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Abstract

We observe the frog model, an infinite system of interacting random walks, on Z
with an asymmetric underlying random walk. For certain initial frog distributions we
construct an explicit formula for the moments of the leftmost visited site, as well as
their asymptotic scaling limits as the drift of the underlying random walk vanishes.
We also provide conditions in which the lower bound can be scaled to converge in
probability to the degenerate distribution at 1 as the drift vanishes.

MSC2010: Primary: 60J10, 60K35; Secondary: 60E05, 33D05.
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1 Introduction

Consider the following interacting random walks model on Z: initially at each site x there
is a fixed number ηx of sleeping particles (“frogs”), and there is a certain number (η0) of
active frogs at the origin. The active frogs perform in discrete time, simultaneously and
independently of each other, a biased (say, to the right) nearest-neighbor random walk on
Z. When an active frog visits a site x, it activates the ηx sleeping frogs at x, in which each
active frog performs the same underlying random walk starting from its initial location, all
random walk transitions being independent of each other. The active frogs continue to visit
other sleeping frogs and activate them. This model for an infinite number of interacting
random walkers is called the frog model on Z (with drift).

A frog model is called recurrent if 0 is visited infinitely often by active frogs w.p.1,
and transient if 0 is visited only finitely often w.p.1. It is shown in [12] that the zero-one
dichotomy actually takes place, namely a one-dimensional frog model is either transient or
recurrent. Both necessary and sufficient conditions for recurrence of the frog model on Z
based on the configuration of frogs and the drift of the random walk are provided in [12].
Recurrence for variants of the frog model on more general graphs have been first explored
in [26] (for the symmetric random walk on Zd) and subsequently in [3], [22] and [23]. Shape
theorems for the model in Zd have been obtained in [1, 2]. For further background on the
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frog model and its variants, refer to [23]. For an account of the most recent activity in the
area see [5, 8, 15, 16]. In particular, [8] generalizes a recurrence criterion of [12] to a model in
Zd, [15] and [16] provide recurrence and transience criteria for the frog model on trees, and
[5] studies survival of particles in a one-dimensional variation of the model, also partially
extending some of the results of [12].

The frog model can be interpreted as an information spreading network [2, 23]. The
underlying idea is that an active frog holds some information and shares it with sleeping
frogs when they meet, activating the sleeping frogs who then spread the information along
their random walk path. A closely related to our model particle process on Z, describing the
evolution of a virus in an infinite population (e. g., computer network), has been considered
in [18, 19] and [5]. The model is also a discrete-time relative of the one-dimensional stochastic
combustion process studied in [7, 24].

In this article, we will explore the behavior of the frog model, in particular its range,
when transience is assumed. We specifically introduce a drift component to the random
walk and explore how its magnitude affects the range of visited sites in the model. Each
active frog will move one integer to the right with probability p ∈ (1

2
, 1), or one integer to

the left with probability 1 − p. Thus the underlying random walk is transient to the right.
We define the drift constant ρ := 1−p

p
∈ (0, 1). The drift term ρ can be seen as a measure of

“transience” of this frog model; small values of ρ indicate more frequent rightward movement
by the frogs, whereas values of ρ close to 1 more closely resemble recurrence with a slight
rightward drift (see, for instance, formula (5) below for a concrete random walk result). Of
particular interest is the collective behavior of the frogs as ρ ↑ 1. By Theorem 2.1 in [12], this
frog model is transient when we assume an identical distribution of frogs on the nonnegative
sites. In particular, w.p.1 there must be only a finite number of visited sites to the left of
the origin. That is, in the language of [5], transience implies local extinction for our model.

In this article, while assuming ηx = 0 for all x < 0, we will first explore the single-frog
case, i.e., the frog model in which ηx = 1 for all x ≥ 0 (cf. [5, 18, 19]). We will provide exact
and asymptotic results for the moments of the lower bound of the range, which will be used in
convergence theorems. After that, we will move to more general choices for η and show that,
under certain conditions, the frog model’s lower bound will behave asymptotically similar to
that of the single-frog case. Finally, we will provide asymptotic bounds for moments of the
frog model range when η is supported on all of Z.

The rest of the paper is organized as follows. A short Section 2 introduces notations and
certain technical tools necessary for our proofs. The three subsequent sections constitute
the main body of the article. The single-frog case is considered in Section 3. A class of
more general initial configurations of frogs η is discussed in Section 4. The consideration of
configurations supported on Z is discussed in Section 5.

2 Preliminaries

For calculations of characteristics of the random variable representing the range of the frog
model, we make use of common notation in analytic number theory and combinatorics. For
a ∈ R, c ∈ N∪{∞}, |q| < 1, the q-Pochhammer symbol is defined by (a; q)c :=

∏c−1
j=0(1−aqj).

The following equality can be verified directly from the definition: (qx+1; q)∞ = (q;q)∞
(q;q)x

, x ∈ N.
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The q-Pochhammer symbol is one of the key functions in the construction of q-analogs
in number theory, and is often used in the theory of basic hypergeometric functions and
analytic combinatorics [4, 10, 13]. For example, [13] provides the following identities:

(z; q)∞ =
∞∑
n=0

(−1)nqn(n−1)/2

(q; q)n
zn and

1

(z; q)∞
=
∞∑
n=0

zn

(q; q)n
. (1)

Thus for a nonzero q ∈ (−1, 1), (z; q)∞ and 1
(z;q)∞

are both analytic functions of z on (0, 1).

The q-gamma function is defined as Γq(z) = (q;q)∞
(qz ;q)∞

(1 − q)1−z. The q-digamma function ψρ

is defined as ψq(z) = 1
Γq(z)

∂Γq(z)

∂z
= − ln(1− q) + ln q

∑∞
n=0

qn+z

1−qn+z .

