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Abstract. We consider a certain version of the multi-type maximal branching process recently
introduced by Lebedev. The main result of this paper is a limit theorem for empirical frequencies
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1. Introduction. The main goal of this paper is to study the mechanism of the
selection of the ancestor in a certain version of the multi-type maximal branching
process (following [18] we will use the abbreviation MTMBP for these processes).
More precisely, we consider a version of the MTMBP where particles are colored at
random and their offspring distribution depends on the color. Our main result (stated
in Theorems 2.7 and 2.8 below) is a limit theorem for the distribution of the color of
the direct ancestor of the n-th generation, as n goes to infinity.

Maximal branching processes (MBP) were introduced by Lamperti in [7]. An
MBP is a Markov chain on the set of non-negative integers with a unique absorbing
state at zero and transition kernel determined by the following recursive equation:

Zn+1 = max
1≤k≤Zn

Xn,k, Zn > 0,

where the random variables Xn,k are i.i.d., non-negative, and integer-valued. The pro-
cess can be thus described as an “extremal analogue” of the Galton-Watson branching
processes, where the next generation is formed by the offspring of a most productive
individual. The MBP is an elegant mathematical construction, and their theory turns
out to be closely related to a general problem of the study of asymptotic behavior
of (Markov) random processes in a half-line with asymptotically vanishing drift. The
latter is sometimes referred to as Lamperti’s problem (cf. [19, 20]) to acknowledge
the contribution of Lamperti’s pioneering work [9, 10, 11].

A generalization of the MBP from integer-valued population processes to their
real-valued analogue is considered in a series of papers by Lebedev [12, 13, 14], see
also a review of his results in [15]. An application of these processes to the queueing
theory (for gated infinite-server queues, cf. [2]) is discussed in [13]. More recently,
Lebedev studied in [16, 17, 18] an extension of the MBP to a multi-type setting.
This paper intends to contribute to the understanding of the MTMBP by considering
certain aspect of their asymptotic behavior in a setting where explicit computation
is possible through a link to the one-dimensional theory of the MBP which has been
developed by Lamperti in [7, 8].

The colored maximal branching process (CMBP for short) that we consider in

this work is a vector-valued Markov chain Zn =
(
Z

(1)
n , Z

(2)
n , . . . , Z

(d)
n

)
which describes
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evolution of a population of individuals of d different types (colors) in discrete time
n = 0, 1, . . . We use the term color as an alternative to the type, to distinguish our
model from a more general one of the MTMBP, introduced by Lebedev in [16, 17, 18].

The integer d ≥ 1 is fixed and Z
(i)
n represents the number of individuals of type i

present in n-th generation. Transitions of the Markov chain Zn consist of two stages:

at the first stage the total size of the population Yn :=
∑d
i=1 Z

(i)
n in the generation

n is determined, and at the second stage colors are randomly assigned to the Yn
individuals who form the n-the generation. That is where our model differs from the
one considered in [16, 17, 18], where, similarly to the ordinary multi-type Galton-
Watson branching process, individuals are born being already of a certain type.

Let D := {1, . . . , d} and let Z+ denote the set of nonnegative integers. The
dynamics of Yn is determined by the equation

Yn+1 = max
1≤i≤d

max
1≤k≤Z(i)

n

X
(i)
n,k,

where X
(i)
n,k represents the number of children of the k-th individual of type i. We as-

sume that the random variables X
(i)
n,k take values in Z+, are independent and, more-

over, {X(i)
n,k : n ∈ Z+, k ∈ N} are identically distributed for each fixed i ∈ D. We

denote the common distribution function of X
(i)
n,k by Fi.

Once a new generation is formed, a color from the set D is assigned to the individ-
uals, independently of each other and of the previous history. Let χn,k denote the color
of the k-th individual in the n-th generation. We assume that χn,k, n ∈ Z+, k ∈ N
are i.i.d D-valued random variables, and denote

µi := P (χn,k = i), i ∈ D, (1.1)

and assume throughout that µi > 0 for all i ∈ D. The number of individuals of type
i in the n-th generation thus can be written as

Z(i)
n =

Yn∑
k=1

1{χn,k=i},

where 1A stands for the indicator of the event A in the underlying probability space.

