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Abstract

We study stochastic evolutionary game dynamics in a population of finite size.
Individuals in the population are divided into two dynamically evolving groups. The
structure of the population is formally described by a Wright-Fisher type Markov
chain with a frequency dependent fitness. In a strong selection regime that favors one
of the two groups, we obtain qualitatively matching lower and upper bounds for the
fixation probability of the advantageous population. In the infinite population limit we
obtain an exact result showing that a single advantageous mutant can invade an infinite
population with a positive probability. We also give asymptotically sharp bounds for
the fixation time distribution.
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1 Introduction

Evolutionary game theory [28, 35, 40, 46, 53] is a mathematically accessible way of modeling
the evolution of populations consisting of groups of individuals which exhibit different forms
of behavior. It is commonly assumed within this theoretical framework that individuals
reproduce or adopt their behavior according to their fitness, which depends on the population
composition through a parameter representing utility of a random interaction within the
population. The fundamental interest of the theory is in understanding which forms of
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behavior have the ability to persist and which forms have a tendency to be driven out by
others.

In the language of game theory, behavior types are called strategies and the utility is
identified with the expected payoff in an underlying game. The basic biological interpretation
is that each strategy is linked to a phenotype in the population and more successful types
of behavior have higher reproductive fitness. In applications to the evolution of social or
economic behavior, the propagation of strategies can be explained by an interplay between
cultural inheritance, learning, and imitation [42, 46, 50, 51].

In the case of finite populations, the evolutionary dynamics is typically modeled by a
discrete-time Markov process such as Moran and Wright-Fisher processes [24, 29, 34, 48, 49].
In this paper we focus on the evolutionary game dynamics of the Wright-Fisher process
introduced by Imhof and Nowak in [29]. In this discrete time model, there are two competing
types of individuals in a population of fixed size whose fitness depends, up to a certain
selection parameter, on the composition of the population (type frequencies). During each
generation every individual is replaced by an offspring whose type is determined at random,
independently of others, based on the fitness profile of the population. The resulting model
is a discrete-time Markov chain whose states represent the number of individuals of one of
the two types present in the current generation.

The Markov chain has two absorbing states corresponding to the situation where one
of the two types becomes extinct and the other invades the population. The study of the
probability of fixation in an absorption state representing a homogeneous population thus
becomes a primary focus of the theory [3, 34, 36, 37, 44]. Following common jargon in the
literature, we will occasionally refer to the evolution of the Markov process until fixation as
the invasion dynamics of the model. For recent progress in evolutionary game theory on
graphs, we refer the reader to [12, 18, 20, 23] and the references therein.

Formally, the Wright-Fisher process introduced in [29] can be seen as a variation of the
classical Wright-Fisher model for genetic drift [17, 19, 21, 25] with a frequency-dependent
selection mechanism. Throughout the paper we are concerned with the generic case of the
selection that systematically favors one of the two population types. We thus will impose
a condition ensuring that the local drift of the Markov chain (i. e., the expected value of
the jump conditioned on the current state of the Markov chain) is strictly positive at any
state excluding the two absorbing states. Since the fitness in Imhof and Nowak’s model
is determined by the payoff matrix of a game, this condition turns out to be essentially
equivalent to the assumption that one of the strategies in the underlying 2 × 2 game is
dominant.

The main goal of this paper is to derive qualitatively matching upper and lower bounds
for the fixation probability of the model. The bounds become sharp in the limit of the
infinite population, but even for a fixed population size they have similar mathematical form
and thus capture adequately the invasion dynamics of the model. The core of the paper is
an exploration of Moran’s method [38] and its ramifications in our framework.

The rest of the paper is organized as follows. The underlying model is formally introduced
in Section 2. Our results are stated and discussed in Section 3. Conclusions are outlined in
Section 4. The proofs are deferred to Section 5. Finally, an analogue of our main result for a
related frequency-dependent Moran model, which has been introduced in [41, 48], is briefly
discussed in the Appendix.
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2 Mathematical model

The Wright-Fisher Markov process introduced in [29], which we now present, describes the
evolution of two competing types of individuals in a population of fixed size N evolving in
discrete non-overlapping generations. Individuals of the first type follow a so-called strategy
A and those of the second type follow a so-called strategy B. The underlying 2×2 symmetric
game is described by the payoff matrix

A B
A a b
B c d

where a, b, c, d are given positive constants. The matrix entries a, b, c, d represent the utility
of an interaction of (the individual of type) A with A, A with B, B with A, and B with B,
respectively, for the first named individual in the pair.

We denote by X
(N)
t the number of individuals following strategy A in the generation

t ∈ Z+. Here and henceforth Z+ stands for the set of nonnegative integers N∪ {0}, where N
denotes the set of positive integers. With each of the two strategies is associated a fitness,
which, when X

(N)
t = i, is given respectively by

f
N

(i) = 1− w + wπ
A

(i, N) and g
N

(i) = 1− w + wπ
B

(i, N),

where w ∈ [0, 1] is the so called selection parameter, while

π
A

(i, N) =
a(i− 1) + b(N − i)

N − 1
and π

B
(i, N) =

ci+ d(N − i− 1)

N − 1

are expected payoffs in a single game with a randomly chosen, excluding self-interaction,
member of the population. The selection parameter w is a proxy for modeling the strength
of the effect of interactions (governed by the payoff matrix) on the evolution of the population
compared to inheritance.

Given that X
(N)
t = i, the number of individuals in the next generation adopting strategy

A is described by N independent Bernoulli trials with success probability given by

ξ
N

(i) =
if
N

(i)

if
N

(i) + (N − i)g
N

(i)
. (1)

Thus, conditionally on X
(N)
t , the next generation X

(N)
t+1 is a binomial random variable

BIN
(
N, ξ

N
(X

(N)
t )

)
centered around Nξ

N
(X

(N)
t ) :

P
(
X

(N)
t+1 = j|X(N)

t = i
)

=

(
N

j

)(
ξ
N

(i)
)j(

1− ξ
N

(i)
)N−j

(2)

for all 0 ≤ i, j ≤ N. The Wright-Fisher Markov chain with transition kernel in the form
(2) comprises a class of classical models of population genetics [17, 19, 21, 25]. Under the
assumptions on the underlying game stated below in this section, the most mathematically
related case is a model of genetic drift in a diploid population with favorable selection and

3



without mutation, which formally corresponds to choosing a payoff matrix with a = b > 1
and c = d = 1.

Note that the Markov chain has two absorbing states, 0 and N , which correspond to the
extinction of individuals using one of the two strategies. Our primary objective in this paper
focuses on the estimation of the following fixation (absorption at N, or yet alternatively,
invasion) probability:

p
N

(i) = P
(
X

(N)
T = N |X(N)

0 = i
)
, (3)

where

T = min
{
t ∈ N : X

(N)
t = 0 or X

(N)
t = N

}
. (4)

Throughout the paper we are interested in the dependence of p
N

(i) on i and N while the
parameters a, b, c, d and w > 0 are maintained fixed. We make the following standing
assumption.

Assumption 2.1. We assume that w > 0, a > c, and b > d.

We remark that in the notation of [48], Assumption 2.1 reads w > 0, ξ > 0, and ζ < 0.
Moreover, under Assumption 2.1, A is the strictly dominant strategy in the underlying
game, and the implementation of strategy A by both players corresponds to the unique Nash
equilibrium and the unique evolutionary stable strategy. Strictly speaking, an evolutionary
stable strategy is a stationary distribution or an absorbing state of the process identified with
the corresponding Dirac measure. In particular, the unique evolutionary stable strategy is
the state where all players follow strategy A [28, 53].

A canonical example of a game satisfying Assumption 2.1 is the prisoner’s dilemma where
b > d > a > c, in which case strategy A represents defection and strategy B represents
cooperation. Examples of games with b > a > c > d (Time’s sales versus Newsweek’s
sales and cheetahs and antelopes, respectively) are considered in [15, Section 3.2] and [30,
Section 3.2]. Another version of the cheetahs and antelopes discussed in Section 3.2 of [30]
provides an example of a game where b > c > a > d. The invasion dynamics for two examples
of a frequency-dependent Moran process with an underlying game such that a > c > b > d
is analyzed in [48].

A connection between Assumption 2.1 and the structure of the local drift of the Markov
chain X(N), which is crucially important for our agenda, is discussed in Section 3.3. In the
rest of this section we focus on more technical aspects and immediate implications of this
assumption.

For an integer N ≥ 2, let Ω
N

and Ωo
N

denote the state space and the set of transient

(non-absorbing) states of X(N), respectively. That is,

Ω
N

= {0, 1, . . . , N} and Ωo
N

= {1, . . . , N − 1}. (5)

It has been pointed out in [48] (for a related frequency-dependent Moran process which we
discuss in the Appendix) and [29] (for the Wright-Fisher process considered in this paper)
that, to a large extent, the invasion dynamics of the model for a given population size N
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can be characterized by the behavior of the sign of the function h
N

(i) = f
N

(i)− g
N

(i), and
that the latter is entirely determined in the whole range i ∈ Ωo

N
by the pair{

sign
(
h
N

(1)
)
, sign{h

N

(
N − 1)

)}
.

Using the linear structure of f
N

(i) and g
N

(i), it is straightforward to verify that Assump-
tion 2.1 is equivalent to the following.

