
On Wallis-type products and Pólya’s urn schemes
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Abstract

A famous “curious identity” of Wallis gives a representation of the
constant π in terms of a simply structured infinite product of fractions.
Sondow and Yi [Amer. Math. Monthly 117 (2010), 912-917] identified
a general scheme for evaluating Wallis-type infinite products. The main
purpose of this paper is to discuss an interpretation of the scheme by
means of Pólya urn models.

1 Introduction

This paper is motivated by the work of Sondow and Yi [20], where several exam-
ples of Wallis-type products (see Definition 2.6 below) have been constructed.
The method used in [20] yields “cyclically structured” converging infinite prod-
ucts of fractions and evaluates their limit by means of the gamma function (see
Section 2 below). Only in a limited range of cases is an expression of the limit
in terms of powers of π and algebraic numbers known. Section 3 contains an in-
structive survey of generic examples. In Section 4 we discuss a relation between
the Wallis-type products and the Pólya urn scheme. Our main observation is
contained in the statement of Theorem 4.4. Throughout the paper, Γ( · ) is the
gamma function and N, Q, R, C are, respectively, natural, rational, real, and
complex numbers.

2 Wallis-type infinite products

Our starting point is a representation of the constant π discovered by Wallis [3,
p. 68]:
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· · · . (1)

A standard proof of the identity (1) relies on the evaluation of Wallis’s integral∫ π/2
0

sin2n+1 t dt [2]. A relation of Wallis’s product to Euler’s and Leibniz’s

formulas π2

6 =
∑∞
n=1

1
n2 and π

4 =
∑∞
n=0

(−1)n

2n+1 is discussed, for instance, in
[17, 25]. The cyclic structure of (1) is formalized as follows:

π

2
=

∞∏
n=0

2n+ 2

2n+ 1

2n+ 2

2n+ 3
. (2)
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This is generalized in the next proposition, which is a slight variation of a part
of [20, Theorem 1]. The result is the following Euler’s formula [8, Section VII.6]
applied to fractions:

sin(πx)

πx
=

∞∏
j=1

(
1− x2

j2

)
=

∞∏
n=0

(
1− x2

(n+ 1)2

)
, for x ∈ R. (3)

Proposition 2.1. For any k,m ∈ N such that m < k, it follows that

πm/k

sin(πm/k)
=

∞∏
n=0

nk + k

nk + k −m
nk + k

nk + k +m
. (4)

Example 2.2.

(a) Letting k = 6 and m = 1 in (4), we obtain
∏∞
n=0

6n+6
6n+5

6n+6
6n+7 = π

3 [25, p. 187].

(b) The identity cosπx− cosπy = 2 sin π(y−x)
2 sin π(y+x)

2 with x = 1
6 , y = 1

4 and
(4) yield

√
3

2
− 1√

2
= 2 sin

π

24
sin

5π

24

=
10π2

242

∞∏
n=0

24n+ 19

24n+ 24

24n+ 23

24n+ 24

24n+ 25

24n+ 24

24n+ 29

24n+ 24
.

We remark that (3) can be thought of as the representation of the infinite
Taylor polynomial

sin(πx)

πx
= 1− (πx)2

3!
+

(πx)4

5!
− (πx)6

7!
+ . . .

as
∏∞
j=1

(
1 − x

xj

)(
1 − x

x−j

)
, where xj = j are the roots of the polynomial [17,

Chapter II].
The next proposition is a consequence of the following counterpart of (3) for

the cosine function:

cos(πx/2) =

∞∏
n=0

(
1− x2

(2n+ 1)2

)
, for x ∈ R. (5)

Proposition 2.3. For any k,m ∈ N such that m < k, it follows that

1

cos(πm/(2k))
=

∞∏
n=0

2nk + k

2nk + k −m
2nk + k

2nk + k +m
. (6)

Example 2.4. Letting k = 3 and m = 2 in (6), we obtain
∏∞
n=0

6n+3
6n+1

6n+3
6n+5 = 2.

