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Abstract

In a divergent case, we obtain limit theorems for a suitably normalized sequence
generated by a random linear recursion with dependent coefficients. The dependence
structure of the coefficients is defined through an auxiliary random sequence that rep-
resents the current “state of Nature” (alternatively, current regime of the “underlying
economy”) and thus serves as an exogenous dynamic environment for the model. We
assume that the exogenous environment is a stochastic process with long-range depen-
dence, so that the current state of Nature reflects the whole past of the process.
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1 Introduction

The aim of this introduction is to present our model in general and discuss a specific set-up
that is considered in this paper. The main results are stated in the subsequent Section 2
while their proofs are deferred to Section 3.

The model: stochastic difference equation. Consider the following linear recursion

Xn = MnXn−1 +Qn, n ∈ Z, Xn ∈ R, (1)

with random real coefficients Qn and Mn. For simplicity, we will assume throughout that
X0 = 0. It follows then from (1) that X1 = Q1 and for n ≥ 2,

Xn =
n−1∑
k=1

Qk

n∏
j=k+1

Mj +Qn. (2)
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The stochastic difference equation (1) has a remarkable variety of both theoretical as well as
real-world applications. We refer the reader to, for instance, [32, 73, 84] for a comprehensive
survey of the literature.

For a general stationary and ergodic sequence of pairs (Qn,Mn)n∈Z, conditions that ensure
convergence of Xn in law to a unique stationary distribution can be found, for instance, in
[13]. Under the assumption that (Qn,Mn)n∈Z form an i.i.d. sequence, the critical case when
a unique invariant measure for Xn exists but is unbounded, is considered, for instance in
[3, 16, 17]. The asymptotic properties of Xn in the case when it grows stochastically as
n→∞ have been considered in [47, 69, 73], where it is assumed that the pairs of coefficients
(Qn,Mn)n∈Z form an i.i.d. sequence. We recall that under mild integrability assumption
on Mn, the distinction between the cases is according to the sign of E(log+ |Mn|), where
log+ x := max{0, x} for x > 0.

The aim of this paper. In the supercritical case considered in [47, 69, 73], Xn grows
loosely speaking as a stretched exponential function of n, and the main results of the above
papers are concerned with the asymptotic behavior of a properly normalized random variable
log |Xn|. The goal of this paper is to study (1) in a divergent case and obtain an extension
of the results of [47, 69, 73] to a non-i.i.d. setting where the coefficients of the recursion are
modulated by an exogenous dynamic environment as follows.

General framework: regime switching.

Definition 1.1. The coefficients (Qn,Mn)n∈Z are said to be modulated by a sequence of
random variables (en)n∈Z, each valued in a finite set D, if there exist independent random
variables (Qn,i,Mn,i)n∈Z,i∈D ∈ R2 such that for a fixed i ∈ D, (Qn,i,Mn,i)n∈Z are i.i.d,

Qn = Qn,en and Mn = Mn,en , (3)

and (Qn,i,Mn,i)n∈Z,i∈D is independent of (en)n∈Z.

This definition introduces two levels of randomness into the model, the first one due to the
dynamic environment (en)n∈Z and the second one due to the randomness of the “endogenous
variables” Mn,i and Qn,i. The process Xn defined by (1) often serves to model discrete-time
dynamics of both the value as well as the volatility of financial assets and interest rates, see
for instance [19, 39, 43, 82]. In this context, environment e = (en)n∈Z can be interpreted as
the sequence of switching states (or regimes) of the underlying economy. The idea of regime
shifts or regime switches can be traced back at least to [33, 63], and was formally proposed
in [42] to explain the cyclical feature of certain macroeconomic variables.

Dependence structure of the environment: general discussion and a background.
It is remarked in [2] that“while the assumption of i.i.d. errors is convenient from the mathe-
matical point of view, it is typically violated in regressions involving econometric variables”.
Typically, it is assumed in the regime-switching type of models that the environment (state
of Nature) is represented by a stationary finite state Markov process (see, for instance,
[19, 31, 56, 57, 79] and references therein). Testing a null hypothesis of a usual AR(p) model
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versus a Markov switching framework is discussed, for instance, in [22, 44], using in partic-
ular classical examples of [42] and [40, 72] modeling, respectively, the postwar U. S. GNP
growth rate and cartel market strategies.

