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ON A DIRECTIONALLY REINFORCED RANDOM WALK

ARKA P. GHOSH, REZA RASTEGAR, AND ALEXANDER ROITERSHTEIN

Abstract. We consider a generalized version of a directionally reinforced ran-

dom walk, which was originally introduced by Mauldin, Monticino, and von

Weizsäcker in [20]. Our main result is a stable limit theorem for the position
of the random walk in higher dimensions. This extends a result of Horváth

and Shao [13] that was previously obtained in dimension one only (however,

in a more stringent functional form).

1. Introduction

In this paper we study the following directionally reinforced random walk. Fix
d ∈ N and a finite set U of distinct unit vectors in Rd (see Remark 2.8 at the
end of Section 2 below, where a suitable alternative Markovian setup in a general
state space is discussed). The vectors in U serve as feasible directions for the
motion of the random walk. To avoid trivialities we assume that U contains at
least two elements. Let Xt ∈ Rd denote the position of the random walk at time
t. Throughout the paper we assume that X0 = 0. The random walk changes its
direction at random times

s1 := 0 < s2 < s3 < s4 < ....

We assume that the time intervals

Tn := sn+1 − sn, n ∈ N,
are independent and identically distributed. Let ηn ∈ U be the direction of the
walk during time interval [sn, sn+1). We assume that η := (ηn)n≥1 is an irreducible
stationary Markov chain on U which is, furthermore, independent of (sn)n∈N.

For t > 0, let Nt := sup
{
k ≥ 1 : sk ≤ t

}
be the number of times that the walker

changes direction before time t > 0. Then

Xt =

Nt−1∑
i=1

ηiTi + (t− sNt)ηNt .(1.1)

Notice that Nt ≥ 1 with probability one, due to the convention s1 = 0 that we have
made.

The continuous time random walk (Xt)t≥0 defined above is essentially the model
introduced by Mauldin, Monticino, and von Weizsäcker in [20] and further studied
by Horváth and Shao in [13] and by Siegmund-Schultzea and von Weizsäcker in [25].
The technical difference between our model and the variant which has been studied
in [13] is that in the latter, the next direction of the motion is chosen uniformly
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from the available set of “fresh directions”, while we do not impose any restrictions
on the transition kernel of η besides irreducibility.

The original model proposed in [20] was inspired by certain phenomena that
occur in ocean surface waves (cf. [30]) and was designed to reproduce the same fea-
tures within a probabilistic framework. The main topic of [20] and [25] is recurrence-
transience criteria. Horváth and Shao in [13] studied scaling limits of the random
walk in different regimes, answering some of the questions which have been posed
in [20].

We remark that somewhat related random walk models have been considered by
Allaart and Monticino in [1, 2] and by Gruber and Schweizer in [12]. In the context
of random walks in random environment, a similar in spirit model of persistent
random walks was introduced by Szász and Tóth in [28, 29]. The common feature
of “generic versions” of all models mentioned above is that the underlying random
motion has a tendency to persist in its current direction.

Closely related to persistent random walks are recurrent “random flights” mod-
els where changes of the direction of the random motion follow a Poisson random
clock. These models can be traced back to Pearson’s random walk [10, 15] and
Goldstein-Kac one-dimensional “telegraph process” [16, 23] . Random flights have
been intensively studied since the introduction of the telegraph process in the early
50’s, see for instance [11, 17, 18, 19, 22, 26] and references therein for a representa-
tive sample. An introductory part of [18] provides a short authoritative and up to
a date survey of the field. We remark that, somewhat in contrary to directionally
reinforced random walks, the main focus of the research in this area is on finding
explicit form of limiting distributions for these processes.

In statistical physics, the model (1.1) with i.i.d. jump vectors ηi is a certain kind
of coupled continuous time random walk. Limit theorems for coupled continuous
time random walks have been developed in [5, 14, 21, 27], focusing on the case
where the waiting times have infinite mean.

The main goal of this paper is to prove stable limit theorems for the directionally
reinforced random walk in arbitrary dimension d ≥ 1. In addition, we extend some
limit results of [13] to our setting and also complement them by suitable laws of
iterated logarithm. Our proofs can be easily carried over to a setup where the set
of feasible directions U is not finite, but is rather supported (under the stationary
law of the process) on a general Borel subset of the unit sphere; see Remark 2.8
below for more details.

