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Abstract

We study the stationary solution to the recursion Xn+1 = γXn+ξn, where γ ∈ (0, 1)
is a constant and ξn are Gaussian variables with random parameters. Specifically,
we assume that ξn = µn + σnεn, where (εn)n∈Z is an i.i.d. sequence of standard
normal variables and (µn, σn)n∈Z is a stationary and ergodic process independent of
(εn)n∈Z, which serves as an exogenous dynamic environment for the model. We describe
basic features of the stationary solution as a mixture of Gaussian random series, its
asymptotic behavior when γ → 1, and obtain limit theorems for its extreme values and
partial sums.

MSC2010: primary 60K37, 60G15; secondary 60F05, 62M10.
Keywords: autoregressive processes, discrete-time Ornstein-Uhlenbeck process, random re-
cursions, processes in random environment, Gaussian processes.

1 Introduction

This paper is devoted to the study of solutions to the following linear recursion (stochastic
difference equation):

Xn+1 = γXn + ξn, (1)

where γ ∈ (0, 1) is a constant and (ξn)n∈Z is a stationary and ergodic sequence of normal
variables with random means and variances. More precisely, we suppose that

ξn = µn + σnεn, n ∈ Z,

where (εn)n∈Z is an i.i.d. sequence of standard (zero mean and variance one) Gaussian
random variables and (µn, σn)n∈Z is an independent stationary and ergodic process. Denote

ωn = (µn, σn) ∈ R2, n ∈ Z, (2)
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and ω = (ωn)n∈Z. We refer to the sequence ω as a random dynamic environment or simply
dynamic environment. We denote the probability law of the random environment ω by P
and denote the corresponding expectation operator by EP . Throughout the paper we impose
the following conditions on the coefficients in (1).

Assumption 1.1. Assume that:

(A1) The sequence of pairs (ωn)n∈Z is stationary and ergodic.

(A2) EP
(
log+ |µ0|+ log+ |σ0|

)
< +∞, where x+ := max{x, 0} for x ∈ R.

(A3) γ ∈ (0, 1) is a constant.

The conditions stated in Assumption 1.1 ensure the existence of a limiting distribution for
Xn and, consequently, the existence of a (unique) stationary solution to (1) (see Theorem 2.2
below). This solution is very well understood in the classical case when the innovations ξn
form an i.i.d. sequence, in which case (Xn)n≥0 defined by (1) is an AR(1) (first-order
autoregressive) process. The AR(1) process often serves to model discrete-time dynamics of
both the value as well as the volatility of financial assets and interest rates, see for instance,
[66, 69].

The stochastic difference equation (1) has a remarkable variety of both theoretical as well
as real-world applications; see, for instance, [22, 34, 57, 73] for a comprehensive survey of the
literature. In particular, the introduction section in [34] includes a long list of applications
in econometrics of the model (1) with an i.i.d. Gaussian noise term ξn. A sequence Xn that
solves (1) can be thought as the AR(1) process with stochastic variance. The recognition that
financial time-series, such as stock returns and exchange rates, exhibit changes in volatility
over time goes back at least to [23, 52]. These changes are due for example to seasonal effects,
response to the news and dynamics of the market. In this context, the random environment
ω can be interpreted as an exogenous factor to the model determined by the current state
of the underlying economy. For a comparative review of stochastic variance models we refer
the reader to [30, 67, 69].

When ωn is a function of the state of a Markov chain, the stochastic difference equation (1)
is a formal analogue of the Langevin equation with regime switches, which was studied in [21].
The notion of regime shifts or regime switches traces back to the seminal paper [32], where
it was proposed in order to explain the cyclical feature of certain macroeconomic variables.
Discrete-time linear recursions with Markov-dependent coefficients have been considered, for
instance, in [4, 5, 14, 18, 64, 68]. Certain non-Markovian sequences of coefficients ξn in (1) (in
particular, general martingale differences and uniformly mixing sequence) were considered,
for instance, in [9, 10, 29, 36, 37, 45, 46, 51, 76].

Equation (1) with i.i.d. but not necessarily Gaussian coefficients (ξn)n∈Z has been con-
sidered, for example, in [1, 9, 26, 48, 49, 50, 53, 59, 75], see also references therein. The
stationary solution to (1) is often referred to as a discrete-time (generalized) Ornstein-
Uhlenbeck process. We adopt here a similar terminology, and call the above model, discrete-
time Ornstein-Uhlenbeck process in a stationary dynamic environment. The case when γ
is close to one is often of special interest in the context of stochastic volatility models;
see [69, Section 3.5]. Such nearly unstable processes have been considered, for instance, in
[7, 10, 16, 38, 40, 41, 45, 46, 48, 49, 54]. Remarkably, much of the work for nearly stable
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AR(1) processes focuses on the weak convergence of the process and its least-squares esti-
mates, and is done in a general setting where the innovations ξn are martingale differences
rather than i.i.d. variables. In particular, an interesting case of fractionally integrated in-
novations ξn is discussed in [7, 41] (for a survey on fractionally integrated models see, for
instance, review articles [3, 61] and the monograph collection of papers [62]).

In this work we study the probabilistic structure of the (unique) stationary solution to (1)
under the general Assumption 1.1. To enable some explicit computation, in a few illustrative
examples in this paper we will consider the following setup.

Assumption 1.2. Let (yn)n∈Z be an irreducible Markov chain defined on a finite state space
D = {1, . . . , d}, d ∈ N, and suppose that the sequence (ξn)n∈Z is induced (modulated) by
(yn)n∈Z as follows. Assume that for each i ∈ D there exists an i.i.d. sequence of pairs of
reals ωi = (µi,n, σi,n)n∈Z and that these sequences are independent of each other. Further,
suppose that (A2) of Assumption 1.1 holds for each i ∈ D, with (µ0, σ0) replaced by (µi,0, σi,0).
Finally, define µn = µyn,n and σn = σyn,n.

In a related context of linear regression models, it is remarked in [2] that “while the
assumption of i.i.d. errors is convenient from the mathematical point of view, it is typically
violated in regressions involving econometric variables”. Testing a null hypothesis of a usual
AR(p) model versus a Markov switching framework is discussed, for instance, in [13, 35],
using in particular classical examples of [32] and [31, 56] modeling, respectively, the postwar
U. S. GNP growth rate and cartel market strategies. An application of a general “unit root
versus strongly mixing innovations” statistical test to the model (1) is discussed in Section 3
of the classical reference [55].