Note that when (en)n∈Z is a finite Markov chain, the sequence of triples
(
Mn, Qn, en)n∈Z

constitutes a Hidden Markov Model. We remark that heavy tailed HMM as random coeffi-
cients of linear time-series models have been considered, for instance, in [18, 46, 80]. Recently,
linear recursions (1) with Markov-dependent coefficients have been considered, for instance,
in [4, 5, 18, 24, 27, 46, 78, 80].

Though a Markov setup in regime-switching models is tractable analytically and thus is a
natural starting point, it appears that “nothing in the approach ... precludes looking at more
general probabilistic specifications” [43]. For instance, an application of a general “unit root
versus strongly mixing innovations” statistical test to the model (1) is discussed in Section 3
of the classical reference [71]. In fact, the Markov dynamics seems in general inadequate
for modeling socioeconomic factors involved in financial applications of regime-switching
autoregressive models (see, for instance, [23, 65] and references therein). While early regime-
switching models assumed, in order to maintain the tractability of the theoretical framework,
that the underlying Markov chain is stationary and the number of states is small (see, for
instance, [31, 56, 57]), it has been proposed in more recent work to consider Markov models
with a large number of highly connected states and to use a-prior Bayesian information (see,
for instance, [19, 79]). Alternatively, one can replace the Markovian dynamics with that of
full shifts of finite type/chains of infinite order/chains with complete connections, which are
processes with long-range dependence (infinite, though a fading memory) preserving many
key features of irreducible finite-state Markov chains [25, 34, 35, 37, 49].

Our set-up: long range dependence, chains of infinite order. In this paper we will
consider a setting where a long-range dependence in random coefficients is possibly present.
More precisely, we will assume the following:

Assumption 1.2. The coefficients (Qn,Mn)n∈Z in (1) are modulated by a process (en)n∈Z
which is either

(i) An irreducible Markov chain on a finite state D = {1, . . . , d} for some d ∈ N.

or

(ii) A C-chain as specified in Definition 1.3 below.

Definition 1.3. A C-chain is a stationary process (en)n∈Z taking values in a finite set
(alphabet) D such that

(i) For any i1, i2, . . . , in ∈ D, P (e1 = i1, e2 = i2, . . . , en = in) > 0.

(ii) For any i0 ∈ D and any sequence (in)n≥1 ∈ DN, the following limit exists:

lim
n→∞

P (e0 = i0|e−k = ik, 1 ≤ k ≤ n) = P (e0 = i0|e−k = ik, k ≥ 1),

where the right-hand side is a regular version of the conditional probabilities.
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(iii) (fading memory) For n ≥ 0 let

γn = sup

{∣∣∣∣P (e0 = i0|e−k = ik, k ≥ 1)

P (e0 = j0|e−k = jk, k ≥ 1)
− 1

∣∣∣∣ : ik = jk, k = 1, . . . , n

}
.

Then, the numbers γn are all finite and

∞∑
n=1

γn log n <∞ (4)

C-chains are a particular case of chains of infinite order (chains with complete connec-
tions) [25, 34, 35, 37, 49]. C-chains can be described as rapidly mixing full shifts, and
alternatively defined as an essentially unique random process with a given transition func-
tion (g-measure) P

(
X0 = i0|Xk = ik, k < 0

)
[6, 34, 35, 49]. Stationary distributions of these

processes are Gibbs states in the sense of Bowen [11, 59]. Chains with complete connections
were originally introduced by Onicescu and Mihoc in [67, 68]. The name “chains of infinite
order” was proposed by Harris in [45]. For a review of applications of chains with complete
connections see, for instance, classical references [45, 49, 52] and more recent [25, 37, 75, 85].

The particular form in which the processes are defined in Definition 1.3 is adapted from
[59] (though the name “C-chains” is not used there). Alternatively, the process can be
defined in terms of the g-functions which were introduced by Keane in [54]. A non-negative
function g on D ×

∏
n≤−1D is called a g-function if∑

i0∈D

g(i0|i) = 1 for all i = (i−1, i−2, . . .) ∈
∏
n≤−1

D.

