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Large deviation bounds for functionals
of Viterbi paths

Arka P. Ghosh, Elizabeth Kleiman, and Alexander Roitershtein

Abstract—In a number of applications, the underlying stochas-
tic process is modeled as a finite-state discrete-time Markov
chain that cannot be observed directly and is represented by an
auxiliary process. The maximum a posteriori (MAP) estimator
is widely used to estimate states of this hidden Markov model
through available observations. The MAP path estimator based
on a finite number of observations is calculated by the Viterbi
algorithm, and is often referred to as the Viterbi path. It was
recently shown in [2], [3] and [16], [17] (see also [12], [15]) that
under mild conditions, the sequence of estimators of a given state
converges almost surely to a limiting regenerative process as the
number of observations approaches infinity. This in particular
implies a law of large numbers for some functionals of hidden
states and finite Viterbi paths. The aim of this paper is to provide
the corresponding large deviation estimates.

Index Terms—hidden Markov models, maximum a posteriori
path estimator, Viterbi algorithm, large deviations, regenerative
processes.

I. INTRODUCTION AND STATEMENT OF RESULTS

Let (Xn)n≥0 be a discrete-time irreducible and aperiodic
Markov chain in a finite state space D = {1, . . . , d}, d ∈ N.
We interpret X = (X0, X1, . . .) as an underlying state process
that cannot be observed directly, and consider a sequence
of accessible observations Y = (Y0, Y1, . . .) that serves to
produce an estimator for X. For instance, Yn can represent
the measurement of a signal Xn disturbed by noise. Given
a realization of X, the sequence Y is formed by independent
random variables Yn valued in a measurable space (Y,S), with
Yn dependent only on the single element Xn of the sequence
X.

Formally, let N0 := N ∪ {0} and assume the existence of
a probability space (Ω,F , P ) that carries both the Markov
chain X as well as an i.i.d. sequence of (Ω,F)-valued random
variables ωn, n ∈ N0 independent of X, such that

Yn = h(Xn, ωn) (1)

for some measurable function h : D×Ω → Y. We assume that
X is stationary under P. Let pij , i, j ∈ D, be the transition
matrix of the Markov chain X. Then the sequence of pairs
(Xn, Yn)n∈N0 forms, under the law P, a stationary Markov
chain with transition kernel defined for n ∈ N0, i, j ∈ D,
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y ∈ Y, and A ∈ S by

K(i, y; j, A)

= P (Xn+1 = j, Yn+1 ∈ A|Xn = i, Yn = y)

= pijP
(
(j, ω0) ∈ h−1(A)

)
(2)

Notice that K(i, y; j, A) is in fact independent of the value of
y.

The sequence (Xn, Yn)n≥0 constructed above is called a
Hidden Markov Model (HMM). We refer to monographs [4],
[6], [7], [9], [10], [13], [19] for a general account on HMM.
The Hidden Markov Models have numerous applications
in various areas such as communications engineering, bio-
informatics, finance, applied statistics, and more. An extensive
list of applications, for instance to coding theory, speech
recognition, pattern recognition, satellite communications, and
bio-informatics, can be also found in [2], [3], [16], [17].

One of the basic problems associated with HMM is to
determine the most likely sequence of hidden states (Xn)

m
n=0

that could have generated a given output (Yn)
m
n=0. In other

words, given a vector (yn)mn=0 ∈ Ym+1, m ∈ N0, the problem
is to find a feasible sequence of states U

(m)
0 , U

(m)
1 , . . . , U

(m)
m

such that

P
(
Xk = U

(m)
k , 0 ≤ k ≤ m

∣∣Y0 = y0, 0 ≤ k ≤ m
)

= max
(xk)mk=0

P
(
Xk = xk, ∀ k

∣∣Yk = yk, ∀ k). (3)

A vector
(
U

(m)
n

)m
n=0

that satisfies (3) is called the maximum
a-posteriori (MAP) path estimator. It can be efficiently cal-
culated by the Viterbi algorithm [8], [19]. In general, the
estimator is not uniquely defined even for a fixed outcome of
observations (yn)

m
n=0. Therefore, we will assume throughout

that an additional selection rule (for example, according to
the lexicographic order) is applied to produce

(
U

(m)
n

)m
n=0

.
The MAP path estimator is used for instance in cryptanalysis,
speech recognition, machine translation, and statistics, see [7],
[8], [9], [19] and also references in [2], [3], [16], [17].