For n ∈ Z+, let Xn := {X(i)
n,k : k ∈ N, i ∈ D}, Cn = {χn,k : k ∈ N}, and let

Fn = σ(Xk, Ck : k ≤ n) = σ(Xk, Ck, Zk : k ≤ n) be the σ-algebra of the “events up to
time n”. To describe vectors Zn when Yn is given, we introduce the sets

My =
{

(k1, . . . , kd) ∈ Zd+ :
∑
i∈D

ki = y
}
, y ∈ Z+.

Transition kernel of the Markov chain Zn on Zd+ is formally defined by the following
equations:

P
(
Yn+1 ≤ y |Fn, Z(i)

n = ki, i ∈ D
)

=

d∏
i=1

(
Fi(y)

)ki
, y, ki ∈ Z+,

and, for (k1, . . . , kd) ∈My,

P
(
Z

(i)
n+1 = ki, i ∈ D|Fn, Yn+1 = y

)
=

y!

k1! · · · kd!
µk11 · · ·µ

kd
d .
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Throughout the paper we will assume that Y0 = 1 and the color of the first particle
is chosen at random according to the distribution defined in (1.1). To support all the
random variables defined above, the underlying probability space can be chosen as for
the multi-type Galton-Watson branching processes. It can be formally constructed
using the recipe given in [6, Chapter VI].

2. Statement of results. Following [7], we will say that the chain (Zn)n∈Z+

belongs to the class R if P (Y → ∞) = 0, and to the class T otherwise. Here and
henceforth {Y → ∞} serves as a shortcut for {limn→∞ Yn = +∞}. First, we will
obtain criteria for the classification of the Markov chain Zn. It turns out (cf. [7, 8])
that the asymptotic behavior of Zn is best understood in terms of the dynamics of
the random sequence

Ln := log Yn, n ∈ Z+.

Observe that both (Yn)n≥0 and (Ln)n≥0 are Markov chains. In particular, transition
kernel of the latter is determined by the following family of distribution functions:

HL(ξ, η) := P
(
Ln+1 ≤ η |Ln = ξ

)
= P

(
Yn+1 ≤ eη |Yn = eξ

)
= E

[ d∏
i=1

(
Fi(e

η)
)Z(i)

n

∣∣∣Yn = eξ, (Z(i)
n )di=1

]
=

∑
k1,...,kd

(eξ)!

k1! · · · kd!

d∏
i=1

(
µiFi(e

η)
)ki

=
( d∑
i=1

µiFi(e
η)
)eξ

=
(

1− E
[
Gχ(eη)

])eξ
, (2.1)

where χ is a generic random color in D with the same distribution as χn,k, and
Gχ(x) := 1− Fχ(x).

Taking in account that
∑d
i=1 µiFi( · ) = E

[
Fχ( · )

]
is a distribution function and

that Z
(i)
n is conditionally independent of Fn given Yn, the corresponding Lamperti’s

results in [7, 8] yield the following recurrence-transience criteria for Zn. Let γ denote
Euler’s constant, that is γ = limn→∞

(∑n
k=1 k

−1 − log n) ≈ 0.57721.
Lemma 2.1. Let (Zn)n≥0 be a CMBP that satisfies Assumption 2.2. Then
(i) If lim supx→∞ x · E[Gχ(x)] < e−γ , the chain Zn is in the class R.

(ii) If lim infx→∞ x · E[Gχ(x)] > e−γ , the chain Zn is in the class T.
(iii) If for some constant θ ∈ R,

E[Gχ(x)] =
e−γ

x
+
θ + o(1)

x log x
, x→∞, (2.2)

and θ < π2e−γ

12 , the chain Zn is in the class R.

(iv) If (2.2) holds with θ > π2e−γ

12 , the chain Zn is in the class T.

In the rest of the paper we focus on the growing to infinity processes in a “critical”
regime. More precisely, we will impose the following basic set of assumptions.