We remark that though the Markovian setup of Assumption 1.2 is tractable analytically
and thus is a natural starting point, “nothing in the approach ... precludes looking at more
general probabilistic specifications” [33]. For instance, the Markov dynamics seems clearly
inadequate for modeling socioeconomic factors involved in financial applications of regime-
switching autoregressive models. In fact, while early regime-switching models assumed, in
order to maintain the tractability of the theoretical framework, that the underlying Markov
chain is stationary and the number of states is small (see, for instance, [21, 42, 43]), it has
been proposed in more recent work to consider Markov models with a large number of highly
connected states and to use a-prior Bayesian information (see, for instance, [8, 71]). Alterna-
tively, one can replace the Markovian dynamics with that of full shifts of finite type/chains
of infinite order/chains with complete connections, which are processes with long-range de-
pendence (infinite, though a fading memory) preserving many key features of irreducible
finite-state Markov chains [15, 24, 25, 27, 39, 60, 74]. Clearly, even the martingale difference
setup considered in this paper (which is, for instance, more general than that of [34] and less
general than that of [10]) does not cover the whole range of possible applications. According
to [7], “in practice, econometric and financial time series often exhibit long-range depen-
dent structure (see, e.g., [62, 63] and [17]) which cannot be encompassed by the martingale
difference setting of [10].”

The rest of the paper is organized as follows. Section 2 is devoted to the study of the
(Gaussian) sequence (Xn)n∈N in a fixed environment. In Section 3 we study the asymptotic
behavior of the limiting distribution of Xn, as γ → 1−. Section 4 contains a limit theorem
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for the extreme values Mn = max1≤k≤nXk and a related law of the iterated logarithm. In
Section 5 we investigate the asymptotic behavior of the partial sums Sn =

∑n
k=1Xk.

2 Stationary distribution of the sequence (Xn)n∈N

We denote the conditional law of (ξn)n∈Z, given an environment ω, by Pω and the correspond-
ing expectation by Eω. To emphasize the existence of two levels of randomness in the model,
the first one due to the random environment and the second one due to the randomness of
(εn)n∈N, we will use the notations P and E for the unconditional distribution of (ξn)n∈Z (and
(Xn)n∈Z) and the corresponding expectation operator, respectively. We thus have

P( · ) =

∫
Pω( · )dP (ω) = EP

[
Pω( · )

]
. (3)

For any constants µ ∈ R and σ > 0, we denote by Φµ,σ2 the distribution function of a normal
random variable with mean µ and variance σ2. That is, for t ∈ R,

Gµ,σ2(t) := 1− Φµ,σ2(t) =
1√

2πσ2

∫ ∞
t

e−
(x−µ)2

2σ2 dx. (4)

It will be notationally convenient to extend the notion of “normal variables” to a class of
distributions with random parameters µ and σ.

Definition 2.1. Let (µ, σ) be a random R2-valued vector with P(σ > 0) = 1. We say that
a random variable X has N (µ, σ2)-distribution (in words, normal (µ, σ2) distribution) and
write X ∼ N (µ, σ2) if

P(X ≤ t) = E
[
Φµ,σ2(t)

]
, t ∈ R.

That is, conditional on the pair (µ, σ2), the distribution of X is normal with mean µ and
variance σ2.

2.1 Limiting distribution of Xn

First we discuss the (marginal) distribution of an individual member of the sequence Xn. It
follows from (1) that for n ∈ N we have

Xn = γnX0 +
n−1∑
t=0

γn−t−1ξt. (5)

The following general result can be deduced from (5) (see for instance [6]):

Proposition 2.2. Assume that

(i) (ξn)n∈Z is a stationary and ergodic sequence.

(ii) E
[
log+ |ξ0|

]
< +∞, where x+ := max{x, 0} for x ∈ R.
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(iii) γ ∈ (0, 1) is a constant.

Then, for any initial value X0, the series Xn defined by (1) converges in distribution, as
n→∞, to the random variable

X =
∞∑
t=0

γtξ−t, (6)

which is the unique initial value making (Xn)n≥0 a stationary sequence. Furthermore, the
series on the right-hand side of (6) converges absolutely with probability one.

It follows from (5) and (6) that the stationary solution to (1) is given by

Xn =
∞∑
k=0

γkξn−k = γn
n∑

j=−∞

γ−jξj, n ≥ 0. (7)

Our first result is a characterization of X (and hence of Xn in (7)) as a mixture of Gaussian
random variables under Assumption 1.1. Let

θ =
∞∑
k=0

γkµ−k and τ =
( ∞∑
k=0

γ2kσ2
−k

)1/2

. (8)

Notice that by Proposition 2.2, the random variables θ and τ are well-defined functions of
the environment. Recall Definition 2.1.

We have:

Theorem 2.3. Let Assumption 1.1 hold and let X be defined by (6). Then X ∼ N (θ, τ 2).

Proof. It follows from (5) that if X0 = 0 then

Xn =
n−1∑
t=0

γn−t−1ξt, n ∈ N. (9)

In particular, Xn are Gaussian under the conditional law Pω. By Proposition 2.2, it suffices
to show that

lim
n→∞

E
[
eitXn

∣∣X0 = 0
]

= EP

[
eiθt−

τ2t2

2

]
, t ∈ R.

Since the environment ω is a stationary sequence, (9) implies that E
[
eitXn

∣∣X0 = 0
]

= E
[
eitYn

]
where Yn ∼ N (θn, τ

2
n) with τn and θn given by

θn =
n−1∑
k=0

γkµ−k and τn =
(n−1∑
k=0

γ2kσ2
−k

)1/2

.

It follows from (8) and Proposition 2.2 that

lim
n→∞

θn = θ and lim
n→∞

τn = τ, P − a. s.
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Hence

lim
n→∞

E
[
eitXn

]
= lim

n→∞
E
[
eitYn

]
= lim

n→∞
EP

[
Eω
[
eitYn

]]
= lim

n→∞
EP

[
eiθnt−

τ2
nt

2

2

]
= EP

[
lim
n→∞

eiθnt−
τ2
nt

2

2

]
= EP

[
eiθt−

τ2t2

2

]
.

To justify interchanging of the limit and expectation operator in the last but one step, observe
that

∣∣eiθnt−τ2
nt

2
∣∣ ≤ 1, and therefore the bounded convergence theorem can be applied.

Corollary 2.4. Let Assumption 1.1 hold. Then the distribution of X is absolutely continuous
with respect to the Lebesgue measure on R.

Proof. For an event B in the underlying probability space, let 1B denote the indicator
function of B. By Fubini’s theorem, for any Borel set A ⊂ R,

P(X ∈ A) = E[1{N (θ,τ2)∈A}] =

∫ (
1√

2πτ 2

∫
A

e−
(x−θ)2

2τ2 dx

)
dP (ω)

=

∫
A

(∫
1√

2πτ 2
e−

(x−θ)2

2τ2 dP (ω)

)
dx,

and, furthermore, the integral
∫

1√
2πτ2

e−
(x−θ)2

2τ2 P (dω) exists for m − a. e. x ∈ R, where m
denotes the Lebesgue measure of the Borel subsets of R.

Corollary 2.5. Let Assumption 1.1 hold. Then E
[
|X − θ|p

]
=

2
p
2 Γ
(
p+1

2

)
√
π

· EP [τ p] for any
constant p > −1.