To facilitate our calculation of the range moments, we need to develop notation for Bell
polynomials. The Bell polynomials are defined (see, for instance, [6, 21]) as the triangular
array of polynomials Bm,k, m ≥ k, given by

Bm,k(x1, . . . , xm−k+1) =
∑ m!

k1! · · · km−k+1!

(x1

1!

)k1
· · ·
(

xm−k+1

(m− k + 1)!

)km−k+1

, (2)

where the sum is taken over all sequences of nonnegative integers {k1, . . . , km−k+1} satisfying

k1 + k2 + · · ·+ km−k+1 = k and k1 + 2k2 + · · ·+ (m− k + 1)km−k+1 = m. (3)

The mth complete Bell polynomial is Bm(x1, . . . , xm) =
m∑
k=1

Bm,k(x1, . . . , xm−k+1). While the

Bell polynomials has many intriguing details that can be explored in combinatorial number
theory (see, for instance, [6] and references therein), we are mostly concerned with their pres-
ence in the celebrated Faà di Bruno’s formula [17, 20] for derivatives of composite functions:(

d

dt

)m
f
(
g(t)

)
=

m∑
k=1

f (k)
(
g(t)

)
Bm,k

(
g′(t), g′′(t), . . . , g(m−k+1)(t)

)
. (4)

Throughout this paper f(x) ∼ g(x) as x→ c stands for limx→c
f(x)
g(x)

= 1.

3 The single frog per site case

We will first assume that ηx = 1 for each nonnegative integer x and ηx = 0 elsewhere. Let
ρ = 1−p

p
∈ (0, 1) and consider the corresponding frog model. Let Wρ represent the random

variable for the negative of the minimum of the visited sites in this model. For convenience,
we will construct a family of mutually independent random variables (Xρ)ρ∈(0,1) that all share
the same probability space (Ω,F , P ) such that Xρ and Wρ share the same distribution.

The distribution function of Xρ can be easily found by observing that, by the rightward
tendency of the initial active frog, all frogs w.p.1 will eventually be woken. Furthermore, if
(Sn)n≥0 has the distribution of the underlying random walk, then

P (Sn = 0 for some n ≥ 1 |S0 = 1) = ρ. (5)
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With this observation, we see that for all x ≥ 0,

P (Xρ ≤ x) = P (Xρ < x+ 1) =
∞∏
j=1

(1− ρx+j) = (ρx+1; ρ)∞. (6)

It is a simple exercise to see that P (Xρ = 0) =
∏∞

j=1(1 − ρj) = (ρ; ρ)∞. For all x > 0, the
value of Xρ’s probability density function is

P (Xρ = x) = P (Xρ ≤ x)− P (Xρ ≤ x− 1) =
∞∏
j=1

(1− ρx+j)−
∞∏
j=0

(1− ρx+j)

= (1− (1− ρx))
∞∏
j=1

(1− ρx+j) = ρx(ρx+1; ρ)∞.

(7)

With the density known, we would now like to study the behavior of Xρ for values of ρ close to
1, where the frog model more closely resembles the recurrent case. Objects that describe the
concentration of the distribution of Xρ include the central statistics of the random variable,
such as the mode and the expectation. For fixed ρ, we define a unique representative of the
mode statistic, named Mρ, by

Mρ := min
{
x ≥ 0 : P (Xρ = x) ≥ P (Xρ = n) for all n ≥ 0

}
.

While the mode statistic is not usually observed compared to other central statistics of a class
of random variables, it is a quick calculation that can often provide insight on asymptotic.
Also, as we observe later, the concentration of Xρ around its mode will be influential to its
limiting behavior. With that in mind, we present the following result:

Theorem 3.1. For any ρ ∈ (0, 1),
⌊ ln(1− ρ)− ln ρ

ln ρ

⌋
≤ Mρ ≤

⌊ ln(1− ρ)− ln(2− ρ)

ln ρ

⌋
,

where bac is the largest integer less than or equal to a. In particular, Mρ ∼ ln(1−ρ)
ln ρ

as ρ→ 1.

Note that for all ρ ∈ (0, 1), the difference between the two bounds in the theorem’s
conclusion always belongs to the open interval (0, 2). Hence, even for values of ρ that make
the bounds extremely large, the theorem narrows down Mρ to two possibilities.

Proof of Theorem 3.1. Considering x to be a continuous variable, we note that

d

dx
(ρx+1; ρ)∞ =

d

dx
exp
( ∞∑
j=1

ln(1− ρx+j)
)

=
( d
dx

∞∑
j=1

ln(1− ρx+j)
)

(ρx+1; ρ)∞, (8)

It is enough to confirm that where ||f ||∞ = sup{|f(x)| : x ∈ [a, b]}. Thus the series∑∞
j=1 ||

ρx+j

1−ρx+j ||∞ absolutely converges for any closed interval [a, b] we choose. Hence, the

series in (8) is differentiable, and furthermore, by [25, Theorem 7.17], the derivative of the

series is the series of the derivatives. Thus d
dx

(ρx+1; ρ)∞ = − ln(ρ)(ρx+1; ρ)∞
∑∞

j=1
ρx+j

1−ρx+j .
Using the above derivative, we can find the derivative of the density function for Xρ:

d

dx

{
(ρx+1; ρ)∞ρ

x
}

=
d

dx

{ ∞∏
j=1

(1− ρx+j)ρx
}

= ln(ρ)ρx(ρx+1, ρ)∞

(
1−

∞∑
j=1

ρx+j

1− ρx+j

)
.
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Notice that ln(ρ)ρx(ρx+1, ρ)∞ is nonzero for all x > 0. Therefore, by the 1st-derivative test
for critical points, Mρ is an integer within 1 away from the positive value m such that∑∞

j=1
ρm+j

1−ρm+j = 1. Since ρx+j ≤ ρx+j

1−ρx+j ≤
ρx+j

1−ρx+1 for all x > 0 and all j ∈ N, we obtain
ρm+1

1−ρ =
∑∞

j=1 ρ
m+j ≤

∑∞
j=1

ρm+j

1−ρm+j = 1 ≤
∑∞

j=1
ρm+j

1−ρm+1 = 1
1−ρm+1

ρm+1

1−ρ . The result follows
accounting for the fact that Mρ is integer-valued.