Assumption 2.2. Let Zn be a CMBP as described in Section 1. Suppose that

(A1) P (X
(i)
n,1 = 0) = 0 for all i ∈ D.

(A2) For all i ∈ D there exists the limit αi := limx→∞ x
(
1− Fi(x)

)
.

(A3) αi ∈ (0,∞) for all i ∈ D. Furthermore, β ∈ (e−γ ,∞), where

β :=

d∑
i=1

µiαi = E[αχ]. (2.3)
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In particular, these assumptions imply that

P (Y →∞) = 1.

The following proposition is immediate from (2.1).
Proposition 2.3. Let Assumption 2.2 hold. Then, for any λ ∈ R,

lim
ξ→∞

HL(ξ, ξ + λ) = Jβ(λ),

where Jβ(λ) := exp
(
−βe−λ

)
, with β being defined in (2.3).

Heuristically, the proposition suggests that the asymptotic behavior of the Markov
chain Ln is that of a transient random walk with the increments distributed according
to Jβ . This intuition was made precise in the “comparison lemma” of [7], where a
coupling of two processes is explicitly constructed.

We now turn to a law of large numbers for logZ
(i)
n , which can be obtained using

the comparison with a random walk. First, observe that the law of large numbers for
triangular arrays implies that for all i ∈ D,

lim
n→∞

1

n

n∑
k=1

1{χn,k=i} = µi, P − a. s.,

where µi is introduced in (1.1). By passing in this limit result to the random subse-
quence of integers Yn we obtain

Proposition 2.4. Let Assumption 2.2 hold. Then for any i ∈ D,

lim
n→∞

Z
(i)
n

Yn
= µi, P − a. s.

For a single-type process, the analogue of the following result is stated in Section 3 of
[8] (p. 52). The multi-type version follows from its single-type prototype by applying
the latter to the MBP associated with the distribution function E[Fχ( · )] and using
Proposition 2.4.

Lemma 2.5. Let Assumption 2.2 hold. Then for any i ∈ D,

lim
n→∞

1

n
logZ(i)

n = γ + log β, P − a. s.

We remark that the random sequence logZ
(i)
n , n ∈ Z+, satisfies a large deviation

principle under P (see, for instance, Remark (ii) in [21, p. 594]).

We will next state a central limit theorem for logZ
(i)
n in the transient case. The

“borderline” case β = e−γ and (2.2) holds with θ > π2e−γ

12 was studied by Lamperti
in [8] (see Theorem 2 in [8]) using the theory he developed in [11]. A related result
corresponding to the case Fi(x) ∼ 1 − αix

−ε with ε ∈ (0, 1) is obtained in [20,
Theorem 2.5]. In what follows we consider the case Fi(x) ∼ 1− αix−1 with β > e−γ .

Let D
(
[0, 1];Rd) denote the set of Rd-vector valued càdlàg functions on [0, 1],

endowed with the Skorokhod J1-topology. Let

Sn(t) =

√
6

π2n
·

[nt]∑
k=1

(Lk − γ − log β), t ∈ [0, 1], (2.4)
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Theorem 2.6. Let Assumption 2.2 hold. Suppose in addition that (2.2) holds
for some θ ∈ R. Then Sn converges weakly in D

(
[0, 1];Rd), as n→∞, to a standard

d-dimensional Brownian motion.
The proof of the theorem given in the Appendix uses a standard martingale

technique and relies on certain moment estimates obtained in [8] (this is where the
full extent of the extra condition (2.2) is exploited). We remark that Theorem 2.6 is
“in spirit” of the results of [8], and even though it is not stated there it seems quite
likely that the result was known to Lamperti.

The main results of this paper are stated in the next two theorems. Let τn denote
the set of colors present among individuals at generation n with the maximum number
of offspring. That is,

i ∈ τn ⇐⇒ Yn+1 = X
(i)
n,k for some k = 1, . . . , Z(i)

n .

First, we study the asymptotic distribution of the colors in τn. The proof of the
following theorem is given in Section 3.

Theorem 2.7. Let Assumption 2.2 hold. Then for all i ∈ D,

lim
n→∞

P (i ∈ τn) =
µiαi
β

.