Assumption 2.2. We assume that the parameters a, b, c, d, w > 0 are chosen in such a way
that there exist an integer N0 ≥ 2 and real constants α and γ such that

0 < α ≤ g
N

(i)

f
N

(i)
≤ γ < 1 for all N ≥ N0 and i ∈ Ωo

N
. (6)

Assumption 2.2 can be thought of as a uniform over N version of the A-dominance
condition h

N
(0) > 0 and h

N
(N) > 0 introduced in [41, 48] (ξ′ > 0 and ζ ′ < 0 in their

notation).
As alluded to above, for a fixed N ∈ N, both f

N
(i) and g

N
(i) are linear functions of i,

and hence their graphs are straight segments. It follows that, if Assumption 2.2 is satisfied,
one can set

N0 = min
{
N ≥ 2 : a(N − 1) > cN − d and b(N − 1) > d(N − 2) + c

}
,

and

α = min
{g

N0
(1)

f
N0

(1)
,
g
N0

(N0 − 1)

f
N0

(N0 − 1)
, lim
N→∞

g
N

(1)

f
N

(1)
, lim
N→∞

g
N

(N − 1)

f
N

(N − 1)

}
,

γ = max
{g

N0
(1)

f
N0

(1)
,
g
N0

(N0 − 1)

f
N0

(N0 − 1)
, lim
N→∞

g
N

(1)

f
N

(1)
, lim
N→∞

g
N

(N − 1)

f
N

(N − 1)

}
,

(7)

in order to obtain α, γ and N0 explicitly in terms of the basic data a, b, c, d and w. Also,
notice that

lim
N→∞

g
N

(1)

f
N

(1)
=
d

b
and lim

N→∞

g
N

(N − 1)

f
N

(N − 1)
=
c

a
.

Remark 2.3. We emphasize that (6) is assumed to hold for a given specific choice of the
(strictly positive) parameters a, b, c, d and w. In fact, by continuity, (6) remains true within
some interval of values w > 0 bounded away from zero, but ultimately fails when w approaches

zero because
g
N

(i)

f
N

(i)
= 1 for w = 0. However, throughout the paper, the parameter w remains

fixed and is not varied.

3 Results and discussion

The organization of this section is as follows. The section is divided into five subsections,
the first two contain a preliminary discussion and the other two present our main results.
Section 3.1 aims to provide a brief background and a suitable general context for our approach
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and results. It also contains a summary of our main results, which consist of Theorems
3.4 and 3.9. Section 3.2 discusses relevant results of [29] from the perspective outlined in
Section 3.1. In Section 3.3 we state our results for a fixed finite population of size N, and
in Section 3.4 we discuss their asymptotic counterparts in the infinite population limit and
some implications. Finally, in Section 3.5 we illustrate our results with a numerical example.

3.1 Preliminary discussion

In [29] it is shown, among other results, that under Assumption 2.1 the selection in the
Wright-Fisher process favors A in that p

N
(i) > i/N for all i ∈ Ωo

N
. Notice that i/N is the

probability that A wins in the absence of selection, i.e., when w = 0. Our goal is to obtain
a further insight into the behavior of the fixation probability p

N
(i) as a function of i and N.

Our main contribution can be partially summarized as follows:

Theorem 3.1 (Main results in a nutshell). Let Assumption 2.1 hold. Then, for the Wright-
Fisher process defined in (1) and (2), there exist constants ρ, θ ∈ (0, 1) such that

1− ρi

1− ρN
≤ p

N
(i) ≤ 1− θi

1− θN
, for all N ≥ N0, i ∈ Ωo

N
. (8)

Furthermore, there exists a constant q ∈ [θ, ρ] such that

lim
N→∞

p
N

(i) = 1− qi, ∀ i ∈ N. (9)

The first part of the above theorem is the content of Theorem 3.4, and the second one
in a more detailed form is stated in Theorem 3.8. Notice that the limit in (9) has the same
form 1 − ci for some c ∈ (0, 1) as the asymptotic of the lower and upper bounds in (8). In
intuitive accordance with the fact that A is the unique Nash equilibrium and evolutionary
stable strategy in the underlying game, (9) implies that a single advantageous mutant has a
non-zero probability of invasion even at the infinite population limit.

The Wright-Fisher Markov chains with directional selection (i. e. favoring one of the

two population types), either the classical one with constant selection bias
g
N

(i)

f
N

(i)
or the

more general one with the frequency dependent selection mechanism introduced in [29],
are known to exhibit complex multi-scale dynamics. We refer to [17, Section 6.3.1], [21,
Section 1.4.3], [8, Section 3], and [10, 52] for a description of several possible scaling schemes
and limiting procedures for these models. Due to the high likelihood of big jumps and space-
wise inhomogeneity of the local drift, obtaining a quantitative insight into a mechanism of
transforming a relatively simple structure of the transition kernel into the global dynamics of
these Markov chains turns out to be a challenging task. The usual approach to overcome the
difficulty is to implement a small parameter expansion which, although often formally not
limited to any particular drift structure, ultimately leads to the (conceptually undesirable)
comparison of the model to stochastic processes without drift.

When w is small—a regime commonly referred to as weak selection—the fitness of indi-
viduals plays little role on the dynamics of evolution, and rather it is simply the proportions
of the previous generation which play the primary role in determining the next generation.
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The main content of our work is an alternative method, which is in essence equivalent
to an indirect coupling of the Imhof-Nowak model with an “exponential submartingale”. In
particular, this method allows us to considerably improve the previous work in [29] and obtain
qualitatively matching lower and upper bounds for the fixation (absorption) probabilities in
this model.

Using explicit formulas available for the Moran chain, it can be verified that if
g
N

(i)

f
N

(i)
= q ∈ (0, 1) for all N ∈ N and i ∈ Ωo

N
(i), then

p
N

(i) =
1− qi

1− qN
. (10)

This example formally corresponds to the payoff matrix a = b = 1 + 1
w

1−q
q

and c = d = 1.

The expression for the absorbtion probability in the form p
N

(i) = 1−qi
1−qN is universal for finite-

state Markov chains Xt with a space homogenous transition kernel and positive average drift
for which a constant q ∈ (0, 1) can be found such that Mt = qXt is a martingale (see, e.g.,
[16]). Fixation probabilities for the diffusion approximation of the classical Wright-Fisher
model with selection are in the form p(x) = 1−ρx

1−ρ , which is similar. This form of the fixation
probability is believed to be universal for a large class of evolutionary models in structured
populations [1]. Results similar to (10) for the Wright-Fisher process were obtained by
Kimura via diffusion approximations (see also [21]). However, these results are only valid
for large population sizes and Markov chains that move by small steps, i.e. w = 1 − r is
sufficiently small.

The proof of the bounds for a given population size relies on identifying “exponential sub-
and super-martingales” dominating the process (we remark, for instance, that for a linear
Brownian motion Bt + µt, µ > 0, the proper choice is ρ = e−2µ by virtue of Theorem 8.5.6
in [16]).

3.2 Comparison to the neutral Wright-Fisher process

In the regime of neutral selection where w = 0, X
(N)
t is a martingale, and the precise

computation p
N

(i) = i/N readily follows. When w > 0 the situation is more difficult due
to the space inhomogenity of the transition kernel combined with the large amplitude of
one-step fluctuations. The latter is compared here to the nearest-neighbor transitions of a
Moran process, for instance the companion Moran model introduced in [41, 48]. By using
a comparison with the neutral selection case, it is shown in [29] that if Assumption 2.1 is
satisfied, then

p
N

(i) > i/N, ∀ N ≥ N0, i ∈ Ωo
N
. (11)

This result holds for any w > 0 and is an instance of the following general principle.

Proposition 3.2. Let X = (Xt)t∈Z+ be a Markov chain on Ω
N

for some N ≥ 2. For i ∈ Ω
N
,

let

µ(i) = E(Xt+1 −Xt|Xt = i) (12)

denote the local drift of X at site i. Suppose that:
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1. 0 and N are absorbing states.

2. If i ∈ Ωo
N

and j ∈ Ω
N
, then P (Xm = j|X0 = i) > 0 for some m ∈ N.

3. µ(i) ≥ 0 for any i ∈ Ωo
N
.

Let p
N

(i) = P (X absorbs at N |X0 = i). Then p
N

(i) ≥ i/N for any i ∈ Ωo
N
. Furthermore,

the inequality is strict if and only if µ(i) > 0 for at least one site i ∈ Ωo
N
.

Note that under Assumption 2.1, we have the following relation for the local drift of the
Wright-Fisher Markov chain X(N)

µ
N

(i) := E
(
X

(N)
t+1 −X

(N)
t

∣∣X(N)
t = i

)
= Nξ

N
(i)− i

=
i(N − i)

(
f
N

(i)− g
N

(i)
)

if
N

(i) + (N − i)g
N

(i)
> 0, ∀ i ∈ Ωo

N
. (13)

The proof of the proposition is in essence the observation that X is a bounded submartin-
gale, and hence E(XT |X0) = Np

N
(X0) ≥ X0 by the optional stopping theorem [16, Theo-

rem 5.7.5].
In the weak selection regime, [29] provides a nearly complete analysis of p

N
(i) and in

particular obtains a version of the so-called one-third law of evolutionary dynamics for the
model. The results of [29] for the fixation probability under weak selection are further refined
and extended in [34]. In particular, [34] derives a second order correction term to i/N for the
fixation probability p

N
(i). In this paper, we concentrate on the case of directional (beneficial

for type A) selection as postulated in Assumption 2.1, but we do not make the assumption
of weak selection.

3.3 Moran’s bounds and a coupling with the classical Wright-
Fisher chain

Intuitively, it is clear that in the framework of Proposition 3.2, the local drift µ(i) defined
in (12) is a characteristic of the Markov chain Xt which is intimately related to the value of
the fixation probabilities. Notice, for instance, that if X0 = i and T is the absorbtion time
of the Markov chain X, then by the monotone convergence theorem we obtain that

∞∑
t=0

E
(
µ
N

(Xt)
)

= E(XT −X0) = Np
N

(i)− i.