Letting k = 2,m = 1 in (6) yields Catalan’s product
∏∞
n=0

4n+2
4n+1

4n+2
4n+3 =

√
2 [7].

The above propositions can be generalized and extended in many ways.
Consider, for instance, the following example.
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Example 2.5. Ramanujan [11, p. 50] showed that:

(a)
∏∞
n=1

(
1 +

(
2p
n+p

)3)
= {Γ(1+p)}3

Γ(2+3p)
cosh(π(p+1/2)

√
3)

π .

(b)
∏∞
n=1

{(
1 + p3

n3

)
·
(
1 + 3

(
p

n+p+1

)2)}
= Γ(p/2)

Γ((p+1)/2)
cosh(πp

√
3)−cosh(πp)

2x+2πp
√
π

.

If p ∈ Q, the above formulas yield expressions for infinite products of fractions
whose periodic structure resembles that of the Wallis product

In fact, the Weierstrass factorization theorem implies that [24, Section 12.13]:

∞∏
n=0

d∏
j=1

n+ xj
n+ yj

=

d∏
j=1

Γ(yj)

Γ(xj)
, for xj , yj ∈ C, (7)

as long as
∑d
j=1 xj =

∑d
j=1 yj and none of yj is a negative integer or zero. We

adopt the point of view proposed in [20] and perceive (7) as a recipe for creating
Wallis-type identities.

Definition 2.6. For α > 0, we write α ∈ W if α =
∏∞
n=0

P(n)
Q(n) for some

polynomials P and Q with positive rational roots and common degree, that is if

α =

∞∏
n=0

d∏
j=1

n+ aj/k

n+ bj/k
=

∞∏
n=0

d∏
j=1

kn+ aj
kn+ bj

, for d, k, aj , bj ∈ N. (8)

The rightmost expression in (8) is said to be a Wallis-type infinite product for α.

In view of (7), the condition
∑d
j=1 aj =

∑d
j=1 bj must hold to ensure that

α is finite and non-zero. A Wallis-type product can be equivalently defined as∏∞
n=0

pn
qn
, where pn, qn ∈ N and pn+d = pn + k, qn+d = qn + k for some d, k ∈ N

and all integers n ≥ 0 (in particular, both pn and qn grow asymptotically
linearly). Note that the products in Example 2.5 are not of the Wallis-type.

3 Some further examples of Wallis-type prod-
ucts

The analysis of the structure of W turns out to be challenging. We refer to
[6, 10, 21, 22] for various aspects of this problem. In this section, we present
a selected variety of examples where Wallis-type products can be evaluated
explicitly and explore a few links between them.

Example 3.1. Start with cos π9 cos 2π
9 cos 4π

9 = 1
8 (“Morrie’s law” [4]), which is

a special case of∏p−1

j=0
cos(2jx) =

sin(2px)

2p sinx
, for p ∈ N, x ∈ R. (9)
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Combining this result with (6) and taking in account that Γ
(
1/2
)

=
√
π, one

obtains that
∞∏
n=0

∏
m∈{2,4,8}

18n+ 9−m
18n+ 9

18n+ 9 +m

18n+ 9
=

1

8
. (10)

In fact, (6) and (9) with x = π
2p+1 imply

∞∏
n=0

p∏
j=1

(2p+1 + 2)n+ 2p − 2j + 1

(2p+1 + 2)n+ 2p + 1

(2p+1 + 2)n+ 2p + 2j + 1

(2p+1 + 2)n+ 2p + 1
=

1

2p
.

Example 3.2. Let Rn :=
{
j ∈ N : 1 ≤ j ≤ n and j is relatively prime to n

}
,

n ∈ N. The following identity (see, for instance, [22]) illustrates a result of [18]
for
∏
j∈Rn

Γ(j/n) :∏∞

n=0

14n+ 1

14n+ 7

14n+ 9

14n+ 7

14n+ 11

14n+ 7
=

{Γ(7/14)}3

Γ(1/14) Γ(9/14) Γ(11/14)
=

1

4
.