2.2 Distribution tails of X

The next theorem shows that under a mild extra assumption, the tails of the distribution of
X have asymptotically a Gaussian structure. For a random variable Y denote

‖Y ‖p =
(
E
[
|Y |p

])1/p

(p ≥ 1) and ‖Y ‖∞ = inf
{
y ∈ R : P

(
|Y | > y

)
= 0
}
.

Recall (see, for instance, [20, p. 466]) that ‖Y ‖∞ = limp→∞ ‖Y ‖p. Notice that (8) implies
‖τ‖2

∞ ≤ (1− γ2)−1 · ‖σ0‖2
∞.

We have:

Theorem 2.6. Let Assumption 1.1 hold and assume in addition that P
(
|µ0|+ σ0 < λ

)
= 1

for some constant λ > 0. Then

lim
t→∞

1

t2
logP(X > t) = lim

t→∞

1

t2
logP(X < −t) = −1− γ2

2Λ2
,

where Λ := ‖τ‖∞ ∈ (0,∞).
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Proof. The proof relies on some well-known bounds for the tails of normal distributions. For
the reader’s convenience we will give a short derivation of these bounds here. We will only
consider the upper tails P(X > t). The lower tails P(X < −t) can be treated in exactly the
same manner, and therefore the proof for the lower tails is omitted.

Recall Gµ,σ2(t) from (4). On one hand, we have:

G0,σ2(t) =
1√

2πσ2

∫ ∞
t

e−
x2

2σ2 dx ≤ 1√
2πσ2

∫ ∞
t

x

t
e−

x2

2σ2 dx =
1

2
√

2πσ2t2

∫ ∞
t2

e−
y

2σ2 dy

=
σ2

√
2πσ2t2

∫ ∞
t2

1

2σ2
e−

y

2σ2 dy =

√
σ2

2πt2
e−

t2

2σ2 . (10)

On the other hand, denoting tσ = t/σ and using l’Hôspital’s rule,

lim
t→∞

G0,σ2(t)√
σ2

2πt2
e−

t2

2σ2

= lim
tσ→∞

∫∞
tσ
e−

x2

2 dx

t−1
σ e−

t2σ
2

= 1.

Recall that by our assumptions µ0 > −λ and hence θ > −λ(1− γ)−1. Therefore, there exists
t0 > 0 such that if t > λt0, we have

Gθ,τ2(t) = G0,τ2(t− θ) ≥ G0,τ2

(
t+ λ(1− γ)−1

)
≥ 1

2

√
τ 2

2πt2
e−

(t+λ(1−γ)−1)2

2τ2 =

√
τ 2

8πt2
e−

(t+λ(1−γ)−1)2

2τ2 . (11)

By Theorem 2.3, P(X > t) = EP
[
Pω(X > t)

]
= EP

[
Gθ,τ2(t)

]
. To get the upper bound,

observe that µ0 < λ and hence θ < λ(1− γ)−1. Thus

EP
[
Gθ,τ2(t)

]
= EP

[
G0,τ2(t− θ)

]
≤ EP

[
G0,τ2

(
t− λ(1− γ)−1

)]
≤ EP

[√ τ 2

2πt2
e−

(t−λ(1−γ)−1)2

2τ2

]
≤
√

τ 2

2πt2
EP
[
e−

(t−λ(1−γ)−1)2

2τ2
]
.

Therefore,

lim
t→∞

1

t2
logP(X > t) ≤ lim

t→∞

1

t2
log
(∥∥e− 1

2τ2
∥∥
t2

)t2
= log

(∥∥e− 1
2τ2
∥∥
∞

)
= log

(
e
− 1

2‖τ‖2∞
)

= − 1

2‖τ‖2
∞
.

For the lower bound, we first observe that, in view of (11), we have for t > λt0,

EP
[
Gθ,τ2(t)

]
≥ EP

[√ τ 2

8πt2
e−

t2

2τ2

]
.

Now, let ε > 0 be any positive real number such that P (τ > ε) > 0. Then

EP
[
Gθ,τ2(t)

]
≥ EP

[√ τ 2

8πt2
e−

t2

2τ2 · 1{τ>ε}
]
≥
√

ε2

8πt2
EP

[
e−

t2

2τ2 · 1{τ>ε}
]
,

7



which implies

lim
t→∞

1

t2
logP(X > t) ≥ lim

t→∞

1

t2
log
(∥∥e− 1

2τ2 · 1{τ>ε}
∥∥
t2

)t2
= log

(∥∥e− 1
2τ2 · 1{τ>ε}

∥∥
∞

)
= log

(
e
− 1

2‖τ‖2∞
)

= − 1

2‖τ‖2
∞
.

This completes the proof of the theorem.

Next, we give a simple example of the situation when the distribution of τ can be explicitly
computed, and the tails of X do not have the Gaussian asymptotic structure.

Example 2.7. Let Assumption 1.2 hold and suppose that P (µ0 = 0) = 1, D = {1, 2}, and
the transition matrix of the Markov chain yn is[

0 1
1 0

]
.

Thus two states of the underlying Markov chain alternate in the deterministic manner, i.e.
P (yn+1 = 3 − y|yn = y) = 1 for y ∈ D. Further, assume that σ2

1,n and σ2
2,n have strictly

asymmetric α-stable distributions with index α ∈ (0, 1) and “Laplace transform” given by

EP
[
e−λσ

2
i,n
]

= e−θiλ
α

, λ > 0, i = 1, 2,

for some positive constants θi, θ1 6= θ2. In notation of [65], these distributions belong to
the class Sα(θ, 1, 0) (see Section 1.1 and also Propositions 1.2.11 and 1.2.12 in [65]). The
stationary distribution of the underlying Markov chain is uniform on D, and therefore for
the Laplace transform of the limiting variance τ 2 introduced in (8) we have for any λ > 0,

E
[
e−λτ

2]
=

1

2

∞∏
k=0

E
[
e−λγ

4kσ2
1,0

]
·
∞∏
k=0

E
[
e−λγ

4k+2σ2
2,0

]
+

1

2

∞∏
k=0

E
[
e−λγ

4kσ2
2,0

]
·
∞∏
k=0

E
[
e−λγ

4k+2σ2
1,0

]
=

1

2

∞∏
k=0

e−θ1λ
αγ4kα · e−θ2λαγ(4k+2)α

+
1

2

∞∏
k=0

e−θ2λ
αγ4kα · e−θ1λαγ(4k+2)α

=
1

2
e
−λ

α(θ1+θ2γ
2α)

1−γ4α +
1

2
e
−λ

α(θ2+θ1γ
2α)

1−γ4α .

Therefore, Theorem 2.3 yields for t ∈ R,

E
[
eitX

]
= E

[
e−

τ2t2

2

]
=

1

2
e
− |t|

2α(θ1+θ2γ
2α)

2α(1−γ4α) +
1

2
e
− |t|

2α(θ2+θ1γ
2α)

2α(1−γ4α) .