Our results are stated in Section 2 whereas the proofs are contained in Section
3. The non-Gaussian limit theorems for the position of the random walk in higher
dimensions, stated in Theorems 2.5 and 2.6, constitute the main contribution of
this paper.

2. Statement of main results

We first introduce a few notations. For a vector x = (x1, . . . , xd) ∈ Rd let
‖x‖ = maxi |xi|. For (possibly, random) functions f, g : R+ (or N) → R, write
f ∼ g and f(t) = o(g(t)) to indicate that, respectively, limt→∞ f(t)/g(t) = 1
and limt→∞ f(t)/g(t) = 0, a. s. Let π = (πv)v∈U ∈ R|U | be the unique stationary
distribution of the Markov chain η and let

µ =
∑
v∈U

πvv.(2.1)
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Thus µ = E(ηn) ∈ Rd for each n ∈ N.
The following theorem shows that a strong law of large numbers holds for Xt

and that, under suitable second moment condition, the sample paths of the random
walk are uniformly close to the sample paths of a drifted Brownian motion. We
have:

Theorem 2.1.
(a) Suppose that E(T p1 ) <∞ for some constant p ∈ (1, 2). Then,∥∥Xt − µt

∥∥ = o
(
t1/p

)
.

(b) If E(T p1 ) < ∞ for some constant p > 2, then (in an enlarged, if needed, prob-

ability space) there exist a process X̂ =
(
X̂t)t≥0 distributed as X and a Brownian

motion (Wt)t≥0 in Rd, such that,

sup
0≤t≤T

∥∥X̂t − µt−Wt

∥∥ = o
(
T 1/p

)
.

Remark 2.2. The results stated in Theorem 2.1 as well as in Theorem 2.3 below
are essentially due to [13]. In fact, the original proofs can be adapted to our more
general setup. However, the proofs we give in Section 3 are shorter and somewhat
simpler than the original ones. Furthermore, our proves can easily be seen working
for the general Markov chain setup described in Remark 2.8 below.

The second part of Theorem 2.1 implies the invariance principle for (Xnt−µnt)
with the usual normalization

√
n. We next state an invariance principle and the

corresponding law of iterated logarithm under a slightly more relaxed moment con-
dition. Let D

(
Rd
)

denote the set of Rd-valued càdlàg functions on [0, 1] equipped
with the Skorokhod J1-topology. We use notation ⇒ to denote the weak conver-
gence in D

(
Rd
)
. We have:

Theorem 2.3. For n ∈ N, define a process Sn in D
(
Rd
)

by setting

Sn(t) =
Xnt − µnt√

n
, t ∈ [0, 1].(2.2)

If E(T 2
1 ) <∞, then

(a) Sn ⇒W, where W = (Wt)t≥0 is a (possibly degenerate, but not identically equal
to zero) d-dimensional Brownian motion.

(b) For every x ∈ Span(U) ⊂ Rd, there is a constant K(x) ∈ (0,∞) such that

lim sup
t→∞

(Xt − µt) · x√
t ln ln t

= K(x).

Furthermore, a similar statement holds for the lim inf .

We next consider the case when E(T 2
1 ) =∞ and T1 is in the domain of attrac-

tion of a stable law. Namely, for the rest of our results we impose the following
assumption. Recall that a function h : R+ → R is said to be regularly varying of
index α ∈ R if h(t) = tαL(t) for some L : R+ → R such that L(λt) ∼ L(t) for all
λ > 0. We will denote the set of all regularly varying functions of index α by Rα.

Assumption 2.4. For some α ∈ (0, 2] there exists a function h ∈ Rα such that
limt→∞ h(t) · P (T1 > t) ∈ (0,∞).
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For t > 0 let

at =

 inf {s > 0 : t · P (T1 > s) ≤ 1} if α < 2,

inf {s > 0 : ts−2 · E
(
T 2
1 ; T1 ≤ s

)
≤ 1} if α = 2

(2.3)

If h(t) ∈ Rα with α ∈ (1, 2] (and hence E(T1) < ∞), one can obtain the follow-
ing analogue of Theorem 2.3. It turns out that also in this case the functional
limit theorem and the law of iterated logarithm for Xt inherit the structure of the
corresponding statements for the partial sums of i.i.d. variables

∑n
k=1 Tk.

Theorem 2.5. Let Assumption 2.4 hold with α ∈ (1, 2]. Let

St :=
Xt − µt
at

, t > 0.