It is curious to note that (10) above can be also derived from the result of [18]
with n = 18.

Example 3.3. Vieta [3, p. 53] (see also [13, Chapter 1]) showed that 2
π =∏∞

n=1 Sn, where S1 =
√

1
2 and Sn =

√
1
2 + 1

2Sn−1 for n > 1. Osler considered

in [16] the “united Vieta-Wallis-like products”

sin(πx)

πx
(11)

=

p∏
m=1

√√√√1

2
+

1

2

√
1

2
+ · · ·+ 1

2

√
1

2
+

1

2
cos(πx)

(m radicals)

∞∏
n=1

2pn− x
2pn

2pn+ x

2pn

with p ∈ N∪ {0}. The proof of (11) rests on (4), (9), and the identity cos
(
θ
2

)
=√

1
2 + 1

2 cos θ.

Example 3.4. The set
{

Γ(m/k) : m, k ∈ Z; k divides 24 or 60
}

is investigated
in [21]. One motivation for this study is its relevance to the problem of the
evaluation of hypergeometric functions and the theory of elliptic integrals. In
addition, as it is observed in [21], the topic is related to an instance of the
Lang-Rohrlich conjecture [10, 22]. We, for instance, have:

∞∏
n=0

30n+ 9

30n+ 10

30n+ 19

30n+ 18
=

Γ(1/3)Γ(3/5)

Γ(3/10)Γ(19/30)
=

√√
15 +

√
5 + 2

√
5

219/3031/2051/3
,

∞∏
n=0

12n+ 5

12n+ 6

12n+ 9

12n+ 8
=

Γ(1/2)Γ(2/3)

Γ(3/4)Γ(5/12)
=

√√
3 + 1

21/433/8
,

∞∏
n=0

(6n+ 2

6n+ 4

)3 6n+ 5

6n+ 1

6n+ 5

6n+ 3
=
{Γ(1/3)}3

{Γ(2/3)}3
Γ(5/6)

Γ(1/6)

Γ(5/6)

Γ(3/6)
= 1.
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In the same spirit, using the rather surprising result (we adopt this epithet from
[6]) that

Γ(1/24)

Γ(5/24)

Γ(11/24)

Γ(7/24)
=

√
6 +
√

3,

one can compute
∏∞
n=0

24n+5
24n+1

24n+7
24n+11 . Similar formulas can be derived from other

results of [21].

Example 3.5. It is observed in [1, Section 4.4] that the key formula (7) along
with the so called “standard equations” for the gamma function (translation,
reflection, and multiplication) can be used to derive the following identity which
is valid for any integer k ≥ 0:

∞∏
n=0

k∏
j=1

(2n+ 1)(2k + 1)− 2j

(2n+ 1)(2k + 1)− 2j + 1

(2n+ 1)(2k + 1) + 2j

(2n+ 1)(2k + 1) + 2j − 1
=

1√
2k + 1

. (12)

The observation that this product can be evaluated using only the standard
equations is interesting in the light of Rohrlich’s conjecture which, informally
speaking, asserts that those are the only ones available for the values of the
gamma function in rational points while the others can be obtained as their
consequences (see, for instance, [10] and [22, Section 4.1]).

Example 3.6. The following “k-th order Wallis’s product” is somewhat similar

to (12) written as
∏∞
n=1

∏k
j=1

(n(2k+1)+2j−1
n(2k+1)+2j

)(−1)n

= 22k
√

2k+1

(
2k
k

)−1
. Using (7)

and the “standard equations”, it follows that

Ak :=

∞∏
n=1

k−1∏
j=0

2nk

2nk − 2j − 1

2nk

2nk + 2j + 1
=

k−1∏
j=0

Γ
(2j + 1

2k

)
· Γ
(

1 +
2j + 1

2k

)

=

k−1∏
j=0

2k

2j + 1
·
{

Γ
(

1 +
2j + 1

2k

)}2

=
(2k)k

(2k − 1)!!