Thus X is a mixture of two symmetric (2α)-stable distributions. In particular, in contrast
to the result obtained under the conditions of Theorem 2.6, X has power tails. Namely (see
Property 1.2.15 on p. 16 of [65]) the following limits exist, are equivalent, and are both finite
and strictly positive: limt→∞ t

2α · P(X > t) = limt→∞ t
2α · P(X < −t) ∈ (0,∞).
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2.3 Covariance structure of (Xn)n∈Z in a fixed environment

This section is devoted to a characterization in a given environment of the Gaussian structure
of the stationary solution (Xn)n∈Z to (1). Using (7), we obtain for any sequence of real
constants c = (cn)n∈Z :

n∑
k=0

ckXk =
n∑
k=0

ck

k∑
j=−∞

γk−jξj =
0∑

j=−∞

ξj

n∑
k=0

ckγ
k−j +

n∑
j=1

ξj

n∑
k=j

ckγ
k−j,

where we used the absolute convergence of the series to interchange the summation signs.
Therefore, under the measure Pω, that is in a given environment ω,

n∑
k=0

ckXk ∼ N (χc,n, η
2
c,n),

where

χ2
c,n =

0∑
j=−∞

µj

n∑
k=0

ckγ
k−j +

n∑
j=1

µj

n∑
k=j

ckγ
k−j.

and

η2
c,n =

0∑
j=−∞

σ2
j

( n∑
k=0

ckγ
k−j
)2

+
n∑
j=1

σ2
j

( n∑
k=j

ckγ
k−j
)2

.

This shows that under Pω, the process (Xn)n≥0 is Gaussian. Note that Theorem 2.2 ensures
the almost sure convergence of the infinite series in the formulas above.

The following corollary is immediate from Theorem 2.3.

Corollary 2.8. Let Assumption 1.1 hold. Then, provided that the moments on the right-
hand side exist, we have the following identities:

(i) E[X] =
EP [µ0]
1− γ .

(ii) VARP(X) =
EP [σ2

0]
1− γ2 + VARP (θ).

Proof. It follows from Theorem 2.3 that

m
X

: = E[X] = EP
[
Eω
[
N (θ, τ 2)

]]
= EP [θ] =

EP [µ0]

1− γ

and

VARP(X) = EP
[
Eω
[
X2 −m2

X

]]
= EP [τ 2 + θ2]−m2

X

= EP [τ 2] + VARP (θ) =
EP [σ2

0]

1− γ2
+ VARP (θ),

where we used the fact m
X

= EP [θ], and therefore VARP (θ) = EP [θ2]−m2
X
.
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In the case of a Markovian environment, VARP (θ) can be expressed in terms of certain
explicit transformations of the transition kernel of the underlying Markov chain. In the
following lemma we compute VARP (θ) under Assumption 1.2. To state the result we first
need to introduce some notation. Denote by H the transition matrix of the underlying
Markov chain, that is

H(i, j) = P (y1 = j|y0 = i), i, j ∈ D.

Denote by π =
(
π1, . . . , πd

)
the stationary distribution of (yn)n∈Z. Let µ̄i = EP [µi,0] and

a =
∑d

i=1 πiµ̄i = EP [µ0]. Let m2 denote the d-dimensional vector whose i-th component is
πiµ̄

2
i and introduce a d× d matrix Kγ by setting

Kγ(i, j) =
γ

µ̄i
·H(i, j) · µ̄j, i, j = 1, . . . , d.

We have:

Lemma 2.9. Let Assumption 1.2 hold. Then

VARP (θ) =
VARP (µ0)

1− γ2
+

2γ

1− γ2
· 〈m2, (I −Kγ)

−11〉 − 2γa2

(1− γ2)(1− γ)
,

where 〈x,y〉 stands for the usual scalar product of two d-vectors x and y.

Proof. For n ∈ Z, let νn = µ−n − a and

ρn := EP [νiνn+i] = COVP (µ−i, µ−i−n).

Then, according to (8),

VARP (θ) = EP

[( ∞∑
n=0

γnνn

)2]
= EP

[ ∞∑
n=0

γ2nν2
n

]
+ 2

∞∑
n=0

γn
∞∑

k=n+1

γkρk−n

=
VARP (µ0)

1− γ2
+ 2

∞∑
n=0

γn
∞∑
m=1

γn+mρm =
VARP (µ0)

1− γ2
+

2

1− γ2
·
∞∑
m=1

γmρm.

It remains to compute ρn for n ≥ 1. We have

ρn =
d∑
i=1

d∑
j=1

πiH
n−1(i, j)EP

[
(µ̄i − a)(µ̄j − a)

]
=

d∑
i=1

d∑
j=1

πiH
n−1(i, j)EP

[
(µ̄iµ̄j − aµ̄i − aµ̄j + a2)

]
=

d∑
i=1

d∑
j=1

πiH
n−1(i, j)EP

[
µ̄iµ̄j − a2

]
= EP

[ d∑
i=1

d∑
j=1

πiµ̄iH
n−1(i, j)µ̄j

]
− a2.

Define the following Doob transform of matrix H :

K(i, j) =
1

µ̄i
H(i, j)µ̄j, i, j = 1, . . . , d.

10



Then, a routine induction argument shows that for any n ∈ N, Kn(i, j) = 1
µ̄i
Hn(i, j)µ̄j.

Using this formula, we obtain

ρn = EP

[ d∑
i=1

d∑
j=1

πiµ̄
2
iK

n−1(i, j)
]
− a2 = 〈m2, K

n−11〉 − a2,

and hence

VARP (θ) =
VARP (µ0)

1− γ2
+

2

1− γ2
·
∞∑
n=1

γn
(
〈m2, K

n−11〉 − a2
)

=
VARP (µ0)

1− γ2
+

2γ

1− γ2
· 〈m2, (I −Kγ)

−11〉 − 2γa2

(1− γ2)(1− γ)
.

The proof of the lemma is completed.

Remark 2.10. It is not hard to verify that with an appropriate modification of the definition
of the Doob transform Kγ (as a positive integral kernel rather than a d-matrix), the state-
ment of Lemma 2.9 remains true for a general, non-necessarily restricted to a finite-state,
Markovian setup.

In the remainder of this section we assume, for simplicity, that P (µn = 0) = 1. The distri-
bution of a mean-zero Gaussian sequence is entirely determined by its covariance structure.
It follows from (5) that

Xk+n = γnXk +
n−1∑
t=0

γtξn+k−t−1, k ∈ Z, n ∈ N.

Therefore, for any k ∈ Z and n ∈ N, we have

COVω(XkXk+n) = Eω[XkXk+n] = γnEω[X2
k ]. (12)

In particular, random variables Xn and Xm are positively correlated for any n,m ∈ Z.