Our next result confirms the intuition that the limiting distributions found in Theo-
rem 2.7 coincide with the asymptotic frequencies of the colors of the most productive
individuals who serve as ancestors of the next generation.

Theorem 2.8. Let Assumption 2.2 hold. Then for all i ∈ D,

lim
n→∞

1

n

n∑
k=1

1{i∈τk} =
µiαi
β

, P − a. s.

The proof of the theorem is given below in Section 4.
Using the same decoupling techniques as in the proof of Theorem 2.8 one can

establish the asymptotic of the “time of the rule of the longest-reigning dynasty” in
the CMBP. More precisely, for n ∈ Z+ and i ∈ D let

r(i)
n = max

{
k ≤ n+ 1 :

n∏
s=n−k+1

1{i∈τs} = 1
}

and

R(i)
n = max

0≤k≤n
r

(i)
k .

We have:
Theorem 2.9. Let Assumption 2.2 hold. Then for all i ∈ D,

lim
n→∞

R
(i)
n

log n
= − 1

log
(
1− µiαi

β

) , P − a. s.

Furthermore, for all i ∈ D,

lim sup
n→∞

r
(i)
n

log n
= − 1

log
(
1− µiαi

β

) while lim inf
n→∞

r
(i)
n

log n
= 0, P − a. s.



6 AYDOGMUS, A. P. GHOSH, S. GHOSH, AND ROITERSHTEIN

The above theorem states in fact that R
(i)
n and r

(i)
n exhibit the same almost sure

asymptotic behavior as, respectively, the longest run and the current run of heads
in a series of independent coin tossing trials where the probability of heads equals
µiαi
β . See, for instance, [5] and [3, pp. 54-55] for the corresponding results for the coin

tossing. Although the proof of Theorem 2.9 is very similar to that of Theorem 2.8,
for the sake of completeness and reader’s convenience it is included in Section 5.

3. Proof of Theorem 2.7. To prove the theorem, it suffices to show that

lim
y→∞

P (i ∈ τn|Yn = y) =
µiαi
β

. (3.1)

Indeed, it follows from P (Y → ∞) = 1 and (3.1) that limn→∞ P (i ∈ τn|Yn) = µiαi
β ,

P − a. s., and hence

lim
n→∞

P (i ∈ τn) = lim
n→∞

E
[
P (i ∈ τn|Yn)

]
=
µiαi
β

,

by the bounded convergence theorem.
For any integer y ≥ 2, similarly to (2.1), we have

P (i ∈ τn|Yn = y)

=

∞∑
x=1

∑
k1,...,kd

y!

k1! · · · kd!
∏
j 6=i

(
µjFj(x)

)kj{(
µiFi(x)

)ki − (µiFi(x− 1)
)ki}

=

∞∑
x=1

{(∑
j

µjFj(x)
)y
−
(∑
j 6=i

µjFj(x) + µiFi(x− 1)
)y}

. (3.2)

Fix any ε > 0. Then (compare with Proposition 2.3),

bεyc∑
x=1

{(∑
j

µjFj(x)
)y
−
(∑
j 6=i

µjFj(x) + µiFi(x− 1)
)y}

≤
bεyc∑
x=1

{(∑
j

µjFj(x)
)y
−
(∑

j

µjFj(x− 1)
)y}

=
(∑

j

µjFj
(
bεyc

))y
→ e−β/ε, as y →∞. (3.3)

By Taylor’s expansion formula, for any A > 0 and b ∈ (0, A), we have

(A− b)y = Ay − byAy−1 +
b2

2
y(y − 1)(A− c)y−2

for some c ∈ (0, b). In particular,

byAy−1 − b2y2

2
Ay−2 ≤ Ay − (A− b)y ≤ byAy−1. (3.4)

Therefore, letting

A(x) :=
∑
j

µjFj(x) and bi(x) := Fi(x)− Fi(x− 1), (3.5)
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we obtain from (3.2) and (3.4) that

