that deform
powers of the relative Frobenius. Then an E0-ring with an action of Γ is precisely a quasicoherent
sheaf on this lax formal stack. In other words, additive power operations correspond to descent data
for certain isogenies of formal groups.

Remark 3.7. For a height 1 formal group G, there is a unique isogeny of degree pr for every r (given
by formal multiplication [pr]), and thus Def(φr) ∼= Spf E0 for each r. Correspondingly, there’s a
unique additive power operation of weight pr for each r, up to multiplication by Zp, which is ψ◦r.
We recover the formula Γ = Zp[ψ], which we now see is related to the subgroup structure of height
1 formal groups.

The final result, the main idea of [Rez09], relates Γ-algebras to T-algebras.

Theorem 3.8 (Rezk). There is an operation ψ ∈ Γ such that a torsion-free Γ-algebra R extends to
a T-algebra iff

ψ(x) ≡ xp (mod p).

This determines the monad T, even on non-torsion-free rings, in a completely analogous way to
the case of θ-algebras. More precisely, this theorem forces T to have an operation θ such that

ψ(x) = xp + pθ(x),

and θ must satisfy certain identities determined by ψ. In particular, because ψ is additive, we must
have

(2) θ(x+ y) = θ(x) + θ(y) +

p−1∑
i=1

1

p

(
p

i

)
xiyp−i

(θ is a p-derivation). This is a key ingredient of the proof.
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4. Outline of the proof

Now let’s outline the proof.

(1) We need to show that the reduced evaluation map π0E(A)→WT(A) is an isomorphism for
all A ∈ Perfk. First, we reduce to just proving this for A = k. This is done by comparing
two filtrations: the m-adic filtration on π0E(A), and the Witt filtration on WT(A).

(2) To show that

π0E(k)→WT(k) = HomCRingE0
(T(E0), k)

is injective, we have to find, for each x ∈ E0, an operation Ψ such that Ψ(x) 6≡ 0 mod
m. If x is very divisible by m, this means that power operations must be able to lower this
divisibility. The argument for this uses some earlier technical work of Jeremy Hahn, together
with a transchromatic argument which is inductive on the height. (More incredibly yet, this
argument uses the main theorem of the paper and makes the whole paper inductive on the
height!)

(3) Finally, to show the map is surjective, we return to comparing the two filtrations. Here one
is able to establish an inequality between the sizes of the filtration quotients. This ultimately
relies on the fact that

τpr : E0 → E0BΣpr/(Itr + m)

is a surjection, which is proved by using the deformation-theoretic description of power
operations.

I only talked about #2 in the talk, but I’ve included a summary of the other steps.

5. Comparing filtrations

(I didn’t talk about this in the talk. Apologies if it’s a bit sketchy.)
Let A ∈ Perfk. Recall that

WT(A) = HomCRingE0
(T(E0), A).

Since T(E0) is graded by weight, we have a filtration on WT(A), in which

W≥rT (A) = {f : T(E0)→ A|f vanishes on Tk(E0) for k < pr}.

Each W≥rT (A) is an ideal. This is dual to the statement that

T<pr (E0) =
⊕
k<pr

E0BΣk

is a coideal. This is true because the comultiplication comes from the diagonal maps of spaces

∆ : BΣk → BΣk ×BΣk,

while the coaddition comes from the transfer maps

Σ∞+ BΣk →
k⊕
i=0

Σ∞+ (BΣi ×BΣk−i).

At height 1, WT(A) is the p-typical Witt vectors of A, and the filtration thus defined is the p-adic
viltration. (If A is not perfect, it is the V -adic filtration, where V is the Verschiebung.)

Let

W=r
T (A) = W≥rT (A)/W

≥(r+1)
T (A)

be the associated graded. The main idea here is that each W=r
T (A) is a free A-module. First, we

can identify

W=r
T (A) = Homk(QT(E0)pr , A),

where Q is the indecomposables. Strickland proved that QT(E0)pr is a k-vector space of dimension

d(r), so

(3) W=r
T (A) ∼= Ad(r).
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But there is a small subtlety here. The natural A-module structure comes from

A
[·]−→W (A)→ π0E(A) = W (A)[[u1, . . . , un−1]]

evA−−→WT(A),

where the first map is the multiplicative lift. It turns out that this makes A act on W=r
T (A) ∼= Ad(r)

via the r-fold Frobenius. Nevertheless, since A is perfect, we still get W=r
T (A) ∼= Ad(r) as an A-

module – just with a different isomorphism than the one in (3).

Example 5.1. At height 1, d(r) = 1 for each r, and we’re saying that the associated graded of
W (A) for the p-adic filtration is isomorphic to A in each degree. A typical element in W=r(A) can
be represented in the form

V r[y], y ∈ A,
and the A-module structure comes from

[x]V r[y] = V r[xp
r

y] + . . . .

As stated, A acts through the r-fold Frobenius. (Another useful thing to note here is that the
multiplicative lift isn’t additive – but it is additive mod higher filtration, and so we still get an
A-module structure on the associated graded).

The important point is that the exponent d(r) is invariant of A. Thus one can prove:

Proposition 5.2. The map
WT(k)⊗W (k) W (A)→WT(A)

maps the filtration on WT(k) to the filtration on WT(A), and is an isomorphism on the associated
graded.