The quantity

log inf
i0 ,̂i0,i

g(i0|i)
g(̂i0|i)

= log(1 + γn)

can be thought as a measure (modulus) continuity of g (see, for instance [6, 81]). It turns
out that if a g-function has an appropriate modulus of continuity, then there exists a unique
C-chain such that P (e0 = i0|e−k = i−k, k ≥ 1) = g(i0|i), where i = (i−1, i−2, . . .). In fact,
C-chains are chains with complete connections with the asymptotic decay of the modulus of
continuity determined by (4).

Mixing properties and Markov representation of C-chains. For any C-chain (en)n∈Z
there exists a Markov representation (see [6, 36, 59]), that is a stationary irreducible Markov
chain (yn)n∈Z in a countable state space S and a function ζ : S → D such that

(en)n∈Z
D
=
(
ζ(yn)

)
n∈Z, (5)

where
D
= means equivalence of distributions. The Markov representation implies that the dis-

tributions of C-chains have a regeneration structure induced by the regeneration structure of
the corresponding Markov chain yn (see Section 3.1 below for details). The first regenerative
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structures for chains with complete connections were proposed by Lalley [59, 60] and Berbee
[6]. See, for instance, [25, 36, 35] for extensions and generalizations of these results. In these
constructions the Markov chain yn is typically an array (en, en−1, . . . , en−τn) formed by a ran-
dom number τn + 1 of variables ek. Lalley [59] refers to such Markov chains as list processes.
Kalikow [53] refers to the essentially same class of processes as random Markov processes.
Unfortunately, to the best of our knowledge, an exact relation between mixing properties of
such Markov chains and that of the underlying C-chain is unknown. Also, notice that the
identity (5) describes the equivalence of two random sequences in distribution only. In fact,
C-chains constitute a more general class of processes than functions of a ”nice” fast mixing
Markov chain. We refer the reader to [6, 7, 59] for an interesting discussion of a relation
between mixing conditions and the Markov representation.

It is not hard to see that (4) implies that

∞∑
n=1

ψ(2n) <∞, (6)

where, for n ∈ N,

ψ(n) := sup

{∣∣∣∣ P (ek = ii, k ≥ 0|ek = ik, k < 0)

P (ek = jk, k ≥ 0|ek = jk, k < 0)
− 1

∣∣∣∣ : ik = jk, k ≥ −n
}
.

Thus C-chains are ψ-mixing sequence [6, 29]. Both, the Markov representation (5) as well as
the mixing condition (6) are essential for our proofs. In particular, (6) ensures a mixing rate
required to apply standard results from the literature and conclude that the key auxiliary
result (a general functional central limit theorem), namely Proposition 2.4 below, holds
true. The regeneration structure of the sequence en which is implied by (5), is not needed
to derive Proposition 2.4 but is used in the proof of another crucial auxiliary result, namely
Lemma 2.1 below. In particular, only for the purpose to ensure the existence of the Markov
representation (and hence of the regeneration structure), we could replace (4) with a slightly
weaker assumption

∑∞
n=1 γn < ∞. We remark that the regeneration structure itself does

not imply limit laws for partial sums of even a countable Markov chain (see, for instance,
[26, 50, 51, 66] and references therein). For instance, Nagaev in the classical reference [66]
(see also [64, 21]) used the strong Doeblin condition to ensure that an appropriate second
moment condition holds for the regeneration times. The latter are essentially equivalent
to assumptions on the mixing rate of the underlying Markov chain. For an example of a
stationary strongly mixing countable Markov chain that does not satisfy the central limit
theorem see [26].

Alternative models of the difference equation with dependent coefficients For
different from the one considered in this paper examples of linear recursions with strongly
dependent (non-Markov) coefficients see, for instance, [15, 20, 48, 62, 86] and references
therein. We remark that though the models with innovations given by a martingale differ-
ence sequence are arguably the most popular in applications, “in practice, econometric and
financial time series often exhibit long-range dependent structure (see, e.g., [76, 77] and [29])
which cannot be encompassed by the martingale difference setting...” [15].
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Organization of the paper. The rest of the paper is organized as follows. Main results
of the paper are stated and discussed in Section 2. Section 3 contains proofs of the main
results.

