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Abstract

The random coefficient integer-valued autoregressive process was introduced by
Zheng, Basawa, and Datta in [55]. In this paper we study the asymptotic behavior of
this model (in particular, weak limits of extreme values and the growth rate of partial
sums) in the case where the additive term in the underlying random linear recursion
belongs to the domain of attraction of a stable law.
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1 Introduction

In this paper we consider a first-order random coefficient integer-valued autoregressive (ab-
breviated as RCINAR(1)) process that was introduced by Zheng, Basawa, and Datta in
[55]. While the article [55] as well as a subsequent work have been focused mostly on direct
statistical applications of the model, the primary goal of this paper is to contribute to the
understanding of its probabilistic structure.

Let Φ := (φn)n∈Z be an i.i.d. sequence of reals, each one taking values in the closed
interval [0, 1]. Further, let Z := (Zn)n∈Z be a sequence of i.i.d. integer-valued non-negative
random variables, independent of Φ. The pair (Φ,Z) is referred to in [55] as a sequence of
random coefficients associated with the model.

Let Z+ denote the set of non-negative integers {n ∈ Z : n ≥ 0}. The RCINAR(1) process
X := (Xn)n∈Z+ is then defined as follows. Let B := (Bn,k)n∈Z,k∈Z be a collection of Bernoulli
random variables independent of Z and such that, given a realization of Φ, the variables
Bn,k are independent and

PΦ(Bn,k = 1) = φn and PΦ(Bn,k = 0) = 1− φn, ∀ k ∈ N,
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where PΦ stands for the underlying probability measure conditional on Φ. Let X0 = 0 and
consider the following linear recursion:

Xn =

Xn−1∑
k=1

Bn,k + Zn, n ∈ N, (1)

where we make the usual convention that an empty sum is equal to zero. To emphasize
the formal dependence on the initial condition, we will denote the underlying probability
measure (i.e., the joint law of Φ,Z, B, and X ) conditional on {X0 = 0} by P0 and denote
the corresponding expectation by E0. For the most of the paper we will consider a natural
initial assumption X0 = 0 and hence consistently state our results for the measure P0. We
remark however that all our results (stated below in Section 2) are robust with respect to
the initial condition X0.

The RCINAR(1) process X defined by (1) is a generalization of the integer-valued au-
toregressive of order one (abbreviated as INAR(1)) model, in which the parameters φn are
deterministic and identical for all n ∈ Z. The model introduced in [55] has been further
extended in [19, 48, 51, 52, 53, 54, 55]. We refer the reader to [26, 35, 37, 49] for a general
review of integer-valued (data counting) time series models and their applications.

Formally, RCINAR(1) can be classified as a special kind of branching processes with
immigration in the random environment Φ, cf. [29]. In particular, the process can be
rigorously constructed on the state space of “genealogical trees” (see [23, Chapter VI]).
The random variable Xn is then interpreted as the total number of individuals present at
generation n. At the beginning of the n-th period of time, Zn immigrants enter the system.
Simultaneously and independently of it, each particle from the previous generation exits the
system, producing in the next generation either one child (with probability φn) or none (with
the complementary probability 1− φn) 1. The branching processes interpretation is a useful
point of view on RCINAR(1) which provides powerful tools for the asymptotic analysis of
the model.

In this paper we focus on the case where production and immigration mechanisms are
both defined by an i.i.d. environment and, furthermore, are independent each of other. More
general type of branching process with immigration in random environment is considered,
for instance, in [29, 42] and [25]. Assuming suitable moment conditions and ergodic/mixing
properties of the environment, a law of large numbers and a central limit theorem for such
processes are obtained in [42]. It would be interesting to carry over to a more general setting
the results of this paper which rest on the regular variation property of the coefficients when
the moment conditions of [42] are not satisfied. It is plausible to assume and we leave this
as a topic for future research that such an extension can be obtained by an adaptation of
the techniques exploited in this paper for the case of Markovian coefficients with a possible
correlation between production and immigration mechanisms. We remark that a bottleneck
for such a generalization of our results appears to be a suitable extension to a more general
setup of the identity (13) and Lemma 3.1 below.

Let N+ denote the set of non-negative integer-valued random variables in the underlying
probability space. The first term on the right-hand side of (1) can be thought of as the result

1Alternatively, one can think that each particle either survives to the next generation (with probability
φn) or dies out (with probability 1− φn).
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of applying to Xn a binomial thinning operator which is associated with φn. More precisely,
using the following operator notation introduced by Steutel and van Harn in [46]:

φn ◦X :=
X∑
n=1

Bn,k, X ∈ N+,

equation (1) can be written as

Xn = φn ◦Xn−1 + Zn, n ∈ N. (2)

This form of the recursion indicates that an insight into the probabilistic structure of the
RCINAR(1) process can be gained by comparing it to the classical AR(1) (first-order autore-
gressive) model for real-valued data. The latter is defined by means of i.i.d. pairs (φn, Zn)n∈Z
of real-valued random coefficients, through the following linear recursion:

Yn = φnYn−1 + Zn, n ∈ N. (3)

In this paper we explore one of the aspects of the similarity between the RCINAR(1) and
AR(1) processes. Namely, we show in Theorem 2.5 below that if Zn are in the domain
of attraction of a stable law so is the limiting distribution of Xn, and then consider some
implications of this result for the asymptotic behavior of the sequence Xn. A prototype of our
Theorem 2.5 for AR(1) processes has been obtained in [20, 22]. Our proof of Theorem 2.5
relies on an adaptation of the technique which has been developed in [20].

We conclude the introduction with the following remarks on the motivation for our study.
Although it appears that most of our results (stated in Section 2 below) could be extended to
a more general type of processes than is considered here, we prefer to focus on one important
model. It is well-known that certain quenched characteristics of branching processes in
random environment satisfy the linear difference equation (3). In two different settings, both
yielding stationary solutions to (3) with regularly varying tails, this observation has been used
to obtain the asymptotic behavior of the extinction probabilities in a branching processes
in random environment [20, 21] and the cumulative population for branching processes in
random environment with immigration [28, 29]. These studies make it appealing to consider
a model like (2) which evidently combines features of both branching processes in random
environment (with immigration) and AR(1) time series.

In general, probabilistic analysis of the future behavior of average and extreme value
characteristics of the underlying system might be handy for typical real-world applications
of a counting data model. Our results thus constitute a natural complement to the statistical
inference tools developed for the RCINAR(1) processes in [55]. For the sake of example,
consider

1) maximal number of unemployed per month in an economy, according to the model
discussed in [55, Section 1];

2) a variation of the model for city size distributions studied in [17, 18] where the underly-
ing AR(1) equation is replaced by its suitable integer-valued analogue. More precisely,
while it is argued in [17, 18] that the evolution of the normalized (to the total size of the
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population) size of a city Yn obeys (3), we propose (2) as a possible alternative model
for non-normalized size of the city population Xn, where φn is an average proportion
of the population which will continue to live in the city in the observation epoch n+ 1
and Zn is the factor accumulating both the natural population growth and migration;

3) total number of arrivals in the random coefficient variation of the queueing system
proposed in [1, Section 3.2].

On the technical side, in contrary to [55], we do not restrict ourselves to a setup with
E[Z2

0 ] < ∞. This finite variance condition apparently does not pose a real limitation on
the possibility of applications of RCINAR(1) to, say, the unemployment rate and the cities
growth models mentioned above. In both the cases, it is reasonable to assume that the
innovations Zn are typically relatively small comparing to Xn and, furthermore, large fluctu-
ations of their values are not very likely to occur. However, the situation seems to be quite
different if one wishes to apply the theory of RCINAR(1) processes to the models of queueing
theory (as it has been done in [1]) when the latter are assumed to operate under a heavy
traffic regime. See, for instance, [4, 6, 11, 14, 39, 56] and [7, 40, 43] for queueing network
models where it is assumed that the network input has sub-exponential or, more specifically,
regularly varying distribution tails (typically resulting from the distribution of the length of
ON/OFF periods). We remark that the extensive literature on queueing networks in a heavy
traffic regime is partially motivated by the research on the Internet network activity where
it has been shown that in many instances a web traffic is well-described by heavy-tailed
random patterns; see, for instance, [12, 33, 41, 50].