Finally, consider the diagram

π0E(k)⊗W (k) W (A)
evk⊗1 //

��

WT(k)⊗W (k) W (A)

��
π0E(A)

evA

//// WT(A)

The proposition above implies that the right-hand map is an isomorphism after completing with
respect to the filtrations on WT. The left-hand map is observed to be an isomorphism after m-adic
completion. The final claim is that the m-adic filtration and the Witt filtration induce the same
topology on WT(k). Unfortunately, I didn’t understand the proof of this claim.

In any case, we get:

Proposition 5.3. If evk is an isomorphism, then so is evA, for any A ∈ Perfk.

6. Injectivity

(This is the only part of the proof I had time to talk about.)
We need to show that:

Proposition 6.1. If x 6= 0 in E0, then there exists an operation Ψ ∈ T(E0) such that Ψ(x) 6= 0
mod m.

Intuitively, this means that power operations are able to lower m-divisibility. First let’s deal with
divisibility by p. Let θ be the operation defined above.

Lemma 6.2. If x 6= 0 mod p in E0, then vp(θ(x)) < vp(x).

Proof. This follows from the p-derivation equation Equation (2), and is left as an exercise. �

Thus, we can assume that x is not divisible by p. We will prove the following:

Proposition 6.3. If x 6= 0 mod p in E0, then there exists r > 0 such that τpr (x) 6= 0 mod m.

This says that we can decrease divisibility by u1, . . . , un−1 using additive power operations.
The main step here is a lemma of Jeremy Hahn [Hah17]:
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Lemma 6.4 (Hahn). Suppose that n ≥ 2 and x 6= 0 mod mn−1 := (p, u1, . . . , un−2). Then there
exists r > 0 such that τr(x) 6= 0 mod m.

Proof of Proposition 6.3. At height 1, this is trivial because m = (p). We induct on the height n,
assuming the main result of the paper (that E-theories are nullstellensatzian) at heights < n.

In particular, the main theorem gives us the starred map in the composition:

f : E = E(k)→ LK(n−1)E
(∗)−−→ En−1(K)

in which K is some perfect field of characteristic p. On π0, f looks like

Wk[[u1, . . . , un−1]]→Wk((un−1))∧p [[u1, . . . , un−2]]→WK[[w1, . . . , wn−2]].

I claim that this composition is injective. It suffices to check this mod the regular sequence
(p, u1, . . . , un−2), which generates the same ideal as (p, w1, . . . , wn−2) (because f was a map of
complex oriented ring spectra). Mod this ideal, we have

k[[un−1]]→ k((un−1))→ K.

The first map is inverting a non-zero-divisor, and the second map is a map of fields. Thus f is
injective, and the same argument shows that f is also injective mod p.

Because f is E∞, it commutes with the total power operations. Thus we have a diagram

π0E/p
τpr //

� _

f

��

E0BΣpr/(Itr, p) // //

��

E0BΣpr/(Itr + mn−1)

��
π0En−1(K)/p // En−1(K)0BΣpr/(Itr, p) // En−1(K)0BΣpr/(Itr + mn−1)

Now, if x 6= 0 in π0E mod p, then because f is injective mod p, f(x) is nonzero in π0En−1(K) mod
p. By the induction hypothesis, for some r, τr(f(x)) 6= 0 mod the maximal ideal of En−1(K), which
is mn−1. Thus, τr(x) 6= 0 mod mn−1. By Hahn’s lemma, there is some further τs we can apply to
get something nonzero mod m. Then τr+s 6= 0 mod m. �

7. Surjectivity

(I also didn’t talk about this, and will be even sketchier. In my mind this is the hardest part of
this section of the paper.)

There are two steps. The first step is:

Proposition 7.1. The map
τpr : π0E → E0BΣpr/(Itr + m)

is surjective.

Proof sketch. This uses Strickland’s modular interpretation of the additive power operations. We
need to show that the map of formal schemes

Spec k ×source
Def(G0) Def(Frobr)→ Spec k ×Spf Wk Def(Frobr)

target−−−−→ Spec k ×Spf Wk Def(G(pr)
0 )

is a closed immersion. This is pulled back from the map

Def(Frobr)
(source,target)−−−−−−−−−→ Def(G0)×Spf Wk Def(G(pr)

0 ).

It suffices to show that this map is a closed immersion. More generally, the analogous statement is
true with

G0
Frobr

−−−→ G(pr)
0

replaced with any isogeny

G1
q0−→ G2

of formal groups over k. Informally, this means that given a deformation of G1 and a deformation of
G2 over some complete local ring R, there’s at most one way to deform the isogeny q0 to an isogeny
between these deformations. In other words, if q is an isogeny between formal groups over R, and
q ≡ 0 mod the maximal ideal of R, then q = 0.



REFERENCES 9

This is a computation using formal group laws which I won’t repeat. Note that the assumption of
finite height is essential: the statement is definitely not true for the additive formal group law. �

The second step uses the filtrations again. Writing

W≤rT (k) = WT(k)/W
≥(r+1)
T (k),

we have that W≤rT (k) is a finite Wk-module of length
r∑
i=0

d(i).

Let E≤r(k) be the image of

π0E(k)→WT(k) �W≤rT (k).

The total prth additive power operation factors as

π0E(k)→ E≤r(k)→W≤rT (k)→ E(k)0BΣpr/(Itr,m).

With a bit of algebra, one can use this to get a lower bound E≤r(k): it has length at least
∑r
i=0 d(i).

But we already proved that π0E(k)→WT(k) is injective, so this is enough to get surjectivity.
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