In principle, for a fixed k ∈ N, the first k entries of(
U

(m)
n

)m
n=0

might vary significantly when m increases and
approaches infinity. Unfortunately, it seems that very little
is known about the asymptotic properties of the MAP path
estimator for general HMM. However, recently it was shown
in [2], [3] that under certain mild conditions on the transition
kernel of an HMM, which were further amended in [16],
[17], there exists a strictly increasing sequence of integer-
valued non-negative random variables (Tn)n≥1 such that the
following properties hold (In fact, we use here a slightly
strengthened version of the corresponding results in [16], [17].
The proof that the statement holds in this form under the
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assumptions introduced in [16], [17] is given in Lemma 5
below).

Here and henceforth we make the convention that T0 = 0.

Condition RT.
(i) (Tn)n≥1 is a (delayed) sequence of renewal times, that is:

(a) The increments τn := Tn+1 − Tn, n ≥ 0, are positive
integers with probability one.

(b) (τn)n≥1 is an i.i.d. sequence which is furthermore inde-
pendent of τ0.

(c) E(τn) < ∞ for n ≥ 0.

(ii) Furthermore, there exist positive constants a > 0 and b > 0
such that for all t > 0,

P (T1 > t) ≤ ae−bt and P (τ1 > t) ≤ ae−bt. (4)

In particular, both T1 and τ1 have finite moments of every
order (notice that assumption includes the first-order condition
(i)-(d) stated above).

(iii) There exist a positive integer r ≥ 0 such that for any fixed
integer k ≥ 1,

U (m)
n = U (Tk+r)

n for m ≥ Tk + r and n ≤ Tk. (5)

In particular, for any n ≥ 0, the following limit exists and the
equality holds with probability one:

Un := lim
m→∞

U (m)
n = U

(Tkn+r)
n ,

where

kn = min{m ∈ N : Tm ≥ n}, (6)

that is kn is the unique sequence of positive integers such that
Tkn−1 < n ≤ Tkn for all n ≥ 1.

The interpretation of the above property is that at a random
time Tn + r, blocks of estimators (U

(m)
Tn−1+1, . . . , U

(m)
Tn

) are
fixed for all m ≥ Tn + r regardless of the future observations
(Yj)j≥Tn+r.

(iv) For n ≥ 0, let

Zn := (Xn, Un). (7)

Then the sequence Z := (Zn)n≥0 forms a regenerative pro-
cess with respect to the embedded renewal structure (Tn)n≥1.
That is (recall the convention T0 = 0), the random blocks

Wn = (ZTn , ZTn+1, . . . , ZTn+1−1), n ≥ 0, (8)

are independent and, moreover, W1,W2, . . . (but possibly not
W0) are identically distributed.

Following [2], [3], [16], [17] we refer to the sequence U =
(Un)n≥0 as the infinite Viterbi path. Condition RT yields a nice
asymptotic behavior of the sequence Un, see Proposition 1 in
[2] for a summary and for instance [11] for a general account
of regenerative processes. In particular, it implies the law of
large numbers that we describe below.

Let ξ : D2 → R be a real-valued function, and for all n ≥ 0,
m ≥ n define

ξ(m)
n = ξ

(
Xn, U

(m)
n

)
and ξn = ξ

(
Xn, Un

)
, (9)

and

Ŝn =
n−1∑
k=0

ξ
(n)
k and Sn =

n−1∑
k=0

ξk, (10)

where we convene that S0 = Ŝ0 = 0. An important practical
example, which we borrow from [2], is

ξ(x, y) = 1{x ̸=y} =

{
1 if x ̸= y,
0 if x = y

In this case Sn and Ŝn count the number of places where the
realization of the state Xk differs from the estimators Uk and
U