3 Asymptotic behavior of X when γ → 1−.

To emphasize the dependence of the stationary solution to (1) on γ, throughout this section
we use the notation Xγ for X and τ 2

γ for the limiting variance τ 2, which is defined in (8).
To illustrate the main result of this section, consider first the case when the coefficients ξn
in (1) are independent and distributed according to N (0, σ2) for some constant σ > 0. Then
Xγ ∼ 1√

1−γ2
N (0, σ2), and hence

√
1− γ ·Xγ

P
=⇒ 1√

2
N (0, σ2) as γ → 1−,

We next show that in a certain sense (1− γ)−1/2 is always the proper scaling factor for the
distribution of Xγ when γ → 1−.

11



Theorem 3.1. Let Assumption 1.1 hold. Suppose, in addition, that P (µ0 = 0) = 1,
EP [σ2

0] <∞, and P (σ0 > δ) = 1 for some positive constant δ > 0. Then

log |Xγ|
log(1− γ)

P−→− 1

2
as γ → 1−,

where
P−→ means convergence in probability under the law P.

Proof. We must prove that for any ε > 0,

P
(∣∣∣ log |Xγ|

log(1− γ)
+

1

2

∣∣∣ > ε
)
→γ→1− 0. (13)

This is equivalent to the following two claims:

P
( log |Xγ|

log(1− γ)
> −1

2
+ ε
)
→γ→1− 0 and P

( log |Xγ|
log(1− γ)

< −1

2
− ε
)
→γ→1− 0.

Since log(1− γ) < 0, it suffices to show that

P
(
|Xγ| > (1− γ)−

1
2
−ε
)
→γ→1− 0 and P

(
|Xγ| < (1− γ)−

1
2

+ε
)
→γ→1− 0. (14)

Toward this end, observe first that for any constant ε > 0,

lim sup
γ→1−

P
(
|Xγ| > (1− γ)−

1
2
−ε
)
≤ lim sup

γ→1−

{
(1− γ)

1
2

+ε · E
[
|Xγ|

]}
= lim sup

γ→1−

{
(1− γ)

1
2

+ε · EP [2τγ]
}

= lim sup
γ→1−

{
(1− γ)ε · EP [σ0

√
2]
}

= 0,

On the other hand, using exponential Chebyshev’s inequality

P(Y < 1) = P(−Y > −1) ≤ E
[
e−Y

]
· e ≤ 3E

[
e−Y

]
,

we obtain

P
(
|Xγ| < (1− γ)−

1
2

+ε
)
≤ 3E

[
exp
(
−|Xγ| · (1− γ)

1
2
−ε)]

≤ 6EP

[
exp
(τ 2

γ · (1− γ)1−2ε

2

)
· 1√

2πτ 2
γ

∫ ∞
0

exp
{
−
( x

τγ
√

2
+
τγ(1− γ)

1
2
−ε

√
2

)2}
dx
]

≤ 6EP

[
exp
(τ 2

γ · (1− γ)1−2ε

2

)
· 1√

2π

∫ ∞
τγ(1−γ)

1
2−ε

e−
y2

2 dy
]
.

Therefore, in view of (10) and the conditions of the theorem, we have

lim sup
γ→1−

P
(
|Xγ| < (1− γ)−

1
2

+ε
)
≤ lim sup

γ→1−
6EP

[ 1

τγ(1− γ)
1
2
−ε

]
≤ lim sup

γ→1−

{
6 · δ−2(1− γ)ε

}
= 0.

The proof of the theorem is thus completed.

12



Approximation results that are much more accurate than those in Theorem 3.1 can be
proved under additional assumptions on either the dependence structure of the environment
or, assuming that the coefficient γ depends on n, the rate convergence of γ = γn to one as
n → ∞. For instance, an application of [10, Lemma 2.1] to our model yields the following
result (for i.i.d. errors ξn, a functional version of this result with the convergence of the
scaled AR(1) process to the Ornstein-Uhlenbeck was established in [16]).

Theorem 3.2. (see [10, Lemma 2.1]) Let Assumption 1.1 hold. Suppose, in addition, that
P (µ0 = 0) = 1 and EP [σ2

0] <∞. Consider the recursion

Xk+1,n = γnXk,n + ξk, t = 0, 1 . . . , n− 1,

where X0 = 0 and γn = 1− α/n for some constant α > 0 and n ∈ N. Then,

Xn,n√
nBα

⇒ N (0, 1),

where Bα := EP [σ2
0] · 1−e−2α

2α
.

4 Extreme values of (Xn)n≥0

The goal of this section is twofold. First, we prove a limit theorem for the running maxima
Mn = max1≤k≤nXk (Theorem 4.1 below). This result provides some information about the
first passage times Ta = inf{t > 0 : Xt > a}, through the identity of the events {Ta > n}
and {maxk≤nXk < a}. Next, we obtain a law of the iterated logarithm type of result for the
sequence (Xn)n∈N (Theorem 4.3 below).

There is an extensive literature discussing the asymptotic behavior of maxima of Gaussian
processes. The following general result suffices for our purposes (see [70] or Theorem A in
[12]). For n ∈ N, let

an =
√

2 log n and bn = an −
log an + log

√
2π

an
. (15)

Theorem 4.1. [70] Let (Xn)n∈Z be a Gaussian sequence with E[Xn] = 0 and E[X2
n] = 1. Let

ρij = E[XiXj] and Mn = max1≤k≤nXk. If

(i) δ := supi<j |ρij| < 1.

(ii) For some λ > 2(1+δ)
1−δ ,

1

n2

∑
1≤i<j≤n

|ρij| · log(j − i) · exp
{
λ|ρij| · log(j − i)

}
→ 0, as n→∞, (16)

then, for any y ∈ R, P
(
Mn ≤ bn + a−1

n y
)
→ exp

{
−e−y

}
as n→∞.

The theorem implies a sharp concentration of the running maximum around its long-
term asymptotic average an. The limiting distribution in Theorem 4.1 is called the standard
Gumbel distribution (cf. [44]).
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Let

λ2
k := Eω[X2

k ] =
∞∑
j=0

γ2jσ2
k−j, k ∈ Z. (17)

We next study the asymptotic distribution of the random variables

Ln = max
0≤k≤n

Xk

λk
and Mn = max

0≤k≤n
Xk, n ∈ N

under Assumption 1.1. We have:

Theorem 4.2. Let Assumption 1.1 hold. Suppose in addition that EP [µ0] = 0 and

P
(
σ0 ∈ (δ, δ−1)

)
= 1 (18)

for some constant δ ∈ (0, 1). Then

(a) For any constant y ∈ R,

lim
n→∞

Pω
(
an(Ln − bn) ≤ y

)
= exp{−e−y}, P − a. s., (19)

where an and bn are defined in (15).

(b) Further,

logMn

log log n

Pω−→ 1

2
, P − a. s.