The general heuristic assertion of a close association between the local drift and the fixation
probabilities is especially evident in the particular instance of the Wright-Fisher process,
since according to (13),

ξ
N

(i) =
i

N
+

1

N
µ
N

(i), (14)

and, by virtue of (2),
(
ξ
N

(i)
)
i∈Ωo

N

is the sequence defining the dymamics of the model. Thus,

in view of the inequality in (13), in order to study the shape of p
N

(i) as a function of i it may
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be conceptually desirable to compare X(N) with a suitable stochastic process with positive
drift, for which the solution to the gambler’s ruin problem is explicitly known (see, e.g., [16]).

It has been emphasized in the work of [29, 48] that the fitness difference h
N

(i) = f
N

(i)−
g
N

(i), and in particular its sign, is a major factor influencing the invasion dynamics of the
model. Note that by virtue of (13), the sign of h

N
(i) coincides with the sign of the local

drift µ
N

(i). Moreover, (13) can be rewritten as

µ
N

(i) =
i(N − i)

(
1− g

N
(i)

f
N

(i)

)
i+ (N − i) gN (i)

f
N

(i)

, ∀ i ∈ Ωo
N
, (15)

showing that the value of µ
N

(i) is in fact determined by the ratio g
N

(i)
/
f
N

(i). From this
perspective, Assumption 2.2 together with (7) can be thought of as a tool establishing lower
and upper bounds for the drift in terms of the selection parameter w and payoff matrix of
the underlying game. In fact, (15) yields

i(N − i)(1− γ)

i+ (N − i)γ
≤ µ

N
(i) ≤ i(N − i)(1− α)

i+ (N − i)α
, ∀ i ∈ Ωo

N
, (16)

where the lower and upper bounds have the form of the local drift of the Wright-Fisher

process with a constant selection
g
N

(i)

f
N

(i)
. These bounds suggest in particular the possibility of

a comparison of our model with the classical Wright-Fisher process of mathematical genetics,
and furthermore indicate, at least at the level of heuristic argument, that the dynamics of
X(N) should be similar to that of the Wright-Fisher process with constant selection.

The following lemma, whose proof is included in Section 5.1, is the key technical obser-
vation we use to derive Theorem 3.4, our main result regarding the fixation probability in
finite populations.

Lemma 3.3. Let Assumption 2.1 hold. Then:

(a) There exists a constant ρ ∈ (0, 1) such that E
(
ρX

(N)
t+1 |X(N)

t = i
)
≤ ρi for any N ≥ N0,

i ∈ Ωo
N

and integer t ∈ Z+.

(b) There exists a constant θ ∈ (0, 1) such that E
(
θX

(N)
t+1 |X(N)

t = i
)
≥ θi for any N ≥ N0,

i ∈ Ωo
N

and integer t ∈ Z+.

(c) Furthermore, in the above conclusions one can choose, respectively,

ρ = e−2(1−γ) and θ = e−
2(1−α)
α . (17)

The lemma is a suitable modification of the ideas of Moran [38, 39] adapted to the present
model with a frequency-dependent selection. The values of ρ and θ suggested in (17) are
obtained from the corresponding estimates of Moran for the classical Wright-Fisher chain
with a constant selection [38]. Slightly better bounds can be obtained based on Arnold’s
elaboration of Moran’s original approach [5, 9].

Lemma 3.3 implies that the sequence
(
ρX

(N)
t

)
t∈Z+

is a supermartingale while
(
θX

(N)
t

)
t∈Z+

is a submartingale. Since both ρX
(N)
t and θX

(N)
t are non-negative random variables bounded

9



from above by one, Doob’s optional stopping theorem [16, Theorem 5.7.5] implies that with
probability one,

ρX
(N)
0 ≥ E

(
ρX

(N)
T |X(N)

0

)
= p

N
(X

(N)
0 )ρN +

(
1− p

N
(X

(N)
0 )

)
and

θX
(N)
0 ≤ E

(
θXT |X(N)

0

)
= p

N
(X

(N)
0 )θN +

(
1− p

N
(X

(N)
0 )

)
.

This yields the following exponential bounds of the form (10) for the fixation probabilities.

Theorem 3.4. Suppose that Assumption 2.1 holds. Let constants ρ ∈ (0, 1) and θ ∈ (0, 1)
be determined by (17). Then

1− ρi

1− ρN
≤ p

N
(i) ≤ 1− θi

1− θN
,

for all N ≥ N0 and i ∈ Ωo
N
.

Since 1−ρN
N

< 1−ρi
i

for all i ∈ Ωo
N
, the linear bound in (11) can be recovered as a direct

implication of Theorem 3.4. The upper bound suggested in the theorem indicates that the
exponential lower bound captures correctly the qualitative behavior of p

N
(i) as a function

of the initial state i.
Theorem 3.4 can be strengthened to the following coupling result. In what follows we refer

to a Markov chain on Ω
N

with transition kernel given by (2) as an
(
N,
−→
ξ
N

)
−binomial process,

where
−→
ξ
N

:=
(
ξ
N

(0), ξ
N

(1), . . . , ξ
N

(N)
)

is the vector of conditional frequency expectations
with ξ

N
(0) = ξ

N
(N) = 0 and ξ

N
(i) ∈ (0, 1) for any i ∈ Ωo

N
.

Theorem 3.5. Suppose that Assumption 2.1 is satisfied. Let

−→η
N

(i) =
γ−1i

γ−1i+ (N − i)
and

−→
ζ
N

(i) =
α−1i

α−1i+ (N − i)
. (18)

Then, in a possibly enlarged probability space, for any N ≥ N0 and i ∈ Ωo
N

there exists a

Markov chain (X
(N,1)
t , X

(N,2)
t , X

(N,3)
t )t∈Z+ on Ω

N
× Ω

N
× Ω

N
such that the following holds

true:

1. (X
(N,1)
t )t∈Z+ is an (N,−→η

N
)-binomial process.

2. (X
(N,2)
t )t∈Z+ is an

(
N,
−→
ξ
N

)
-binomial process with

−→
ξ
N

given by (1).

3. (X
(N,3)
t )t∈Z+ is an (N,

−→
ζ
N

)-binomial process.

4. X
(N,1)
0 = X

(N,2)
0 = X

(N,3)
0 = i and X

(N,1)
t ≤ X

(N,2)
t ≤ X

(N,3)
t for all t ∈ N, with

probability one.
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The theorem utilizes in our setting the idea of comparison of a Markov process to a
similar but more explicitly understood one (see, for instance, [13, 14, 32, 43, 47] and refer-
ences therein for early work in this direction). Ignoring the technicalities, the theorem is
a particular case of a more general coupling comparison result due to O’Brien [43] (see in
addition, for instance, Theorem 2 in [32] and Theorem 3.1 in [47] for related results). In
Section 5.2 we give a simple self-contained proof of Theorem 3.5, specifically exploiting a
particular structure of binomial processes.

Theorem 3.5 asserts that there exists a coupling such that for almost any realization of
the triple process (X

(N,1)
t , X

(N,2)
t , X

(N,3)
t )t∈Z+ the entire trajectory of the frequency-dependent

model (X
(N,2)
t )t∈Z+ , whose distribution coincides with the distribution of the chain (X

(N)
t )t∈Z+

studied in this paper, is placed between trajectories of two Wright-Fisher models with con-
stant selection. The result suggests that the qualitative behavior of (X

(N)
t )t∈Z+ in a macro-

scopic level is similar to those of classical Wright-Fisher models with a constant selection.
Furthermore, the hierarchy of the Wright-Fisher models allows to derive lower and upper
bounds for important characteristics of our model in terms of the analogous quantities for
standard Wright-Fisher models with selection. We remark that Theorem 3.4 can be deduced
from Theorem 3.5 combined with results of Moran in [38] which show that the fixation prob-

abilities of (X
(N,1)
t )t∈Z+ are dominated from below by 1−ρi

1−ρN while the fixation probabilities

of (X
(N,3)
t )t∈Z+ are dominated from above by 1−θi

1−θN , where ρ and θ are defined in (17).
Note both η

N
(i) and ζ

N
(i) in (18) are non-decreasing functions of i. It has been shown

in [29] (see the proof of Lemma 1 on p. 679) that ξ
N

(i) has a similar property for a general
payoff matrix A, namely ξ

N
(i) < ξ

N
(i + 1) for all i ∈ Ωo

N
. With this result in hand, we can

formally prove the intuitively obvious statement that p
N

(i) is an increasing function of the
initial state i, and it is also a smooth and strictly monotone function of each of the five
parameters a, b, c, d, and w.

Proposition 3.6.

(i) For a fixed n ≥ N0 and i ∈ Ωo
N
, consider p

N
(i) as a function of the parameters w and

a, b, c, d which is defined within the domain

D :=
{

(a, b, c, d, w) ∈ R5 : w ∈ (0, 1), a, b, c, d > 0
}
.

Then the partial derivatives of p
N

(i) with respect to any of the parameters a, b, c, d, and
w exist anywhere within D. Furthermore,

∂p
N

(i)

∂w
> 0,

∂p
N

(i)

∂b
> 0,

∂p
N

(i)

∂c
< 0,

∂p
N

(i)

∂a
> 0 unless N = 2,

∂p
N

(i)

∂d
< 0 unless N = 2.

(ii) For any fixed N ≥ N0, pN (i) is a strictly increasing function of the parameter i on Ω
N
.

For the sake of completeness the proof of the proposition is included Section 5.3.
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3.4 Branching process limit for large populations

In this section we consider the asymptotic behavior of the model when the population size
approaches infinity. In view of Theorem 3.4 we have the following bounds for the limiting
fixation probability:

1− ρi < lim
N→∞

p
N

(i) < 1− θi.