(n)
k respectively.
If Condition RT holds, then (see [2], [16]) there is a

unique probability measure Q on the infinite product space
(D2)N0 where the sequence (Zn)n≥0 is defined, which makes
(Wn)n≥0 introduced in (8) into an i.i.d. sequence having the
same distribution as (Wn)n≥1. Furthermore, under Condi-
tion RT, the following limits exist and the equalities hold:

µ := lim
n→∞

Sn

n
= lim

n→∞

Ŝn

n

=
EQ

(
ŜT1

)
EQ(T1)

, P − a.s. and Q− a.s., (11)

where EQ denotes the expectation with respect to measure Q.
A set of specific conditions on HMM, which ensures the

existence of a sequence (Tn)n≥1 satisfying Condition RT, is
given below in Assumption 3. The goal of this paper is to
provide the following complementary large deviation estimates
to the above law of large numbers.

Theorem 1. Let Assumption 3 hold. Then either we have
Q
(
ŜT1 = µT1

)
= 1 or there exist a constant γ ∈ (0, µ)

and a function I(x) : (µ− γ, µ+ γ) → [0,+∞) such that
(i) I(x) is lower semi-continuous and convex, I(µ) = 0, and
I(x) > 0 for x ̸= µ.

(ii) For x ∈ (µ, µ+ γ),

lim
n→∞

1

n
logP

(
Ŝn ≥ nx

)
= −I(x).

(iii) For x ∈ (µ− γ, µ),

lim
n→∞

1

n
logP

(
Ŝn ≤ nx

)
= −I(x).

The rate function I(x) is specified in (17) below. The proof
of Theorem 1 is included in Section II. First we show that
Assumption 3 implies that Condition RT is satisfied for an
appropriate sequence of random times (Tn)n≥1. This is done
in Lemma 5 below. Then we show that as long as the non-
degeneracy condition Q

(
ŜT1 = µT1

)
̸= 1 is satisfied, the exis-

tence of the regeneration structure described by Condition RT
implies the large deviation result stated in Theorem 1. Related
results for non-delayed regenerative processes (in which case
W0 defined in (8) has the same distribution as the rest of
the random blocks Wn, n ≥ 1) can be found for instance
in [1], [14], [18]. We cannot apply general large deviation
results for regenerative processes directly to our setting for the
following two reasons. First, in our case the first block W0 is
in general distributed differently from the rest of the blocks
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Wn, n ≥ 1, defined in (8). Secondly, the estimators U
(n)
i

for i > Tkn−1 + r differ in general from the limiting random
variables Ui. In principle, the contribution of these two factors
to the tails asymptotic on the large deviation scale could be
significant because both W0 and

∑n
i=Tkn−1+r+1 ξ

(n)
i (where

the last sum is assumed to be empty if Tkn−1 + r + 1 > n)
have exponential tails. However, it turns out that this is not
the case, and the large deviation result for our model holds
with the same “classical” rate function I(x) as it does for the
non-delayed purely regenerative processes in [1], [14], [18].
In fact, only a small modification is required in order to adapt
the proof of a large deviation result for regenerative processes
in [1] to our model.

We next state our assumptions about the underlying HMM.
The set of assumptions that we use is taken from [16], [17].
We assume throughout that the distribution of Yn, conditioned
on Xn = i, has a density with respect to a reference measure
ν for all i ∈ D. That is, there exist measurable functions
fi : Y → R+, i ∈ D, such that for any A ∈ S and all i ∈ D,

P (Y0 ∈ A|X0 = i) =

∫
Y
fi(y)ν(dy). (12)

For each i ∈ D, let Gi = {y ∈ Y : fi(y) > 0}. That is,
the closure of Gi is the support of the conditional distribution
P (Y0 ∈ ·|X0 = i).

Definition 2. We call a subset C ⊂ D a cluster if

min
j∈C

P
(
Y0 ∈

∩
i∈C

Gi|X0 = j
)
> 0

and

max
j ̸∈C

Pj

(
Y0 ∈

∩
i∈C

Gi|X0 = j
)
= 0.

In other words, a cluster is a maximal subset of states C
such ν(GC) > 0, where GC :=

∩
i∈C Gi.

Assumption 3. [16], [17] For k ∈ D, let H∗
k = maxj∈D pjk.