P (i ∈ τn|Yn = y) ≥
∞∑

x=1+bεyc

{(∑
j

µjFj(x)
)y
−
(∑
j 6=i

µjFj(x) + µiFi(x− 1)
)y}

=

∞∑
x=1+bεyc

yµi
(
A(x)

)y−1 · bi(x)−
∞∑

x=1+bεyc

µi
(
A(x)

)y−2 ·
(
bi(x)y

)2
2

:= I1(y, ε)− I2(y, ε). (3.6)

To evaluate I1(y, ε) and I2(y, ε) we will exploit the following implication of a general
property of regularly varying sequences (see, for instance, [1, 4]):

lim
x→∞

x2bi(x)

αi
= lim
x→∞

x ·
{(

1− Fi(x− 1)
)
−
(
1− Fi(x)

)}
1− Fi(x)

= lim
x→∞

bxc ·
{(

1− Fi(bxc − 1)
)
−
(
1− Fi(bxc)

)}
1− Fi(bxc)

= lim
n→∞

n ·
{(

1− Fi(n− 1)
)
−
(
1− Fi(n)

)}
1− Fi(n)

= 1. (3.7)

Since
(
A(x)

)y−1 · bi(x) is a step function, for the first term in (3.6) we have

I1(y, ε) =

∞∑
x=1+bεyc

yµi
(
A(x)

)y−2 ·
(
bi(x)y

)2
2

≥
∫ ∞
ε+1/y

y2µi
(
A(yt)

)y−1 · bi(yt)dt. (3.8)

By (3.7), y2µi
(
A(yt)

)y−1 · bi(yt) converges, as y →∞, to the continuous distribution

function αiµie
−β/tt−2. Furthermore, the convergence is uniform on compact intervals.

Therefore, first truncating the integral in the last display and then taking the limit
as y →∞,

lim inf
y→∞

I1(y, ε) ≥ lim
M→∞

∫ M

ε

αiµie
−β/tt−2dt =

∫ ∞
ε

αiµie
−β/tt−2dt. (3.9)

Similarly,

I2(y, ε) · y =

∞∑
x=1+bεyc

yµi
(
A(x)

)y−2 ·
(
bi(x)y

)2
2

≤
∫ ∞
ε

µi
(
A(yt)

)y−2 ·
(
bi(yt)y

2
)2

2
dt,

and hence, by Fatou’s lemma,

lim sup
y→∞

{I2(y, ε) · y} ≤
∫ ∞
ε

µiα
2
i e
−β/tt−4dt =

∫ ε−1

0

µiα
2
i e
−βss2ds. (3.10)
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Since ε > 0 is an arbitrary positive real, it follows from (3.9), (3.10), and (3.6) that

lim inf
y→∞

P (i ∈ τn|Yn = y) ≥
∫ ∞

0

αiµie
−β/tt−2dt

=

∫ ∞
0

αiµie
−βsds =

µiαi
β

. (3.11)

On the other hand, using (3.2), (3.3), and the upper bound in (3.4), we obtain that

lim sup
y→∞

P (i ∈ τn|Yn = y) ≤ lim sup
ε→0

lim sup
y→∞

I1(y, ε).

To conclude the proof of the theorem, observe that, similarly to (3.8) and (3.9),

I1(y, ε) ≤
∫ ∞
ε

y2µi
(
A(yt)

)y−1 · bi(yt)dt→
∫ ∞
ε

αiµie
−β/tt−2dt, as y →∞.

Since limε→0

∫∞
ε
αiµie

−β/tt−2dt =
∫∞

0
αiµie

−β/tt−2dt = µiαi
β , this implies

lim sup
y→∞

P (i ∈ τn|Yn = y) ≤ µiαi
β

.