Thus the following result is a direct implication of Theorem 3.4.

Corollary 3.7. Under Assumption 2.1,

(a) lim infN→∞ pN (i) > 0, ∀ i ∈ N.

(b) lim
N→∞

p
N

(i
N

) = 1 for any sequence i
N
∈ Ωo

N
such that lim

N→∞
i
N

= +∞.

The first part of Corollary 3.7 can be refined as follows.

Theorem 3.8. Let Assumption 2.1 hold. Then limN→∞ pN (i) exists and is strictly positive
for any i ∈ N. Furthermore,

lim
N→∞

p
N

(i) = 1− qi,

where q is the unique in (0, 1) root of the equation q = e−λ(1−q) with

λ =
1− w + wb

1− w + wd
. (19)

Theorem 3.8 implies in particular that just one advantageous mutant can invade an
arbitrarily large finite population with probability uniformly bounded away from zero. A
similar result for the frequency-dependent Moran model of [41, 48] has been obtained in [4].

The proof of Theorem 3.8 is based on the approximation of the Wright-Fisher model by
a branching process with a Poisson distribution of offspring. The idea to study the fixation
probability of a Wright-Fisher model using a branching process approximation goes back to
at least Fisher [22] and Haldane [26]. Typically, this approximation scheme is exploited using
heuristic or numerical arguments [21, 25]. The proof of Theorem 3.8 given in Section 5.4 is
rigorous. A small but essential part of the formal argument is the use of a priori estimates
provided by Theorem 3.4.

Once it has been established that a single advantageous mutant has a non-zero probability
of extinction, it is natural to ask how long extinction takes, if at all. This question is
addressed in the following result.

Theorem 3.9. Suppose that Assumption 2.1 is satisfied. Let λ and q be as defined in the
statement of Theorem 3.8, and introduce

s1 =
4− λ2q2

λq
and s2 =

λe−λ

λq + e−λq − 1
. (20)

12



Then there exist a constant C0 > 0 and a function ψ : (1,∞)→ (0,∞) that depend only on
the payoff matrix (a, b, c, d) and the selection parameter w, such that the following holds true
for any real η > 1, k,m ∈ N, and integers N ≥ N0, J ∈ Ωo

N
:

P (T ≤ m|X(N)
0 = k) ≤

(qs2(1− λmqm)

s2 − λmqm
)k

+ eψ(η)λ−m(kηmλm−N)

+mC0
J3/2

N
+ eψ(η)λ−m(kηmλm−J)

and

P (T ≤ m|X(N)
0 = k) ≥

(qs1(1− λmqm)

s1 − λmqm
)k

−mC0
J3/2

N
− eψ(η)λ−m(kηmλm−J).

Remark 3.10. A few remarks are in order.

(i) An explicit upper bound for C0 can be derived from (34) and (35) below.

(ii) One can set ψ(η) = min
{
ψ > 0 : ex − 1 ≤ ηx for all x ∈ [0, ψλ−1]

}
. This can be seen

from the proof of Lemma 5.6 below.

(iii) The identity q = e−λ(1−q) implies λq < 1 because e−q
−1(1−q) < q for any q ∈ (0, 1) and

e−λ(1−q) is a decreasing function of λ. In particular, for i = 1, 2, we have

lim
m→∞

(qs1(1− λmqm)

s1 − λmqm
)k

= qk,

which is, according to Theorem 3.8 and (31) below, equivalent to

1− lim
N→∞

p
N

(k) = lim
N→∞

lim
m→∞

P (T ≤ m,X
(N)
T = 0|X(N)

0 = k)

= lim
m→∞

lim
N→∞

P (T ≤ m,X
(N)
T = 0|X(N)

0 = k).

On the other hand, a suitable adaptation of the heuristic argument given in Sec-
tion 6.3.1 of [17] for a Moran model suggests that

lim
N→∞

P (T ≤ c logN,X
(N)
T = N |X(N)

0 = k) = 0

as long as c < C1 for some threshold constant C1 > 0. If this heuristic is correct then
the bounds given in the theorem are tight for large values of m and N as long as we
maintain m < c logN for some c < C1.

(iv) The contribution of the correction term eψ(η)λ−m(kηmλm−J) is small for large values of
N if, for instance, one sets J = Nα for some positive real α < 2/3 and maintain
kηmλm < cJ for some constant c ∈ (0, 1).

13



The proof of Theorem 3.9 is given in Section 5.5. The main ingredient of the proof is the
branching process approximation which confirms that the first m steps of the Wright-Fisher
model look with a high probability like the first m steps of a branching process with Poisson
distribution of offspring. The first steps are the most important ones since there is little
randomness involved in the dynamics of the process for intermediate values of i, where, with
high probability, X

(N)
t+1 = ξ

N

(
X

(N)
t

)
> (1 + ε)X

(N)
t for a small ε > 0 (Chernoff-Hoeffding

bounds for a binomial distribution [27] can be used to verify this). Compare also with the
three phases of the fixation process described in detail in Section 6.3.1 of [17]. To estimate the
error of the approximation we use an optimal (so called maximal) coupling of binomial and
Poisson distributions and classical bounds on the total variation distance between the two
distributions. Finally, to evaluate the extinction time distribution of the branching process
we use bounds of [2] obtained through the comparison of a Poisson branching process to a
branching process with a fractional linear generating function of offspring. We remark that
in the context of biological applications, the approximation of an evolutionary process by
a branching process with a fractional linear generating function of offspring was apparently
first considered in [45].

3.5 Numerical example

Consider the following payoff matrix:

A B
A 4 2
B 3 1

Theorem 3.8 indicates a very limited influence of the population size N on the fixation proba-
bility p

N
(i) for large values of N. For illustration purposes we consider a fixed population size

N = 100 and let the selection parameter vary between 0 and 1. Figure 1 shows a comparison
of numerical and analytical results. The blue line represents the analytically obtained limit-
ing fixation probability p∞ := limN→∞ pN (1) = 1−q as a function of the selection parameter
w, while the black dots are numerically obtained fixation probabilities of one advantageous
mutant for N = 100, averaged over 104 independent realizations.

We also performed numerical simulations for the fixed selection parameter w = 0.3 and
the initial number of mutants varying through i = 1, 2, ..., 10. The results of these simulations
are shown in Table 1. In the case of large populations, Theorem 3.8 suggests that the
fixation probability at zero is given by q = 0.5770. We numerically obtained the fixation
probabilities p

N
(i) for the above specified parameters and used a nonlinear least squares

routine in MATLAB to find the best fitting q
N

assuming that p
N

(i) = 1− qi
N
. Table 1 shows

the results of this nonlinear fitting q
N

and the differences q
N
− q for the specified values of

the population sizes N.

4 Conclusion

In this paper, we considered the fixation probability of symmetric games in Wright-Fisher
processes with directional selection describing evolutionary dynamics of two types. Our anal-
ysis shows the existence of exponential lower and upper bounds for the fixation probabilities
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Figure 1: The solid blue line represents the fixation probability p∞(1) = 1 − q of a single
advantageous mutant in the infinite population limit as a function of the selection parameter
w. The black dots represent numerically obtained fixation probabilities p100(1) for six different
values of w. Numerical results are obtained by observing 104 realizations of the Markov chain
(2) with the above specified parameters.

N 10 20 50 100 500 1000 10000
q
N

0.6979 0.6567 0.6090 0.5909 0.5812 0.5792 0.5776
q
N
− q 0.1209 0.0797 0.0320 0.0139 0.0042 0.0022 0.0006

Table 1: q
N

is the value obtained from the nonlinear least squares fitting of numerically
obtained fixation probabilities starting with i = 1, 2, ..., 10 individuals. Up to N=1000, we
realized the Markov chain (2) 104 times and for N = 10000 we used 5× 104 realizations.

for any population size N ∈ N. Using these facts one can draw the following biological
conclusions.

1. The fixation probabilities of an advantageous or a deleterious mutant in a population
of size N depend on both population size and the relative fitnesses of the phenotypes.

2. In the case of advantageous mutants, the dependence on the population size is weak,
i.e. the lower bound on the fixation probability is bounded below by a positive constant
depending only on the fitness of the two phenotypes.

3. The fixation probability q
N

(i) of i deleterious mutants is an exponentially decreasing
function of N.

In addition, we studied the asymptotic of the fixation probability as the population size
goes to infinity. We showed that
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log p
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(i) determined in simulations for various values of
N and several small values of the initial state i.
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4. A single advantageous mutant can invade an arbitrarily large finite population with
probability uniformly bounded away from zero.

5. Whenever the initial population X
(N)
0 of advantageous players is unbounded as N goes

to infinity (even if its proportion X
(N)
0 /N vanishes to zero asymptotically), the fixation

probability p
N

(i) is asymptotically zero for deleterious players and one for advantageous
players.

5 Proofs

This section, divided into five subsections, contains proofs of the results stated in Section 3.
The proof of Lemma 3.3 is given in Section 5.1. The proof of Theorem 3.5 is included
in Section 5.2. Section 5.4 is devoted to the proof of Theorem 3.8. Finally, the proof of
Theorem 3.9 is given in Section 5.5.

5.1 Proof of Lemma 3.3

First, observe that if X is a binomial random variable BIN(N, ξ), then it follows from the
binomial theorem that for any constant ρ ∈ R,

E(ρX) =
N∑
k=0

ρk
(
N

k

)
ξk(1− ξ)N−k = (ξρ+ 1− ξ)N . (21)

Thus, in order to prove part (a) of the lemma we need to show that the following inequality
holds for some ρ ∈ (0, 1) and all N ≥ N0 and i ∈ Ωo

N
:(

ρξ
N

(i) + 1− ξ
N

(i)
)N ≤ ρi.