We have:
(a) If α ∈ (1, 2), then

(i) St converges weakly to a non-degenerate multivariate stable law in Rd.
(ii) For every x ∈ Span(U) ⊂ Rd such that x · u > 0 for some u ∈ U,

lim sup
t→∞

(Xt − µt) · x
at · (ln t)1/α+ε

=

{
0 if ε > 0,
∞ if ε < 0

a. s.

In particular,

lim sup
t→∞

{ (Xt − µt) · x
at

}1/ ln ln t

= e1/α a. s.

(b) If α = 2 and E(T 2
1 ) = ∞, then St converges weakly to a non-degenerate multi-

variate Gaussian distribution in Rd.

For α ∈ (0, 1) we have the following limit theorem.

Theorem 2.6. Let Assumption 2.4 hold with α ∈ (0, 1). Then Xt
t converges weakly

in Rd to a non-degenerate limit.

Remark 2.7. The limiting random law in the statement of Theorem 2.6 is spec-
ified in (3.24) below. The stable limit laws for Xt stated in Theorems 2.5 and
Theorem 2.6 are extensions of corresponding one-dimensional results in [13]. The
latter however are obtained in [13] in a more stringent functional form. The law of
iterated logarithm given in Theorem 2.5 appears to be new even for d = 1.

Remark 2.8. Recall Markov chain η = (ηn)n≥0 which records successive directions
of the random walk. Let Sd−1 denote the d-dimensional unit sphere and let Td
denote the σ-algebra of the Borel sets of Sd−1. Denote by H(x,A) transition kernel
of η on (Sd−1, Td). We remark that

(i) All the results stated in this section remain true for an arbitrary (not stationary)
initial distribution of the Markov chain η.

(ii) The proofs of our results given in Section 3 rest on the exploiting of a regenerative
(renewal) structure associated with η, i.e. on the use of random times τn which
are introduced below in Section 3.1. It is then not hard to verify that all the
results stated in this section, with the only exception of the generalized law of
iterated logarithm given in part (a)-(ii) of Theorem 2.5, remain true for a class of
regenerative (in the sense of [3]) Markov chains η whose stationary distribution are
supported on general Borel subsets of Sd−1 rather than on a finite set U ⊂ Sd−1.
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For instance, the following strong version of the classical Doeblin’s conditions is
sufficient for our purposes:

• There exist a constant cr > 1 and a probability measure ψ on (Sd−1, Td)
such that

c−1r ψ(A) < H(x,A) < crψ(A) ∀x ∈ S, A ∈ Td.(2.4)

A regenerative (renewal) structure for Markov chains which satisfies Doeblin’s con-
dition is described in [3]. Due to the fact that under the assumption (2.4), the
kernel H(x,A) is dominated uniformly from above and below by a probability mea-
sure ψ, such Markov chains share two key features with finite-state Markov chains.
Namely, 1) the exponential bound stated in (3.2) holds for the renewal times which
are defined in [3]; and 2) c−1r < Px(A)/Py(A) < cr for any non-null event A ∈ Td
and almost every states x, y ∈ Sd−1 (with respect to the stationary law). Here Px
stands for the law of the Markov chain η starting from the initial state x ∈ Sd−1.
Once these two crucial properties are verified, our proofs (except only the proof
of part (a)-(ii) of Theorem 2.5) work nearly verbatim for directionally reinforced
random walks governed by a Markov chain η which satisfies condition (2.4).

3. Proofs

This section is devoted to the proof of the results stated in Section 2 above. Some
preliminary observations are stated in Section 3.1 below. The proof of Theorem 2.1
is contained in Section 3.2. Theorems 2.3 and 2.5 are proved in Section 3.3 and
Section 3.4, respectively. Finally, the proof of Theorem 2.6 is given in Section 3.5.

3.1. Preliminaries. Our approach relies on the use of a renewal structure which
is induced on the paths of the random walk by the cycles of the underlying Markov
chain η. To define the renewal structure, set τ0 = 0 and let

τi+1 = inf
{
j > τi : ηj = u1

}
, i ≥ 0.