2 Main results

It was first observed in [55] that in a “generic” convergent case the asymptotic behavior of
Xn is similar to that of max1≤k≤n

{
Qk · |Πk|

}
, where

Πn :=
n∏
j=1

|Mj|. (7)

It has been shown in [47, 73] that this is also the case for a “generic” divergent setup with
i.i.d. coefficients. In this paper we explore this phenomenon in the divergent case under
Assumption 1.2.

Notice, that whenever µ := E(log |Mn|) ∈ (0,∞), the ergodic theorem suggests the
asymptotic relations |Πn| ' enµ and, consequently, Πn ' Π∗n where

Π∗n := max
1≤k≤n

|Πk|. (8)

Here and henceforth f(n) ∼ g(n) and f(n) ' g(n) (as a rule, we omit “as n→∞”) means,
respectively, limn→∞ f(n)/g(n) = 1 and log f(n) ∼ log g(n).

In fact, Πn typically dominates over Qn, and we have

Lemma 2.1. Let Assumption 1.2 hold. Suppose in addition that:

(i) µ = E(log |Mn|) > 0.

(ii) E
(
log+ |Q0|

)
< +∞, where x+ := max{x, 0} for x ∈ R.

Then,

lim
n→∞

log |Xn|
n

= µ, a. s.,

where (Xn)n∈N is defined by (1) with X0 = 0.

If µ =∞, Theorem 2.5 stated below shows that log |Xn|
bn

with a suitable normalization bn

converges in distributions to the same limit that log |Πn|
bn

does. Roughly speaking, Xn grows

as a stretched exponential sequence in that case. To ensure that log |Πn|−an
bn

with suitable
normalizing sequences an and bn converges in distribution, we will impose the following
assumption on the coefficients of (1). Recall that f : R → R is called regularly varying if
f(t) = tαL(t) for some α ∈ R where L(t) is a slowly varying function, that is L(λt) ∼ L(t)
for all λ > 0. The parameter α is called the index of the regular variation. In what follows
we denote by Rα the class of regularly varying real-valued functions with index α.
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Assumption 2.2. Let Assumption 1.2 hold. Suppose in addition that E
(
log |M0|

)
∈ [0,∞],

E
(
log+ |Q0|

)
< +∞, and

Either

(A1) There exist a constant α ∈ (0, 2], a function h ∈ Rα, and constants m
(η)
i (with

i ∈ D and η ∈ {−1, 1}), such that limt→∞ h(t) · P
(
log |Mn,i| · η > t

)
= m

(η)
i .

Furthermore,
∑

j∈Dm
(1)
j > 0.

or

(A2) E
[
(log |M0|)2

]
<∞.

Remark 2.3. Notice that:

(a) Assumption (A1) is the assumption that the random variables log |Mn,i| have regularly
varying tails. We refer the reader to the classical monograph [9] extensively discussing
regular variation and its applications. For an extensive account of the theory of ran-
dom walks with regularly varying increments we refer the reader to [10] and references
therein.

(b) The existence of E
(
log |M0|

)
implies that

(i) P (|M0| = 0) = 0.

(ii) If (A1) holds with α ∈ (0, 1), then necessarily m
(−1)
j = 0 for all j ∈ D.

Let D[0, 1] denote the set of real-valued càdlàg functions on [0, 1] equipped with the
Skorokhod J1-topology. It is well known that additive functional of Markov chains and
rapidly mixing sequences obey the same functional stable limit theorems as partial sums of
i.i.d. random variables under relatively mild additional ”local dependence” assumptions (see,
for instance, [58, 83] and references therein). We will next observe that if Assumption 2.2
holds, then with suitable normalizing constants an and bn (the same as in the case when Mn

are independent) the sequence of processes (S(n))n∈N defined by setting

S
(n)
t =

log Π[nt] − a[nt]

bn
, t ∈ [0, 1], (9)

converges weakly in D[0, 1] as n → ∞ to a (Lévy) process ξ = (ξt)t∈[0,1] with stationary
independent increments, and such that ξ1 is distributed according to a stable law of index
α whose domain of attraction includes log |M0|. Here and henceforth [x] denotes the integer
part of x ∈ R, that is [x] = max{z ∈ Z : z ≤ x}. For an explicit form of an when α = 1 and
bn, see for instance [14, Chapter 9]. We remark that

an =

{
nµ if either (A1) with α > 1 or (A2) of Assumption 2.2 hold,
0 if (A1) with α ∈ (0, 1) of Assumption 2.2 holds,