Using the notation x = i/N, the above inequality can be rewritten as

1− (1− ρ)ξ
N

(Nx) ≤ ρx.

It follows from (1) and Assumption 2.1 that ξ
N

(Nx) ≥ x
x+(1−x)γ

. Thus, it suffices to show

that for some constant ρ ∈ (0, 1) and all x ∈ (0, 1),

x

x+ (1− x)γ
− 1− ρx

1− ρ
≥ 0. (22)

Similarly, in order to prove part (b) of the lemma it is sufficient to show that for some
constant θ ∈ (0, 1) and all x ∈ (0, 1),

x

x+ (1− x)α
− 1− θx

1− θ
≤ 0. (23)

Inequalities (22) and (23) have been analyzed in a similar context by Moran [38] (see specif-
ically the bottom of p. 488 in [38]) who found the feasible solutions given in (17). More
precisely, the last paragraph on page 488 in [38] asserts that, for s, φ ∈ (0, 1), we have
(1+s)x
1+sx

> 1−e−2φx

1−e−2φ on [0,1] if φ ≥ s and (1+s)x
1+sx

< 1−e−2φx

1−e−2φ on [0,1] if φ ≤ s(1+s)−1. To obtain the

formulas in (17) we use this observation by Moran first for the pair γ = s
1+s

and ρ = e−2φ,

and then for the pair α = s
1+s

and θ = e−2φ. The proof of the lemma is complete.
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5.2 Proof of Theorem 3.5

The proof relies on a standard coupling argument. Fix any N ≥ N0. It follows from As-
sumption 2.1 that

η
N

(i) ≤ ξ
N

(i) ≤ ζ
N

(i), ∀ i ∈ Ωo
N
. (24)

Let
(
Ut,k
)
t∈Z+,k∈N

be a double-indexed sequence of independent random variables, each

one distributed uniformly on the interval (0, 1). Using the interpretation of the binomial
random variable as a sum of independent Bernoulli random variables, the Markov chain(
X

(N,1)
t , X

(N,2)
t , X

(N,3)
t

)
t∈Z+

can be constructed inductively in the following manner. For

each t ∈ Z+, define Bernoulli random variables
(
b

(1)
t,k , b

(2)
t,k , b

(3)
t,k

)
1≤k≤N as follows:

b
(t)
k,1 = 1

(
Ut,k ≤ η

N
(X

(N,1)
t )

)
, b

(t)
k,2 = 1

(
Ut,k ≤ ξ

N
(X

(N,2)
t )

)
b

(t)
k,3 = 1

(
Ut,k ≤ ζ

N
(X

(N,3)
t )

)
,

where we use the notation 1(A) to denote the indicator function of the event A. Then set

X
(N,1)
t+1 =

N∑
k=1

b
(t)
k,1, X

(N,2)
t+1 =

N∑
k=1

b
(t)
k,2, X

(N,3)
t+1 =

N∑
k=1

b
(t)
k,3. (25)

It follows from (24) and the fact that both η
N

(i) and ζ
N

(i) are monotone increasing functions

of i, that the inequality X
(N,1)
t ≤ X

(N,2)
t ≤ X

(N,3)
t implies that

ξ
N

(X
(N,2)
t ) ≥ η

N
(X

(N,2)
t ) ≥ η

N
(X

(N,1)
t )

and ξ
N

(X
(N,2)
t ) ≤ ζ

N
(X

(N,2)
t ) ≤ ζ

N
(X

(N,3)
t ), and hence η

N
(X

(N,1)
t ) ≤ ξ

N
(X

(N,2)
t ) ≤ ζ

N
(X

(N,3)
t ).

By virtue of (25), the latter inequalities along with X
(N,1)
t ≤ X

(N,2)
t ≤ X

(N,3)
t imply

X
(N,1)
t+1 ≤ X

(N,2)
t+1 ≤ X

(N,3)
t+1 ,

and the claim follows by induction on t.

5.3 Proof of Proposition 3.6

For i, j ∈ Ω
N

let Q
(N)
i,j = P

(
X

(N)
t+1 = j

∣∣X(N)
t = i

)
. Then, by the Markov property,

p
N

(i) =
N−1∑
j=1

Q
(N)
i,j pN (j) +Q

(N)
i,N , ∀ i ∈ Ωo

N
.

Given N and i, j, consider Q
(N)
i,j as a function R

5 → R of the five independent variables
a, b, c, d, and w. The existence of the partial derivatives of p

N
(i) with respect to these variables

follows from the implicit function theorem applied to the smooth functions Q
(N)
i,j and the

function f = (f1, . . . , fN−1) : R5+N−1 → R
N−1, where

fi
(
a, b, c, d, w, p

N
(1), . . . , p

N
(N − 1)

)
:= p

N
(i)−

N−1∑
j=1

Q
(N)
i,j pN (j)−Q(N)

i,N .
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We remark that the functions Q
(N)
i,j are smooth by virtue of (1) and (2). To apply the implicit

function theorem one needs to check that a certain Jacobian is invertible. This condition is
equivalent to the claim that one is not an eigenvalue of the (N −1)× (N −1) matrix

(
Q

(N)
i,j

)
.

It can be shown (see, for instance, Section 1.5 in [33]) that, since the finite-state Markov

chain X
(N)
t is irreducible, the Perron-Frobenius eigenvalue of this matrix is strictly less than

one, and hence the conditions of the implicit function theorem are satisfied.
The monotonicity of p

N
(i) on each of the parameters a, b, c, d, w, and i follows then from

the corresponding monotonicity of ξ
N

(i) [29, p. 679] and the following version of O’Brien’s
results in [43]:

Proposition 5.1. Let −→η
N

= (ηi)
N
0=1 and

−→
ξ
N

= (ξi)
N
i=0 be two vectors in R

N+1 such that

(i) η0 = ξ0 = 0, ηN = ξN = 1, and 0 < ηi ≤ ξi < 1 for any i ∈ Ωo
N
.

(ii) Either ηi ≤ ηi+1 for all i ∈ Ωo
N

or ξi ≤ ξi+1 for all i ∈ Ωo
N
.

Then for any i, j ∈ Ωo
N
, i ≤ j, there exists a Markov chain (X

(N,1)
t , X

(N,2)
t )t∈Z+ on Ω

N
× Ω

N

with the following properties:

1. (X
(N,1)
t )t∈Z+ is an (N,−→η

N
)-binomial process.

2. (X
(N,2)
t )t∈Z+ is an

(
N,
−→
ξ
N

)
-binomial process.

3. With probability one, X
(N,1)
0 = i, X

(N,2)
0 = j, and X

(N,1)
t ≤ X

(N,2)
t for t ∈ Z+.

We remark that Theorem 3.5 and Proposition 5.1 are two variants of the same result,
and a self-contained proof of the latter can be obtained using a coupling argument similar
to the one we employed in the proof of the theorem.

5.4 Proof of Theorem 3.8

Throughout the argument we formally treat the process X(N) as a Markov chain on
Z+ = N ∪ {0} with absorbtion states at 0 and N,N + 1, N + 2, . . . , and assume that all
chains X(N), N ≥ N0, have a common initial state, a given integer i0 ∈ N.

First, observe that for any fixed i ∈ N,

lim
N→∞

ξ
N

(i)N = λi,

where λ is defined in (19). Therefore, for any fixed pair of integer states i > 0 and j ≥ 0,
and an integer time t ∈ Z+,

lim
N→∞

P
(
X

(N)
t+1 = j

∣∣X(N)
t = i

)
= e−λi

(λi)j

j!
. (26)

Let Z =
(
Zt
)
t∈Z+

be a Markov chain on Z+ with absorption state at zero and Poisson

transition kernels

P
(
Zt+1 = j

∣∣Zt = i
)

= e−λi
(λi)j

j!
, i ∈ N and j ≥ 0.

19



Assume that the Markov chain Z has the same initial state Z0 = i0 as any X(N), N ≥ N0.
Since the sum of two independent Poisson random variables is a Poisson random variable with
the parameter equal to the sum of their parameters, we can assume without loss of generality
that Z is a Galton-Watson branching process with a Poisson offspring distribution. More
precisely, we assume that (cf. [21, Section 1.4])

Zt+1 =
Zt∑
k=1

Yt,k (27)

for some independent random variables Yt,k, t ∈ Z+, k ∈ N, each one distributed as
Poisson(λ), namely

P (Yt,k = j) = e−λ
λj

j!
, j ≥ 0,

for all t ∈ Z+ and k ∈ N, with the parameter λ introduced in (19). As usual, we convene
that the sum in (27) is empty if Zt = 0.

The convergence of the transition kernels in (26) implies the weak convergence of the
sequence of Markov chains X(N) to the branching process Z (see, for instance, Theorem 1
in [31]). Since λ > 1 under the conditions of Theorem 3.8 (recall that w > 0 and b > d), it
follows that

P
(

lim
t→∞

Zt = +∞
)
> 0. (28)

Let T
(N)
0 = inf

{
t > 0 : X

(N)
t = 0

}
and T0 = inf{t > 0 : Zt = 0} be the first hitting time of

zero by the Markov chains X(N) and Z, respectively. Convene, as usual, that the infimum of
an empty set is +∞. T0 is the extinction time of the branching process Z, and in this notation

(28) reads P (T0 <∞) < 1. In fact (see, for instance, [21, Section 1.4]), q =
[
P (T0 <∞)

]1/i0
is the unique in (0, 1) root of the fixed-point equation q = e−λ(1−q), whose right-hand side is
the moment-generating function of Yt,k evaluated at q ∈ (0, 1).