Proof.
(a) Let Uk = Xk

λk
, k ∈ Z. Then Eω[Uk] = 0 and Eω[U2

k ] = 1. Furthermore, (12) implies for
any k ∈ Z and n ∈ N,

ρn,k+n := COVω(UkUk+n) = Eω[UkUk+n] = γn
λk
λk+n

. (20)

It suffices to verify that the conditions of Theorem 4.1 are satisfied for random variables Un.
Toward this end, observe that (17) implies

λ2
k+n = γ2nλ2

k +
n−1∑
t=0

γ2tσ2
k+n−t−1,

and hence, by virtue of (17) and (18),

λk+n

γnλk
=

√√√√1 + γ−2nλ−2
k

n−1∑
t=0

γ2tσ2
k+n−t−1 >

(keeping only the last term in the sum, the one with t = n− 1)

>
√

1 + γ−2nλ−2
k γ2n−2σ2

k >
√

1 + γ−2(1− γ2)δ4.
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Thus

r := sup
k∈Z,n∈N

ρk,k+n = sup
k∈Z,n∈N

{
γn

λk
λk+n

}
< 1.

Furthermore, it follows from (20) and (17) that, under condition (18), we have for any
constant s > 0 :

1

n2

∑
1≤i<j≤n

|ρij| · log(j − i) · exp
{
s|ρij| · log(j − i)

}
≤ 1

n2

∑
1≤i<j≤n

1

δ4
γ(j−i) · log(j − i) · exp

{
sδ−4 · log(j − i)

}
=

1

n2δ4

∑
1≤i<j≤n

γ(j−i) log(j − i) · (j − i)sδ−4

=
1

n2δ4

n−1∑
k=1

(n− k) · γk log k · ksδ−4

≤ 1

nδ4

∞∑
k=1

γk log k · ksδ−4 → 0, as n→∞.

Therefore, (19) holds for any y ∈ R by Theorem 4.1. The proof of part (a) of the theorem
is complete.

(b) It follows from the conditions of the theorem that there exists c0 > 0 such that for all
n ∈ Z,

c−1
0 <

Mn

Ln
< c0, P − a. s.

Therefore, P − a. s., for any ε > 0, we have

Pω

( logMn

log log n
>

1

2
+ ε
)

= Pω
(
Mn > (log n)

1
2

+ε
)
≤ Pω

(
Ln > c−1

0 (log n)
1
2

+ε
)
.

Part (a) of the theorem implies that, for any y ∈ R,

lim
n→∞

Pω
(
Ln ≤ ya−1

n + bn
)

= exp{−e−y} P − a. s. (21)

Since for any fixed y > 0 and ε > 0, eventually (for all n, large enough) we have

ya−1
n + bn < c−1

0 (log n)
1
2

+ε,

it follows from (21) (because we can use arbitrarily large y while limy→∞ exp{−e−y} = 1)
that

lim
n→∞

Pω

( logMn

log log n
>

1

2
+ ε
)

= 0 P − a. s.

Similarly, since P − a. s., for any ε > 0,

Pω

( logMn

log log n
<

1

2
− ε
)

= Pω
(
Mn < (log n)

1
2
−ε) ≤ Pω

(
Ln < c0(log n)

1
2
−ε),
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while for any y ∈ R, eventually,

c0(log n)1/2−ε < ya−1
n + bn,

It follows from (21), using this time arbitrarily small (negative) values of y, that

lim
n→∞

Pω

( logMn

log log n
<

1

2
− ε
)

= 0 P − a. s.

The proof of the theorem is completed.

We next prove a “law of the iterated logarithm”-type asymptotic result for the sequence
Xn. We have:

Theorem 4.3. Let the conditions of Theorem 4.2 hold. Let (Xn)n≥1 be the stationary solu-
tion to (1) defined by (6). Then there exists a constant c > 0 such that

lim sup
n→∞

Xn√
2 log n

= c, P− a. s.

Proof. The claim follows from the bounds provided by a coupling of Xn with the following
“extremal versions” of it. Let (Un)n∈Z and (Vn)n∈Z be two stationary sequences that satisfy,
respectively,

Un+1 = γUn + δ−1εn and Vn+1 = γVn + δεn,

where δ is the constant introduced in the conditions of Theorem 4.2. Notice that, for all
n ∈ Z, we have VARP(Un) = δ−2 · (1− γ2)−1 and VARP(Vn) = δ2 · (1− γ2)−1. Furthermore,
it follows for instance from (12) that

lim
n→∞

sup
k∈Z

COVP(Uk, Un+k) = lim
n→∞

sup
k∈Z

COVP(Vk, Vn+k) = 0.

Therefore, Theorem 2 in [47] implies that, with probability one,

lim sup
n→∞

Vn√
2 log n

= lim sup
n→∞

|Vn|√
2 log n

= δ · (1− γ2)−1/2

and

lim sup
n→∞

Un√
2 log n

= lim sup
n→∞

|Un|√
2 log n

= δ−1 · (1− γ2)−1/2.

For an event A, let Ac denote the complement of A and let the abbreviation “i. o.” stand for
infinitely often. Since the event {lim supn→∞Wn = a} for a sequence of random variables
Wn can be represented as the intersection of the following two events:⋂

ε>0

{
Wn > a− ε i. o.

}
and

⋂
ε>0

{
Wn > a+ ε i. o.

}c
,
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then the following inequalities hold with probability one:

lim sup
n→∞

|Vn|√
2 log n

≤ lim sup
n→∞

|Xn|√
2 log n

≤ lim sup
n→∞

|Un|√
2 log n

.

Thus, there exists a function c(X) of X = (Xn)n∈N such that, with probability one,

δ · (1− γ2)−1/2 ≤ lim sup
n→∞

Xn√
2 log n

= lim sup
n→∞

|Xn|√
2 log n

= c(X) ≤ δ−1 · (1− γ2)−1/2.

The fact that c(X) is actually a constant function follows from the ergodicity of the sequence
Xn (which is implied by (6) along with the ergodicity of the sequence ξn) and the shift
invariance of the limiting constant. By the latter we mean that

lim sup
n→∞

Xn√
2 log n

= lim sup
n→∞

Xn+1√
2 log n

.

The proof of the theorem is completed.

5 Random walk Sn =
∑n

k=1Xk

This section includes limit theorems describing the asymptotic properties of Sn =
∑n

k=1Xk.
Specifically, we prove a law of large numbers (Theorem 5.2), large deviation bounds associ-
ated with it (Theorem 5.3 and Corollary 5.4), and central limit theorems (Theorem 5.5 and
Theorem 5.6) for the sequence Sn.