(10)

and that b[t] ∈ R1/α if (A1) holds, whereas bn =
√
n if (A2) is satisfied. Further, ξ is a

Brownian motion if either (A1) with α = 2 or (A2) are satisfied. For C-chains and aperiodic
Markov chains, the weak convergence of S(n) to ξ in D[0, 1] follows, for instance, from the
mixing property (6) and
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- Corollary 5.9 in [58] if (A1) holds with α ∈ (0, 2);

- Theorem 1 in [12] if (A1) holds with α = 2 and E
[
(log |M0|)2

]
= +∞;

- Theorem 7.7.11 in [30, p. 427] if (A2) holds;

Note that the results of [58] and the central limit theorem in [30, p. 427] can be applied to
C-chain because by virtue of (iii) in Definition 1.3 the latter satisfy the ψ-mixing condition
(which is stronger than the uniform or ϕ-mixing actually required to apply these general
results) with exponential rate. If (en)n∈Z is a periodic Markov chain, then the claim can be
derived from the result for the aperiodic chains applied to the (one-dependent and uniformly

mixing) random variables M̃n, n ∈ Z, defined as follows: logMn :=
∑(n+1)d−1

k=nd logMk, where
d is the period of the chain. The fact that the normalizing sequences an and bn can be chosen
as in the i.i.d. case for non-Gaussian limit laws, follows from (5.12) in [58] and (3.13) in [12].

Summarizing, we have:

Proposition 2.4. Let Assumption 2.2 hold. Then, as n→∞,

(a) log |Πn|−an
bn

⇒ ξ1,

(b) log |Πn|∗
bn

⇒ sup0≤t≤1 ξt whenever an = 0,

where ⇒ stands for convergence of random variables in distribution.

In Section 3.2 we derive from this proposition the following:

Theorem 2.5. Let Assumption 2.2 hold. If E(log |M0|) > 0, then, as n→∞,

log |Xn| − an
bn

⇒ ξ1, (11)

where ξ1, an, and bn are the same as in the statement of Proposition 2.4.

Remark 2.6. In the case of i.i.d. coefficients (Qn,Mn), Theorem 2.5 is [47, Theorem 2]
when (A2) is assumed. If (A1) is assumed with α > 1, the theorem is an analogue of part (b)
of [73, Theorem 2.1] where, as well, the assumption that (Qn,Mn) form an i.i.d. sequence
is made. In the case of (A1) with α ≤ 1, the result appears to be new even in the context of
i.i.d. coefficients.

Under the conditions of Assumption 2.2 the sequence (log |Πn|)n≥0 satisfies a law of
iterated logarithm, which propagates into the following result.

Theorem 2.7. Let Assumption 2.2 hold. Then:

(a) If (A1) holds either with α ∈ (0, 1) or with α ∈ (1, 2), we have

lim sup
n→∞

log |Xn| − an
bn(log n)1/α+ε

=

{
0 if ε > 0
∞ if ε < 0

a. s.
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(b) If (A2) holds, we have

lim sup
n→∞

log |Xn| − µn√
2n log log n

<∞, a. s. (12)

The proof of Theorem 2.7 given in Section 3.3 below follows the same lines as that of [74,
Theorem 4].

The case E(log |M0|) = 0 is more challenging, and we are only able to treat it under the
additional assumption that the coefficients Qn and Mn are strictly positive. The following
theorem carries over corresponding results of [73] and [47] for i.i.d. coefficients to the setup
of this paper. When µ = 0, the asymptotic behaviors of Πn and Π∗n are not anymore the
same. Therefore, following [47], an extreme value theory for Πn needs to be invoked in order
to establish the asymptotic behavior of Xn.

We have:

Theorem 2.8. Let Assumption 2.2 hold. Suppose in addition that:

(i) P (M0 > 0, Q0 > 0) = 1.