2 Statement of results

This section contains the statement of our main results, and is structured as follows. We
start with a formulation of our specific assumptions on the coefficients (Φ,Z) of the model
(see Assumptions 2.1 and 2.2 below). Proposition 2.3 then ensures the existence of the
limiting distribution of Xn and also states formally some related basic properties of this
Markov chain. Theorem 2.5 is concerned with the asymptotic of the tail of the limiting
distribution in the case where the additive coefficients Zn belong to the domain of attraction
of a stable law. The theorem shows that in this case, the tails of the limiting distribution
inherit the structure of the tails of Z0. This observation leads us to Theorem 2.6, which is
an extreme value limit theorem for the sequence (Xn)n∈Z+ . Weak convergence of suitably
normalized partial sums of Xn is the content of Theorems 2.11 and 2.12. The proof of these
limit theorems exploit the branching process representation of a regenerative structure which
is described by Proposition 2.7. Two curious implications of the existence of this regenerative
structure are stated in Propositions 2.8 and 2.9. The proofs of main theorems stated below in
this section are given in Section 3 while the proofs of two auxiliary propositions are deferred
to the Appendix.

Specific assumptions on the random coefficients. Recall that a function f : R → R
is called regularly varying if f(t) = tαL(t) for some α ∈ R and a function L such that
limt→∞ L(λt)/L(t) = 1 for all λ > 0. The parameter α is called the index of the regular
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variation. If α = 0, then f is said to be slowly varying. We will denote by Rα the class
of all regularly varying real-valued functions with index α. We will impose the following
assumption on the coefficients of the model defined by (1).

Assumption 2.1.

(A1) P (φ0 = 1) < 1.

(A2) For some α > 0, there exists h ∈ Rα such that limt→∞ h(t) · P (Zn > t) = 1.

Throughout the paper we will assume (actually, without loss of generality in view of (A2)
and Theorem 1.5.4 in [5] which ensures the existence of a non-decreasing equivalent for h)
that the the following condition is included in Assumption 2.1:

(A3) Let h : (0,∞)→ R be as in (A2). Then supt>0 h(t) · P (Zn > t) <∞.

The assumption of heavy-tailed innovations (noise terms) in autoregressive models is
quite common in the applied probability literature. It is a well-known paradigm that such
an assumption yields a rich probabilistic structure of the stationary solution and allows for
a great flexibility in the modeling of its asymptotic behavior. See for instance [20, 22], more
recent articles [9, 10, 24, 31, 38, 44, 45], and references therein.

In a few occasions (including a central limit theorem stated below in Theorem 2.14) we
will use the following weaker version of Assumption 2.1:

Assumption 2.2. Condition (A1) of Assumption 2.1 is satisfied and, in addition, the fol-
lowing holds:

(A4) E[Zβ
0 ] <∞ for some β > 0.

Assumption 2.2 is stronger than the usual E(log+ |Z0|) < +∞, where x+ := max{x, 0}
for x ∈ R, which is essentially required for the existence and uniqueness of the stationary
solution to (2). It can be seen through the formula E[Zβ

0 ] =
∫∞

0
βxβ−1P (Z0 > x)dx (recall

that Z0 ≥ 0) that (A4) is basically equivalent to the assumption that the distribution tails
of Z0 are “not too thick”.

Limiting distribution of Xn. Let Yn ⇒ Y∞ stand for the convergence in distribution of
a sequence of random variables (Yn)n∈N to a random variable Y∞ (we will usually omit the
indication “as n→∞”). We will use the notation X =D Y to indicate that the distributions
of random variables X and Y coincide under the law P0. For X ∈ N+ define Π0 ◦X := X
and, recursively, Πk+1 ◦X := φk+1 ◦

(
Πk ◦X

)
. This defines a sequence of random operators

acting in N+ as follows:

Πk ◦X = φk ◦ φk−1 ◦ · · · ◦ φ1 ◦X, X ∈ N+. (4)

The existence of the stationary distribution for the sequence X = (Xn)n≥0 introduced in (1)
is the content of the following proposition.

Proposition 2.3. Let Assumption 2.2 hold. Then,
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(a) The following series converges to a finite limit with probability one:

X∞ :=
∞∑
k=0

X0,k, (5)

where the random variables (X0,k)k∈Z+ are independent, and X0,k =D Πk ◦Z0 for any k ∈ N.
(b) Xn ⇒ X∞ for any X0 ∈ N+. Here (Xn)n∈Z+ is understood as the sequence produced by
the recursion rule (1) with an arbitrary initial value X0.

(c) The distribution of X∞ is the unique distribution of X0 which makes (Xn)n∈Z+ into a
stationary sequence.

The proof of the proposition is deferred to the appendix. We remark that if E[Z2
0 ] <∞

is assumed, the above statement is essentially Proposition 2.2 in [55]. For a counterpart of
this result for AR(1) processes see, for instance, Theorem 1 in [8]. It is not hard to deduce
from the above proposition the following corollary, whose proof is omitted:

Corollary 2.4. Suppose that Assumption 2.2 holds, and let X = (Xn)n∈Z+ be a random
sequence defined by (1). Then X is an irreducible, aperiodic, and positive-recurrent Markov
chain whose stationary measure is supported on a set of integers {k ∈ Z+ : k ≥ kmin}, where
kmin := min{k ∈ Z+ : P (Z0 = k) > 0}. In particular, X is an ergodic sequence.

It follows from the above proposition that X∞ is the unique solution to the distributional
fixed point equation X =D φ0◦X+Z0 which is independent of (φ0, B0, Z0), where B0 denotes
the sequence (B0,k)k∈N. In fact, the explicit form (5) of the stationary distribution along with
the identity (φn, Zn)n∈Z =D (φ−n, Z−n)n∈Z, implies that the unique stationary solution to (1)
is given by the following infinite series:

Xn =
n∑

k=−∞

Xk,n, (6)

where the random variables (Xk,n)k∈Z are independent, and

Xk,n =P φn−1 ◦ φn−2 ◦ · · · ◦ φk+1 ◦ Zk, k ≤ n.

By means of the branching process interpretation,

Xk,n = #{progeny alive at time n of all the immigrants who arrived at time k}, (7)

with the convention that Xn,n = Zn and Xk,n = 0 for k > n. Thus (6) states that the
stationary solution to (1) is formally obtained by letting the zero generation to be formed
as a union of the following two groups of individuals:

1. Z0 immigrants arriving at time zero, and

2. descendants, present in the population at time zero, of all “demo-immigrants” who has
entered the system at the negative times k = −1,−2, . . .
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The random variables Xk,n can be defined rigorously on the natural state space of the branch-
ing process, which is a space of family trees describing the “genealogy” of the individuals
(see [23, Chapter VI]). To distinguish between the branching process starting at time zero
with X0 = 0 and its stationary version “starting at time −∞”, we will denote by P the
distribution of the latter, while continuing to use P0 for the probability law of the former.
We will denote by E the expectation operator associated with the probability measure P. We
will use the notation X =P Y to indicate that the distributions of random variables X and
Y coincide under the stationary law P. As it has been mentioned earlier, we will consistently
state our results for the underlying process under the law P0 and thus will consider measure
P as an auxiliary tool rather than a primary object of interest.

In the case when the additive term in the underlying random linear recursion belongs to
the domain of attraction of a stable law we have the following

Theorem 2.5. Let Assumption 2.1 hold. Then,

lim
t→∞

h(t) · P (X∞ > t) =
(
1− E[φα0 ]

)−1 ∈ (0,∞).

A prototype of this result for AR(1) processes has been obtained in [20, 22]. The proof of
Theorem 2.5 given in Section 3.1 relies on an adaptation to our setup of a technique which
has been developed in [20].

Extreme values of X . We next show that the running maximum of the sequence X
exhibits the same asymptotic behavior as that of Z = (Zn)n∈Z+ . Let

Mn = max{X1, . . . , Xn}, n ∈ N, (8)

and

bn = inf{t > 0 : h(t) ≥ n}, (9)

where h(t) is the function introduced in Assumption 2.1.
The proof of the following theorem is given in Section 3.2 below.

Theorem 2.6. Let Assumption 2.1 hold. Then, under the law P0,

Mn/bn ⇒M∞,

where M∞ is a proper random variable with the following distribution function:

P0(M∞ > x) = e−x
−1/α

, x > 0,

where α > 0 is the constant introduced in Assumption 2.1.

The distribution of M∞ belongs to the class of the so called Fréchet extreme value dis-
tributions and in fact (see, for instance, [15, Section 3.3]),

P0(M∞ > x) = lim
n→∞

P
(

max
1≤k≤n

Zk > xbn
)
, x > 0.
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It is quite remarkable that the distribution of φ0 does not play any role in the result of
Theorem 2.6. An intuitive explanation for this phenomenon, which can be derived from
the proof, is as follows. Due to the basic property of regular variation, two independent
terms φn ◦ Xn−1 and Zn are unlikely to “help” each other in creating a large value of the
sum Xn+1 = φn ◦ Xn−1 + Zn. Moreover, the law of large numbers ensures that the ratio
φn ◦ Xn−1/Xn−1 is bounded away from one with an overwhelming probability whenever
φn ◦ Xn−1 is large. Therefore, the asymptotic of the extreme value of the sequence Xn

follows that of Zn.