We would now like to compare the mode of Xρ with the moments of the random variable.
Calculating the moments directly from definition can be quite a challenge, given the convo-
luted expression of the density in (14). Therefore, we take the more circuitous option of first
finding the cumulants of Xρ. With MXρ(t) := E(etXρ), the cumulant generating function

gρ(t) of Xρ is defined as gρ(t) := log
(
MXρ(t)

)
. We then define the mth cumulant κ

(m)
ρ of Xρ

to be the mth derivative of the cumulant generating function evaluated at 0: κ
(m)
ρ := g

(m)
ρ (0).

Cumulants can be used to determine moments through the use of Faà di Bruno’s formula
(4) (see, for instance, [20, 21] and references therein), which is the direction we will take. It
turns out that the cumulants of Xρ, though unable to be written down using fundamental
functions, can be expressed as straight-forward series representations.

Lemma 3.2. The cumulant generating function of Xρ is gρ(t) =
∑∞

k=1 ln
(

1−ρk
1−etρk

)
. Further-

more, for each m ∈ N, the mth-cumulant of Xρ is κ
(m)
ρ =

∑∞
k=1

km−1ρk

1−ρk .

Proof. Using (1), we calculate the moment generating function of Xρ:

MXρ(t) := E(etXρ) = (ρ; ρ)∞

∞∑
x=0

etxρx

(ρ; ρ)x
=

(ρ; ρ)∞
(etρ; ρ)∞

=
∞∏
k=1

1− ρk

1− etρk
. (9)

Taking the natural logarithm of (9) gives us the desired formula for gρ(t). To find κ
(m)
ρ , we

first find the mth derivative of gρ(t):

g(m)
ρ (t) =

∞∑
k=1

( d
dt

)m
ln
( 1− ρk

1− etρk
)

=
∞∑
k=1

( d
dt

)m(
ln(1− ρk) +

∞∑
j=1

(etρk)j

j

)
=
∞∑
k=1

∞∑
j=1

jm−1(etρk)j =
∞∑
j=1

∞∑
k=1

jm−1(etρk)j =
∞∑
j=1

jm−1etjρj

1− ρj
.

Moving the derivative inside of the summation is justified by Theorem 7.17 in [25], at least

for t ∈ [−δ, δ] for small enough δ > 0. Setting t = 0 gives us the result for κ
(m)
ρ .

Finding the moments of a random variable through its cumulants is a well-known tech-
nique (see, for instance, [20, 21] and references therein), but we show the details here for
completeness. Applying Faà di Bruno’s formula (4) to MXρ(t) = egρ(t) shows that

M
(m)
Xρ

(t) = egρ(t)

m∑
k=1

Bm,k(g
′
ρ(t), . . . , g

(m−k+1)
ρ (t)) = MXρ(t)Bm(g′ρ(t), . . . , g

(m)
ρ (t)).

Setting t = 0, we arrive at the following result.
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Theorem 3.3. Using the notation from Section 1 and Lemma 3.2, for each ρ ∈ (0, 1) and
for all m ∈ N,

E(Xm
ρ ) = Bm

(
κ(1)
ρ , κ(2)

ρ , · · · , κ(m)
ρ

)
. (10)

Corollary 3.4. E(Xρ) =
∑∞

x=1
ρx

1−ρx = ψρ(1)+ln(1−ρ)

ln ρ
and Var(Xρ) =

∑∞
x=1

xρx

1−ρx =
ψ′ρ(1)

ln2 ρ
,

where ψρ is the q-digamma function defined in Section 2.

The exact calculation of the moments in Theorem 3.3 can be quite unwieldy for large
values of m. Thus, it’s insightful to observe simpler asymptotic formulas instead. In [11],
the following were proven for the input series of the Bell polynomials in 3.3 as ρ ↑ 1 :

∞∑
k=1

ρk

1− ρk
∼ 1

1− ρ
ln

1

1− ρ
∼ ln(1− ρ)

ln ρ
(11)

∞∑
k=1

kjρk

1− ρk
∼ j!ζ(j + 1)

(1− ρ)j+1
∼ j!ζ(j + 1)

− lnj+1 ρ
, j ≥ 1, (12)

where ζ(j) =
∑∞

k=1 1/kj is the Riemann zeta function.
Notice that for each m ∈ N, the polynomial Bm(x1, . . . , xm) includes a term of the form

xm1 , and this term has coefficient 1. Furthermore, all other terms of Bm(x1, . . . , xm) are
a multiple of some variable other than x1 with a positive coefficient. Indeed, the polyno-
mials Bm,k possess this property by virtue of (2) and (3), because the latter ensures that
k2 = · · · = km−k+1 = 0 and hence k1 = k = m. Clearly, Bm inherits the feature from Bm,k’s.

Note that from (11),
(

ln ρ
ln(1−ρ)

)m(
κ

(1)
ρ

)m → 1 as ρ ↑ 1. Also, it follows from (12), that for

all j ∈ {2, 3, 4, . . . ,m},
(

ln ρ
ln(1−ρ)

)j
κ

(j)
ρ ∼ (j−1)!ζ(j)

− lnj(1−ρ)
→ 0 as ρ ↑ 1. Since every term in (10) is a

multiple of some cumulant other than κ
(1)
ρ , except for the (κ

(1)
ρ )m term, multiplying E(Xm

ρ )

by
(

ln ρ
ln(1−ρ)

)m
and taking the limit as ρ ↑ 1 eliminates all terms except for the aforementioned

term which converges to 1. Therefore, we can obtain the following asymptotic result:

Corollary 3.5. For all m ∈ N, E(Xm
ρ ) ∼

( ln(1−ρ)
ln ρ

)m
as ρ ↑ 1.