(ii) limn→∞ nP (logQ0 > b−1
n ) = 0.

(iii) E(logM0) = 0.

Then, as n→∞,

logXn

bn
⇒ sup

0≤t≤1
ξt, (13)

where ξt and bn are the same as in the statement of Proposition 2.4.

Remark 2.9. In the case of i.i.d. coefficients (Qn,Mn), Theorem 2.8 is a combination of
part (i) of [47, Theorem 3] and part (c) of [73, Theorem 2.1]. We remark that part (ii)
of [47, Theorem 3] gives an example of the situation where Qn dominates over Πn, and the
asymptotic behavior of Xn is determined by the asymptotic behavior of the former sequence
rather than the latter. It is not hard to see that using an extreme value theory for Markov
chains (see for instance [8, 61]), a similar example can be given also in our Markovian setup.
We leave the details to an interested reader.

3 Proofs of the main results

This section includes the proofs of our main results stated above in Section 2. We remark
that representations (14) and (20) which play the key role in some of our proofs have been
previously used for a similar purpose in [47].
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3.1 Proof of Lemma 2.1

For n ≥ 1, let Πn =
n∏
j=1

Mj. It follows from (2) that

Xn = Πn ·
n∑
k=1

Qk

k∏
j=1

1

Mj

. (14)

Let

Rn =
n∑
k=1

Qk

k∏
j=1

1

Mj

.

Assuming that X0 = 0, we obtain

log |Xn| = log |Πn|+ log |Rn|. (15)

By the ergodic theorem,

lim
n→∞

1

n
log |Πn| = µ, a. s.

On the other hand, since E
(
log |M0|−1

)
= −E

(
log |M0|

)
< 0, [13, Theorem 1] implies that

the following limit exists with probability one:

R := lim
n→∞

Rn =
∞∑
k=1

Qk

Mk

·
k−1∏
j=1

1

Mj

. (16)

It follows that 1
n

log |Rn| converges to zero with probability one, provided that the distribution
of R does not have an atom at zero. Thus, to complete the proof of Lemma 2.1 it suffices to
show that

lim
ε→0

P (|R| ≤ ε) = 0. (17)

. We will deduce (17) from the corresponding result for i.i.d. coefficients (Qn,Mn) (cf.
Theorem 1.3 in [1], see also Theorem 2 in [41]). Toward this end we introduce the following
regenerations structure based on cycles of an underlying Markov chain (cf., for instance,
[36, 38]). For C-chains we will use Markov representation (5) whereas if the environment
en of Assumption 1.2 is a Markov chain, we will identify in what follows yn with en and S
with D. Fix y∗ ∈ S and let N0 = 0 and Ni = inf{n > Ni−1 : yn = y∗}, i ∈ N. The blocks
(y

Ni
, . . . , y

Ni+1−1
) are independent for i ≥ 0 and identically distributed for i ≥ 1. For i ≥ 0,

let

Ai = Q
Ni+1
·
(
M

Ni+1

)−1
+Q

Ni+2
·
(
M

Ni+2
·M

Ni+1

)−1

+ . . .+Q
Ni+1
·
(
M

Ni+1
M

Ni+1−1
· · ·M

Ni+1

)−1
,

Bi =
(
M

Ni+1
M

Ni+2
· · ·M

Ni+1

)−1
.
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The pairs (Ai, Bi) are independent for i ≥ 0, identically distributed for i ≥ 1 and

R = A0 +
∞∑
n=1

An

n−1∏
i=0

Bi := A0 +B0R1,

where the last identity serves as the definition of R1. It follows from Theorem 1.3 in [1]
applied to (An, Bn)n∈Z that R1 has a continuous distribution (possibly singular continuous).
Therefore, for any pair of reals (A,B) such that b 6= 0, we have

lim
ε→0

P
(
|A+BR1| ≤ ε

)
= lim

ε→0
P
(
−ε ≤ A+BR1 ≤ ε

)
= 0.

By the bounded convergence theorem this implies that

lim
ε→0

P (|R| ≤ ε) = lim
ε→0

P
(
|A0 +B0R1| ≤ ε

)
= 0,

and hence verifies (17). The proof of the lemma is completed.