Regenerative structure of X . Let

ν0 = 1 and νn = inf{i > νn−1 : φi ◦Xi−1 = 0}, (10)

with the usual convention that the infimum over an empty set is ∞. We will refer to νn as a
regeneration time and to the time elapsing from νn−1 until νn − 1 as the n-th renewal epoch.
In the language of branching processes, at the regeneration times the extinction occurs and
and the process starts again with the next wave of the immigration. For n ∈ N, let

σn = νn − νn−1 and Rn =
(
Xi : νn−1 ≤ i < νn

)
be, respectively, the length of the n-th renewal epoch and the list of the values of Xi recorded
during the n-th renewal epoch.

The proof of the following proposition is given in the appendix.

Proposition 2.7. Let Assumption 2.2 hold. Then,

(a) P0(νn <∞) = 1 for all n ∈ N. Moreover, the pairs (σn, Rn)n∈N form an i.i.d. sequence.

(b) There exist positive constants K1 > 0 and K2 > 0 such that

P0(σ1 > t) ≤ K1e
−K2t, ∀ t > 0. (11)

While the first part of the proposition is a standard Markov chain exercise, the exponential
bound in (11) is a delicate result. A similar bound has been proved for a general type of
branching processes with immigration in [29]. An argument which is due to M. Kozlov and
which has been adapted for the proof of Theorem 4.2 in [29] goes through almost verbatim
for our setting. We provide a suitable variation of this argument in the appendix.

The existence of the “life-cycles” (i.e., renewal epochs) for the branching process implies,
for instance, the following. Recall Xk,n from (7). Let

λn = n−max{k < n : Xk,n > 0} and ηn =

∑n
k=1Xk,n · (n− k)∑n

k=1Xk,n

be, respectively, the maximal and the average age of the individuals present at generation n
(see the above footnote remark on p. 2).

Proposition 2.8. Let Assumption 2.2 hold. Then both λn and ηn converge weakly, as
n→∞, to proper distributions. More precisely, under the law P0,

λn ⇒ σ1 · U and ηn ⇒ −
∑0

k=−∞Xk,0 · k∑0
k=−∞Xk,0

,
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where U is a random variable which is independent of σ1 and is distributed uniformly over
the interval [0, 1].

The first result in the above proposition is a direct implication of the renewal theorem
whereas the second one is a consequence of the explicit formula for ηn given above and the
fact that Xk,0 = 0 for k < ν−1 and P (ν−1 <∞) = 1. Here ν−1 is time of the last renewal up
to time zero for the process starting at −∞. We leave details to the reader.

Another interesting implication of the existence of the regenerative structure is the con-
vergence in distribution of the coalescence time at generation n. Suppose that Xn > 2 and
sample at random two individuals present at generation n. Then the coalescence time Tn is
defined as n − k if the immigrant ancestors of both individuals have entered the system at
the same time k ∈ Z+, and is set to be infinity otherwise (cf., for instance, [32]). Since the
probability of sampling of both individuals among the descendants of the immigration wave

k is
Xk,n(Xk,n−1)

Xn(Xn−1)
,

P0(Tn ≤ t) = E

 ∑n
k=n−tXk,n(Xk,n − 1)∑n

k=1Xk,n

(∑n
k=1 Xk,n − 1

)
 .

We have thus obtained the following:

Proposition 2.9. Let Assumption 2.2 hold. Then Tn converges weakly under P0, as n→∞,
to a proper random variable with the following distribution function on N

⋃
{0,+∞} :

F (t) = E

 ∑0
k=−tXk,0(Xk,0 − 1)∑0

k=−∞Xk,0

(∑0
k=−∞Xk,0 − 1

)
 , t <∞,

where 0
0

inside the expectation is interpreted as 0.

Growth rate and fluctuations of the partial sums of X . Let Sn =
∑n

k=1Xk. The
following law of large numbers is a direct consequence of Corollary 2.4.

Proposition 2.10. Let Assumption 2.2 hold with β = 1. Then

lim
n→∞

Sn
n

= E[X0] =
E[Z0]

1− E[φ0]
, P0 − a. s.

The next theorem is concerned with the rate of the growth of the partial sums when Z0

has infinite mean. For α ∈ (0, 2] and b > 0 denote by Lα,b the strictly asymmetric stable law
of index α with the characteristic function

log L̂α,b(t) = −b|t|α
(

1 + i
t

|t|
fα(t)

)
, (12)

where fα(t) = − tan π2α if α 6= 1, f1(t) = 2/π log t. With a slight abuse of notation we use
the same symbol for the distribution function of this law. If α < 1, Lα,b is supported on the
positive reals, and if α ∈ (1, 2], it has zero mean [15, Section 2.2].

Recall bn from (9). The following result is proved in Section 3.3 below by using an
approximation of the partial sums of the process by those of a stationary strongly mixing
sequence for which we are able to verify the conditions of a general stable limit theorem.
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Theorem 2.11. Let Assumption 2.1 hold with α ∈ (0, 1). Then b−1
n Sn ⇒ Lα,b.

We next study the fluctuations of the partial sums in the case where non-trivial centering
of Xn is required to obtain a proper weak limit for the partial sums.

Theorem 2.12. Let Assumption 2.1 hold with α ∈ [1, 2]. For n ∈ N, define

an =

{
bn, where bn is defined in (9), if α < 2,
inf {t > 0 : nt−2 · E

[
X2

0 ; X0 ≤ t
]
≤ 1} if α = 2.

Denote µ := E[X0]. Then the following holds for some b > 0 :

(i) If α = 1, then a−1
n (Sn − cn)⇒ L1,b with cn = nE[X0;X0 ≤ an].

(ii) If α ∈ (1, 2), then a−1
n (Sn − nµ)⇒ Lα,b.

(iii) If α = 2 and E[Z2
0 ] =∞, then a−1

n (Sn − nµ)⇒ L2,b.

Recall νn from (10) and define

Wn =
νn−1∑
i=νn−1

Xi, n ∈ N.

Theorem 2.12 can be derived from stable limit theorems for partial sums of i.i.d. variables,
using the regenerative structure and the following lemma.

Lemma 2.13. Let Assumption 2.1 hold. Then the following limit exists:

lim
t→∞

h(t) · P0(W1 > t).

Moreover, the limit is finite and strictly positive.

The proof of the lemma given below in Section 3.4 is (although technical details are quite
different) along the line of the proof of a similar result given for a different branching process
in [28]. We remark that though a similar technique can be used to obtain Theorem 2.11,
we prefer to employe a more direct approach in the case α ∈ (0, 1). Theorem 2.12 follows
from the above lemma by using a standard argument, which is outlined in [28] in for the case
h(x) = x−1. Since only an obvious minor modification is required to extend the argument to
a general h (see, for instance, [34] for h(x) = x−2), we omit details of this argument here.

If an appropriate second moment condition is assumed, one can establish the following
functional limit theorem for normalized partial sums of X . Let D(R+,R) denote the set of
real-valued càdlàg functions on R+ := [0,∞), endowed with the Skorokhod J1-topology. Let
bxc denote the integer part of x ∈ R. We have:

Theorem 2.14. Let Assumption 2.2 hold with a constant β > 2. Then, as n → ∞, the
sequence of processes

S
(n)
t = n−1/2

(
Sbntc − ntµ

)
, t ∈ [0, 1].

in D(R+,R) converges weakly to a non-degenerate Brownian motion Wt, t ∈ [0, 1].

Theorem 2.14 is a particular case of [42, Theorem 1.5], and therefore its proof is omitted.
Notice that the conditions of the theorem are satisfied if Assumption 2.1 holds with α > 2.
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3 Proof of the main results

This section is devoted to the proof of the theorems stated in Section 2 (namely, Theo-
rems 2.5, 2.6, 2.11 and 2.12), and is divided into four subsections correspondingly.

3.1 Proof of Theorem 2.5

First, we observe the following.

Lemma 3.1. Let X ∈ N+ be a random variable in the underlying probability space such that

(i) X is independent of (φn, Zn, Bn)n∈Z+ , where Bn := (Bn,k)k∈N.

(ii) limt→∞ h(t) · PΦ(X > t) = 1 for some h ∈ Rα, α > 0.
Then limt→∞ h(t) · PΦ(φ0 ◦X > t) = φα0 .