{∏2k−1
m=1 Γ

(
1 + m

2k

)∏k−1
m=1 Γ

(
1 + m

k

) }2

=
πk(2k − 1)!!

2kk
.

For instance, A1 is Wallis’s product and

A2 =
4

1

4

3

4

5

4

7
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9

8
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9
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11
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12

15

16

13

16

15

16

17

16

19
· · · = 3π2

8
.

4 Pólya’s urn schemes and Wallis-type products

In this section, we present a probabilistic interpretation of Wallis-type products
in terms of probabilities of realizations of Pólya’s urn scheme.

We begin by recalling the classical Pólya’s urn scheme [14]. Throughout
the discussion, k ≥ 2 and p ≥ 2 are fixed integer parameters. Consider an
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urn containing balls of p different colors, with colors labeled by elements of
Np = {1, . . . , p}. At each unit of time n = 1, 2, . . . , a ball is removed from the
urn and is returned back after inspection of its color together with k extra balls
of the same color. Let a ∈ Np be given by a = (a1, . . . , ap), where ai denotes the
number of balls of color i initially placed in the urn. We write |a| =

∑p
i=1 ai.

Let ωn ∈ Np be the color of the ball sampled in the n-th draw. We refer to
the sequence (ωn)n∈N as a realization of the Pólya urn scheme. We denote the
space of realizations NN

p of the urn by Ωp and for ω ∈ Ωp define

An(ω) = {ω ∈ Ωp : ωj(ω) = ωj(ω), j = 1, . . . , n}. (13)

That is, An(ω) is the set of realizations whose first n coordinates coincides with
those of ω. Note that ∩n∈NAn(ω) = {ω}. Let Fn denote the σ-algebra generated
by ω1, . . . , ωn and let F∞ denote the σ-algebra generated by ∪n∈NFn. Let Pa

denote the law of the urn on F∞, and let Ea be the corresponding expectation.
Also, let

Tn,i(ω) =

n∑
j=1

1{ωj(ω)=i} and Xn,i(ω) =
ai + kTn,i(ω)

|a|+ kn

denote the number of times a color i ball was drawn in the first n iterations
and the fraction of color i balls after n iterations, respectively. Finally, for
n ∈ N write Xn = (Xn,1, . . . , Xn,p), Tn = (Tn,1, . . . , Tn,p), and let X0 = a

|a| and

T0 = (0, . . . , 0). Then for all n ≥ 0, we have

Pa(ωn+1 = i|Fn)(ω) = Xn,i(ω) =
ai + kTn,i(ω)

|a|+ kn
.

Notice that the right-hand side depends only on the number of color i balls
chosen in the first n iterations, but not the order in which they were chosen. It
then follows by induction that the sequence (ωn)n∈N is exchangeable. That is,
for n ∈ N and a permutation σ of {1, . . . , n}, the distributions of (ω1, . . . , ωn)
and (ωσ(1), . . . , ωσ(n)) coincide under Pa. In particular,

Pa(An(ω)) =

∏p
i=1

∏Tn,i(ω)−1
j=0 (ai + kj)∏n−1
j=0 (|a|+ kj)

. (14)

The following result is well-known, it was first established by Eggenberger and
Pólya in the case p = 2 [5, 14].

Theorem 4.1. For any a ∈ Np, Xn =
(
X1,n, . . . , Xp,n

)
converges almost surely

with respect to the measure Pa to a random vector X∞ ∈ Rp with the Dirichlet
density

fa(x1, . . . , xp) =
Γ(|a|/k)∏p
i=1 Γ(ai/k)

p∏
i=1

x
ai
k −1
i , where xi > 0 and

p∑
i=1

xi = 1.
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We will now derive a probabilistic interpretation of the Wallis-type product,

which also yields the expressions for the product as limn→∞
Pb(An(ω))
Pa(An(ω)) for suit-

able choices of a,b, and ω. We begin with the intuitively clear observation that
the events we consider are asymptotically vanishing:

Proposition 4.2. Let ω ∈ Ωp. Then Pa({ω}) = 0.