Thus, for i ≥ 1, τi are steps when the Markov chain η visits the distinguished state
u1. Correspondingly, sτi are successive times when the random walk chooses u1 as
the direction of its motion. Recall Nt from Section 1 (see a few lines preceding
(1.1)). Denote by c(t) the number of times that the walker chooses direction u1
before time t > 0. That is,

c(t) := sup
{
i ≥ 0 : sτi ≤ t

}
=

Nt∑
j=1

1{ηj=u1},

where 1A stands for the indicator function of an event A. Notice that Nt is the
unique mapping from R+ to Z+ which has the following property:

sNt ≤ t < sNt+1 and τc(t) ≤ Nt < τc(t)+1.

For i ≥ 0, let ξi =
∑τi+1

j=τi+1 Tjηj . Then

Xt = ξ0 +

c(t)−1∑
i=1

ξi +

Nt∑
j=τc(t)+1

Tjηj +
(
t− sNt

)
· ηNt .(3.1)

The strong Markov property implies that the pairs
(
ξi, τi+1 − τi

)
i∈N form an i.i.d.

sequence which is independent of (ξ0, τ1). Furthermore, since η is an irreducible
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finite-state Markov chain, there exist positive constants K1,K2 > 0 such that the
inequality

P (τi+1 − τi > t) ≤ K1e
−K2 t(3.2)

holds uniformly for all reals t ≥ 0 and all integers i ≥ 0.
We next list some direct consequences of the law of large numbers that will be

frequently exploited in the subsequent proofs. Let v(n) be the number of times
that the Markov chain η visits u1 during its first n steps. Thus, while c(t) is the
number of visits of η to u1 up to time t > 0 on the clock of the random walk, v(n)
is the number of occurrences of u1 among first n directions of the random walk. In
particular, v(Nt) = c(t). Taking into account (3.2), the law of large numbers and
the renewal theorem imply that

lim
n→∞

τn
n

= lim
n→∞

n

v(n)
= E(τ2 − τ1) = π−11 , a. s.,

and, letting Λk :=
∑τk+1

i=τk+1 ηi,

µ = lim
n→∞

∑n
i=1 ηi
n

= lim
n→∞

∑v(n)
k=0 Λk
n

= π1 · E(Λ1), a. s.

Since η and (Tk)k∈N are independent, it follows that

E(ξ1) = E(T1) · E(Λ1) = π−11 µ · E(T1).(3.3)

Finally, c(t)t = v(Nt)
t = v(Nt)

Nt
· Ntt yields

lim
t→∞

c(t)

t
=

π1
E(T1)

, a. s.(3.4)

We now turn to the proofs of our main results.

3.2. Proof of Theorem 2.1.

Part (a) of Theorem 2.1. Recall (3.2) and observe that the moment condition
of the theorem along with the independence of the Markov chain η and (Tk)k∈N of
each other, implies that

E(‖ξ1‖p) ≤ E
[(
sτ2 − sτ1

)p]
=

∞∑
n=1

P (τ2 − τ1 = n) · E
[( n∑

k=1

Tk

)p]
≤ K1

∞∑
n=1

e−K2(n−1)npE(T p1 ) <∞,(3.5)

where we used Minkowski’s inequality and (3.2). It follows that ‖ξk‖ = o
(
k1/p

)
.

Indeed, for any ε > 0, Chebyshev’s inequality implies that
∞∑
k=1

P
(
‖ξk‖ > k

1
p ε
)

=

∞∑
k=1

P
(
‖ξk‖p > εpk

)
≤ ε−pE

(
‖ξ1‖p

)
<∞,

and hence P
(
‖ξk‖ > k

1
p ε i. o.

)
= 0 by the Borel-Cantelli lemma.

For now we will make a simplifying assumption (to be removed later on) that
µ = 0. By virtue of (3.4), the Marcinkiewicz-Zigmund law of large numbers implies
that

lim
t→∞

∑c(t)−1
i=0 ξi
t1/p

= 0, a. s.
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Furthermore, by (3.1),
∥∥Xt −

∑c(t)−1
i=0 ξi

∥∥ ≤ rc(t), where

rk :=

τk+1∑
i=τk+1

Ti.(3.6)

An argument similar to the one which we used to estimate the order of ‖ξn‖, shows
that with probability one rn = o(n1/p). Then (3.4) implies that

rc(t) = o(t1/p).(3.7)

This completes the proof of part (a) of Theorem 2.1 for the particular case µ = 0.
We now turn to the general case of arbitrary finite µ ∈ Rd. Let

η̃i = ηi − µ and X̃t =

Nt∑
i=0

Tiη̃i + (t− sNt)η̃Nt .(3.8)