Proof of Lemma 3.1. Fix a constant ε ∈ (0, 1). For t > 0 define the following three events:

At,ε =
{
X > t · (φ−1

0 + ε)
}
,

Bt,ε =
{
t · (φ−1

0 − ε) < X ≤ t · (φ−1
0 + ε)

}
,

Ct,ε =
{
X ≤ t · (φ−1

0 − ε)
}
.

We will use the following splitting formula:

PΦ

(
φ0 ◦X > t

)
= PΦ

(
φ0 ◦X > t; At,ε

)
+ PΦ

(
φ0 ◦X > t; Bt,ε

)
+ PΦ

(
φ0 ◦X > t; Ct,ε

)
.

By the law of large numbers,

lim
n→∞

1

n

n∑
k=1

B1,k = φ0, P − a. s.

Since h(t) is regularly varying, Chernoff’s bound (Cramér’s large deviation theorem for coin
flipping, see [13]) applied to the partial sums

∑n
k=1Bk implies that

0 ≤ lim sup
t→∞

h(t) · PΦ

(
φ0 ◦X > t; Ct,ε

)
≤ lim sup

t→∞
h(t) · PΦ

(∑bt(φ−1
0 −ε)c

k=1
Bk > t

)
= 0.

Next, by the conditions of the lemma,

lim
t→∞

h(t) · PΦ

(
φ0 ◦X > t; Bt,ε

)
≤ lim

t→∞
h(t) · PΦ(Bt,ε)

=
[
(φ−1

0 − ε)−α − (φ−1
0 + ε)−α

]
→ε→0 0.

Finally, using again the large deviation principle for
∑n

k=1Bk,

lim inf
t→∞

h(t) · PΦ

(
φ0 ◦X > t; At,ε

)
= lim inf

t→∞
h(t) ·

[
PΦ

(
At,ε
)
− PΦ

(
φ0 ◦X ≤ t; At,ε

)]
≥ lim inf

t→∞
h(t) · PΦ

(
At,ε
)

= (φ−1
0 + ε)−α.

On the other hand, clearly,

lim inf
t→∞

h(t) · PΦ

(
φ0 ◦X > t; At,ε

)
≤ lim inf

t→∞
h(t) · PΦ

(
At,ε
)

= (φ−1
0 + ε)−α.

Since ε > 0 is arbitrary and (φ−1
0 + ε)−α → φα0 as ε goes to zero, this completes the proof of

the lemma.
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Remark 3.2. The above proof of Lemma 3.1 can be adopted without modification for a more
general type of sums

∑X
k=1Bk, where X ∈ N+ has regularly varying distribution tails and

(Bk)k∈N are independent of X. In fact, the only property of the sequence Bk required by the
proof is the availability of a non-trivial large deviations upper bound for its partial sums.
Note that if f(λ) := EΦ

[
eλB1

]
is finite in a neighborhood of zero, such a bound in the form

PΦ

(∣∣∣ 1
n

∑n
k=1Bk − EΦ[B1]

∣∣∣ > x
)
≤ c(x)e−nI(x) with suitable constants c(x), I(x) > 0 holds

for any x > 0 (see, for instance, the first inequality in the proof of Lemma 2.2.20 in [13]).

Recall (see, for instance, [15, Lemma 1.3.1]) that if X and Y are two independent random
variables such that limx→∞ h(x) · P (X > x) = c1 > 0 and limx→∞ h(x) · P (Y > x) = c2 > 0
for some h ∈ Rα, α > 0, then

lim
x→∞

h(x) · P (X + Y > x) = c1 + c2. (13)

Using this property and iterating (1), one can deduce from Lemma 3.1 the following corollary.

Consider (in an enlarged probability space, if needed) a sequence X̃ =
(
X̃n

)
n∈Z+

which solves

(1), that is a sequence such that

X̃n =

X̃n−1∑
k=1

Bn,k + Zn, n ∈ N, (14)

for some initial (not necessarily equal to zero) random value X̃0.

Corollary 3.3. Let Assumption 2.1 hold and suppose in addition that the following two
conditions are satisfied:

(i) X̃0 is independent of (φk, Bk, Zk)k>0, where Bk = (Bk,j)j∈N.

(ii) limt→∞ h(t) · PΦ

(
X̃0 > t

)
= c0 for some random variable c0 = c0(Φ).

Then limt→∞ h(t) · PΦ

(
X̃n > t

)
= cn for any n ∈ N, where the random variables cn = cn(Φ)

are defined recursively by

cn+1 = cnφ
α
n+1 + 1, n ∈ Z+. (15)

The recursive relation (15) implies that

cn = c̄n + c0

n∏
j=1

φαj , where c̄n = 1 +
n∑
k=2

n∏
j=k

φαj , (16)

and hence (see, for instance, Theorem 1 in [8]) the random variables cn converge in distri-
bution, as n→∞, to

c∞ := 1 +
∞∑
k=0

k∏
i=0

φα−i.

Furthermore, we have the following:

12



Corollary 3.4. Suppose that the conditions of Corollary 3.3 are satisfied and, in addition,
there exist a positive constant C > 0 and such that the following holds:

P
(

sup
t>0

{
h(t) · PΦ

(
X̃0 > t

)}
< C

)
= 1.

Then the following limit exists and the identity holds:

lim
n→∞

h(t) · P
(
X̃n > t

)
= E[cn], n ∈ N,

where cn are random variables defined in (16).

Proof of Corollary 3.4. Corollary 3.3 and the bounded convergence theorem imply that

lim
t→∞

h(t) · P
(
X̃n > t

)
= lim

t→∞
h(t) · E

[
PΦ

(
X̃n > t

)]
= E

[
lim
t→∞

h(t) · PΦ

(
X̃n > t

)]
= E[cn]. (17)

To justify interchanging of the limit with the expectation, observe that X̃n ≤ X̃0 +
∑n

k=1 Zk
and hence, by virtue of assumption (A3), the following inequalities hold with probability
one for some positive constant C1 > 0 :

h(t) · PΦ

(
X̃n > t

)
≤ h(t) · PΦ

(
X̃0 > t/2

)
+ h(t) · PΦ

( n∑
k=1

Zk > t/2
)

≤ h(t) · PΦ

(
X̃0 > t/2

)
+ nh(t) · P

(
Z0 > t/(2n)

)
≤ C

h(t)

h(t/2)
+ C1n

h(t)

h(t/(2n))
.

It follows (see, for instance, [20, Lemma 1]) that there exists a constant C2 > 0 such that

P
(

sup
t>t0

{
h(t) · PΦ

(
X̃n > t

)}
< C2

)
= 1.

This enables one to apply the bounded convergence theorem in (17) and thus completes the
proof of the corollary.

In what follows notations X ≤D Y and X ≥D Y for random variables X and Y are used
to indicate that P (X > t) ≤ P (Y > t) or, respectively, P (X > t) ≥ P (Y > t) holds for all
t ∈ R. In order to exploit Corollary 3.4 in the proof of Theorem 2.5, we need the following:

Lemma 3.5. Suppose that the conditions of Corollary 3.4 are satisfied. Then:

(a) If X̃0 ≤D X̃1, then X̃n ≤D X̃n+1 for all n ∈ N.

(b) If X̃0 ≥D X̃1, then X̃n ≥D X̃n+1 for all n ∈ N.

Proof of Lemma 3.5. The proof is by induction. Suppose first that X̃n−1 ≤D X̃n for some
n ∈ N, X̃n−1 is independent of (φk, Bk, Zk)k>n−1, and X̃n is independent of (φk, Bk, Zk)k>n.

13



We will now use the following standard trick to construct an auxiliary random pair (Vn−1, Vn)
such that

P (Vn−1 ≤ Vn = 1), Vn−1 =P X̃n−1, and Vn =P X̃n. (18)

Let U be a uniform random variable on [0, 1], independent of the random coefficients sequence
(Φ,Z). Denote by Fn and Fn−1, respectively, the distribution functions of Xn and Xn−1. Set
Vn = F−1

n (U) and Vn−1 = F−1
n−1(U), where F−1(y) := inf{x ∈ R : F (x) ≥ y}, y ∈ [0, 1], with

the convention that inf ∅ =∞.
Let X̃n+1 = φn+1 ◦ X̃n + Zn+1. Then X̃n+1 is independent of (φk, Bk, Zk)k>n+1. Further-

more, since (Vn−1, Vn) is independent of (Φ,Z), we obtain for any t > 0,

P
(
X̃n+1 > t

)
= P

(
φn+1 ◦ X̃n + Zn+1 > t

)
= P (φn+1 ◦ Vn + Zn+1 > t)

≥ P (φn+1 ◦ Vn−1 + Zn+1 > t) = P (φn ◦ Vn−1 + Zn > t) (19)

= P
(
φn ◦ X̃n−1 + Zn > t

)
= P

(
X̃n > t

)
.