Proof of Proposition 4.2. For any i ∈ Np and n ∈ N we have

P (ωn+1 = i|Fn) = Xn,i ≤
ai + kn

|a|+ kn
≤ |a| − 1 + kn

|a|+ kn
= 1− 1

|a|+ kn
.

Therefore,

P (An(ω)) ≤
n∏
j=0

(
1− 1

|a|+ kj

)
≤ e−

∑n
j=0

1
|a|+kj → 0, as n→∞.

This yields the result by virtue of the identity {ω} = ∩n∈NAn(ω).

We proceed by defining the set of “admissible sequences.”

Definition 4.3. Let Ap ⊂ Ωp denote the event{
ω ∈ Ωp : T∞(ω) = lim

n→∞

Tn(ω)

n
exists and is in (0, 1)p

}
.

We say that ω is an admissible sequence if ω ∈ Ap.

Note that Pa(Ap) = 1 according to Theorem 4.1. The following is our main
result.

Theorem 4.4. Let a,b ∈ Np and fix ω ∈ Ap. Then

lim
n→∞

Pa(An(ω))

Pb(An(ω))
=
fa(X∞(ω))

fb(X∞(ω))
,

where X∞ is introduced in the statement of Theorem 4.1.

The proof which is given below is a direct application of the following Stir-
ling’s approximation formula for the gamma function (see, for instance, [15,
Proposition 2.1]):

Γ(x) =

∫ ∞
0

e−ttx−1dt ∼
√

2πxx−
1
2 e−x, as x→∞. (15)

We note that the proof does not rely on either Theorem 4.1 or any of the results
of the preceding sections.
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Proof of Theorem 4.4. Since for x > 0, Γ(x + 1) = xΓ(x), we obtain that for
any m ∈ N,

m∏
j=0

(x+ jk) = km+1
m∏
j=0

(x
k

+ j
)

= km+1 Γ(xk + (m+ 1))

Γ(xk )
.

Thus rewriting (14) in terms of the gamma function and using (15), we obtain,
as n→∞,

Pa(An(ω)) =

∏p
i=1 Γ(aik + Tn,i)/Γ(aik )

Γ( |a|k + n)/Γ( |a|k )
=

Γ( |a|k )∏p
i=1 Γ(ai

k )
×
∏p
i=1 Γ(aik + Tn,i)

Γ( |a|k + n)

∼
Γ( |a|k )∏p
i=1 Γ(ai

k )
×
∏p
i=1(aik + Tn,i)

ai
k +Tn,i− 1

2

( |a|k + n)
|a|
k +n

∼
Γ( |a|k )∏p
i=1 Γ(ai

k )
×
∏p
i=1 T

ai
k +Tn,i− 1

2
n,i · e

ai
k

n
|a|
k +n− 1

2 · e
|a|
k

=
Γ( |a|k )∏p
i=1 Γ(ai

k )

∏p
i=1 T

Tn,i− 1
2

n,i

nn−
1
2

p∏
i=1

(Tn,i
n

) |ai|
k

.

Since ω ∈ Ap, we have limn→∞ Tn,i/n = X∞,i(ω). Therefore,

lim
n→∞

Pa(An(ω))

Pb(An(ω))
=

Γ( |a|k )/
∏p
i=1 Γ(ai

k )

Γ( |b|k )/
∏p
i=1 Γ(bi

k )

p∏
i=1

X
|ai|
k −

|bi|
k

∞,i =
fa(X∞(ω))

fb(X∞(ω))
.

The proof of the theorem is complete.

We remark that the result remains true if we assume that the number of balls
returned in each of the schemes is different, say k balls under Pa and k′ 6= k
balls under Pb. As the proof being identical, we omit details.

Notice that the Wallis-type products of Definition 2.6 correspond to the
special case |a| = |b| of the following corollary to our main result.