Since the transition kernel of (X
(N)
t )t∈Z+ converges to that of (Zt)t∈Z+ ,

lim
N→∞

P
(
T

(N)
0 < K

)
= P (T0 < K), ∀ K ∈ N. (29)

Therefore, by the monotone convergence theorem,

lim
K→∞

lim
N→∞

P
(
T

(N)
0 < K

)
= P (T0 <∞). (30)

Remark 5.2. The indicator 1(T0 <∞) is not a continuous function of the stochastic process
in the appropriate topology. This can be understood intuitively by the fact that the equality
of two processes during an arbitrarily large but finite interval of time does not guarantee
that the corresponding two indicators have the same value. Hence, no standard continuous
mapping theorem [7] seems to apply in order to derive (29) with K = +∞ directly from the
results of [31].

20



We conclude the proof of Theorem 3.8 by showing that we can interchange the limits in
the above identity, and hence

lim
N→∞

P
(
T

(N)
0 <∞

)
= lim

N→∞
lim
K→∞

P
(
T

(N)
0 < K

)
= P (T0 <∞). (31)

To this end, write∣∣P(T (N)
0 <∞

)
− P (T0 <∞)

∣∣ ≤ ∣∣P(T (N)
0 <∞

)
− P

(
T

(N)
0 < K

)∣∣
+
∣∣P(T (N)

0 < K
)
− P (T0 < K)

∣∣+
∣∣P (T0 < K)− P (T0 <∞)

∣∣
:= A1(N,K) + A2(N,K) + A3(N,K), (32)

where the last line serves to define the events Ai(N,K), i = 1, 2, 3.
Pick any ε > 0. First we will estimate

A1(N,K) =
∣∣P(T (N)

0 <∞
)
− P (T

(N)
0 < K)

∣∣ = P
(
K ≤ T

(N)
0 <∞

)
.

It follows from Assumption 2.2 that for all i, N ∈ N we have

ξ
N

(i) =
i

i+ (N − i)g
N

(i)/f
N

(i)
≤ i

αN
.

Therefore, using the strong Markov property and the lower bound in Theorem 3.4, we obtain
for any m ∈ N and N sufficiently large,

A1(N,K) = P
(
K ≤ T

(N)
0 <∞

)
= P

(
K ≤ T

(N)
0 <∞, max

0≤t≤K−1
X

(N)
t < m

)
+ P

(
K ≤ T

(N)
0 <∞, max

0≤t≤K−1
X

(N)
t ≥ m

)
≤ P

(
X

(N)
1 6= 0, . . . , X

(N)
K−1 6= 0, max

0≤t≤K−1
X

(N)
t < m

)
+

N−1∑
j=m

P
(

max
0≤t≤K−1

X
(N)
t = j

)
·
(
1− p

N
(j)
)

≤
[
1− P

(
X

(N)
t+1 = 0

∣∣X(N)
t = m

)]K−1

+
(
1− p

N
(m)

)
≤
[
1−

(
1− m

αN

)N]K−1

+
ρm

1− ρN
.

(33)

Choose now m0 ∈ N so large that

lim sup
N→∞

ρm0

1− ρN
= ρm0 ≤ ε

6
,

and then K1 so large that for any K > K1,

lim sup
N→∞

[
1−

(
1− m0

αN

)N]K
=
[
1− exp

(
−m0

α

)]K
≤ ε

6
.
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Then, for any K > K1,

lim sup
N→∞

A1(N,K) ≤ ε

3
.

Find now K2 ∈ N such that for any K > K2 we have

A3(N,K) =
∣∣P (T0 < K)− P (T0 <∞)

∣∣ ≤ ε

3
.

Finally, pick any K0 > max{K1, K2}, and then using (30) choose N1 such that N > N1

implies

A2(N,K0) =
∣∣P(T (N)

0 < K0

)
− P (T0 < K0)

∣∣ ≤ ε

3
.

It follows from the above estimates for Ai(N,K0), i = 1, 2, 3, and the basic inequality (32)
that

lim sup
N→∞

∣∣P(T (N)
0 <∞

)
− P (T0 <∞)

∣∣ ≤ ε.

Since ε > 0 is an arbitrary positive number,

lim
N→∞

∣∣P(T (N)
0 <∞

)
− P (T0 <∞)

∣∣ = 0.

This establishes (31), and therefore, since P (T0 < ∞) = qi0 , it completes the proof of
Theorem 3.8.

5.5 Proof of Theorem 3.9

The proof of the theorem is broken up into a series of lemmas. Throughout the argu-
ment we continue to use notations introduced in Section 5.4. We will use a certain optimal
coupling between the branching process (Zt)t∈Z+ and the Wright-Fisher model (X

(N)
t )t∈Z+ .

By coupling we mean constructing in the same probability space a joint distribution of a
pair of processes such that their marginal distributions coincide with those of (Zt)t∈Z+ and

(X
(N)
t )t∈Z+ . With a slight abuse of notation we will denote by (X

(N)
t , Zt)t∈Z+ the process of

pairs constructed below, thus preserving the original names for the two marginal components
of the coupled process. The construction specifically aims to minimize (and also enable us

to estimate) P (X
(N)
t 6= Zt). We fix k ∈ N and assume throughout the proof that N > k and

X
(N)
0 = Z0 = k.

To explain the coupling construction, we need to recall the following general result (see,
for instance, Appendix A1 in [6]):

Proposition 5.3. Let X and Y be two random variables and δ(X, Y ) ≥ 0 be the total
variation distance between their distributions. That is,

δ(X, Y ) := sup
A
|P (X ∈ A)− P (Y ∈ A)|,

where the supremum is taken over measurable subsets A of the real line. Then there exists a
probability space and a random pair

(
X̃, Ỹ

)
defined on the same probability space such that
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1. X̃ is distributed the same as X.

2. Ỹ is distributed the same as Y.

3. P
(
X̃ 6= Ỹ ) = δ(X, Y ).

If X and Y are defined on the set of non-negative integers, the total variation distance
δ(X, Y ) is equal to 1

2

∑∞
n=0 |P (X = n)−P (Y = n)| (see [16] for more properties of the total

variation distance). The coupling described in Proposition 5.3 is often called a maximal
coupling of random variables X and Y.

We will also use the following coupling inequalities from the literature (for the first
assertion see, for instance, Theorem 4 in [11] and for the second one Theorem 1.C(i) in [6]):

Proposition 5.4.

(i) Let X = BIN(N, p) be a binomial random variable with parameters N ∈ N and p ∈ [0, 1]
and Y = Poisson(Np) be a Poisson random variable with parameter λ = Np. If λ > 1, then
δ(X, Y ) ≤ p

2
.

(ii) Let X and Y be two Poisson random variables with parameters λ > 1 and µ > 0,
respectively. Then δ(X, Y ) ≤ 1√

λ
|µ− λ|.

Using the above results, we can construct a coupling of the Wright-Fisher Markov chain
(X

(N)
t )t∈Z+ and the branching process (Zt)t∈Z+ as follows. The resulting joint process

(X
(N)
t , Zt)t∈Z+ will be a Markov chain, and we are now in position to describe its transi-

tion kernel. Suppose that the random pairs (X
(N)
s , Zs) have been defined and sampled for all

s ≤ t and that X
(N)
s = Zs for all s ≤ t. Let it be the common value of Zt and X

(N)
t . Then,

using the above results and at first approximating X
(N)
t+1 by a Poisson random variable with

parameter Nξ
N

(it), we can construct the pair (X
(N)
t+1 , Zt+1) in such a way that

P (X
(N)
t+1 6= Zt+1|Xt = Zt = it)

≤ 1

2
ξ
N

(it) +
1√
λit
|Nξ

N
(it)− λit| (34)

≤ it
2αN

+
1√
λit

∣∣∣NξN (it)−
f
N

(it)

g
N

(it)
it

∣∣∣+
1√
λit

∣∣∣fN (it)

g
N

(it)
it − λit

∣∣∣.
A bit tedious but straightforward calculation shows that in this coupling construction

P (X
(N)
t+1 6= Zt+1|Xt = Zt = it) ≤ C0

i
3/2
t

N
, (35)

where C0 is a constant which depends only on the payoff matrix (a, b, c, d) and the selection
parameter w, but is independent of it and N.

Once X
(N)
t 6= Zt occurs for the first time, we can continue to run the processes (X

(N)
s )s≥t

and (Zs)s≥t independently of each other. The above discussion is summarized in the following
lemma.
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Lemma 5.5. There exist a probability space and a constant C0 > 0 which depends on the
payoff matrix (a, b, c, d) only, such that the processes (X

(N)
t )t∈Z+ and (Zt)t∈Z+ can be defined

jointly in this probability space and the following holds true:

1. The pairs (X
(N)
t , Zt) form a Markov chain.

2. The inequality in (35) is satisfied for any it ∈ Ω
N
.

3. For any i, j, k,m ∈ Ω
N

such that i 6= j, we have

P (X
(N)
t+1 = k, Zt+1 = m|Xt = i, Zt = j)

= P (X
(N)
t+1 = k|Xt = i) · P (Zt+1 = m|Zt = j).

In the rest of the proof of Theorem 3.9 we will consider the Markov chain (X
(N)
t , Zt)t∈Z+

as described in Lemma 5.5. For k ∈ N we will denote by Pk the distribution of the Markov
chain (X

(N)
t , Zt)t∈Z+ conditioned on X

(N)
0 = Z0 = k. We will denote by Ek the corresponding

expectation operator.
Let τ

N
> 0 be the first time when the path of the Wright-Fisher model diverges from the

path of the branching process, that is

τ
N

= inf{t ∈ N : X
(N)
t 6= Zt}. (36)

In the above coupling construction, as long as Zt = X
(N)
t the next pair (X

(N)
t+1 , Zt+1) is

sampled using the maximal coupling, and after the first time when it occurs that Zt 6= X
(N)
t

we continue to sample (Zs)s≥τ
N

and (X
(N)
s )s≥τ

N
independently. We remark that the third

property in the conclusion of Lemma 5.5 (eventual independence of the marginal processes)
will never be used in our proof and is needed only to formally specify in a certain way the
construction of the coupled Markov chain for all times t ∈ Z+. In fact, we are going to
observe and study the properties of the coupled chain only up to the time τ

N
.