Then X̃t is a directionally reinforced random walk associated with (Tn)n∈N and

η̃ = (η̃n)n∈N. Since E(η̃i) = 0, we have
∥∥X̃t

∥∥ = o
(
t1/p

)
. To complete the proof of

part (a) of the theorem, observe that Xt− X̃t = µ ·
∑Nt
i=1 Ti+µ · (t− sNt) = µt. �

Part (b) of Theorem 2.1. Recall (3.3). Let

ξ̄k := ξk − E(ξ1) = ξk − E(T1)π−11 µ

and

∆k := sτk+1−1 − sτk−1 − E(T1)π−11 .

Let γk = (ξ̄k,∆k) ∈ Rd+1. Then (γk)k≥1 is an i.i.d. sequence with E(γ1) = 0 ∈
Rd+1. Define

Γ(t) =
∑

1≤k≤t

γk.

By virtue of Theorem 1 2. 1 in [9], there is a Brownian motion
(
B(t)

)
t≥0 in Rd+1

such that

sup
0≤t≤T

∥∥Γ(t)−B(t)
∥∥ = o

(
T 1/p

)
.

Then Theorem 2. 3. 6 in [9] implies that there exists a Brownian motion
(
W (t)

)
t≥0,

such that

sup
0≤t≤T

∥∥∥c(t)−1∑
k=0

ξk − tµ−W (t)
∥∥∥ = o

(
T 1/p

)
.

Recall rk from (3.6). Since

sup
0≤t≤T

∥∥∥Xt −
c(t)−1∑
k=0

ξk

∥∥∥ ≤ sup
0≤t≤T

rc(t),

it suffices to show that

sup
0≤t≤T

rc(t) = o(T 1/p).(3.9)
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Notice that

sup
0≤t≤T

rc(t) = sup
0≤k≤c(T )

rk.

Therefore, by virtue of (3.4), it suffices to show that

lim
n→∞

n−1/p · sup
0≤k≤n

rk = 0, a. s.(3.10)

Toward this end, let

g(n) = max
{
k ≤ n : rk ≥ ri for all 1 ≤ i ≤ n

}
, n ∈ N.

Thus g(n) ≤ n and sup0≤k≤n rk = rg(n). Furthermore, since rk are i.i.d. random

variables, limn→∞ g(n) = ∞ with probability one. Therefore, rn = o(n1/p) yields
(3.10). The proof of Theorem 2.1 is completed. �

3.3. Proof of Theorem 2.3.

Part (a) of Theorem 2.3. By (3.5), E
(
‖ξ1‖2)

)
<∞ under the conditions of the

theorem. Assume first that µ = 0. Then the invariance principle for i.i.d. sequences
implies that ∑[nt]

k=1 ξk√
n

⇒W (t), t ∈ [0, 1],

where W (t) is a d-dimensional Brownian motion. It follows then from (3.4) and
Theorem 14.4 in [6, p. 152] that∑c(nt)−1

k=0 ξk√
n

⇒
√
b ·W (t), t ∈ [0, 1],(3.11)

where b = π1

·E(T1)
. Under the moment condition of Theorem 2.3 we have the following

counterpart of (3.9):

sup
0≤t≤T

rc(t) = o(T 1/2).

Since
∥∥Xnt −

∑c(nt)−1
k=0 ξk

∥∥ is bounded above by rc(nt), it follows that

n−1/2 ·
∥∥∥Xnt −

c(nt)−1∑
k=0

ξk

∥∥∥⇒ 0,

which implies the desired convergence of n−1/2 · Xnt when µ = 0. To prove the
general case of arbitrary µ ∈ Rd one can apply the result with µ = 0 to the Markov
chain η̃n and the random walk X̃t that were introduced in (3.8). The proof of
part (a) of the theorem is completed. �

Part (b) of Theorem 2.3. Suppose first that µ = 0. For x ∈ Span(U) ⊂ Rd and
i ∈ N define

ξi,x := ξi · x.(3.12)
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Then, in view of (3.4), the law of iterated logarithm for i.i.d. sequences implies
that there exists a constant K(x) ∈ (0,∞) such that

lim sup
t→∞

∑c(t)−1
i=0 ξi,x√
t ln ln t

= K(x), a. s.