Assume that for all k ∈ D,

P
(
fk(Y0)H

∗
k > max

i ̸=k
fi(Y0)H

∗
i |X0 = k

)
> 0. (13)

Moreover, there exist a cluster C ⊂ D and a number m ∈ N
such that the m-th power of the sub-stochastic matrix HC =
(pij)i,j∈C is strictly positive.

Assumption 3 is taken from the conditions of Lemma 3.1
in [16] and [17], and it is slightly weaker than the one used
in [2], [3]. This assumption is satisfied if C = D and for all
k ∈ D and a > 0,

P
(
fk(Y0) > amax

i ̸=k
fi(Y0)|X0 = k

)
> 0. (14)

The latter condition holds for instance if fi is the density of a
Gaussian random variable centered at i with variance σ2 > 0.

For a further discussion of Assumption 3 and examples of
HMM that satisfy this assumption see Section III in [17] and
also the beginning of Section II below, where some results of
[17] are summarized and their relevance to Condition RT is
explained.

II. PROOF OF THEOREM 1

Recall the random variables ξ
(n)
k defined in (9). For the

rest of the paper we will assume, actually without loss of
generality, that ξ(n)k > 0 for all n ≥ 0 and integers k ∈ [0, n].
Indeed, since D is a finite set, the range of the function ξ is
bounded, and hence if needed we can replace ξ by ξ̄ = B+ ξ

with some B > 0 large enough such that ξ(n)k +B > 0 for all
n ≥ 0, and k ∈ [0, n].

We start with the definition of the sequence of random times
(Tn)n≥1 that satisfies Condition RT. A similar sequence was
first introduced in [2] in a slightly less general setting. In this
paper, we use a version of the sequence which is defined in
Section 4 of [16]. The authors of [16] do not explicitly show
that Condition RT is fulfilled for this sequence. However, only
a small modification of technical lemmas from [16] or [17] is
required to demonstrate this result.

Roughly speaking, for some integers M ∈ N and r ∈
[0,M − 1], the random times θn := Tn + r − M + 1 are
defined, with the additional requirement θn+1 − θn > M, as
successive hitting time of a set in the form q×A, q ∈ DM ,
A ⊂ YM , for the Markov chain formed by the vectors of pairs
Rn = (Xi, Yi)

n+M−1
i=n .

More precisely, the following is shown in [16], [17]. See
Lemmas 3.1 and 3.2 in either [16] or [17] for (i) and (ii), and
Section 4 [p. 202] of [16] for (iii). We notice that a similar
regeneration structure was first introduced in [2] under a more
stringent condition than Assumption 3.

Lemma 4. [16], [17] Let Assumption 3 hold. Then there exist
integer constants M ∈ N, r ∈ [0,M − 1], a state l ∈ D, a
vector of states q ∈ DM , and a measurable set A ⊂ YM such
that the following hold:

(i) P
(
(Xn)

M−1
n=0 = q, (Yn)

M−1
n=0 ∈ A

)
> 0,

(ii) If for some k ≥ 0 we have (Yi)
k+M−1
i=k ∈ A, then U

(m)
j =

U
(k+M−1)
j for any j ≤ k +M − 1− r and m ≥ k +M − 1.

Furthermore, U
(m)
k+M−1−r = U

(k+M−1)
k+M−1−r = l for any m ≥

k +M − 1.
(iii) Let

θ1 = inf{k ≥ 0 : (Xi)
k+M−1
i=k = q and (Yi)

k+M−1
i=k ∈ A}

and for n ≥ 1,

θn+1 = inf{k ≥ θn +M : (Xi)
k+M−1
i=k = q

and (Yi)
k+M−1
i=k ∈ A}.