Fix now any m ∈ N and η > 1. We will consider only large enough values of N, namely
we will assume throughout that N > (λη)m. Recall T from (4). Similarly, for the branching
process Zt define

σ
N

= inf{t ∈ N : Zt = 0 or Zt ≥ N}.

Recall τ
N

from (36). To evaluate the distribution function of T we will use the following
basic inequalities valid for any k,m ∈ N :

Pk(T ≤ m) ≤ Pk(T ≤ m, τ
N
> m) + Pk(τN ≤ m)

≤ Pk(σN ≤ m) + Pk(τN ≤ m) (37)

and

Pk(T ≤ m) ≥ Pk(T ≤ m, τ
N
> m)

≥ Pk(σN ≤ m)− Pk(τN ≤ m). (38)

In the next two lemmas we estimate P (σ
N
≤ m). For t ∈ N let

Wt = max
0≤i≤t

Zi. (39)

First, we will establish the following inequality:
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Lemma 5.6. For all η > 1 there exists θη > 0 such that for any θ ∈ (0, θη] and k, J,m ∈ N
we have

Pk(Wm ≥ J) ≤ eθλ
−m(kηmλm−J).

Proof. Let Ut := λ−tZt. Then (Ut)t∈Z+ is a martingale with respect to its natural filtration.
For any θ > 0, f(x) = eθx is a convex function and hence the sequence eθUt , t ∈ Z+, form a
sub-martingale. Hence, by Doob’s maximal inequality (see, for instance, Theorem 5.4.2 in
[16]),

Pk(Wm ≥ J) = Pk
(

max
0≤k≤m

eθUk ≥ eθJλ
−m) ≤ e−θJλ

−m
Ek
(
eθUm

)
= e−θJλ

−m
Ek
(
Ek
(
eθλ

−mZm
∣∣Zm−1

))
= e−θJλ

−m
Ek
(
exp
(
λZm−1(eθλ

−m − 1)
))
. (40)

Pick now θ > 0 so small that ex − 1 ≤ ηx for any positive x ≤ θλ−1. It follows then from
(40) that for any J,m ∈ N,

Pk(Wm ≥ J) ≤ e−θJλ
−m
Ek
(
eθηλ

m−1Zm−1
)
.

Applying induction, we obtain that

Pk(Wm ≥ J) ≤ e−θJλ
−m
Ek
(
eθη

mZ0
)

= e−θJλ
−m · eθηmk,

as required.

Recall now the notation T0 = inf{t ∈ N : Zt = 0}. It follows from the results of [2] that
for any k ∈ N,(qs1(1− λmqm)

s1 − λmqm
)k
≤ P (T0 ≤ m|Z0 = k) ≤

(qs2(1− λmqm)

s2 − λmqm
)k
, (41)

where s1 and s2 are introduced in (20). Combining these inequalities with the result of
Lemma 5.6 for J = N we arrive to the following result:

Lemma 5.7. Let s1 and s2 be defined by (20). Then, for any real η > 1 and integers
k, J,m,N ∈ N, the following holds true:

(i) Pk(σN ≤ m) ≤
(
qs2(1−λmqm)
s2−λmqm

)k
+ eθηλ

−m(kηmλm−N), where θη is the constant introduced

in the statement of Lemma 5.6.

(ii) Pk(σN ≤ m) ≥
(
qs1(1−λmqm)
s1−λmqm

)k
.

Notice that the identity q = e−λ(1−q) implies λq < 1 because e−q
−1(1−q) < q for any

q ∈ (0, 1) and e−λ(1−q) is a decreasing function of λ.
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Recall τ
N

from (36). In view of (37) and (38), in order to complete the proof of Theo-
rem 3.9 it remains to evaluate Pk(τN ≤ m). To this end, recall Wt from (39), fix any J ∈ N,
and write using the Markov property of (X

(N)
t , Zt)t∈Z+ and the estimate in (35),

Pk(τN ≤ m) ≤ Pk(τN ≤ m and Wm < J) + Pk(Wm ≥ J)

≤ Pk

( m⋃
t=1

{
X

(N)
t−1 = Zt−1 < J, X

(N)
t 6= Zt

})
+ Pk(Wm ≥ J)

=
m∑
t=1

Pk
(
X

(N)
t 6= Zt

∣∣X(N)
t−1 = Zt−1 < J

)
· Pk
(
X

(N)
t−1 = Zt−1 < J

)
+ Pk(Wm ≥ J)

≤
m∑
t=1

Pk
(
X

(N)
t 6= Zt

∣∣X(N)
t−1 = Zt−1 < J

)
+ Pk(Wm ≥ J)

≤ mC0
J3/2

N
+ Pk(Wm ≥ J). (42)

Using the result in Lemma 5.6 we can deduce from (42) the following:

Lemma 5.8. For any real η > 1 and integers N,m ∈ N, J ∈ Ωo
N
, we have

Pk(τN ≤ m) ≤ mC0
J3/2

N
+ eψ(η)λ−m(kηmλm−J),

where C0 is the constant introduced in (35) and ψ(η) is the constant θη introduced in the
statement of Lemma 5.6.

The claim of Theorem 3.9 follows now from the bounds in (37) and (38) along with the
estimates given in Lemma 5.7 and Lemma 5.8.

6 Appendix A: Moran process

The goal of this section is to obtain an analogue of Theorem 3.1 (i. e., of the results stated
in full detail in Theorem 3.4 and Theorem 3.8) for the frequency-dependent Moran process
introduced in [41, 48]. The main result of this section is stated in Theorem 6.2.

For a given integer N ≥ 2, the Moran process which we denote by Y
(N)
t , t ∈ Z+, is a

discrete-time birth and death Markov chain on Ω
N

with transition kernel

P
(N)
i,j := P

(
Y

(N)
t+1 = j

∣∣Y (N)
t = i

)
defined as follows. The chain has two absorption states, 0 and N, and for any i ∈ Ωo

N
,

P
(N)
i,j =


N−i
N
ξ
N

(i) if j = i+ 1
i
N

(
1− ξ

N
(i)
)

if j = i− 1

1− P (N)
i,i−1 − P

(N)
i,i+1 if j = i

0 otherwise.
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The process in this form, with a general selection parameter w ∈ (0, 1], was introduced in
[41]. We remark that even though [48] formally considered only the basic variant with w = 1,
their main theorems hold for an arbitrary w ∈ (0, 1].

Similarly to (3), we define

p̂
N

(i) = P
(
Y (N)
τ = N |Y (N)

0 = i
)
,

where τ = inf
{
t > 0 : Y

(N)
t = 0 or Y

(N)
t = N

}
. Since the Moran model is a birth-death pro-

cess, the fixation probabilities are known explicitly [41, 48] (see, for instance, Example 6.4.4
in [16] for a general birth and death chain result):

p̂
N

(i) =
1 +

∑i−1
j=1

∏j
k=1

g
N

(k)

f
N

(k)

1 +
∑N−1

j=1

∏j
k=1

g
N

(k)

f
N

(k)

. (43)

In what follows we however bypass a direct use of this formula.
The result following is an analogue of Lemma 3.3 for the Moran process.

Lemma 6.1. Let Assumption 2.2 hold. Then for any N ≥ N0 and i ∈ Ωo
N
,

E
(
γY

(N)
t+1

∣∣Y (N)
t = i

)
≤ γi and E

(
αY

(N)
t+1

∣∣Y (N)
t = i

)
≥ αi. (44)

Proof. We will only prove the first inequality in (44). The proof of the second one can be
carried out in a similar manner. We have:

E
(
γY

(N)
t+1 |Y (N)

t = i
)

= γi+1N − i
N

ξ
N

(i) + γi−1 i

N

(
1− ξ

N
(i)
)

+ γi
(

1− N − i
N

ξ
N

(i)− i

N

(
1− ξ

N
(i)
))

= γi + γi−1(1− γ)
i

N
− γi−1(1− γ)ξ

N
(i)
(
γ + (1− γ)

i

N

)
.

Since by virtue of (2.2) and Assumption 2.2,

i

N
− ξ

N
(i)
(
γ + (1− γ)

i

N

)
≤ 0,

we conclude that E
(
γY

(N)
t+1

∣∣Y (N)
t = i

)
≤ γi.

In the same way as Lemma 3.3 implies Theorem 3.4, the above result yields the following
bounds for the fixation probabilities in the Moran process:

1− γi

1− γN
≤ p̂

N
(i) ≤ 1− αi

1− αN
. (45)

More precisely, we have:

Theorem 6.2. Let Assumption 2.1 hold. Then:
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(i) For any N ≥ N0 and i ∈ Ωo
N
, the inequalities in (45) hold true.

(ii) Furthermore, for any i ∈ N,

lim
N→∞

p̂
N

(i) = 1− λ−i, (46)

where λ is defined in (19).

A proof of the limit in (46) is outlined at the end of the appendix, after the following
Remark.