Corollary 4.5. Suppose that a and b are elements in Np. Then

lim
n→∞

( n∏
j=0

|b|+ kj

|a|+ kj
×
bn/pc∏
j=0

p∏
i=1

ai + kj

bi + kj

)
= p

|b|−|a|
k

Γ( |a|k )

Γ( |b|k )

p∏
i=1

Γ( bik )

Γ(aik )
. (16)

Proof of Corollary 4.5. Let ω = (ωn)n∈N be the p-periodic sequence defined by
ωn ≡ n mod p and ωn ∈ [1, p], so that

ω = 1, 2, . . . , p, 1, 2, . . . , p, 1, 2, . . . .
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Clearly ω ∈ Ap. It follows then from (14) that the left-hand side of (16) is equal
to

lim
n→∞

(∏p
i=1

∏Tn,i(ω)−1
j=0 (ai + kj)∏n−1
j=0 |a|+ kj

/∏p
i=1

∏Tn,i(ω)−1
j=0 (bi + kj)∏n−1
j=0 |b|+ kj

)
=
fa(X∞(ω))

fb(X∞(ω))
,

which establishes the claim since X∞(ω) =
(

1
p , . . . ,

1
p

)
.

Admissible sequences are a natural extension of the cyclic ones that show up
in Corollary 4.5. Note that while Pa(Ap) = 1, there are only countably many
cyclic sequences, and hence according to Proposition 4.2, their entire collection
is a set of probability zero. To get a somewhat less trivial example of a subset
of Ap which is a null-set of measure Pa, one can consider, for instance, ω’s in Ap
that do not satisfy the law of iterated logarithm for Pólya’s urns (an estimate
on the rate of convergence of Xn to X∞) proved in [12, p. 775].

We conclude this section with an observation that Pa and Pb are equivalent
measures, namely they share the same null-events. One thus cannot determine
the initial distribution of the urn scheme only by observing its realization.

Corollary 4.6. For ω ∈ Ωp, let Zn(ω) = Pb(An(ω))
Pa(An(ω)) . Then Zn converges both

almost surely with respect to Pa and in L1(Pa) to fb(X∞(ω))
fa(X∞(ω)) , as n → ∞. In

particular, Pb is absolutely continuous with respect to Pa.

Proof of Corollary 4.6. The almost sure convergence is the content of Theorem
4.4. Observe next that Ea(Zn) = 1 because Zn is a Radon-Nikodym derivative
of Pb|Fn

with respect to Pa|Fn
(see, for instance, Section 5.3.3 and Appendix A4

in [9] for a superb introduction to the Radon-Nikodym derivative and Radon-
Nikodym theorem within the context of probability theory). In fact, it follows
from the definition of An(ω) in (13) that

Ea(Zn) =
∑
ω∈Nn

p

Zn(ω)Pa(An(ω)) =
∑
ω∈Nn

p

Pb(An(ω))

Pa(An(ω))
Pa(An(ω))

=
∑
ω∈Nn

p

Pb(An(ω)) = 1.

Furthermore, since X∞ has density fa under Pa, it follows that

Ea(Z∞) =

∫
fb(x)

fa(x)
fa(x)dx = 1.

By Vitali’s convergence theorem (see, for instance, [19, p. 165] or [9, Theo-
rem 5.5.2]), the almost sure convergence along with the convergence of the
expected values imply the convergence in L1(Pa).
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It remains to show that Pb is absolutely continuous with respect to Pa. Let
A ∈ ∪n∈NFn. Then Pb(A) = Ea(1AZn) for all n sufficiently large. Since

Ea

(
1A|Zn − Z∞|

)
≤ Ea

(
|Zn − Z∞|

)
→ 0 as n→∞,

it follows that

Pb(A) = Ea(1AZ∞). (17)

Note that the mapping A→ Ea(1AZ∞) is a probability measure on F∞. Since
∪n∈NFn is an algebra and the events A ∈ F∞ satisfying (17) form a monotone
class, it follows from the monotone class theorem [9, Theorem 6.1.3] that (17)
holds for all A ∈ σ

(
∪n∈NFn

)
= F∞.

As in the case of Theorem 4.4, the result continues to hold when the number
of balls returned to each urn is different, the proof being identical.
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