To further clarify the special role of the number zρ = ln(1−ρ)
ln ρ

in our model consider

Uρ := #{frogs who reached the site −zρ}, where, for simplicity and clarity of the subsequent
computation, we treat zρ as an integer. Then, using (5) and the Markov property, observe
that E(Uρ) =

∑∞
x=0 P (Sn = −zρ for some n ≥ 1 |S0 = x) =

∑∞
x=0 ρ

x+zρ = ρzρ

1−ρ = 1. This
result can be heuristically interpreted as an illustration of the fact that −zρ serves as the
most distant place, though barely, is still accessible to the frog population (in average only
one frog can reach that far).

We now seek to determine the asymptotic of the distribution of Xρ when ρ ↑ 1. Theo-

rem 3.1 and Corollary 3.4 both hint that Xρ grows at roughly the same rate as ln(1−ρ)
ln ρ

as ρ
rises close to 1. The nature of this growth can be revealed by the asymptotic of the variance,
which grows sufficiently slow to guarantee scaling limits for Xρ.

Theorem 3.6. Let Yρ share the same distribution as ln ρ
ln(1−ρ)

Xρ for each ρ ∈ (0, 1). Then, as

ρ ↑ 1, Yρ → 1 in probability. That is, for all ε > 0, limρ→1− P (|Yρ − 1| > ε) = 0.
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Proof. By Corollary 3.4 and (11), E(Yρ) = ln ρ
ln(1−ρ)

E(Xρ) → 1. To show the convergence

in probability, it is enough to prove that Var(Yρ) → 0 as ρ ↑ 1. By Corollary 3.4 and

(12), Var(Xρ) ∼ 1!ζ(2)
(1−ρ)2

∼ π2

6
1

ln2 ρ
. Thus, Var(Yρ) = ln2 ρ

ln2(1−ρ)
Var(Xρ) ∼ π2

6
1

ln2(1−ρ)
→ 0. Since

E(Yρ)→ 1 and Var(Yρ)→ 0, convergence in probability follows.

Aside from the probabilistic implications of Theorem 3.6, we can also use the generating
functions of Yρ to construct some limit identities involving the q-Pochhammer symbol. Since
Yρ → 1 in probability (and thus in distribution), the moment generating function of Yρ con-
verges pointwise to that of the degenerate variable at 1. Similarly, the characteristic function
also converges pointwise to the characteristic function of the same degenerate variable. This
observation leads to the following corollary:

Corollary 3.7. For z > 0, lim
ρ↑1

(ρ; ρ)∞(
z

ln(ρ)
ln(1−ρ)ρ; ρ

)
∞

= z. For t ∈ R, lim
ρ↑1

(ρ; ρ)∞(
eit

ln(ρ)
ln(1−ρ)ρ; ρ

)
∞

= eit.

We wish to prove a stronger convergence of the sequence of random variables {Yρ}ρ∈(0,1).
Theorem 3.6 implies that an appropriate discretization {Yρn}n∈N of {Yρ}ρ∈(0,1) can be chosen
to achieve the almost sure convergence. The following result identifies a class of sequences
{ρn}n∈N that ensures the almost sure convergence of the discrete sequence Yρn .

Proposition 3.8. Let {ρn}n∈N ⊆ (0, 1) be a sequence such that ρn ↑ 1 and 1
ln(1−ρn)

∈ `2. Let

{Yρn}n∈N be a sequence of random variables in the probability space (Ω,F , P ) such that Yρn
has the same distribution as ln ρn

ln(1−ρn)
Xρn for each n. Then, as n→∞, Yρn → 1 a. s.

Proof. Let ε > 0 be given. By the Borel-Cantelli Lemma, a sufficient condition for a. s.
convergence is that P (|Yρn − 1| > ε) ∈ `1. Choose ρ ∈ (0, 1) such that |E(Yρ) − 1| < ε

2
.

Then, using Chebyshev’s Inequality,

P (|Yρ − 1| > ε) ≤ P (|Yρ − E(Yρ)|+ |E(Yρ)− 1| > ε)

≤ P
(
|Yρ − E(Yρ)| >

ε

2
or |E(Yρ)− 1| > ε

2

)
= P

(
|Yρ − E(Yρ)| >

ε

2

)
≤ 4

ε2
Var(Yρ).

As noted above, Var(Yρ) = ln2 ρ
ln2(1−ρ)

Var(Xρ) ∼ π2

6
1

ln2(1−ρ)
. Replacing ρ with the terms of

{ρn}n∈N, we see that P (|Yρn − 1| > ε) ∈ `1, proving our result.

The class of sequences defined in the hypothesis of the proposition above includes those
of the form ρn = 1− e−nc , where c > 1

2
is constant. For further research, we wish to broaden

the class of sequences that lead to the a. s. convergence. For instance, instead of assuming
that the models corresponding to different values of ρ are independent, one can consider a
standard hierarchial coupling of the underlying random walks leading to the setting where
P (Xρ1 ≤ Xρ2) = 1 if ρ1 < ρ2. In that case one can consider for example ρn = 1−n−c, c > 1

2
,

and imitating Etemadi’s proof of the law of large numbers (see, for instance, Section 2.4 in
[9]), namely first considering subsequences k(n) = bαnc with an arbitrary α > 1 and then

using the fact that the ratio of
ln ρk(n)

ln(1−ρk(n))
and

ln ρk(n+1)

ln(1−ρk(n+1))
converges to αc when n→∞, prove

the almost sure convergence of Yρn for the sequence ρn = 1− n−c by finally taking α to 1.
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4 More general frog distributions η

Now let’s consider the frog model with drift in which its frog distribution η = {ηx}∞x=0 is a
sequence of natural numbers, i.e., ηx ≥ 1 for all x ≥ 0 and ηx = 0 elsewhere. Main results of
this section are stated in Theorems 4.1 and 4.2 below.