By (3.3) and (3.7)

lim
t→∞

∣∣Xt · x−
∑c(t)−1
i=0 ξi,x

∣∣
√
t ln ln t

= 0, a. s.

Thus

lim sup
t→∞

Xt · x√
t ln ln t

= K(x), a. s.,

in the case µ = 0. To obtain the general case with an arbitrary µ ∈ Rd, apply this

result to the random walk X̃t defined in (3.8) and recall that Xt − X̃t = µt. The
proof of part (b) of Theorem 2.3 is completed. �

3.4. Proof of Theorem 2.5.

Part (a)-(i) and part (b) of Theorem 2.5. Let Rd0 := [−∞,∞]d\{0}, where

0 stands for the zero vector in Rd, and equip Rd0 with the topology inherited from
Rd. Recall (see for instance [4, 24]) that a random vector ξ ∈ Rd is said to be
regularly varying with index α > 0 if there exists a function a : R+ → R, regularly

varying with index 1/α, and a Radon measure νξ on Rd0 such that

nP
(
a−1n ξ ∈ ·

) v⇒ νξ(·), as n→∞,(3.13)

where an := a(n) and
v⇒ denotes the vague convergence of measures. We will

denote by Rd,α,a the set of all random d-vectors regularly varying with index α,
associated with a given function a ∈ R1/α by (3.13). The measure ν is referred to
as the measure of regular variation associated with ξ. We will also use the following
equivalent definition of the regular variation for random vectors (see, for instance,
[4, 24]). Let Sd−1 denote the unit sphere in Rd with respect to the norm ‖ · ‖. Then
ξ ∈ Rd,α,a if and only if there exists a finite Borel measure Sξ on Sd−1 such that
for all t > 0,

nP
(
‖ξ‖ > tan; ξ/‖ξ‖ ∈ ·

) v⇒ t−αSξ(·), as n→∞,(3.14)

where
v⇒ denotes the vague convergence of measures on Sd−1. The following well-

known result is the key to the proof of the next lemma: If ξ, η ∈ Rd,α,a and ξ, η are
independent of each other, then ξ + η ∈ Rd,α,a. Furthermore, νξ+η = νξ + νη and
Sξ+η = Sξ + Sη (see, for instance, Equation 1.15 and Lemma 2.6 in [8]).

We have:

Lemma 3.1. Let Assumption 2.4 hold. For t ≥ 0, let at be defined as in (2.3).
Then

(a)
∑τ2
τ1+1 Ti ∈ R1,α,a.

(b) ξ1 ∈ Rd,α,a.

Proof of Lemma 3.1. The claim of part (a) can be formally deduced from that of
part (b). Thus we will focus on proving the more general claim (b).
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First, observe that (3.14) implies that T1u ∈ Rd,α,a for any u ∈ U. Let

H(u, v) = P (ηn+1 = v|ηn = u), u, v ∈ U,

be the transition matrix of the Markov chain η. Further, define a sub-Markovian
kernel Θ by setting

Θ(u, v) = H(u, v) · 1{v 6=u1}, u, v ∈ U.

Fix any t > 0 and a Borel set B ⊂ Sd−1, and let

An =
{
‖ξ1‖ > tan; ξ1/‖ξ1‖ ∈ B

}
, n ∈ N.

Then,

P (ξ1 ∈ An) =

∞∑
k=1

P (τ2 − τ1 = k)

×P (T1u1 + T2η2 + . . .+ Tkηk ∈ An|τ2 − τ1 = k
)

=

∞∑
k=1

∑
v2 6=u1

· · ·
∑
vk 6=u1

Θ(u1, v1) · · ·Θ(vk−1, vk)H(vk, u1)

×P
(
T1u1 + T2v2 + . . .+ Tkvk ∈ An

)
,

where we assume that the sums
∑
v2 6=u1

· · ·
∑
vk 6=u1

are empty if k = 1. Let

Jn(v2, . . . , vk) = T1u1 + T2v2 + . . .+ Tkvk.

Notice that for any k ∈ N and fixed set of vectors v2, . . . , vk ∈ U, we have

n · P
(
Jn(v2, . . . , vk) ∈ An

)
≤ n · P

(
‖Jn(v2, . . . , vk)‖ ≥ tan

)
≤ nP

( k∑
j=1

Tj ≥ tan
)
≤ nkP

(
T1 ≥ tan/k

)
≤ Ct−αk1+α

for some C > 0. Furthermore,

lim
n→∞

n · P
(
Jn(v2, . . . , vk) ∈ An

)
= t−α

(
ST1u1(B) +

k∑
j=2

ST1vj (B)
)
.