This shows that part (a) of the lemma holds true. The same argument, but with ≤ replaced
by ≥ and vice versa in the base of induction, (18), and (19), yields part (b).

We are now in a position to complete the proof of Theorem 2.5. First, we have:

Lemma 3.6. There exists a random variable X̃0 ≥ 0 satisfying the conditions of Corol-
lary 3.4, such that X̃1 ≥D X̃0.

Proof of Lemma 3.6. Set X̃0 = Z−1.

In view of Lemma 3.5, this implies that we can find a sequence X̃n that solves (1) and

such that X̃n ≤D X̃∞, while X̃0 satisfies the conditions of Corollary 3.4. Combining this
result with the conclusion of the corollary yields:

lim inf
t→∞

h(t) · P (X∞ > t) ≥ lim
t→∞

h(t) · P
(
X̃n > t

)
= E[cn], n ∈ N.

Hence

lim inf
t→∞

h(t) · P (X∞ > t) ≥ lim
n→∞

E[cn] =
1

1− E[φα0 ]
. (20)

On other hand, we have

Lemma 3.7. Let Assumption 2.1 hold. There exists a random variable X̃0 ≥ 0 satisfying
the conditions of Lemma 3.1, and such that X̃1 ≤D X̃0.

Proof of Lemma 3.7. Given a realization of the sequence Φ, choose a constant c0 in such a
way that

c0 >
1

1− E[φα0 ]
.

Let Y0 = c
1/α
0 Z−1. Then limt→∞ h(t) ·P (Y0 > t) = c0. If we would choose X̃0 = Y0, we would

have c1 := limt→∞ h(t) · P
(
X̃1 > t

)
< c0 by virtue of (15) and Corollary 3.4. This would

14



imply that P
(
X̃1 > t

)
< P

(
X̃0 > t

)
for t > t0, where t0 > 0 is a positive constant which

depends on c0. Consider now (in an enlarged probability space, if needed) a random variable

X̃0 such that X̃0 is independent of (φk, Bk, Zk)k∈Z and

P
(
X̃0 > t

)
= P (Y0 > t|Y0 > t0).

Note that such X̃0 satisfies the conditions of Corollary 3.4 because PΦ

(
X̃0 > t

)
= P

(
X̃0 > t

)
with probability one, and for t > t0,

h(t) · P
(
X̃0 > t

)
≤ 1

P (cα0Z0 > t0)
· h(t)

h(tc−α0 )

(
h(tc−α0 ) · P (Z0 > tc−α0 )

)
,

and supt>0 h(t)/h(tc−α0 ) <∞ (see, for instance, Lemma 1 in [20]). Then, for t > t0,

P
(
φ1 ◦ X̃0 + Z1 > t

)
= P (φ1 ◦ Y0 + Z1 > t|Y0 > t0)

=
P (φ1 ◦ Y0 + Z1 > t;Y0 > t0)

P (Y0 > t0)
≤ P (φ1 ◦ Y0 + Z1 > t)

P (Y0 > t0)

≤ P (Y0 > t)

P (Y0 > t0)
= P (Y0 > t|Y0 > t0) = P

(
X̃0 > t

)
.

On the other hand, if t ≤ t0 then

P
(
X̃0 > t

)
= P

(
X̃0 > t

∣∣X̃0 > t0
)

= 1.

Thus

P
(
φ1 ◦ X̃0 + Z1 > t

)
≤ P

(
X̃0 > t

)
for all t > t0, and we can set X̃0 as the initial value for the recursion.

Combining this result with Corollary 3.4 yields:

lim sup
t→∞

h(t) · P (X∞ > t) ≤ lim
t→∞

h(t) · P0(Xn > t) = E[cn], n ∈ N.

Hence,

lim sup
t→∞

h(t) · P (X∞ > t) ≤ lim
n→∞

E[cn] =
1

1− E[φα0 ]
.

The proof of Theorem 2.5 is completed in view of (20).

3.2 Proof of Theorem 2.6

For n ∈ N, denote Kn = max1≤k≤n Zk. It follows from (1) that Mn ≥D Kn. To conclude the
proof of the theorem, it thus suffices to show that

lim sup
n→∞

P0(Mn > xbn) ≤ lim
n→∞

P0(Kn > xbn) = e−x
−1/α

, x > 0.
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Observe that, under the stationary law P, the branching process (without immigration)
originated by the initial X0 individuals will eventually die out. Therefore, the total number
of progeny of the individuals in the zero generation is P − a. s. finite. Furthermore, the
branching process Xn−

∑0
k=−∞Xk,n, n ∈ N, obtained by excluding the contribution of these

individuals from the original one, is distributed under P as Xn, n ∈ N, under P0. It thus
suffices to show that

lim sup
n→∞

P (Mn > xbn) ≤ lim
n→∞

P (Kn > xbn) = e−x
−1/α

, x > 0.

Toward this end, define the following events. For x > 0, δ > 0, and ε ∈ (0, 1/2), let

A
(n)
x,δ = {xbn < Mn ≤ x(1 + δ)bn}, n ∈ N,

B
(n)
x,δ,ε = A

(n)
x,δ

⋂
{x(1− ε)bn < Kn ≤ x(1 + δ)bn}, n ∈ N,

C
(n,k)
x,δ,ε = A

(n)
x,δ

⋂
{Xk > xbn, εxbn < Zk ≤ x(1− ε)bn}, n ∈ N, k = 1, . . . , n,

D
(n,k)
x,δ,ε = A

(n)
x,δ

⋂
{Xk > xbn, Zk ≤ xεbn}, n ∈ N, k = 1, . . . , n.

Then

P
(
A

(n)
x,δ

)
≤ P

(
B

(n)
x,δ,ε

)
+ P

( n⋃
k=1

C
(n,k)
x,δ,ε

)
+ P

( n⋃
k=1

D
(n,k)
x,δ,ε

)
≤ P

(
x(1− ε)bn < Kn ≤ x(1 + δ)bn

)
+ nP

(
C

(n,1)
x,δ,ε

)
+ nP

(
D

(n,1)
x,δ,ε

)
. (21)

Taking into account the independence of the pair (φk, Xk−1) of Zk, it follows from (2),
Assumption 2.1, and Lemma 3.1 that for any positive constants δ, x, ε > 0

lim sup
n→∞

nP
(
C

(n,1)
x,δ,ε

)
≤ lim

n→∞
nP
(
φ1 ◦X0 > εxbn, Z1 > εxbn

)
= 0. (22)

Furthermore,

P
(
D

(n,1)
x,δ,ε

)
≤ P

(
φ1 ◦X0 > (1− ε)xbn, X0 ≤ x(1 + δ)bn

)
≤ P

(
φ1 ◦X0 > (1− ε)xbn

∣∣X0 ≤ x(1 + δ)bn
)
≤ P

(bx(1+δ)bnc∑
i=1

B0,i > (1− ε)xbn
)

= E
[
PΦ

( 1

x(1 + δ)bn

bx(1+δ)bnc∑
i=1

B0,i >
1− ε
1 + δ

)]
. (23)

Assume now that the constants δ > 0 and ε > 0 are chosen so small that 1−ε
1+δ

> E[φ0], and
hence

1− ε
1 + δ

> ηE[φ0] for some η > 1. (24)

We next derive a simple large-deviations type upper bound for the right-most expression in
(23). Denote x0 = 1−ε

1+δ
. It follows from Chebyshev’s inequality that for any λ > 0,

E
[
PΦ

( 1

n

n∑
i=1

B0,i >
1− ε
1 + δ

)]
≤ e−nλx0E

[
(1− φ0 + φ0e

λ)n
]
.
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Thus for all λ > 0 small enough, namely for all λ > 0 such that eλ < 1 + ηλ, we have

E
[
PΦ

( 1

n

n∑
i=1

B0,i >
1− ε
1 + δ

)]
≤ e−nλx0E

[(
1− φ0 + φ0(1 + ηλ)

)n]
= e−nλx0E

[
(1 + φ0ηλ)n

]
≤ e−nλx0E

[
eφ0·nηλ

]
.

Therefore, for all λ > 0 small enough we have

lim sup
n→∞

1

n
logE

[
PΦ

( 1

n

n∑
i=1

B0,i >
1− ε
1 + δ

)]
≤ −λx0 + logE

[
eηλφ0

]
.

Given η, let f(λ) = logE
[
eηλφ0

]
. By the bounded convergence theorem, f ′(0) = ηE[φ0].