3.2 Proof of Theorem 2.5

Recall (15). By part (a) of Proposition 2.4, as n→∞,

log |Πn| − an
bn

⇒ ξ1.

Furthermore, (16) and (17) imply

1

bn
· log |Rn| ⇒ 0.

This completes the proof of the theorem.

3.3 Proof of Theorem 2.7

Recall (15). Observe that (16) and (17) imply that

lim
n→∞

1

cn
· log |Rn| = 0, a. s.,

for any sequence of reals cn converging to +∞. Therefore, in order to prove Theorem 2.7 it
suffices to establish the corresponding law of iterated logarithm for log |Πn| − an.

For i ∈ D let kn(i) be the number of occurrences of i in the set {e1, e2, . . . , en}. That is,

kn(i) =
n∑
k=1

1{ek=i}, n ∈ N, i ∈ D.

Define Ti(0) = 0, Ti(j) = inf{k > Ti(j − 1) : ek = i}, and set ρj,i := MTi(j),i. Then,

log |Πn| =
n∑
k=1

log |Mk| =
∑
i∈D

kn(i)∑
j=1

log |ρj,i|. (18)

It follows from Definition 1.1 that

11



(i) The double-indexed sequence (ρj,i)i∈D,j∈Z is formed by independent random variables.

(ii) For every fixed i ∈ D, the sequence (ρj,i)j∈Z consists of i.i.d. variables, each one
distributed the same as M0,i.

(iii) The sequences (ρj,i)i∈D,j∈Z and (ek)k∈Z are independent of each other.

For n ∈ N and i ∈ D let

A(n, i) =

{
n · E

(
log |M0,i|

)
if α > 1

0 if α < 1

and

Sn,i =

kn(i)∑
j=1

log |ρj,i| − A
(
kn(i), i

)
.

It follows from (18) that

log |Πn| − an =
∑
i∈D

Sn,i +
∑
i∈D

A
(
kn(i), i

)
− an.

Let ηn(i) = 1{en=i}−E
(
1{en=i}

)
. Then kn(i)−nP (e0 = i) =

∑n
j=1 ηj(i). It follows for instance

from Theorem 4 in [70] that if α > 1, then

lim sup
n→∞

∑
i∈D

A
(
kn(i), i

)
− an

√
2n ln lnn

≤
∑
i∈D

lim sup
n→∞

E
(
log |M0,i|

)
·

n∑
j=1

ηj(i)

√
2n ln lnn

<∞, a. s.

Therefore, in order to complete the proof of the first part of Theorem 2.7 it suffices to show
that

lim sup
n→∞

∑
i∈D Sn,i

bn(lnn)1/α+ε
=

{
0 if ε > 0
∞ if ε < 0

a. s.

Toward this end we first observe that by the law of iterated logarithm for heavy-tailed i.i.d.
sequences (see Theorems 1.6.6 and 3.9.1 in [10]), for each i ∈ D we have

lim sup
n→∞

Sn,i

bkn(i)

(
ln kn(i)

)1/α+ε
=

{
0 if ε > 0

∞ if ε < 0 and m
(1)
i > 0,

a. s.

where the constants m
(1)
i are introduced in Assumption 2.2. Since by the ergodic theorem

lim
n→∞

kn(i)/n = P (e0 = i) > 0, this yields

lim sup
n→∞

Sn,i

bn(lnn)1/α+ε
=

{
0 if ε > 0

∞ if ε < 0 and m
(1)
i > 0

a. s.

12



To complete the proof of part (a) of the theorem it is therefore sufficient to show that for
any i, j ∈ D and all δ ∈ (1/(2α), 1/α),

P
(
|Sn,i| > bn(lnn)δ, |Sn,j| > bn(lnn)δ i.o.

)
= 0. (19)

For i ∈ D let ξi = 2 · P (e0 = i) and define events

En,i =
{

max
1≤m≤nξi

∣∣∣ m∑
k=1

log |Mk,i| − A(m, i)
∣∣∣ > bn(lnn)δ

}
, n ∈ N.

Then

P
(
|Sn,i| > bn(lnn)δ, |Sn,j| > bn(lnn)δ

)
≤ P

(
En,i

⋂
En,j

)
+ P

(
kn(i) > nξi

)
+ P

(
kn(j) > nξj

)
= P (En,i) · P (En,j) + P

(
kn(i) > nξi

)
+ P

(
kn(j) > nξj

)
.