Define

Tn = θn +M − 1− r. (15)

For n ≥ 0, let Ln := (Yn, Un). Then the sequence (Ln)n≥0

forms a regenerative process with respect to the embedded
renewal structure (Tn)n≥1. That is, the random blocks

Jn = (LTn , LTn+1, . . . , LTn+1−1), n ≥ 0,

are independent and, moreover, J1, J2, . . . (but possibly not
J0) are identically distributed. Furthermore, there is a de-
terministic function g :

∪
n∈N Yn →

∪
n∈N Dn such that

(UTn , UTn+1, . . . , UTn+1−1) = g
(
YTn , YTn+1, . . . , YTn+1−1

)
.
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In fact, using Assumption 3, the set A is designed in
[16], [17] in such a way that once a M -tuple of observable
variables (Yi)

n+M−1
i=n that belongs to A occurs, the value of

the estimator U
(m)
n+M−1−r is set to l when m = n + M − 1,

and, moreover, it remains unchanged for all m ≥ n+M − 1
regardless of the values of the future observations (Yi)i≥n+M .
The elements of the set A are called barriers in [16], [17].
Using basic properties of the Viterbi algorithm, it is not hard
to check that the existence of the barriers implies claims (ii)
and (iii) of the above lemma. In fact, the Viterbi algorithm
is a dynamic programming procedure which is based on the
fact that for any integer k ≥ 2 and states i, j ∈ D there
exists a deterministic function gk,i,j : Yk → Dk such that
(U

(m)
n , U

(m)
n+1, . . . , U

(m)
n+k−1) = gk,i,j

(
Yn, Yn+1, . . . , Yn+k−1

)
for all n ≥ 0 and m ≥ n + k − 1 once it is decided that
U

(m)
n = i and U

(m)
n+k = j. See [16], [17] for details.

We have:

Lemma 5. Let Assumption 3 hold. Then Condition RT is
satisfied for the random times Tn defined in (15).

Proof: We have to show that properties (i)–(iv) listed in
the statement of Condition RT hold for (Tn)n∈N.

(i)-(ii) Notice that (θn)n≥1 defined in (iii) of Lemma 4
is (besides the additional requirement that θn+1 − θn > M )
essentially the sequence of successive hitting times of the set
q×A for the Markov chain formed by the pairs of M -vectors
(Xi, Yi)

n+M−1
i=n , n ≥ 0. Therefore, (i) and (ii) follow from

Lemma 4-(i) and the fact that the M -vectors (Xi)
n+M−1
i=n ,

n ≥ 0, form an irreducible Markov chain on the finite space
DM =

{
x ∈ DM : P

(
(Xi)

M−1
i=0 = x

)
> 0

}
while the

distribution of the observation Yi depends on the value of Xi

only.
(iii) Follows from (ii) of Lemma 4 directly.
(iv) The definition of the HMM together with (15) im-

ply that (Xn, Yn)n≥0 is a regenerative process with re-
spect to the renewal sequence (Tn)n≥1. The desired re-
sult follows from this property combined with the fact that
(UTn , UTn+1, . . . , UTn+1−1) is a deterministic function of
(YTn , YTn+1, . . . , YTn+1−1) according to part (iii) of Lemma 4.
The proof of the lemma is completed.

We next define the rate function I(x) that appears in
the statement of Theorem 1. The rate function is stan-
dard in the large deviation theory of regenerative processes
(see for instance [1], [14], [18]). Recall τn defined in
Condition-RT and let (σ, τ) be a random pair distributed
under the (“block-stationary”) measure Q identically to any of(∑Tn−1

k=Tn−1
ξk, τn

)
, n ≥ 1. For any constants α ∈ R, Λ ∈ R,

and x ≥ 0, set

Γ(α,Λ) = logEQ

(
exp(ασ − Λτ)

)
,

and define

Λ(α) = inf{Λ ∈ R : Γ(α,Λ) ≤ 0}, (16)
I(x) = sup

α∈R

{
αx− Λ(α)

}
, (17)

using the usual convention that the infimum over an empty set
is +∞.

We summarize some properties of the above defined quan-
tities in the following lemma. Recall µ from (11).

Lemma 6. The following hold:
(i) Λ(α) and I(x) are both lower semi-continuous convex
functions on R. Moreover, I(µ) = 0 and I(x) > 0 for x ̸= µ.

(ii) If there is no c > 0 such that Q
(
ŜT1 = cT1

)
= 1, then

(a) Λ(α) is strictly convex in an neighborhood of 0.
(b) I(x) is finite in some neighborhood of µ, and for each

x in that neighborhood we have I(x) = αxx − Λ(αx)
for some αx such that (x − µ)αx > 0 for x ̸= µ and
limx→µ αx = 0.