Hence, in view of (24),

lim sup
n→∞

1

n
logP

( 1

n

n∑
i=1

B0,i >
1− ε
1 + δ

)
< 0.

Since bn is a regularly varying sequence, it follows from (23) that

lim
n→∞

nP
(
D

(n,1)
x,δ,ε

)
= 0. (25)

Therefore, since ε > 0 above can be made arbitrary small (in particular, the left-hand side
of (24) is an increasing function of ε), combining (25) together with (22) and (23) yields:

lim sup
n→∞

P
(
A

(n)
x,δ

)
≤ P

(
xbn < Kn ≤ x(1 + δ)bn

)
,

and hence

lim sup
n→∞

P (Mn > xbn) = lim sup
n→∞

∞∑
k=0

P
(
(1 + kδ)xbn < Mn ≤ (1 + kδ + δ)xbn

)
≤

∞∑
k=0

lim sup
n→∞

P
(
(1 + kδ)xbn < Mn ≤ (1 + kδ + δ)xbn

)
≤

∞∑
k=0

P
(
(1 + kδ)xbn < Kn ≤ (1 + kδ + δ)xbn

)
= P (Kn > xbn).

The proof of Theorem 2.6 is complete.

3.3 Proof of Theorem 2.11

For n ∈ Z, let

Yn =
∞∑
t=n

Xn,t (26)

17



be the total number of progeny at all generations of all the immigrants entered at time n,
including the immigrants themselves. Then

n∑
k=1

Xk =
n∑
k=1

k∑
t=0

Xt,k =
n∑
t=0

n∑
k=t

Xt,k =
n∑
t=0

( ∞∑
k=t

Xt,k −
∞∑

k=n+1

Xt,k

)
=

n∑
t=0

Yt −
n∑
t=0

∞∑
k=n+1

Xt,k.

Notice that

n∑
t=0

∞∑
k=n+1

Xt,k =D

0∑
t=−n

∞∑
k=1

Xt,k ≤
0∑

t=−∞

∞∑
k=1

Xt,k

=
0∑

t=−ν−1

∞∑
k=1

Xt,k ≤
ν1∑

t=−ν−1

Yt <∞.

Hence, in order to show that Sn/bn converges in distribution, it suffices to show that
b−1
n

∑n
k=1 Yk converges to the same limit. Note that the sequence (Yn)n∈Z has the same

distribution under P0 as it has under P.
The following series of technical lemmas will enable us to apply a general stable limit

theorem (namely, Theorem 1.1 in [47]; see also Corollary 5.7 in [30]) to the partial sums of
the sequence Yn.

Lemma 3.8. The sequence (Yn)n∈Z is strongly mixing. That is, limn→∞ χ(n) = 0, where

χ(n) := sup
{
P (A ∩B)− P (A)P (B) : A ∈ Fn, B ∈ F0

}
,

and Fn := σ(Yi : i ≥ n), Fn := σ(Yi : i < n).

Proof of Lemma 3.8. This is a variation of Lemma 3.2 in [42]. For the sake of completeness
we give here a suitable modification of the argument. For n ∈ Z, let Yn and Yn denote,
respectively, the sequences (Yi)i<n and (Yi)i≥n. On one, for any A ∈ σ(Yi : i > n) and
B ∈ σ(Yi :≤ 0),

P
(
Yn ∈ A,Y0 ∈ B

)
≥ P

(
Yn ∈ A,Y0 ∈ B, ν1 ≤ n/2

)
= E

[
PΦ

(
Y0 ∈ B, ν1 ≤ n/2

)
· PΦ

(
Yn ∈ A

)]
≥ P

(
Y0 ∈ B, ν1 ≤ n/2

)
· P
(
Yn ∈ A

)
≥ P

(
Y0 ∈ B

)
· P
(
Yn ∈ A

)
− P (ν1 > n/2).

On the other hand,

P
(
Yn ∈ A,Y0 ∈ B

)
≤ P

(
Yn ∈ A,Y0 ∈ B, ν1 ≤ n/2

)
+ P (ν1 > n/2)

= E
[
PΦ

(
Y0 ∈ B, ν1 ≤ n/2

)
· PΦ

(
Yn ∈ A

)]
+ P (ν1 > n/2)

≤ P
(
Y0 ∈ B, ν1 ≤ n/2

)
· P
(
Yn ∈ A

)
+ P (ν1 > n/2)

≤ P
(
Y0 ∈ B

)
· P
(
Yn ∈ A

)
+ P (ν1 > n/2).
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It thus remains to show that P (ν1 <∞) = 1. By Proposition 2.7, we have P0(ν1 <∞) = 1.
Since, clearly, P (φ1◦X0 = 0) > 0, the strong Markov property implies P (ν1 <∞) > 0. Since
the Markov chain (Xn, Zn) forms an ergodic process according to Corollary 2.4, it follows
from the ergodic theorem that the the two-component Markov chain spends asymptotically
a positive proportion of time at the set {Xn = Zn} (one can also appeal directly to the
Poincaré recurrence theorem). This completes the proof of the lemma.

In view of the previous lemma we are seeking to apply to Yn the following general limit
theorem for strongly mixing stationary sequences obtained in [47] (see also a similar Corol-
lary 5.7 in [30]).

Theorem 3.9. [47, Theorem 1.1 and Corollary 1.2] Let (Yn)n∈N be a stationary strongly
mixing sequence of non-negative random variables. Assume that for some α ∈ (0, 1), there
exists h ∈ Rα such that limt→∞ h(t) · P (Yn > t) = 1. For n ∈ N, define a process Un on the
Skorokhod space D(R+,R) by setting

Un(t) =
1

bn

bntc∑
k=1

Yk, t ≥ 0,

where bn are defined in (9). Then Un converges weakly in D(R+,R), as n → ∞, to a Lévy
α-stable process if and only if the following local dependence condition holds:

For any ε > 0, we have: lim
k→∞

lim sup
n→∞

n

bn/kc∑
j=2

P
(
Yj > εbn, Y1 > εbn

)
= 0. (27)

We remark that the assumption P (Yn ∈ Z+) = 1 is actually not needed and is not
included in the original version of the above theorem, as it is stated in [47]. It is not hard
to verify that in our setting the random variable Y1 has regularly varying distribution tails
under the law PΦ. To transform this statement into a corresponding claim under P we will
need the following a-priori bound.

Lemma 3.10. Let Assumption 2.1 hold. Then

lim sup
x→∞

h(x) · P (Y1 > x) = C <∞, (28)

where C ∈ (0,∞) is a positive constant whose value depends on the distribution of φ0 but not
on the distribution of Z0 (as long as Assumption 2.1 holds and h(x) is defined as in (A2)).

Proof of Lemma 3.10. For any x > 0 and γ ∈ (0, 1),

P (Y1 > x) = P
( ∞∑
n=1

X1,n > x(1− γ)
∞∑
n=1

γn−1
)
≤

∞∑
n=1

P
(
X1,n > xγn−1(1− γ)

)
.
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Therefore,

lim sup
x→∞

h(x) · P (Y1 > x) ≤
∞∑
n=1

lim sup
x→∞

h(x) · P
(
X1,n > xγn−1(1− γ)

)
=
∞∑
n=1

lim sup
x→∞

h(x)

h
(
xγn−1(1− γ)

) · h(xγn−1(1− γ)
)
· P
(
X1,n > xγn−1(1− γ)

)
=
∞∑
n=1

γ−α(n−1)(1− γ)−α · lim sup
x→∞

h(x) · P (X1,n > x).

Applying Lemma 3.1 to the right-most expression in this inequality, we obtain by virtue of
the bounded convergence theorem that

lim sup
x→∞

h(x) · P (Y1 > x) ≤
∞∑
n=1

γ−α(n−1)(1− γ)−α · E
[

lim
x→∞

h(x) · PΦ(X1,n > x)
]

=
∞∑
n=1

(
γ−α · E[φα0 ]

)n−1
(1− γ)−α.

Choosing now γ ∈ (0, 1) such that γ > E[φα0 ] concludes the proof of the lemma. To justify
the above application of the bounded convergence theorem, observe that X1,n ≤ Z1 and Z1

is independent of Φ.

In order to study the exact asymptotic of the distribution tails of Y1, it is convenient to
approximate Y1 by Y

(m)
1 , where

Y (m)
n :=

n+m∑
k=n

Xn,k, n ∈ Z.

We have:

Lemma 3.11. Let Assumption 2.1 hold. Then

lim
x→∞

h(x) · P (Y
(m)

1 > x) = E
[(

1 +
m∑
i=1

i∏
j=1

φj

)α]
, (29)

for any m ∈ N.