According to Theorem 2.1 in [12], in order to have transience in the frog model with
drift ρ, and hence an almost surely finite minimum of its range, we must assume that∑∞

x=0 ηxρ
x <∞. Since we will be dealing with a continuum of choices for ρ, it will be useful

to designate all of the frog distributions that will guarantee transience in the frog model
with drift. Hence, we define the following set of integer sequences:

H :=
{
η ∈ NN∪{0} :

∞∑
x=0

ηxρ
x <∞ for all ρ ∈ (0, 1)

}
.

It’s worth noting that H does contain unbounded elements, such as η = {1, 2, 3, 4, . . . }. In
fact, any integer sequence η such that ηx = o(αx) as x→∞ for any α > 1 is in H.

Similarly to the single-frog case, we can construct a family of independent random vari-
ables (Xρ,η)ρ∈(0,1),η⊂H on the probability space (Ω,F , P ) such that for each ρ ∈ (0, 1) and
η ∈ H, Xρ,η shares the same distribution as the negative of the minimum of the frog model
with drift ρ and frog distribution η.

By using similar ideas as in the single-frog case, we can find the distribution of Xρ,η:

P (Xρ,η ≤ x) =
∞∏
k=0

(
1− ρx+k+1

)ηk . (13)

For simplicity, we will define the integer sequence {∆k}∞k=0 by ∆0 = η0 and for all k ≥ 1,
∆k = ηk − ηk−1. The density of Xρ,η is then

P (Xρ,η = x) =
∞∏
k=0

(
1− ρx+k+1

)ηk − ∞∏
k=0

(
1− ρx+k

)ηk
=
∞∏
k=0

(
1− ρx+k+1

)ηk(1−
∞∏
k=0

(1− ρx+k)∆k

)
.

(14)

One special case to consider is ηx = n ∈ N for all x ≥ 0. Then, (13) and (14) become

P (Xρ,η ≤ x) =
∞∏
k=0

(1− ρx+k+1)n = (ρx+1; ρ)n∞,

P (Xρ,η = x) =
(
1− (1− ρx)n

)
(ρx+1; ρ)n∞.

With frog distributions η that differ from the single-frog case, we could assume that the
moments of Xρ,η grow at different rates than ln(1−ρ)

ln ρ
found in Corollary 3.5. However, by

the theorem below, if η grows at a “slow enough” rate, the moments of Xρ,η will behave
asymptotically similar to those of the single-frog case.
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Theorem 4.1. For each ρ ∈ (0, 1), let zρ = ln(1−ρ)
ln ρ

. Suppose that {ηk}∞k=0 ∈ H is such that

limρ↑1(1− ρ)1+δ
∑∞

k=0 ηkρ
k = 0 for all δ > 0. Then, for all m ∈ N, E(Xm

ρ,η) ∼ zmρ as ρ ↑ 1.

The proof of the theorem is given below in this section, after a short discussion of the
result. Note that according to the theorem, any even frog distribution η = {n, n, . . . }, where
n ∈ N, will produce the same asymptotic rate for the moments. Not only that, but there
exist unbounded choices for η that produce the same rate as well. One simple example of
such a choice is η = {1, 2, 3, . . . }.

A consequence of Theorem 4.1 is an analogue to Theorem 3.6 in the single-frog case re-
vealing that ln(1−ρ)

ln ρ
is also an appropriate scaling for Xρ,η’s convergence in probability as ρ ↑ 1.

Theorem 4.2. Let η ∈ H satisfy the conditions of Theorem 4.1. Let Yρ,η share the same
distribution as ln ρ

ln(1−ρ)
Xρ,η for each ρ ∈ (0, 1). Then, as ρ ↑ 1, Yρ,η → 1 in probability.

To clarify the intuition behind this result it is instructive to consider the case of an even
frog configuration ηx = m for all x ≥ 0, where m ∈ N is a fixed integer, and observe that
the corresponding model can be thought of as a composition of m independent models with
ηx = 1. In this case, Theorem 4.2 is a direct implication of the result in Theorem 3.6 following
by a simple observation that since the random variable Yρ is asymptotic to a constant, the
same is true for its analogue Yρ,η in Theorem 4.2 which is the minimum of m independent
copies of Yρ. From this perspective, Theorems 4.1 and Theorem 4.2 can be viewed as an
indirect extension of this argument to sequences ηx growing sufficiently slowly, so that they
can be well enough approximated by initial configurations with an even distribution of frogs
(notice that the further is the initial placement of a frog from the origin the less relevant it
is for the asymptotic of Yρ,η).

Remark 4.3. The proof of Proposition 3.8 can be carried over, and hence its conclusion
remains valid, for sequences η ∈ H that satisfy the conditions of Theorem 4.1.

Before we begin the proof of Theorem 4.1, we must first introduce a lemma.

Lemma 4.4. For each ρ ∈ (0, 1), let zρ = ln(1−ρ)
ln ρ

. Then, for all δ > 0 and m ∈ N,

∞∑
x=1

(
zρ(1 + δ) + x

)m
ρx ∼

zmρ (1 + δ)m

1− ρ
as ρ ↑ 1. (15)

Proof of Lemma 4.4. For the quotient of the left- and right-hand sides in (15) we have

(1− ρ)
∞∑
x=1

(
1 +

x

zρ(1 + δ)

)m
ρx = (1− ρ)

∞∑
x=1

ρx
m∑
j=0

(
m

j

)
xj

zjρ(1 + δ)j

= (1− ρ)
m∑
j=0

1

zjρ(1 + δ)j

(
m

j

)( ∞∑
x=1

xjρx
)
≤ (1− ρ)

m∑
j=0

1

zjρ(1 + δ)j

(
m

j

)
j!

(1− ρ)j+1

=
m∑
j=0

m!

(m− j)!
1

[zρ(1 + δ)(1− ρ)]j
.