The random walk Sn =
∑n

k=1Xk associated with Equation (1) has been studied in [58]
and [59]. The following decomposition of Sn, which is implied by (5), is useful:

Sn =
n∑
k=1

γkX0 +
n∑
k=1

k−1∑
t=0

γk−t−1ξt =
n∑
k=1

γkX0 +
n−1∑
t=0

n∑
k=t+1

γk−t−1ξt =

(substitute j = k − 1) =
n∑
k=1

γkX0 +
n−1∑
t=0

( ∞∑
j=t

γj−t −
∞∑
j=n

γj−t
)
ξt

=
n∑
k=1

γkX0 + (1− γ)−1

n−1∑
t=0

ξt − (1− γ)−1

n−1∑
t=0

γn−tξt. (22)

Similar decompositions have been used, for instance, in [59] and [58]. Due to Assumption 1.1,
the following inequalities hold with probability one (the right-most inequality in (24) is
implied by Proposition 2.2): ∣∣∣ n∑

k=1

γkX0

∣∣∣ ≤ |X0| ·
∞∑
k=0

γk <∞, (23)

and ∣∣∣n−1∑
t=0

γn−tξt

∣∣∣ D= ∣∣∣ 0∑
t=−n+1

γ1−tξt

∣∣∣ ≤ ∞∑
k=0

γk+1 · |ξ−k| <∞, (24)
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where
D
= means equivalence of distributions. This shows that only the second term in the

right-most expression of (22) contributes to the asymptotic behavior of Sn. More precisely,
we have the following lemma. Though the proof of the lemma is by standard arguments, we
provide it below for the reader’s convenience.

Lemma 5.1. Let Assumption 1.1 hold. Then

(a) For any sequence of reals (an)n∈N increasing to infinity, we have

1

an

n∑
k=1

γkX0 →n→∞ 0, P− a. s.

and

1

an

n−1∑
t=0

γn−tξt →n→∞ 0, in probability.

(b) If in addition EP
[
|µ0|
]
<∞ and EP

[
σ0

]
<∞, then

1

n

n−1∑
t=0

γn−tξt →n→∞ 0, P− a. s.

Proof.
(a) The first claim of part (a) is a direct consequence of (23). The second claim can be
derived from (24) as follows. For any ε > 0, we have in virtue of (24),

P
( 1

an

∣∣∣n−1∑
t=0

γn−tξt

∣∣∣ > ε
)

=

= P
( 1

an

∣∣∣ 0∑
t=−n+1

γ1−tξt

∣∣∣ > ε
)
≤ P

( 1

an

∞∑
k=0

γk+1 · |ξ−k| > ε
)
→n→∞ 0,

which implies the result.

(b) We must show that for any ε > 0,

P
( 1

n

∣∣∣n−1∑
t=0

γn−tξt

∣∣∣ > ε i. o.
)

= 0.

By the Borel-Cantelli lemma, it suffices to show that for any ε > 0,

∞∑
n=1

P
( 1

n

∣∣∣n−1∑
t=0

γn−tξt

∣∣∣ > ε
)
<∞. (25)

Using (24), we obtain

∞∑
n=1

P
( 1

n

∣∣∣n−1∑
t=0

γn−tξt

∣∣∣ > ε
)
≤

∞∑
n=1

P
(1

ε

∞∑
k=0

γk+1 · |ξ−k| > n
)
≤ 1

ε
E
[ ∞∑
k=0

γk+1 · |ξ−k|
]

=
γ

ε(1− γ)
E
[
|ξ0|
]
.
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Since ξk are Gaussian random variables under Pω, implies

E
[
|ξ0|
]

= EP

[
|µ0|+

√
2σ2

0

π

]
. (26)

It hence follows from the conditions of the lemma that E
[
|ξk|
]
< ∞. This establishes (25)

and therefore completes the proof of part (b) of the lemma.

In particular, one can obtain the following strong law of large numbers.

Theorem 5.2. Let Assumption 1.1 hold and suppose in addition that EP
[
|µ0|
]
< ∞ and

EP
[
σ0

]
<∞. Then,

lim
n→∞

Sn
n

= E[X] = (1− γ)−1EP [µ0], P− a. s. (27)

Proof. Recall that under Assumption 1.1, (ξn)n∈Z is a stationary and ergodic sequence.
Furthermore, (26) implies that E

[
|ξ0|
]
<∞. Therefore, by the Birkhoff ergodic theorem,

lim
n→∞

1

n

n−1∑
t=0

ξt = E[ξ0] = EP [µ0], P− a. s. (28)

It follows now from (22) and Lemma 5.1 that

lim
n→∞

Sn
n

= lim
n→∞

1

1− γ
1

n

n−1∑
t=0

ξt =
1

1− γ
EP [µ0], P− a. s.

The proof of the theorem is completed.

The above law of large numbers can be complemented by the following large deviation
result. Recall that a sequence Rn of random variables is said to satisfy the large deviation
principle (LDP) with a lower semi-continuous rate function I : R → [0,∞], if for any Borel
set E ⊂ R,

− inf
x∈E◦

I(x) ≤ lim inf
n→∞

1

n
logP(Rn ∈ E) ≤ lim sup

n→∞

1

n
P(Rn ∈ E) ≤ − inf

x∈E
I(x)

where E and E◦ denote, respectively, the closure and interior of E. The rate function is good
if the level sets {x ∈ R : I(x) ≤ c} are compact for any c ≥ 0.

We have:

Theorem 5.3. Let the conditions of Theorem 4.2 hold. Assume in addition that the sequence
Rn := 1

n

∑n
k=1 σ

2
k satisfies the LDP with a good rate function I(x). Then Sn

n
satisfies the LDP

with a good rate function J, such that J(x) ∈ (0,∞) for x 6= 0.
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Proof. Recall Gµ,σ2(t) from (4). The l’Hôpital rule implies that, for tσ = t/σ,

lim
t→∞

G0,σ2(t)√
σ2

2πt2
e−

t2

2σ2

= lim
tσ→∞

∫∞
tσ
e−

x2

2 dx

t−1
σ e−

t2σ
2

= 1.

Therefore, there exists t0 > 0 such that t > t0 implies

1

2

√
σ2

2πt2
e−

t2

2σ2 ≤ G0,σ2(t) ≤ 2

√
σ2

2πt2
e−

t2

2σ2 .

It follows from (22) and (6) that P(Sn > nt) = EP
[
Pω(Sn > nt)

]
= EP

[
G0,β2

n
(nt)

]
, where

β2
n :=

γ2(1− γn)2
∑∞

t=0 σ
2
−tγ

2t

(1− γ)2
+

∑n−1
t=0 σ

2
t

(
1− γn−t

)2

(1− γ)2
.