Observe that the spectral radius of the matrix Θ is strictly less than one and that
ST1vj (B) is uniformly bounded from above by maxv∈U ST1v

(
Sd−1

)
. Therefore, the

dominated convergence theorem implies that the following limit exists and the
identity holds:

lim
n→∞

n · P (ξ1 ∈ An)

=

∞∑
k=1

t−α
∑
v2 6=u1

· · ·
∑
vk 6=u1

Θ(u1, v1) · · ·Θ(vk−1, vk)H(vk, u1)

×
(
ST1u1

(B) +

k∑
j=2

ST1vj (B)
)
.

Since the spectral radius of Θ is strictly less than one, Fubini’s theorem implies
that the right-hand side of the above identity defines a measure on Sd−1. The proof
of the lemma is therefore completed. �
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We are now in a position to complete the proof of the limit results stated in
parts (a) and (b) of Theorem 2.5. Suppose first that µ = 0. It follows from Lemma
3.1 and the stable limit theorem for i.i.d. sequences (see, for instance, Section 1.6
in [7, p. 75]) that ∑[nt]

k=1 ξk
an

⇒ Sα(t), t ∈ [0, 1],(3.15)

where Sα(t) is a homogeneous vector-valued process in D
(
Rd
)

with independent
increments and Sα(1) distributed according to a stable law of index α. Then (sim-
ilarly to (3.11)), asymptotic equivalence (3.4) along with the suitable modification
of Theorem 14.4 in [6, p. 152] implies∑c([nt])−1

k=0 ξk
an

⇒ b1/α · Sα(t), t ∈ [0, 1],

where b = π1

·E(T1)
. In particular, using t = 1,∑c(n)−1

k=0 ξk
an

⇒ b1/α · Sα(1),(3.16)

Recall rk from (3.6). Since∥∥∥Xt −
c(t)−1∑
k=0

ξk

∥∥∥ ≤ rc(t),
an application of the renewal theorem shows that

Xn

n
⇒ Lα and hence

Xbtc

t
⇒ Lα.

Since
∥∥Xbtc −Xt

∥∥ ≤ 1, the proof of part (a)-(i) of Theorem 2.5 is completed. �

Part (a)-(ii) of Theorem 2.5. For v ∈ U let cv(t) be the number of occurrences
of v in the set {η1, η2, . . . , ηNt}. That is,

cv(t) =

Nt∑
k=1

1{ηk=v}, t ≥ 0, v ∈ U.

Notice that cu1
(t) = c(t), where c(t) is introduced in Section 3.1. Similarly to (3.4)

we have

lim
t→∞

cv(t)

t
=

πv
E(T1)

, a. s.,(3.17)

where πv is the mass that the stationary distribution of the Markov chain η puts
on v.

Define τv(0) = 0 and τv(j) = inf{k > τv(j − 1) : ηk = v} for j ∈ N. For v ∈ U
and t ≥ 0, let

B̃v(t) =

cv(t)−1∑
i=0

Tτv(i) − cv(t) · E(T1).
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Then, the law of iterated logarithm for heavy-tailed i.i.d. sequences (see Theo-
rems 1.6.6 and 3.9.1 in [7]) combined with (3.4) yields

lim sup
t→∞

B̃v(t)

at · (ln t)1/α+ε
=

{
0 if ε > 0,
∞ if ε < 0

a. s.(3.18)

For v ∈ U, let

Bv(t) =

cv(t)−1∑
i=0

(
Tτv(i) − E(T1)

)
+ (t− sNt)1{ηNt=v}.

Then, (1.1) implies that

Xt =
∑
v∈U

vBv(t) +
(∑
v∈U

v · cv(t) · E(T1)− µ · t
)
.

Taking into account (3.17), a standard inversion argument allows one to deduce
from the law of iterated logarithm for τv(n) that

lim sup
t→∞

∥∥∥∑v∈U v · cv(t) · E(T1)− µ · t
∥∥∥

√
t ln ln t

<∞, a. s.(3.19)

Since at ∈ Rα with α ∈ (1, 2),

lim
t→∞

√
t ln ln t

at · (ln t)1/α+ε
= 0.