In view of (3.11) this completes the proof of (3.1). �

4. Proof of Theorem 2.8. Let

ξ(i)
n := 1{i∈τn}, n ∈ Z+, i ∈ D,

and ξn := (ξ
(1)
n , . . . , ξ

(d)
n ). Observe that K

(i)
n :=

∑n
k=1 ξ

(i)
k is an additive functional of

the Markov chain Yn. More precisely,

P
(
ξ(i)
n = s, Yn+1 = z

∣∣(Yk, ξk)k<n, Yn = y
)

= P (Yn+1 = z
∣∣Yn = y) · P (ξ(i)

n = s
∣∣Yn = y, Yn+1 = z), (4.1)

for any y, z ∈ N and s ∈ {0, 1}. This implies that the random sequence formed by the
triples (Yn, Yn+1, ξn), n ∈ Z+ is a Markov chain (in fact, a hidden Markov model with
ξn playing role of the “observable variables”) and that one can generate a realization
of this sequence step by step, at each step first generating the value of Yn+1 given Yn
and then the value of ξn given Yn and Yn+1. Heuristically, in view of Proposition 2.3

and Theorem 2.7, this suggests that the asymptotic behavior of the sequence ξ
(i)
n along

a typical trajectory of the chain Yn is similar to that of the sequence of outcomes of
i.i.d. coin tossing trials with the probability of heads equal to µiαi

β . In what follows we
will derive a formal version of this heuristic argument and deduce from it the result
stated in Theorem 2.8.

Note that, similarly to (3.2),

P (ξ(i)
n = 1

∣∣Yn = y, Yn+1 = z)

=

(∑
j µjFj(z)

)y
−
(∑

j 6=i µjFj(z) + µiFi(z − 1)
)y

(∑
j µjFj(z)

)y
−
(∑

j µjFj(z − 1)
)y .
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For M > 0 let ΩM := {(y, z) ∈ N2 : z > y2/3 and y, z > M}. Recall (3.5). By virtue
of (3.4), we have for all (y, z) ∈ ΩM with M sufficiently enough (namely, large enough
to ensure that the denominator in(4.2) and the numerator in (4.3) below are positive),

P (ξ(i)
n = 1

∣∣Yn = y, Yn+1 = z)

≤
yµibi(z)

(
A(z)

)y−1

y
(∑

j µjbj(z)
)(
A(z)

)y−1 − y2

2

(∑
j µjbj(z)

)2(
A(z)

)y−2

=
µibi(z)A(z)(∑

j µjbj(z)
)
A(z)− y

2

(∑
j µjbj(z)

)2 , (4.2)

and

P (ξ(i)
n = 1

∣∣Yn = y, Yn+1 = z)

≥
yµibi(z)

(
A(z)

)y−1 − y2

2

(
µibi(z)

)2(
A(z)

)y−2

y
(∑

j µjbj(z)
)(
A(z)

)y−1

=
µibi(z)A(z)− y

2

(
µibi(z)

)2(∑
j µjbj(z)

)
A(z)

. (4.3)

It follows from (4.2) and (4.3) that

lim
M→∞

sup
(y,z)∈ΩM

P (ξ(i)
n = 1

∣∣Yn = y, Yn+1 = z)

= lim
M→∞

inf
(y,z)∈ΩM

P (ξ(i)
n = 1

∣∣Yn = y, Yn+1 = z) =
µiαi
β

. (4.4)

By Lemma 2.1, P (Yn > M i. o) = 0 for any M > 0. Furthermore, (2.1) yields

P (Yn+1 ≤ y2/3|Yn = y) =
(
1− E

[
Gχ(y2/3)

])y ≤ exp
(
−yE

[
Gχ(y2/3)

])
,

which, using Assumption 2.2 and Lemma 2.5, implies by a “conditional version” of
the Borel-Cantelli lemma (see, for instance, [3, p. 240]) that

lim
M→∞

1{(Yn,Yn+1)∈ΩM} = 1, P − a. s. (4.5)

This completes the proof of Theorem 2.8 by using (4.1) and the comparison with
a sequence of independent coin tossing trials with the probability of heads equal to
αiµi
β ± ε with an arbitrary small ε > 0, whenever (Yn, Yn+1) ∈ ΩM . �

5. Proof of Theorem 2.9. We will continue to use notations introduced in the
course of the proof of Theorem 2.8. Similarly to the proof of the latter, the proof of
Theorem 2.9 rests on an application of (4.4) and (4.5).