Now, as ρ ↑ 1, ln(ρ)
1−ρ → −1 and ln(1 − ρ) → −∞. Thus, zρ(1 − ρ) → ∞. Hence, for any

j > 0, the jth term of the above sum goes to 0 as ρ ↑ 1. So when taking the limit, the only
term in the sum that survives would be the 0th, which is equal to 1 for all ρ.
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We now proceed with the proof of the above theorem.

Proof of Theorem 4.1. Since the frog model corresponding to Xρ,η contains more frogs than

the single-frog case, by Corollary 3.5, lim infρ↑1
E(Xm

ρ,η)

zmρ
≥ 1. For the other inequality, note

that for any η ∈ H, E(Xm
ρ,η) ≤ E(Xm

ρ,θ), where θk = max{ηj : j = 1, 2, . . . , k}. Thus, we can
assume without loss of generality that η is a nondecreasing sequence, and hence ∆k ≥ 0 for
all k.

Choosing δ > 0, we consider the sum for E(Xm
ρ,η) and split it at the point bzρ(1 + δ)c.

For the tail sum, we find that

∞∑
x=bzρ(1+δ)c+1

xmP (Xρ,η = x) ≤
∞∑

x=bzρ(1+δ)+1c

xm
(

1−
∞∏
k=0

(1− ρx+k)∆k

)
∼

∞∑
x=1

(
zρ(1 + δ) + x

)m(
1−

∞∏
k=0

(
1− ρzρ(1+δ)ρx+k

)∆k

)
.

Since ρzρ = (1− ρ), expanding the infinite product up to the first-order terms, we obtain:

∞∑
x=bzρ(1+δ)c+1

xmP (Xρ,η = x) ≤
∞∑
x=1

(
zρ(1 + δ) + x

)m(
1−

∞∏
k=0

(
1− (1− ρ)1+δρx+k

)∆k

)
≤

∞∑
x=1

(
zρ(1 + δ) + x

)m( ∞∑
k=0

∆k(1− ρ)1+δρx+k
)

= (1− ρ)1+δ
( ∞∑
k=0

∆kρ
k
) ∞∑
x=1

(
zρ(1 + δ) + x

)m
ρx ∼ (1− ρ)1+δ

( ∞∑
k=0

ηkρ
k
)
zmρ (1 + δ)m.

The equivalence result in last line comes from Lemma 4.4, combined with the fact that
∞∑
k=0

∆kρ
k = η0 +(1−ρ)

∞∑
k=1

ηkρ
k. We also derive the following upper bound for the finite sum:

bzρ(1+δ)c∑
x=0

xm P (Xρ,η = x) ≤ bzρcm(1 + δ)mP
(
Xρ,η ≤ zρ(1 + δ)

)
≤ zmρ (1 + δ)m.

Thus, we can derive an upper bound for the following limit:

lim sup
ρ↑1

E(Xm
ρ,η)

zmρ
≤ lim

ρ↑1
(1 + δ)m

(
1 + (1− ρ)1+δ ·

∞∑
k=0

ηkρ
k
)

= (1 + δ)m.

Since δ > 0 is arbitrary, lim supρ↑1
E(Xm

ρ,η)

zmρ
≤ 1, and this completes the proof.

5 Initial configuration η supported on the whole Z
In this section we will provide asymptotic bounds for the minimum of the frog model’s range
under the assumption that η is supported on all of Z. The main result of this section is
stated in Theorem 5.1 below.
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Up until now, we have assumed that there were no sleeping frogs on any of the negative
sites. With this assumption, all of the frogs on Z+ would eventually wake w.p.1, and we
only needed to observe the collective minima of those frogs. However, when we consider
the transient frog model with configuration η supported on all of Z, we now have a random
number of active frogs originating from the negative sites that have the potential of expanding
the range. We begin to explore the moments of the minimum of this case by the groundwork
laid in the previous sections for the η supported only on nonnegative sites.

Fix any n ∈ N. We will assume throughout this section that ηx = n for any x ∈ Z, that
is exactly n frogs are initially placed at each site of Z. Our proofs in this section rely on
the following description of the “avalanche structure” of the model. We refer to the frogs
initially located in the nonnegative sites of Z as the “first wave”. If we just observe the
nonnegative frogs, we can locate the leftmost site visited by the frogs from the first wave.
We consider the frogs on the negative sites down to the minimum ever visited by the first
wave to be the “second wave” of frogs being activated. Tracking the leftmost site visited by
the frogs from the second wave, we designate a “third wave” of frogs activated between the
subsequent minimums. We will continue to label these activated frogs in terms of waves.
Since we assume a transient model, there will eventually be a final wave of frogs w.p.1 that
never venture any more to the left than their initial locations. In this section, let the negative
of the leftmost site visited by any of the active frogs be X̃ρ,n.

The following theorem provides upper and lower bounds for the mth moment of X̃ρ,n for

any given m ∈ N. While the bounds contain the familiar zρ = ln(1−ρ)
ln(ρ)

term from Sections 3
and 4, they are not immediately obvious from the previous results.

Theorem 5.1. The following holds for any m ∈ N :

(a) The mth moment of X̃ρ,n is bounded above by a function φ : (0, 1)→ [0,∞) such that

φ(ρ) ∼ zmρ

(1− ρ
2π

)n
2

exp
{π2

6

mn

1− ρ

}
as ρ ↑ 1. (16)

(b) For any function δ : (0, 1)→ (0, 1) such that limρ↑1 δ(ρ) = 0 and limρ↑1(1− ρ)δ(ρ) = 0,

the mth moment of X̃ρ,n is bounded below by a function ψδ : (0, 1)→ [0,∞) such that

ψδ(ρ) ∼ m! zmρ exp
{ mn

(1− ρ)δ(ρ)

}
as ρ ↑ 1. (17)

Remark 5.2. An example of a function δ that satisfies the conditions of Theorem 5.1 (b)

is δ(ρ) =
{

ln
(

1
1−ρ

)}−α
for a constant α ∈ (0, 1) and ρ > 1 − e−1 (as long as we are

only interested in the asymptotic as ρ ↑ 1, the values of δ(ρ) can be assigned arbitrarily
for ρ ≤ 1 − e−1). In this case, ψδ(ρ) ∼ m! zmρ exp

{
mn exp

(
| ln(1 − ρ)|1−α

)}
as ρ ↑ 1.