Proof:
(i) The fact that Λ(α) and I(x) are both lower semi-continuous
convex functions is well-known, see for instance p. 2884 in
[1]. Furthermore, (4) implies that Γ

(
α,Λ(α)

)
= 0 for α in

a neighborhood of 0. Moreover, the dominated convergence
theorem implies that Γ has continuous partial derivatives in
a neighborhood of (0, 0). Therefore, by the implicit function
theorem, Λ(α) is differentiable in this neighborhood. In par-
ticular, Λ(0) = 0, and

Λ′(0) = −

∂Γ

∂α
(0, 0)

∂Γ

∂Λ
(0, 0)

= µ.

Since Λ is a convex function, this yields the second part of
(i), namely establishes that I(µ) = 0 and I(x) > 0 for x ̸= µ.

(ii) If there are no constants b ∈ R and c ∈ R such
that Q

(
ŜT1 − cT1 = b

)
= 1, we can use the results of [1]

for both (ii-a) and (ii-b), see Lemma 3.1 and the preceding
paragraph on p. 2884 of [1]. It remains to consider the case
when Q

(
ŜT1 − cT1 = b

)
= 1 with b ̸= 0 but there are no

c̃ > 0 such that Q
(
ŜT1 − c̃T1 = 0

)
= 1. In this case, using

the definition (16) and the estimate (4), we have for α in a
neighborhood of 0,

1 = EQ

[
exp

(
αŜT1 − Λ(α)T1

)]
= EQ

[
exp

(
α(b+ cT1)− Λ(α)T1

)]
= eαbEQ

[
exp

(
T1

(
αc− Λ(α)

))]
.

That is, for α in a neighborhood of 0,

EQ

[
exp

(
T1

(
αc− Λ(α)

))]
= e−αb. (18)

Suppose Λ(α) is not strictly convex in any neighborhood of
0, that is Λ(α) = kα for some k ∈ R and all α in a one-sided
(say positive) neighborhood of zero. Let α1 > 0 and α2 > α1

be two values of α in the aforementioned neighborhood of zero
for which (18) is true. Using Jensen’s inequality EQ

(
X

α2
α1

)
≥(

EQ(X)
)α2

α1 , with

X = exp
(
T1

(
α1c− Λ(α1)

))
= exp

(
T1α1(c− k)

)
,

one gets that the identity (18) can hold only if Q
(
T1 = c0

)
= 1

for some c0 > 0. But under this condition and the assumption
Q
(
ŜT1

− cT1 = b
)
= 1, we would have

Q
(
ŜT1 − T1(c c0 + b)/c0 = 0

)
= 1
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in contradiction to what we have assumed in the beginning of
the paragraph. This completes the proof of part (a), namely
shows that Λ(α) is a strictly convex function in a neighbor-
hood of 0 provided that there is no constant c > 0 such that
Q
(
ŜT1 − cT1 = 0

)
= 1.

To complete the proof of the lemma, it remains to show
that part (b) of (ii) holds. Although the argument is standard,
we give it here for the sake of completeness. We remark that
in contrast to the “usual assumptions”, we consider properties
of Λ(α) and I(x) only in some neighborhoods of 0 and µ re-
spectively, and not in the whole domains where these functions
are finite. Recall that Λ(α) is an analytic and strictly convex
function of α in a neighborhood of zero (see for instance [1]
or [18]). In particular, Λ′(α) exists and is strictly increasing
in this neighborhood. Since Λ′(0) = µ, it follows that for
all x in a neighborhood of µ, there is a unique αx such that
x = Λ′(αx). Since Λ′(α) is a continuous increasing function,
we have limx→µ αx = 0 and αx(x − µ) > 0. Furthermore,
since Λ(α) is convex, we obtain Λ(α)−Λ(αx) ≥ x(α−αx),
and hence xαx−Λ(αx) ≥ xα−Λ(α) for all α ∈ R. This yields
I(x) = xαx −Λ(αx), completing the proof of the lemma.

