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Abstract

Random population dynamics with catastrophes (events pertaining to possible elim-
ination of a large portion of the population) has a long history in the mathematical
literature. In this paper we study an ergodic model for random population dynam-
ics with linear growth and binomial catastrophes: in a catastrophe, each individual
survives with some fixed probability, independently of the rest. Through a coupling
construction, we obtain sharp two-sided bounds for the rate of convergence to station-
arity which are applied to show that the model exhibits a cutoff phenomenon.

MSC2010: Primary 60J10, 60J80, secondary 92D25, 60K37.
Keywords: population models, catastrophes, persistence, spectral gap, cutoff.

1 Introduction

1.1 Model

Consider a population with the following birth and death rules. Given two parameters
p ∈ (0, 1) and c ∈ (0, 1], the population size is a discrete-time Markov chain (Xt : t ∈ Z+)
on the state-space Z+ of non-negative integers (Z+ := N ∪ {0}) with transition function

pp,c(i, j) =

{
p j = i+ 1

(1− p)
(
i
j

)
(1− c)jci−j j ∈ {0, . . . , i}

When there is no risk of ambiguity, we will omit the superscripts p, c and write p. In words,
conditioned on the history of the process up to time t, the population size at time t + 1
is determined by tossing an independent coin with probability p of success. In the case
of success, the population increases by 1, and in the case of a failure, also known as a
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catastrophe, the population is an independent binomial with parameters Xt and 1− c. That
is, in a catastrophe, each individual survives with probability 1 − c independently of the
other, and is otherwise killed. Note that p is aperiodic and irreducible. As will be shown
below, p is also geometrically ergodic in total variation.

The model is a version of subcritical branching process (the catastrophes) with linear
migration (population increase), and belongs to a larger class of stochastic models with
catastrophes extensively studied in the literature. The term “catastrophe” loosely refers
to events where a large proportion or the entire population may be wiped out. There are
many ways to model catastrophes and several have been studied, see Section 1.3 below. The
particular model we study corresponds to binomial catastrophes of [25, Section 2].

1.2 Motivation

Our original interest in the model came from a curiously strong persistence feature we ob-
served in simulations: repulsion from zero and long fluctuations in a narrow band before first
hitting zero. Figure 1.2 shows a simulation of the model for p = 0.4 and c = 0.01, between
times 0 and 105. The initial population size is X0 = 10. The population climbs quickly and
fluctuates in a narrow band around an empirical mean close to 66.667 for a very long time.
In Section 2 we show that the process is mean-reverting relative to the mean of its stationary
distribution. Corollary 4.5 shows that already after 1500 steps the total variation distance
between the process and its stationary distribution is bounded above by 0.001. These, along
with the fact that the expectation of the first extinction time is of the order 1024, shown in
Section 2, give at least a partial explanation to the simulations.

Additional motivation for our work on the model is in its amenability to coupling methods
yielding sharp bounds on the rate of convergence to stationarity. These allow us to prove
that the process exhibits the cutoff phenomenon. These results form the bulk of our work.

1.3 Literature

Stochastic models with catastrophes are studied in mathematical literature since mid-1970’s,
for a first systematic account and a review of the early literature see [3]. For a motivation
and background in biological sciences see, for instance, [9, 10, 19, 23]. Most of the work
in the literature concern with either continuous time (generalized) birth and death chains
with catastrophes or ODE-based models with a random disturbance. For a recent review
and an extensive bibliography see [16]. The persistence feature is discussed for models with
catastrophes in, for instance, [6, 23]. We remark that despite the variety of mathematical
approaches to modeling population catastrophes, some results seem to be of a universal
nature and are exhibited by models of different types. As an example, we mention the
logarithmic dependence of the first extinction time on the initial population size which we
discuss in Section 5.2.3.

As mentioned above, the model we study is a particular version of binomial catastrophes
case in the model introduced by Neuts in [25, Section 2]. A continuous-time analogue of our
model was introduced in [3, Section 4]. For recent progress, see [1, 7, 16]. In our model,
deaths occur in a branching fashion, and in Section 5.1 we reformulate and discuss the model
as a special branching process with immigration in a random environment. The study of
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Figure 1: Long fluctuations of the random walk around its average before hitting zero

branching processes as models of population growth with catastrophes (or disasters) goes
back to at least [15], where a branching process without immigration is considered. Due
to their tractability, much attention in the literature has been received by models with a
deterministic growth between catastrophes, so called semi-stochastic models [5, 10, 11, 20].