Thus (3.18) along with (3.19) yields part (a)-(ii) of Theorem 2.5, provided that we
are able to show that for any u, v ∈ U and all δ ∈ (1/(2α), 1/α),

P
(
En,v,δ ∩ En,u,δ i. o.

)
= 0,(3.20)

where the events En,v,δ are defined for n ∈ N, v ∈ U, and δ ∈ (1/(2α), 1/α) as
follows:

En,v,δ :=
{

max
1≤m≤cv(n)

∣∣∣m−1∑
i=0

Tτv(i) −m · E(T1)
∣∣∣ > an · (lnn)δ

}
.

For n ∈ N let γn = 2n ·maxv∈V πv and define

Gn,v,δ :=
{

max
1≤m≤γn

∣∣∣m−1∑
i=0

Tτv(i) −m · E(T1)
∣∣∣ > an · (lnn)δ

}
.

Fix now any directions u, v ∈ U and a constant δ ∈ (1/(2α), 1/α). We have:

P
(
En,v,δ ∩ En,u,δ

)
≤ P

(
Gn,v,δ ∩Gn,u,δ

)
+ P

(
cv(n) > γn

)
+ P

(
cu(n) > γn

)
= P (Gn,v,δ) · P (Gn,u,δ) + P

(
cv(n) > γn

)
+ P

(
cu(n) > γn

)
.

It follows from the large deviation principle for the random sequence cv(n)/n that
P
(
cv(n) > γn

)
< Kve

−nλv for someKv > 0 and λv > 0. Furthermore, for anyA > 0

and kn = [An], we have P (Gkn,v,δ) ≤ Cn−β for some constants β = β(δ) > 1/2 and
C > 0 (see [7, p. 177]; here we exploit the constraint 2αδ > 1). The Borel-Cantelli
lemma implies then that P

(
Gkn,v,δ∩Gkn,u,δ i. o.

)
= 0. Since for any n ∈ N there is a

unique j(n) ∈ N such that kj(n) ≤ n < kj(n)+1, and limk→∞
ak+1(ln ak+1)

δ

ak(ln ak)δ
= 1, this

yields (3.20). The proof of part (a)-(ii) of Theorem 2.5 is therefore completed. �
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3.5. Proof of Theorem 2.6. Define two sequences of processes in D(R), (Bn)n∈N
and (Cn)n∈N, by setting

Bn(t) :=

∑[nt]
k=1 ξk
an

and Cn(t) :=
sτ[nt]
an

, t ∈ [0, 1].(3.21)

Lemma 3.1 combined with [4, Theorem 1.1] implies that (ξ1, sτ2 − sτ1) ∈ Rd+1,α,a,
and hence

(Bn, Cn)⇒ (Sα, Uα),(3.22)

where Sα and Uα are homogeneous process with independent increments in D
(
Rd
)

and D(R), respectively, such that Sα(1) and Uα(1) have (multivariate in the former
case) stable distributions of index α.

Let U−1n and C−1n denote the inverse processes of Un and Cn, respectively. One
can define C−1n explicitly as follows:

C−1n (t) = n−1c(ant), t ∈ [0, 1].(3.23)

Then the same argument as in [13, pp. 380-381] shows that (alternatively, one can
use the result of [31]): (

Bn, C
−1
n

)
⇒ (Sα, U

−1
α )

in D
(
Rd+1

)
. This along with (3.23) implies (see, for instance, [6, p. 151]) that∑c(an)−1

i=1 ξi
an

⇒ Lα,

where

Lα := Sα(U−1α )(1).(3.24)

Passing to the subsequence mn = ba−1n c and using basic properties of regularly
varying functions, we obtain ∑c(n)−1

i=0 ξi
n

⇒ Lα.(3.25)

To conclude the proof of the theorem one can use verbatim the argument along the
lines following (3.16) in the concluding paragraph of the above proof of part (a)-(i)
of Theorem 2.5. Namely, taking into account the inequality∥∥∥Xt −

c(t)−1∑
k=0

ξk

∥∥∥ ≤ rc(t)
and using the renewal theorem which ensures the weak convergence of rc(t) to a

proper random variable, (3.25) yields that Xt
t ⇒ Lα. The proof of Theorem 2.6 is

completed. �
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28. D. Szász and B. Tóth, Persistent random walks in a one-dimensional random environment,

J. Stat. Phys. 37 (1984), 27–38.
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