For the sake of comparison with the upper bound, notice that the latter can be written as

φ(ρ) ∼ zmρ
(

1−ρ
2π

)n
2 exp

{
mn exp

(
| ln(1− ρ)|

)}
as ρ ↑ 1, and that the parameter α ∈ (0, 1) can

be chosen arbitrarily close to zero.

To motivate and clarify the intuition behind the coupling construction employed in the
proof of Theorem 5.1 given below, we precede the proof by the following observation.
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Remark 5.3. Consider the model described in Section 3, namely ηx = 1 for x ≥ 0 and
ηx = 0 for x < 0. Fix any δ > 0 and consider the probability Pρ,δ that no one of the frogs
initially placed to the right of zρ(1 + δ) will ever reach zero. For simplicity and without loss
of generality we will treat zρ(1 + δ) as an integer. Then, since ρzρ(1+δ) = (1− ρ)1+δ, we have
Pρ,δ =

∏∞
j=1

(
1− ρzρ(1+δ)+j

)
=
∏∞

j=1

(
1− (1− ρ)1+δρj

)
. Since 1−x > e−2x for all x > 0 small

enough, we obtain that Pρ,δ ≥ exp
{
−2(1−ρ)1+δ

∑∞
j=1 ρ

j
}

= exp
{
−2ρ(1−ρ)δ

}
for all values

of ρ sufficiently close to 1, and hence limρ↑1 Pρ,δ = 1.
Now, recall that the results of Section 3 indicate tight concentration of the distribution of

Xρ around zρ as ρ ↑ 1. On the other hand, heuristically, limρ↑1Qρ,δ = 0 indicates that for
large values of ρ only the first zρ frogs are relevant to the dynamics of the model. To further
support this claim, consider the probability Qρ,δ that no one of the zρ(1 − δ) frogs initially
placed at the first zρ(1 − δ) nonnegative integers will ever reach −zρ(1 − δ). Similarly as
before, we treat zρ(1− δ) as an integer. Then

Qρ,δ =

zρ(1−δ)−1∏
j=0

(
1− ρzρ(1−δ)+j) ≤ exp

{
−(1− ρ)1−δ

zρ(1−δ)−1∑
j=0

ρj
}

= exp
{
−(1− ρ)−δ

(
1− ρzρ(1−δ))} = exp

{
−(1− ρ)−δ

(
1− (1− ρ)1−δ)}

≤ exp
{
−(1− ρ)−δ

(
1− e−ρ(1−δ))}.

Thus limρ↑1Qρ,δ = 0.
Heuristically, limρ↑1 Pρ,δ = 1 along with limρ↑1Qρ,δ = 0 tell us that the dynamics of the

model considered in Section 3 is for large values of ρ similar to the dynamics of a modification
where ηx equals 1 only if 0 ≤ x < zρ and is 0 otherwise. The proof of Theorem 5.1 given
below is using an interpretation of the model considered in this section as an “avalanche”
of the models described in Section 4 and is using the above heuristic observation to produce
upper and lower bounds of Theorem 5.1 for the model range.

Proof of Theorem 5.1.
(a) We first provide an upper bound for the moments of X̃ρ,n by coupling the frog model
with the following variant. First observe the minimum location reached by the frogs that are
initially placed on the nonnegative sites and obtain a second wave of active frogs. Modify the
original second wave in the following way. Put n more frogs on each site to the right of the
minimum reached by the first wave and suppose that only the second wave can activate them.
Note that without the consideration of activation times, this set of frogs is a translation of
the configuration of nonnegative frogs considered in Sections 3 and 4. Find the minimum
bound for this modified configuration and, for the resulting next wave, add frogs to all of the
right-side sites in a similar fashion. Since there is a positive probability for the nonnegative
frogs never reach −1, and each wave of frogs is a translation of this case, the waves will
terminate w.p.1. Let Wρ,n be the negative of the minimum bound for this model.

A formal definition of the distribution of Wρ,n can be given in the following manner.
Define the sequence η̃ = {η̃x}x∈Z ∈ ZZ

+ as follows: ηx = n if x ≥ 0 and ηx = 0 if x < 0. Such
a configuration has been considered in Section 4. Let Xρ,n be the negative of the range of

the corresponding model and let X
(k)
ρ,n, k ∈ Z, be independent copies of this random variable.
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Let Tρ,n = inf{k ∈ N : X
(k)
ρ,n = 0} and Wρ,n =

∑Tρ,n−1
k=1 X

(k)
ρ,n, where, as usual, the empty sum

(when Tρ,n = 1) is interpreted as zero.
To facilitate our computations we will actually use the following equivalent modification

of this definition. Let ερ,n = P (Xρ,n = 0) =
(
(ρ; ρ)∞

)n
, where Xρ,n is the minimum of

the range of the case with n frogs on each nonnegative site, introduced in Section 4. Thus
ερ = P

(
X

(k)
ρ,n = 0

)
for any k ∈ N. Let T̃ρ,n be a geometric random variable with parameter

ερ. Namely, P
(
T̃ρ,n = k

)
= (1− ερ)kερ, k = 0, 1, . . . . Notice that, limρ→1 ερ,n = 0, and hence

T̃ρ,n converges to infinity in probability as ρ ↑ 1. Clearly, T̃ρ,n has the same distribution as

Tρ,n−1. Let Yρ,n = {Y (k)
ρ,n }k∈Z be an i.i.d. sequence independent of T̃ρ,n and such that for any

j ∈ N, P (Yρ,n = j) = P (Xρ,n = j|Xρ,n > 0) = P (Xρ,n=j)

1−P (Xρ,n=0)
. Finally, let W̃ρ,n =

∑T̃ρ,n
k=1 Y

(k)
ρ,n .