Many results in the literature focus on the phase transition between survival and non
survival, see [2] and [14]. The results concerning first extinction times and stationary dis-
tributions are typically given in terms of Laplace transform or generating functions, see [2]
and [16].

1.4 Organization

In Section 2 we give a probabilistic representation of the stationary distribution of the pro-
cess. The bulk of our contribution is reported in Sections 3 and 4. In Section 3 we introduce
a coupling and use it to compute sharp bounds on the total variation distance between the
distributions of the process starting from two different initial states. In Section 4 we con-
sider a sequence of models whose stationary distribution converges to a Poisson limit. We
show that this sequence exhibits a cutoff phenomenon, namely on a certain time scale the
total variation distance to the stationary distribution drops from one to zero in a narrow
time window. Our study of both topics appear to be original in the context of stochastic
models with catastrophes and we are not aware of similar results in the literature for any
type of such models. Finally, in Section 5 we estimate the first extinction time and we use
a branching representation for several purposes.

Throughout the paper, the notation an ∼ bn stands for limn→∞
an
bn

= 1, and X
d
=Y

indicates that the random variables X and Y have the same distribution.
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2 Stationary distribution

2.1 Representation formula

Given a Z+-valued random variable R and ε ∈ [0, 1], write Bin(R, ε) for the random variable
which, conditioned on R, is binomial with parameters R and ε. We begin with the following
lemma whose proof is omitted.

Lemma 2.1. Suppose that R0, R1 . . . are independent Z+-valued random variables and let
ε0, ε1, ε2, . . . be a sequence taking values in [0, 1]. Assume that

∑
εjE[Rj] < ∞. For

j = 0, 1, . . . , let Binj(Rj, εj) be Bin(Rj, εj)-distributed, with (Binj(Rj, εj) : j ≥ 1) inde-
pendent, conditional on (Rj : j ∈ Z+). Let R =

∑∞
j=0 Binj(Rj, εj) and ε > 0. Then the

distribution of
∑∞

j=0 Binj(Rj, εεj) coincides with the distribution of Bin(R, ε).

For α ∈ (0, 1], write Geom−(α) for the shifted Geometric distribution with probability

mass function equal to (1− α)kα, k ∈ Z+. Observe that if R0
d
= Geom−(α), then

E[sR0 ] = α
∞∑
k=0

sk(1− α)k =
α

1− (1− α)s
, s ∈ [0, 1]. (1)

The following proposition gives the stationary distribution for X. Note that [25, formula
(12)] gives the generating function of the stationary distribution for a class of Markov chains.
Our model is in that class. The next proposition gives a probabilistic representation of
the stationary distribution for our model. An interpretation through branching process
representation is discussed in Section 5.1.

Proposition 2.2. Let R0, R1, R2, . . . be IID Geom−(1− p), εj = (1− c)j for j ∈ Z+. Let R
be as in Lemma 2.1 with ε = 1, and let π be its distribution. Then π is stationary for p.

In the degenerate case c = 1, π is Geom−(1 − p)-distributed. In Section 5.1 we discuss
the case when p and c are both close to one.

Proof of Proposition 2.2. Suppose that X0
d
=R. We verify that X1

d
=R through the generating

function of X1. For s ∈ [0, 1], we have

E[sX1 ] = psE[sX0 ] + (1− p)E
[
sBin(X0,1−c)

]
. (2)

By Lemma 2.1, we have that

Bin(X0, 1− c)
d
=
∞∑
j=0

Binj
(
Rj, (1− c)(1− c)j

) d
=
∞∑
j=1

Binj
(
Rj, (1− c)j

)
.

Note that for j = 0, Binj
(
Rj, (1− c)j

)
= R0. Hence, the sum of Bin(X0, 1− c) and R0 has

the same distribution as X0. In other words:

E
[
sBin(X0,1−c)

]
· E[sR0 ] = E[sX0 ].
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Thus (2) becomes

E[sX1 ] =
(
ps+

1− p
E[sR0 ]

)
E[sX0 ] = E[sX0 ],

where the last identity is due to (1) with α = 1− p.