Remark 6.3. The identities for the optimal values of α and γ given in (7) suggest that in
some cases one of the bounds in (45) might be asymptotically tight for large populations. The
purpose of this remark is to explore conditions for the equalities λ−1 = α or λ−1 = γ to hold

true. By the definition given in (19), λ = limN→∞
f
N

(i)

g
N

(i)
for any i ∈ N. Moreover, for any

N ≥ N0,

f
N

(1)

g
N

(1)
=

1− w + wb

1− w + wd+ (c− d)(N − 1)−1
(47)

and

f
N

(N − 1)

g
N

(N − 1)
=

1− w + wa+ (b− a)(N − 1)−1

1− w + wc
. (48)

It follows from (47) that

λ =
1− w + wb

1− w + wd
=

 sup
N≥N0

f
N

(1)

g
N

(1)
if c ≥ d

inf
N≥N0

f
N

(1)

g
N

(1)
if c ≤ d.

Furthermore, (48) implies that

1− w + wa

1− w + wc
=

 inf
N≥N0

f
N

(N−1)

g
N

(N−1)
if b ≥ a

sup
N≥N0

f
N

(N−1)

g
N

(N−1)
if b ≤ a

and

1− w + wa+ (b− a)(N0 − 1)−1

1− w + wc
=

 max
N≥N0

f
N

(N−1)

g
N

(N−1)
if b ≥ a

min
N≥N0

f
N

(N−1)

g
N

(N−1)
if b ≤ a.

In principle, the last three identities contain all the information which is needed to iden-
tify necessary and sufficient conditions for the occurrence of either α = λ−1 or γ = λ−1,

where it is assumed, as in (7), that the optimal bounds α = infN≥N0 mini∈Ωo
N

g
N

(i)

f
N

(i)
and
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γ = supN≥N0
maxi∈Ωo

N

g
N

(i)

f
N

(i)
are employed. For instance, in the generic prisoner’s dilemma

case b > d > a > c one can set

γ−1 = λ = inf
N≥N0

min
i∈Ωo

N

f
N

(i)

g
N

(i)
(49)

provided that 1− w + wb
1− w + wd

≤ 1− w + wa
1− w + wc , which is equivalent to

(1− w)(c+ b− a− d) ≤ w(ad− bc).

This leads us to consider the following possible scenarios for a prisoner’s-dilemma-type un-
derlying game, that is assuming that b > d > a > c :

1. ad ≥ bc and c + b − a − d ≤ 0 (for instance, b = 4, d = 3, a = 2, c = 1). In this case
(49) holds for any w ∈ (0, 1].

2. ad > bc and c + b − a − d > 0 (for instance, b = 5, d = 3, a = 2, c = 1). In this case
(49) holds if and only if

1− w
w
≤ ad− bc
c+ b− a− d

⇔ w ≥
(

1 +
ad− bc

c+ b− a− d

)−1

.

3. ad = bc and c + b − a − d > 0 (for instance, b = 6, d = 3, a = 2, c = 1). In this case
(49) holds only if w = 1.

4. ad < bc and c + b − a − d ≥ 0 (for instance, b = 7, d = 3, a = 2, c = 1). In this case
(49) holds for no w ∈ (0, 1].

5. It remains to consider the case when ad < bc and c+ b− a− d < 0. We will now verify
that this actually cannot happen. To get a contradiction, assume that this scenario is
feasible and let ε = min{b− d, a− c}, d′ = d+ ε, c′ = c+ ε. Then

c′ + b− a− d′ = c+ b− a− d < 0 (50)

and, since ad < bc and a < b,

ad′ = ad+ aε < bc′ = bc+ bε. (51)

But, due to the choice of ε we made, we should have either b = d′ or a = c′. In the
former case (50) and (51) imply the combination of inequalities c′ − a < 0 and a < c′,
while in the latter they yield b− d′ < 0 and d′ < b, neither of which is possible.

The limit in (46) has been computed in [4] (technically, in the specific case w = 1), see in
particular formula (39) there. The proof in [4] relies on (43) and involves some semi-formal
approximation arguments. We conclude this appendix with the outline of a formal proof of
this result which is based on a different approach, similar to the one employed in the proof
of Theorem 3.8.
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Toward this end observe first that, provided that both processes have the same initial
state, the fixation probabilities of the Markov chain Y (N) coincide with those of a Markov
chain Ỹ (N) =

(
Ỹ

(N)
t

)
t∈Z+

on the state space Ω
N

with transition kernel

P̃
(N)
i,j := P

(
Ỹ

(N)
t+1 = j

∣∣Ỹ (N)
t = i

)
which is defined as follows. Similarly to Y (N), the chain Ỹ (N) has two absorbtion states, 0
and N. Furthermore, for any i ∈ Ωo

N
,

P̃
(N)
i,j =


P

(N)
i,i+1

P
(N)
i,i−1+P

(N)
i,i+1

if j = i+ 1

P
(N)
i,i−1

P
(N)
i,i−1+P

(N)
i,i+1

if j = i− 1

0 otherwise.

The advantage of using the chain Ỹ (N) over Y (N) rests on the fact that while both P
(N)
i,i−1 and

P
(N)
i,i+1 converge to zero as N →∞,

lim
N→∞

P̃
(N)
i,i+1 = lim

N→∞

N−i
N
ξ
N

(i)
N−i
N
ξ
N

(i) + i
N

(
1− ξ

N
(i)
) = lim

N→∞

ξ
N

(i)

ξ
N

(i) + i
N

=
λ

1 + λ

and, consequently, limN→∞ P̃
(N)
i,i−1 = 1

1+λ
. In other words, as N →∞, the sequence of Markov

chains Ỹ (N) converges weakly to the nearest-neighbor random walk (birth and death chain)

Z̃ =
(
Z̃t
)
t∈Z+

on Z+ with absorbtion state at zero and transition kernel defined at i ∈ N as

follows:

P
(
Z̃t+1 = j

∣∣Z̃t = i) =


λ

1+λ
if j = i+ 1

1
1+λ

if j = i− 1

0 otherwise.

If λ > 1, then, similarly to (28), we have P
(
limt→∞ Z̃t = +∞

)
> 0. The rest of the proof is

similar to the argument following (28) in the proof of Theorem 3.8, with the processes Ỹ (N)

and Z̃ considered instead of, respectively, X(N) and Z. The only two exceptions are:
1. P

(
limt→∞ Z̃t = 0

∣∣Z̃t = i
)

= λi for any i ∈ N. This follows from the solution to the
“infinite-horizon” variation of the standard gambler’s ruin problem [16] (take the limit as

N →∞ in (43) assuming that
g
N

(k)

f
N

(k)
= λ−1 for all N, k ∈ N).

2. The last four lines in (33) should be suitably replaced. For instance, one can use the
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following bound:

P
(
Ỹ

(N)
1 6= 0, . . . , Ỹ

(N)
K−1 6= 0, max

0≤t≤K−1
Ỹ

(N)
t < m

)
+

N−1∑
j=m

P
(

max
0≤t≤K−1

Ỹ
(N)
t = j

)
·
(
1− p̂

N
(j)
)

≤
[
1− P

(
Ỹ

(N)
1 = m− 2, Ỹ

(N)
2 = m− 3, . . . , Ỹ

(N)
m−1 = 0

∣∣Ỹ (N)
0 = m− 1

)] K
m−1

+
(
1− p̂

N
(m)

)
≤
[
1−

m−1∏
i=1

P
(N)
i,i−1

P
(N)
i,i−1 + P

(N)
i,i+1

] K
m−1

+
γm

1− γN

=
[
1−

m−1∏
i=1

g
N

(i)

g
N

(i) + f
N

(i)

] K
m−1

+
γm

1− γN

≤
[
1−

( α

1 + α

)m−1] K
m−1

+
γm

1− γN
.

We leave the details to the reader.

7 Appendix B

In this short appendix we discuss an interpretation of the drift µ
N

(i) which is not used
anywhere the paper, but it is worthwhile to state it explicitly as it is of independent interest.
For i ∈ Ω

N
and j = 1, . . . , N, let

SN,i(j) =

{
1 if j ≤ i
0 if j > i

and FN,i(j) =

{
f
N

(i) if j ≤ i
g
N

(i) if j > i.

Thus, if one enumerates and labels the individuals at the state X
(N)
t = i in such a way that

the first i individuals are of type A and get labeled 1, and the remaining N − i individuals
are of type B and get labeled 0, then SN,i(j) and FN,i(j) represent, respectively, the label
and the fitness of the j-th individual. Furthermore, using the above enumeration, let (u, v),
u < v, be a pair of individuals chosen at random. That is,

P (u = j, v = k) =
2

N(N − 1)
for any j, k ∈ Ω

N
\{0}, j < k.

Let

HN,i :=
2i(N − i)
N(N − 1)

= E
(
SN,i(v)− SN,i(u)

)
be the heterozygosity [17, Section 1.2] of the Wright-Fisher process X(N) at state i ∈ Ωo

N
, that

is the probability that two individuals randomly chosen from the population when X
(N)
t = i
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have different types. In this notation,

µ
N

(i) =
N(N − 1)

2
H
N

(i)
f
N

(i)− g
N

(i)

if
N

(i) + (N − i)g
N

(i)

=
N(N − 1)

2
·
E
(
FN,i(v)− FN,i(u)

)∑N
j=1 FN,i(j)

=
1

2

∑N
j,k=1

∣∣FN,i(k)− FN,i(j)
∣∣∑N

j=1 FN,i(j)
,

suggesting that the drift µ
N

(i) can serve as a measure of heterozygosity that is suitable for
our game-theoretic framework.

Acknowledgements

The work of T. C. was partially supported by the Alliance for Diversity in Mathematical
Sciences Postdoctoral Fellowship. O. A. thanks the Department of Mathematics at Iowa
State University for its hospitality during a visit in which part of this work was carried
out. A.M. would like to thank the Computational Science and Engineering Laboratory at
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