Remark 7. Part (ii)-(b) of the above lemma shows that the
rate function I(x) is finite in a neighborhood of µ as long as
there is no c > 0 such that Q

(
ŜT1 − cT1 = 0

)
= 1. On the

other hand, if Q
(
ŜT1 = µT1

)
= 1, then the definition of Λ(α)

implies Λ(α) = µα for all α ∈ R, and hence I(x) = +∞ for
x ̸= µ.

Part of the claim (i) of Theorem 1 is in the part (i) of the
above lemma. Therefore we now turn to the proof of parts (ii)
and (iii) of Theorem 1. We start from the observation that the
large deviation asymptotic for the lower tail P

(
Ŝn ≤ nx

)
with

x < µ, can be deduced from the corresponding results for the
upper tail P

(
Ŝn ≥ nx

)
, x > µ. Indeed, let ξ̄(i, j) = µ−ξ(i, j)

and Sn =
∑n

k ξ̄
(
Xk, U

(n)
k

)
. Then

P
(
Ŝn ≤ nx

)
= P

(
Sn ≥ n(µ− x)

)
. (19)

Furthermore, for the function ξ̄ we have

Γ(α,Λ) = logEQ

(
exp(α(µτ − σ)− Λτ)

)
= logEQ

(
exp(−ασ − (Λ− αµ)τ)

)
,

and hence Λ(α) := inf{Λ ∈ R : Γ(α,Λ) ≤ 0} = Λ(−α)+µα,
which in turn implies

I(x) := sup{α ∈ R : αx− Λ(α)}
= sup{α ∈ R : −α(µ− x)− Λ(−α)}
= I(µ− x).

Therefore, part (iii) of Theorem 1 can be derived from part
(ii) applied to the auxiliary function ξ̄.

It remains to prove part (ii) of the theorem. For the upper
bound we adapt the proof of Lemma 3.2 in [1].

Proposition 8. Let Assumption 3 hold and suppose in addition
that ξ(i, j) > 0 for all i, j ∈ D and Q

(
ŜT1 = µT1

)
̸= 1. Let

I(x) be as defined in (17). Then there exists a constant γ > 0
such that lim supn→∞

1
n logP

(
Ŝn ≥ nx

)
≤ −I(x) for all

x ∈ (µ, µ+ γ).

Proof: Recall kn from (6) and set Rn = Ŝn − ŜTkn−1
.

We use the following series of estimates, where α > 0 and
Λ > 0 are arbitrary positive parameters small enough to ensure
that all the expectations below exist (due to the tail estimates
assumed in (4)):

P
(
Ŝn ≥ nx

)
= P

(
ŜTkn−1

+Rn ≥ nx
)

=

n−1∑
j=0

P
(
ŜTj +Rn ≥ nx;Tj < n ≤ Tj+1

)
≤

n−1∑
j=0

P
(
ŜTj +Rn ≥ nx;Tj < n

)
≤

n−1∑
j=0

P
(
α(ŜTj +Rn − nx) + Λ(n− Tj) ≥ 0

)
≤

n−1∑
j=0

E
[
exp

(
α(ŜTj

− xn)− Λ(Tj − n) + αRn

)]
≤ E

[
exp

(
α(ŜT1 +Rn)

)]
· exp

(
−(αx− Λ)n

)
×

×
{
1 +

n−1∑
j=1

exp
(
(j − 1)Γ(α,Λ)

)}
≤ E

[
exp

(
α(ŜT1 +Rn)

)]
· exp

(
−(αx− Λ)n

)
×

×
{
1 +

1− eΓ(α,Λ)n

1− eΓ(α,Λ)

}
,

where we used the fact that the pairs (ŜTn−ŜTn−1, Tn−Tn−1)
have the same distribution under P and under Q as long as
n ≥ 2.

By the Cauchy-Schwartz inequality,

E
[
exp

(
α(ŜT1 +Rn)

)]
≤

√
E
[
exp

(
2αŜT1

)]
· E

[
exp

(
2αRn

)]
.