It then follows from (18) that for any t > 0,

lim
n→∞

1

n
logP(Sn > nt) = lim

n→∞

1

n
logEP

(
e
− t

2n2

2β2
n

)
,

provided that the latter limit exists. We will next estimate the difference

1

β2
n

− (1− γ)2∑n−1
t=0 σ

2
t

,

Using (18), we have:∣∣∣ 1

β2
n

− (1− γ)2∑n−1
t=0 σ

2
t

∣∣∣ ≤ ∑n−1
t=0 σ

2
t −

∑n−1
t=0 σ

2
t

(
1− γn−t

)2
+ γ2(1− γn)2

∑∞
t=0 σ

2
−tγ

2t(∑n−1
t=0 σ

2
t (1− γn−t)2

)2

(1− γ)−2

≤
δ−2
(
n−

∑n
k=1(1− γk)2 + γ2(1− γ2)−1

)
(∑n−1

t=0 σ
2
t

(
1− γn−t

)2
)2

(1− γ)−2

≤
δ−6
(

2
∑n

k=1 γ
k + γ2(1− γ2)−1

)
(∑n

k=1(1− γk)2
)2

(1− γ)−2

≤
δ−6
(

2
∑n

k=1 γ
k + γ2(1− γ2)−1

)
(∑n

k=1(1− γ)2
)2

(1− γ)−2

≤ n−2 ·
δ−6
(

2
∑∞

k=1 γ
k + γ2(1− γ2)−1

)
(1− γ)2

.

Thus

lim
n→∞

1

n
logP(Sn > nt) = lim

n→∞

1

n
logEP

(
e
− t

2n2(1−γ)2

2
∑n−1
t=0 σ2

t

)
,

provided that the limit in the right-hand side exists. By virtue of (18), we have

−t
2(1− γ)2δ−2

2
≤ 1

n
logEP

(
e
− t

2n2(1−γ)2

2
∑n−1
t=0 σ2

t

)
≤ −t

2(1− γ)2δ2

2
.
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Thus one can apply Varadhan’s integral lemma (see [19, p. 137]) to Rn := 1
n

∑n
t=1 σ

2
t and the

continuous function φt(x) = − t2(1−γ)2

2x
: (0,∞)→ R. It follows from Varadhan’s lemma that

lim
n→∞

1

n
logP(Sn > nt) = lim

n→∞

1

n
logEP

[
enφt(Rn)

]
= sup

x>0
{φt(x)− I(x)}.

Furthermore, a symmetry argument shows that

lim
n→∞

1

n
logP(Sn > nt) = lim

n→∞

1

n
logP(Sn < −nt), t > 0.

Since J(t) = − supx>0{φt(x)− I(x)} ∈ [0,∞) is a strictly increasing function for t ≥ 0, this
implies that the LDP for Sn/n holds with rate function J (cf. [19, p. 31]).

It remains to show that J is a good rate function. Toward this end fix c > 0 and consider
Ψ(c) = {t > 0 : J(t) > c}. Then t ∈ Ψ(c) if and only if t > 0 and

inf
x>0

{t2(1− γ)2

2x
+ I(x)

}
> c.

It thus suffices to verify that t0 := inf Ψ(c) 6∈ Ψ(c). Assume the contrary, that is suppose
that for some c0 > c

inf
x>0

{t20(1− γ)2

2x
+ I(x)

}
= c0 > c. (29)

Let x0 =
t20(1−γ)2

4c0
. We then can choose t1 < t0 such that

inf
x<x0

{t21(1− γ)2

2x
+ I(x)

}
≥ inf

x<x0

{t21(1− γ)2

2x

}
> c

and

inf
x≥x0

{t21(1− γ)2

2x
+ I(x)

}
≥ inf

x≥x0

{t20(1− γ)2

2x
+ I(x)

}
− sup

x≥x0

{t20(1− γ)2

2x
− t21(1− γ)2

2x

}
> c.

Clearly, this contradicts (29) and hence shows that t0 6∈ Ψ(c), as desired. the proof of the
theorem is completed.

The following is implied, for instance, by Theorem 3.1.2 in [19, p. 74].

Corollary 5.4. Let Assumption 1.2 and the conditions of Theorem 4.2 hold. Then Sn
n

satisfies the LDP with a good rate function.

It follows from (22) that if EP [µ0] = 0 and b−1
n

∑n
k=1 σ

2
k converges in distribution to a

random variable G for a suitable sequence bn ↗ ∞, then Sn/
√
bn converges in distribution

to N (0, G). In a generic example, σn are in the domain of attraction of a symmetric stable
law and the sequence (σn)n∈Z satisfies certain mixing conditions. Limit theorems for Sn of
this type can be found in [58]. We also refer the reader to [58] for a law of iterated logarithm
for Sn. The special (Gaussian, once the environment is fixed) structure of the sequence ξn
which is considered in this work, leads to the following result. It is different in essence from
the limit theorems obtained in [58].
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Theorem 5.5. Let Assumption 1.1 hold and assume in addition that EP [µ0] = 0 and
EP
[
σ2

0

]
<∞. Then,

1√
n
Sn

P
=⇒ 1

1− γ
N
(
0,Σ

)
for Σ := EP [σ2

0].

Proof. By the Birkhoff ergodic theorem,

lim
n→∞

1

n

n−1∑
t=0

σ2
t = EP [σ2

0], P − a. s.

Hence, letting Wn =
∑n−1

t=0 ξt, we obtain

lim
n→∞

E
[
e
itWn√

n
]

= lim
n→∞

EP

[
Eω
[
e
itWn√

n
]]

= EP

[
lim
n→∞

Eω
[
e
itWn√

n
]]

= EP

[
lim
n→∞

e−t
2
∑n−1
t=0 σ2

t
2n

]
= e−

t2Σ
2 .

Therefore, Wn√
n

P
=⇒ N

(
0,Σ

)
. It follows now from (22) and part (a) of Lemma 5.1 that

lim
n→∞

Sn√
n

= lim
n→∞

1

1− γ
Wn√
n

=
1

1− γ
N
(
0,Σ

)
,

where the limits in the above identities are understood in terms of convergence in distribution.
The proof of the theorem is completed.

The above theorem can be strengthened to a functional central limit result in the Sko-
rokhod space D[0, 1] of càdlàg functions for the sequence of processes

Jn(t) =
S[nt]√
nΣ2

, t ∈ [0, 1],

where Σ2 =
EP [σ2

0]
(1− γ)2 as in the statement of Theorem 5.5, and [x] denotes the integer part

of x ∈ R, that is [x] = max{k ∈ Z : k ≤ x}. We have:

Theorem 5.6. Let the conditions of Theorem 4.2 hold. Then, for P -almost every envi-
ronment ω, the sequence Jn converges in D[0, 1] under Pω weakly to a standard Brownian
motion. Consequently, Jn converges in D[0, 1] weakly to a standard Brownian motion also
under P.

Proof. It is not hard to verify the convergence under Pω of the finite-dimensional distributions
of Jn to those of standard Brownian motion using characteristic functions and the Cramér-
Wold device [20, p. 170]. The argument is based on an application of the law of large numbers
to the sequence σn, and is nearly verbatim the same as in the proof of Theorem 5.5. On the
other hand, the tightness under Pω of the sequence of processes Jn in D[0, 1] is evident from
the criterion stated in Example 1 in [28, p. 336]. Notice that the criterion can be applied
to Jn in virtue of (18). Once the weak convergence of Jn to standard Brownian motion is
proved under Pω (for P − a. s. every environment ω), the same convergence under P follows
from (3) and the bounded convergence theorem.
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