Fix any i ∈ D and ε > 0 such that ε < max
{

1 − µiαi
β , µiαiβ

}
. By virtue of (4.4)

one can choose M = M(ε) > 0 be large that

sup
(y,z)∈ΩM(ε)

P (ξ(i)
n = 1

∣∣Yn = y, Yn+1 = z) ≤ µiαi
β

+ ε

and

inf
(y,z)∈ΩM(ε)

P (ξ(i)
n = 1

∣∣Yn = y, Yn+1 = z) ≥ µiαi
β
− ε.
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In view of (4.5), there exists N ∈ N such that (Yn, Yn+1) ∈ ΩM(ε) for all n > N.
Therefore, using a standard coupling technique one can infer from (4.1) that the

lim sup and the lim inf, as n → ∞, of both R
(i)
n / log n and r

(i)
n / log n are dominated

with probability one by the corresponding quantities in a series of i.i.d. coin tossing
trials, with the probability of heads equal to µiαi

β ± ε. Since ε > 0 is arbitrary, this
implies the results in Theorem 2.9 which merely states that the lim sup’s and lim inf’s
coincide with their counterparts for the biased coin tossing when the probability of
heads is equal to µiαi

β (cf. [5]). �

Appendix A. Proof of Theorem 2.6. For m ∈ N and x ∈ R let

νm(x) = E
[
(Ln+1 − Ln)m

∣∣Ln = x],

and set

Mn = Ln −
n−1∑
k=0

ν1(Lk), n ∈ N.

Then (Mn,Fn)n∈N is a martingale, and the corresponding martingale difference se-
quence is

∆n := Mn −Mn−1 = Ln − Ln−1 − ν1(Ln−1), n ∈ N.

To apply a standard functional CLT for martingales to Mn, it suffices to verify the
following two conditions (see, for instance, [3, p. 414]):

(i) An(t) := 1
n

∑bntc
k=1 E

[
∆2
k

∣∣Fk−1

]
→ π2/(6t) in probability for all t ∈ [0, 1], and

(ii) Bn(ε) := 1
n

∑n
k=1E

[
∆2
k1{|∆k|>ε

√
n}
∣∣Fk−1

]
→ 0 in probability for any ε > 0.

The following asymptotic formulas (as x→∞) for the first two conditional moments
are obtained in [8] (see Lemmas 1 and 2 in [8]):

ν1(x) = γ + log β +
θ

βx
+ o(x−1) and ν2(x) = (γ + log β)2 +

π2

6
+ o(1),

where the constant parameter θ is introduced in (2.2).

Since E
[
∆2
k

∣∣Fk−1

]
= ν2(Lk−1) −

(
ν1(Lk−1)

)2
, these two formulas together with

Lemma 2.1 imply that E
[
∆2
k

∣∣Fk−1

]
= π2

6 + o(1) as k → ∞, and hence the first
condition above holds.

To verify the second condition we will use the fact (see [8, Lemma 1]) that ν4(x)
is uniformly bounded in a neighborhood of infinity. More precisely, let K > 0 be
a positive real such that ν4(x) < K for all x = log k, k ∈ N. By using first the
Cauchy-Sschwarz inequality and then Chebyshev’s bound P (X > a) ≤ a−4E[X4],

E
[
∆2
k1{|∆k>ε

√
n}
∣∣Fk−1

]
≤
(
E
[
∆4
k

∣∣Fk−1

]
· P
(
|∆k| > ε

√
n
∣∣Fk−1

))1/2

≤ 1

ε2n
E
[
∆4
k

∣∣Fk−1

]
.

By Minkowski’s inequality, the right-most term in the last display is bounded with

probability one by ε−2n−1
(
ν4(Lk−1)+

(
ν1(Lk−1)

)4)1/4
, which implies that the second

condition above for the martingale differences is satisfied for ∆n.
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To complete the proof, observe that the asymptotic formula for ν1(x) yields

1√
n

(
Ln − (γ + log β)n

)
=

1√
n

(
Mn +O(log n)

)
,

where O(x) is a function such that O(x)/x is bounded away from both zero and
infinity in a neighborhood of infinity. �
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