Clearly, W̃ρ,n has the same distribution as Wρ,n.

For m ∈ N, we look at the mth moment of W̃ρ,n conditioned on T̃ρ,n:

E
(
W̃m
ρ,n

∣∣T̃ρ,n) = E
[(T̃ρ,n∑

k=1

Y (k)
ρ,n

)m∣∣∣T̃ρ,n] ≤ (T̃ρ,n∑
k=1

E
[(
Y (k)
ρ,n

)m] 1
m

)m
=
(
T̃ρ,n

)m
E
[(
Y (1)
ρ,n

)m]
,

where we use Minkowski inequality and the fact that Y
(k)
ρ,n are independent of T̃ρ,n. From this

conditioned expectation, we approximate the mth moments of Wρ,n as ρ ↑ 1:

E
(
Wm
ρ,n

)
= E

(
E
(
W̃m
ρ,n

∣∣T̃ρ,n))≤ E
[(
T̃ρ,n

)m] · E[(Y (1)
ρ,n

)m] ∼ ε−mρ,n z
m
ρ , (18)

where zρ = ln(1−ρ)
ln ρ

as in Section 4. To evaluate the moments of T̃ρ,n we used the following
known result whose short proof is supplied for reader’s convenience.

Lemma 5.4. For ε ∈ (0, 1), let Tε be a geometric random variable with parameter ερ.
Namely, P

(
Tε = k

)
= (1− ε)kε, k = 0, 1, . . . . Then, for any m ∈ N, E(Tmε ) ∼ ε−m as ε ↑ 1.

Proof of Lemma 5.4. We have as ε ↑ 1,

E(Tmε ) =

∫ ∞
0

P (Tmε > x) dx =

∫ ∞
0

P (Tε > y) ·mym−1 dy ∼
∫ ∞

0

(1− ε)y+1 ·mym−1 dy

= m(1− ε)
∫ ∞

0

eln(1−ε)yym−1 dy = m(1− ε) Γ(m)

| ln(1− ε)|m
∼ m!

εm
.

The proof of the lemma is complete.

Using (18), we finally arrive at the asymptotic bound in (a) through the asymptotic of

the q-Pochhammer symbol derived from [14]: for ρ = e−t, as t ↓ 0, (ρ; ρ)∞ ∼
√

2π
t

exp
(
−π2

6t

)
.

Note that t = − ln ρ ∼ 1− ρ, and we have (a).
(b) Now, consider another variant of the frog model. Define a function δ(ρ) : (0, 1)→ (0, 1).
To simplify notation, we will occasionally use δρ for δ(ρ). For a given ρ, consider the config-
uration η̂ with η̂k = n if k ∈ {0, 1, 2, . . . , zρ(1 − δρ)} and η̂k = 0 elsewhere. For simplicity
and without loss of generality, we will assume that zρ(1 − δρ) is integer-valued. Start the
model, and see if the frogs eventually reach the site −zρ(1− δρ). If they do, activate n frogs
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on each of the zρ(1 − δρ) sites to the left of the origin. Now observe if the newly activated
frogs reach the site −2zρ(1 − δρ). If they do, activate n frogs on all the zρ(1 − δρ) sites to
the left of the sites previously activated. Continue this procedure indefinitely. Note that at
any observed time step, this model will always have fewer active frogs than the frog model
with initial configuration η with ηk = n for all k ∈ Z. By Theorem 2.1 in [12], the frog model
with this configuration is transient. Hence, the variant model is transient, and the process
will eventually stop producing new sets of frogs from the left. Let Vρ,δ be the negative of the
minimum of the range of the variant, and let τρ,δ be the number of activated blocks of the
length zρ(1− δρ), not including the initial one located within Z+.

Let θρ,δ =
∏zρ(1−δρ)−1

j=0

(
1 − ρzρ(1−δρ)ρj

)n
=
(
(ρzρ(1−δρ); ρ)zρ(1−δρ)

)n
. Thus θρ,δ is the proba-

bility that none of the frogs located at the first zρ(1 − δρ) nonnegative sites will ever reach
the half-line on the left of −zρ(1− δρ). Viewing the event of a block of active frogs reaching
zρ(1 − δρ) units to the left as a “failure”, we see that τρ,δ is geometrically distributed with
parameter θρ,δ. Namely, P (τρ,δ = k) = (1− θρ,δ)kθρ,δ, k = 0, 1, . . . . Since ρzρ = 1− ρ,

θρ,δ =

zρ(1−δρ)−1∏
j=0

(
1− (1− ρ)1−δρρj

)n ≤ exp
(
−n(1− ρ)1−δρ

zρ(1−δρ)−1∑
j=0

ρj
)

= exp
(
−n1− ρzρ(1−δρ)

(1− ρ)δρ

)
= exp

(
−n1− (1− ρ)1−δρ

(1− ρ)δρ

)
.

With the constraints specified in the theorem’s hypotheses, θρ,δ → 0 as ρ ↑ 1. Hence, by

Lemma 5.4, E(τmρ,δ) ∼ m! θ−mρ,δ as ρ ↑ 1. Clearly, X̃ρ,n is stochastically dominated from below

by Vρ,δ = τρ,δ · zρ(1− δρ). The lower bound for the moments of X̃ρ,n is therefore

E(τmρ,δ) · zmρ (1− δρ)m ∼ m! zmρ exp
{
mn

1− (1− ρ)1−δρ

(1− ρ)δρ

}
∼ m! zmρ exp

{ mn

(1− ρ)δρ

}
,

as ρ ↑ 1. The proof of the theorem is complete.
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