By the ergodic theorem, limn→∞ P
(
kn(i) > nξi

)
= 0. Furthermore, for any A > 0, nk = [Ak],

and β ∈ (0, α) there exists a positive constant C = C(A, β) > 0 such that (see [10, p. 177]),
P (Enk,i) ≤ Ck−δβ. Moreover, since δ > 1/(2α), we can choose β ∈ (0, α) such that 2δβ > 1.
Thus P (Enk,i) · P (Enk,j) ≤ C1k

−γ, for some constant γ > 1 and a suitable constant C1 > 0.
A standard argument using the Borel-Cantelli lemma yields then (19) (see for instance p. 58
or p. 435 in [30]) . The proof of part (a) of Theorem 2.7 is therefore completed.

(b) The proof of the second part of Theorem 2.7 is very similar to the proof of the first part,
and is therefore omitted. The only essential difference is that, as the basic law of iterated
logarithm for i.i.d. sequences, we would use the standard Hartman and Wintner result with
normalization

√
2n ln lnn (Theorem 1.6.5 in [10]) rather than the heavy-tailed version with

normalization bn(lnn)1/α cited above (Theorem 1.6.6 in [10]).

3.4 Proof of Theorem 2.8

Let Wn = max1≤k≤n

(
Qk ·

∏k−1
j=1 Mj

)
and write

X
1
bn
n = W

1
bn
n ·

(∑n
k=1Qk

∏k−1
j=1 Mj

Wn

) 1
bn

(20)

First, observe that the second factor in (20) converges to one in distribution. Indeed, since

n
1
bn = exp

(
1
bn

log n
)
→n→∞ 1, in virtue of the definition of Wn :

1 ≤

(∑n
k=1Qk

∏k−1
j=1 Mj

Wn

) 1
bn

≤ n
1
bn →n→∞ 1.

Therefore, the asymptotic behavior of b−1
n · logXn is determined by that of b−1

n · logWn. For
n ∈ N, denote Un = logQk and U∗n = max1≤k≤n Uk. We then have

b−1
n · logWn =

1

bn
· max

1≤k≤n

(
logQk +

k−1∑
j=1

logMj

)
=

1

bn
(U∗n + log Π∗n−1).

13



Therefore

U∗n − | log Π∗n−1| ≤ b−1
n · logWn ≤ U∗n + | log Π∗n−1|.

In virtue of part (b) of Proposition 2.4, in order to verify the claim of the theorem, it suffices
to shows that

b−1
n U∗n ⇒ 0. (21)

Toward this end, fix arbitrary constants ε > 0 and δ > 0, and observe that condition
limn→∞ nP (logQ0 > b−1

n ) = 0 in the statement of the theorem implies that

nP (logQ0,i > bnε) < δ (22)

for all n ∈ N large enough, say n > nε,δ for some nε,δ ∈ N, and any i ∈ D. Indeed, for any
ε > 0 and i ∈ D (recall that D is a finite set):

lim sup
n→∞

nP (logQ0,i > bnε) ≤ lim
n→∞

[n/M ] · P (logQ0,i > b[n/M ]) = 0,

where [x] := max{k ∈ Z : k ≤} denotes the integer part of x ∈ R, and M is a large enough
integer chosen so that M−α = limn→∞ b[n/M ]/bn < ε if (A1) of Assumption 2.2 holds or,
respectively, M−1/2 = limn→∞ b[n/M ]/bn < ε if (A2) of Assumption 2.2 holds.

For n > nε,δ, (22) implies

P (U∗n ≤ bnε) ≥ P (U∗nε,δ ≤ bnε)
(

1− δ

n

)n−nε,δ
.

Therefore,

lim inf
n→∞

P (U∗n ≤ bnε) ≥ e−δ.

Taking first δ and then ε to zero in the above inequality shows that (21) holds true. The
proof of the theorem is therefore completed.
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[67] O. Onicescu and G. Mihoc, Sur les châınes statistiques, C. R. Acad. Sci. Paris 200
(1935), 511-512.
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