Therefore, using any C > 0 such that ξ(i, j) < C for all
i, j ∈ D,

lim sup
n→∞

1

n
logE

[
exp

(
α(ŜT1 +Rn)

)]
= lim sup

n→∞

1

2n
logE

[
exp

(
2αRn

)]
≤ lim

n→∞

1

n
logE

[
exp

(
2αC(n− Tkn−1)

)]
= 0,

where the first equality is due to (4), while in the last step we
used the renewal theorem which shows that the law of n −
Tkn−1 converges, as n goes to infinity, to a (proper) limiting
distribution. Therefore, if α > 0 and Λ > 0 are small enough
and Γ(α,Λ) ≤ 0, then

lim sup
n→∞

1

n
logP

(
Ŝn ≥ nx

)
≤ −(αx− Λ).

It follows then from the definition of Λ(α) given in (16) that

lim sup
n→∞

1

n
logP

(
Ŝn ≥ nx

)
≤ −

(
αx− Λ(α)

)
. (20)

The rest of the proof is standard. Let

A := sup
{
α > 0 : E

(
eαŜT1

)
< ∞, E

(
eαŜT2

)
< ∞

}
.
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It follows from (20) that

lim sup
n→∞

1

n
logP

(
Ŝn ≥ nx

)
≤ − sup

0<α<A

(
αx− Λ(α)

)
,

and therefore lim supn→∞
1
n logP

(
Ŝn ≥ nx

)
≤ −I(x)

provided that αx ∈ (0, A), where αx is defined in the
statement of Lemma 6. Since by part (ii-b) of Lemma 6, we
have limx↓µ αx = 0, this completes the proof of Proposition 8.

For the lower bound in part (ii) of Theorem 1 we have

Proposition 9. Let Assumption 3 hold and suppose in addition
that ξ(i, j) > 0 for all i, j ∈ D. Let I(x) be as defined in (17).
Then lim infn→∞

1
n logP

(
Ŝn ≥ nx

)
≥ −I(x) for all x > µ.

Using the assumption that ξ(i, j) > 0 the proof of this
proposition can be done by relying on the arguments used in
the proof of Lemma 3.4 in [1] nearly verbatim. For the sake of
completeness we sketch the proof here. First, notice that the
proposition is trivially true in the degenerate case Q

(
ŜT1 =

µT1

)
= 1 where I(x) = +∞ (see Remark 7). Assume now

that Q
(
ŜT1 = µT1

)
̸̸= 1. Then, as in Lemma 3.1 of [1], we

have:

inf
0<γ<1

γΓ∗(x/γ, 1/γ) = I(x), (21)

where Γ∗(u, v) := supα,Λ∈R{αu−Λv−Γ(α,Λ)}. Notice that
since the infimum in (21) is taken over strictly positive values
of γ, the proof of this identity given in [1] works verbatim
in our case. This is because considering only strictly positive
values of γ makes the first renewal block, which is special
and difficult to control in our case, irrelevant to the proof of
the identity (21).

Since ξ
(n)
i are assumed to be positive numbers, we have for

any ε > 0, γ ∈ (0, 1), and x > µ :

P
(
Ŝn ≥ xn

)
≥ P

(
ŜT[γn]

− Ŝ1 ≥ xn;T[γn] < n
)

≥ P
(
ŜT[γn]

− Ŝ1

≥ x+ ε

γ
[γn];T[γn] <

1

γ
[γn]

)
, (22)

where, as usual, [x] denotes the integer part of x ∈ R, that is
[x] = max{z ∈ Z : z ≤ x}.

Applying Cramer’s large deviation theorem [5] to the se-
quence of i.i.d 2-dimensional vectors

(
ŜT[γn]

− Ŝ1; T[γn]

)
n∈N

we obtain

lim
n→∞

1

n
logP

(
ŜT[γn]

− Ŝ1 ≥ x+ ε

γ
[γn];T[γn] <

1

γ
[γn]

)
= −γΓ∗((x+ ε)/γ, 1/γ

)
.

Letting ε go to zero and using (22), we obtain

lim inf
n→∞

1

n
logP

(
Ŝn ≥ xn

)
≥ − inf

0<γ<1
γΓ∗(x/γ, 1/γ),

which completes the proof of Proposition 9 in virtue of (21).
Propositions 8 and 9 combined together yield the claim of

part (ii) of Theorem 1, completing the proof of the theorem.
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