Proof of Lemma 3.11. Note that

Y (m)
n =

Zn∑
k=1

(
1 +

m∑
i=1

B
(i)
n,k

)
,

where B
(i)
n,k is the number of progeny (either zero or one) of the k-th immigrant at generation

n, who is present (or not) at the system at generation n + i. Then an argument similar to
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the one which we have employed in order to prove Lemma 3.1 (see also Remark 3.2) along
with (13) ensure that

lim
x→∞

h(x) · PΦ

(
Y

(m)
0 > x

)
=
(

1 +
m∑
i=1

EΦ

[
B

(i)
0,1

])α
=
(

1 +
m∑
i=1

i∏
j=1

φj

)α
.

Since Y
(m)

0 ≤ mZ0 and Z0 is independent of Φ, the bounded convergence theorem yields

lim
x→∞

h(x) · P
(
Y

(m)
0 > x

)
= E

[
lim
x→∞

h(x) · PΦ

(
Y

(m)
0 > x

)]
= E

[(
1 +

m∑
i=1

i∏
j=1

φj

)α]
,

completing the proof of the lemma.

Combining together the results of Lemmas 3.10 and 3.11 we can deduce the following:

Lemma 3.12. Let Assumption 2.1 hold. Then

lim
x→∞

h(x) · P (Y1 > x) = E
[(

1 +
∞∑
i=1

i∏
j=1

φj

)α]
<∞.

Proof of Lemma 3.12. First, observe that the lower bound

lim
x→∞

h(x) · P (Y1 > x) ≥ lim
m→∞

lim
x→∞

h(x) · P
(
Y

(m)
1 > x

)
= E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)α]
holds by virtue of Lemma 3.11 and the monotone convergence theorem.

To prove the matching upper bound, notice that the difference Y1 − Y (m)
1 is distributed

under the law P as Y1 is distributed under the law Q, where Q is defined in the same way
as P with the only exception that in the former case the distribution of Zn is assumed to be
that of Πm+1 ◦Z0 under P. Furthermore, since Πm+1 ◦Z0 ≤ Z0, Lemma 3.1 and the bounded
convergence theorem imply that

lim
x→∞

h(x) · P
(
Πm+1 ◦ Z0 > x

)
=
(
E[φα0 ]

)m+1
.

It follows then from (28) with the probability measure P replaced by Q, that

lim
m→∞

lim sup
x→∞

h(x) · P
(
Y1 − Y (m)

1 > x
)

= 0.

Thus, using again Lemma 3.11 and the monotone convergence theorem, we obtain that the
following holds for any ε > 0 :

lim sup
x→∞

h(x) · P (Y1 > x)

≤ lim
m→∞

{
lim
x→∞

h(x) · P
(
Y

(m)
1 > x(1− ε)

)
+ lim sup

x→∞
h(x) · P

(
Y1 − Y (m)

1 > xε
)}

= lim
m→∞

lim
x→∞

h(x) · P
(
Y

(m)
1 > x(1− ε)

)
= E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)α]
· (1− ε)−α.
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Taking ε→ 0 yields the desired upper bound. To conclude the proof of the lemma it remains
to note that by Jensen’s inequality,

E
[(

1 +
∞∑
i=1

i∏
j=1

φj

)α]
≤
(
E
[
1 +

∞∑
i=1

i∏
j=1

φj

])α
=
(
1− E[φ0]

)−α
<∞,

where we used the assumption α ∈ (0, 1).

We are now in a position to complete the proof of Theorem 2.11. It suffices to verify
that the conditions of Theorem 3.9 hold for the sequence (Yn)n≥1. In view of Lemmas 3.8
and 3.12, we only need to check the validity of the “local dependence” condition (27). To
this end, observe that for any j ≥ 2, Yj and Y1 are independent under the law Pφ, and hence
Cauchy-Schwarz inequality yields

P
(
Yj > εbn, Y1 > εbn

)
= E

[
PΦ(Yj > εbn) · PΦ(Y1 > εbn)

]
≤ E

[
P 2

Φ(Y1 > εbn)
]
.

An argument similar to the one we employed to prove Lemma 3.12 shows then that the
following limit exists and the identity holds:

lim
x→∞

h(x)2 · E
[
P 2

Φ(Y1 > x)
]

= E
[(

1 +
∞∑
i=1

i∏
j=1

φj

)2α]
<∞.

Thus

lim
n→∞

n2 · E
[
P 2

Φ(Y1 > εbn)
]

= ε−2α · E
[(

1 +
∞∑
i=1

i∏
j=1

φj

)2α]
<∞,

and

lim
k→∞

lim sup
n→∞

n

bn/kc∑
j=2

P
(
Yj > εbn, Y1 > εbn

)
≤ lim

k→∞
lim sup
n→∞

n2

k
· E
[
P 2

Φ(Y1 > εbn)
]

= lim
k→∞

lim sup
n→∞

n2

k
· n−2ε−2α · E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)2α]
= 0,

as desired. The proof of Theorem 2.11 is completed.

3.4 Proof of Lemma 2.13

Recall Yn from (26). Define

Qn = Xn + total progeny of the Xn particles present at generation n.

For all A > 0 define its stopping time ςA = inf{n : Xn > A}. The random variable W1 can
be represented on the event {ςA < ν1} in the following form:

W1 =

ςA−1∑
n=0

Xn +QςA +
∑

ςA<n<ν1

Yn. (30)
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The three terms in the right-hand side of (30) are evaluated in the following series of lemmas.
It will turn out that for large A, the main contribution to W1 in (30) comes from the second
term. Fix any δ > 0. It follows from (11) that for any A > 0,

P0

(min{ςA,ν1}−1∑
n=0

Xn ≥ δt
)
≤ P0(Aν1 ≥ δt) ≤ K1e

−K2δt/A,

and hence

P0(W1 ≥ δt, ςA ≥ ν1) ≤ P (Aν1 ≥ δt) ≤ K1e
−K2δt/A, (31)

P0

(ςA−1∑
n=0

Xn ≥ δt, ςA < ν1

)
≤ P0(Aν1 ≥ δt) ≤ K1e

−K2δt/A. (32)

Lemma 3.13. For all δ > 0 there exists an A0 = A0(δ) <∞ such that

h(t) · P0

( ∑
ςA<n<ν1

Yn ≥ δt
)
≤ δ, for all A ≥ A0 and t > 0. (33)

Proof of Lemma 3.13. Using the identity
∑∞

n=1 n
−2 = π2/6 < 2 and the fact that Yn is

independent of 1{ςA<n<ν1} under the law P0, we obtain that the following holds for all t > 0 :

h(t) · P0

( ∑
ςA<n<ν1

Yn ≥ δt
)

= h(t) · P0

( ∞∑
n=1

Yn1{ςA<n<ν1} ≥ 6δtπ−2

∞∑
n=1

n−2
)

(34)

≤
∞∑
n=1

P0(ςA < n < ν1) · h(t) · P0

(
Yn ≥ 1/2 · δtn−2

)
≤

∞∑
n=1

P0(ςA < n < ν1) · h(t)

h(1/2 · δtn−2)
· h(1/2 · δtn−2) · P0

(
Yn ≥ 1/2 · δtn−2

)
To bound the term h(t)

h(1/2·δtn−2)
, we apply the following simplified version of [20, Lemma 1]:

There exists K > 1 such that
h(λt)

h(t)
≤ K(λ−α + λα) for all λ > 0, t > 0. (35)

It follows that

h(t)

h(1/2 · δtn−2)
≤ K2αn2α(δ−α + δα), t > 0.

Using Lemma 3.12 and (35), we obtain from (34) and the above bound that the following
holds for all t > 0 with a suitable constant C > 0 independent of n, δ, A and t :

h(t) · P0

( ∑
ςA<n<ν1

Yn ≥ δt
)
≤ C2αt−α(δ−α + δα)E0

[
ν2α+1

1 ; ςA < ν1

]
≤ C2αt−α(δ−α + δα)

√
E0

(
ν4α+2

1

)
·
√
P0(ςA < ν1).

The claim follows now from (11), the first square root being bounded and the second one
going to zero as A→∞.
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It follows from (30), taking estimates (31), (32) and (33) into account, that for any
A > A0(δ) (where A0 is given by (33)) there exists tA > 0 such that

h(t) · P0(ςA < ν1, QςA ≥ t) ≤ h(t) · P0(W1 ≥ t)

≤ h(t) · P0(ςA < ν1, QςA ≥ t(1− 2δ)) + 3δ, (36)

for all t > tA. Thus, W1 can be approximated by QςA . The following lemma deals with the
distribution tails of the latter.

Lemma 3.14. Let Assumption 2.1 hold. Then:

(a) We have:

lim sup
A→∞

lim sup
t→∞

h(t) · P0

(
XςA ≥ t, ςA < ν1

)
<∞. (37)

(b) The following limit exists and is finite for any given A > 0 :

lim
t→∞

h(t) · P0

(
XςA ≥ t, ςA < ν1

)
.

(c) The following limit exists and is finite for any given A > 0 :

lim
t→∞

h(t) · P0

(
QςA ≥ t, ςA < ν1

)
.

Proof of Lemma 3.14.
(a) Recall Mn from (8). For t > A we have:

P0

(
XςA > t; ςA < ν1

)
=
∑
n≥1

A−1∑
a=0

P0

(
XςA > t, ςA = n,Xn > A,Xn−1 = a, ν1 > n

)
=
∑
n≥1

A−1∑
a=0

P0

(
Xn > t,Mn−1 < A,Xn−1 = a, ν1 > n

)
≤
∑
n≥1

P
(
Zn > t− A,Mn−1 < A, ν1 > n

)
=
∑
n≥1

P
(
Zn > t− A) · P (Mn−1 < A, ν1 > n

)
≤ P

(
Z0 > t− A) · E0[ν1].

In view of Assumption 2.1 and (11), this completes the proof of part (a).

(b) The computation is quite similar to the one in part (a). Namely, for t > A we have:

P0

(
XςA > t; ςA < ν1

)
=
∑
n≥1

A−1∑
a=1

P0

(
Zn > t− a, φn ◦Xn−1 = a,Mn−1 < A, ν1 > n

)
=
∑
n≥1

A−1∑
a=1

P (Z0 > t− a) · P0

(
φn ◦Xn−1 = a,Mn−1 < A, ν1 > n

)
.

=
A−1∑
a=1

P (Z0 > t− a) ·
∑
n≥1

P0

(
φn ◦Xn−1 = a,Mn−1 < A, ν1 > n

)
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As before,∑
n≥1

P0

(
φn ◦Xn−1 = a,Mn−1 < A, ν > n

)
≤
∑
n≥1

P0(ν1 > n) = E[ν1] <∞,

from which the claim of part (b) follows in view of Assumption 2.1.

(c) This is merely Lemma 3.12 applied to XςA under the conditional law P ( · | ςA < ν1) rather
than to Z1 under the regular measure P.

We are now in a position to conclude the proof of Lemma 2.13. It follows from (36), (35),
and Lemma 3.14 that

lim
t→∞

h(t) · P0(W1 > t) = lim
A→∞

lim
t→∞

h(t) · P0

(
QςA > t; ςA < ν1

)
<∞.

The second limit, taken as A → ∞, in the right-hand side exists since the limit in the
left-hand side does not depend of A. Furthermore, by Assumption 2.1,

lim
t→∞

h(t) · P0(W1 > t) ≥ lim
t→∞

h(t) · P (Z1 > t) > 0,

concluding the proof of Lemma 2.13.

Appendix: Proof of two auxiliary propositions

Proof of Proposition 2.3

(a) By Jensen’s inequality, if E[Zβ
0 ] < ∞ for β > 0, then E[Z

β/m
0 ] < ∞ for any m ∈ N.

Therefore, without loss of generality we can assume that β ∈ (0, 1) in Assumption 2.2.
Assuming from now on and throughout the proof of part (a) of Proposition 2.3 that β ∈ (0, 1),
we obtain by virtue of Jensen’s inequality for conditional expectations that

E0

[
(Πk ◦ Zk)β

]
= E0

[
E0

[
(Πk ◦ Zk)β|Φ,Z

]]
≤ E0

[(
E0

[
Πk ◦ Zk|Φ,Z

])β]
= E

[( k∏
j=1

φj · Zk
)β]

= E[Zβ
0 ] ·
(
E[φβ0 ]

)k
. (38)

Hence

E[Xβ
∞] = E

[( ∞∑
k=0

X0,k

)β]
≤

∞∑
k=0

E
[
Xβ

0,k

]
≤ E[Zβ

0 ] ·
∞∑
k=0

(
E[φβ0 ]

)k
<∞.

In particular, X∞ is P − a. s. finite.

(b) For n ∈ N, we have

Xn =
n∑
k=1

Xk,n +X(0,n),
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where X(0,n) =P Πn ◦X0. Since P
(
limn→∞Πn ◦X0 = 0

)
= 1 for any X0 ∈ N+, the limiting

distribution of Xn, if exists, is independent of X0. Furthermore, if X0 = 0, the i.i.d. structure
of (Φ,Z) yields:

Xn =P

0∑
k=−n+1

Xk,0 =P Z0 +
n−1∑
k=1

Πk ◦ Zk,

The claim of part (b) follows now from the almost sure convergence of the series on the
right-hand side of the above identity to X∞.

(c) To see that the stationary distribution is unique, consider two stationary solutions(
X

(1)
n

)
n∈Z+

and
(
X

(2)
n

)
n∈Z+

to (1) corresponding to different initial values, X
(1)
n and X

(2)
n ,

respectively. Then, since Πn are “thinning” operators,

|X(1)
n −X(2)

n | ≤ Πn+1 ◦ |X(1)
0 −X

(2)
0 |,

and hence

lim
n→∞

(
X(1)
n −X(2)

n

)
= 0, P − a. s.

The proof of the proposition is complete.

3.5 Proof of Proposition 2.7

(a) By Corollary 2.4, P0

(
Xn = kmin i. o.

)
= 1, and hence P0(νn < ∞) = 1 for all n ∈ N.

The argument showing that the pairs (σn,Wn)n∈N form an i.i.d. sequence is standard (cf.
[3]) and is based on the following two observation along with the use of the strong Markov
property:

(i) The random times νn are times of the successive visits to the set {(x, y) ∈ Z2 : x = y}
by the two-component Markov chain (Xn, Zn)n∈N. Furthermore, Xνn = Zνn =P Z0.

(ii) Transition kernel of the Markov chain (Xn, Zn) depends only on the current value of
the first component, but not on the value of the second.

(b) In order to prove part (b) of the proposition, it suffices to show that the following power
series has a radius of convergence greater than 1 :

V (z) =
∞∑
t=0

P0(σ1 > t)zt.

Let us introduce some notation. Let v(t) = P0(σ1 > t),

h(r, t) = P
(
Xr,t 6= 0,

t−1∑
j=r+1

Xj,t = 0
)

and g(r, t) = P
( t−1∑
j=r

Xj,t = 0
)
.
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Then

v(t) = P0(σ1 > t,Xt 6= 0) = P0

(
σ1 > t,

t−1∑
k=0

Xk,t 6= 0
)

=
t−2∑
k=0

P0

(
σ1 > t,Xk,t 6= 0,

t−1∑
j=k+1

Xk,t = 0
)

+ P0(σ1 > t,Xt−1,t 6= 0). (39)

Using the i.i.d. structure of the sequence of random coefficients (Φ, Z), we obtain:

P0

(
σ1 > t,Xk,t 6= 0,

t−1∑
j=k+1

Xk,t = 0
)

= P0

(
σ1 > k,Xk,t 6= 0,

t−1∑
j=k+1

Xk,t = 0
)

= P0(σ1 > k)P
(
Xk,t 6= 0,

t−1∑
j=k+1

Xk,t = 0
)

= v(k)h(k, t) (40)

and

g(k, t) = P (Xt−k = 0). (41)

Let g(t) = P0(Xt = 0). It follows from (41) that

g(k, t) = g(t− k). (42)

Next, let h(t) = g(t− 1)− g(t). Since h(k, t) + g(k, t) = g(k + 1, t), then (42) implies that

h(k, t) = h(t− k). (43)

Substituting (40) into (39) and then using (43) gives

v(t) =
t−1∑
k=0

v(k)h(t− k).

In addition, we have v(0) = 1, h(k) > 0 for all k > 0, and

∞∑
k=1

h(k) = 1− lim
t→∞

g(t) = 1− lim
t→∞

P0(Xt = 0) < 1,

where for the last inequality we used Theorem 3.3. Therefore, {v(k) : k = 0, 1, 2, . . .} is a

renewal sequence. Therefore (see [16, Section XIII.3]), V (z) =
(
1−H(z)

)−1
, where

H(z) :=
∞∑
t=0

h(t)zt.

To conclude the proof of the proposition, observe that, using (38) and Chebyshev’s inequality,

h(t) = h(0, t) < P (X0,t 6= 0) ≤ E[X0,t] = E[Zβ
0 ] ·
(
E[φβ0 ]

)k
,

and hence the radius of convergence of H(z) is greater than 1.
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