Before continuing to our next topic we briefly discuss several related observations.
Using Proposition 2.2 and identity (1) we have

π(0) =
∞∏
j=0

P
(
Binj

(
Rj, (1− c)j

)
= 0
)

=
∞∏
j=0

E
[(

1− (1− c)j
)Rj]

=
∞∏
j=0

1− p
1− p(1− (1− c)j)

.

Let τ be the hitting time of 0, or the first extinction time,

τ = inf{t ≥ 1 : Xt = 0}. (3)

Thus,

E0[τ ] =
1

π(0)
=
∞∏
j=0

(
1 +

p

1− p
(1− c)j

)
.

In the biological literature, this expected value is often referred to as the persistence time of
the model [5, 22, 23]. Using that

x− x2

2
≤ ln(1 + x) ≤ x, ∀ |x| < 1, (4)

we get for p < 1/2 that

p

c(1− p)
− 1

2

p2

(1− p)2(1− (1− c)2)
≤ lnE0[τ ] ≤ p

c(1− p)
.

For example, for p = 0.4 and c = 0.1, we get E0[τ ] ≥ 244. For p = 0.4 and c = 0.01, we get
E0[τ ] ≥ 1024.

2.2 Mean Reversal

It follows from Proposition 2.2 that

µ := Eπ[Xt] =
∞∑
j=0

E[Rj](1− c)j =
p

c(1− p)
. (5)

Note that the local drift of X

δt := E[Xt+1|Xt]−Xt = p− (1− p)cXt = p
(

1− Xt

µ

)
(6)

5



has the sign opposite to the deviation from µ. Thus the random walk always drifts toward
its expected value. We also comment that the probability to hit 0 in the next step decays
geometrically with the state of the system, that is

P (Xt+1 = 0|Xt) = (1− p)cXt .

These observations suggest that the process will tend to fluctuate about its mean before the
first extinction, as can be seen in the simulation, see Figure 1.2.

3 Coupling and convergence to stationarity

3.1 Construction of the coupling

The key result of this section is a coupling of the probability laws Px(Xt ∈ ·) and Py(Xt ∈ ·),
obtained from a simple representation of the process.

Let x, y ∈ Z+ with x < y. Set X0 = x, X ′0 = y and H0 = y−x. We continue inductively,
assuming ((Xs, X

′
s, Hs), s ≤ t) were defined and X ′s = Xs +Hs for all s ≤ t. Conditioned on

((Xs, X
′
s, Hs), s ≤ t),

• With probability p, independently of the past, Ht+1 = Ht, Xt+1 = Xt + 1 and
X ′t+1 = X ′t + 1.

• Otherwise, that is with probability 1− p, set

Xt+1 = Bin(Xt, 1− c) and Ht+1 = Bin(Ht, 1− c),

independent of each other and of the past. Moreover, set X ′t+1 = Xt+1 +Ht+1.

It immediately follows that X and X ′ are both copies of our Markov chain and that

X ′t = Xt +Ht

for all t. In addition, the process (Ht : t ∈ Z+) is non-increasing. Write Px,y and Ex,y for
the joint distribution and expectation of X and X ′. Let ξ be the coupling time of the two
marginal processes, that is

ξ = inf{t ≥ 0 : Xt = X ′t} = inf{t ∈ Z+ : Ht = 0} (7)

If Ht > 0, then Ht+1 = Ht with probability equal to

p+ (1− p)(1− c)Ht < p+ (1− p)(1− c) = 1− c(1− p).

Therefore, it immediately follows that under Px,y, ξ is stochastically dominated by a sum of
y − x independent copies of Geometric random variables with parameter (1 − p)c. Hence,
ξ < ∞, Px,y-a.s. and has a geometric tail. Furthermore, Xt = X ′t for all t ≥ ξ. Let Nt

denote the number of catastrophes up to time t. Then Nt
d
=Bin(t, 1− p). It follows from the

construction of the coupling that

Px,y(Ht ∈ ·|Nt)
d
=Bin(y − x, (1− c)Nt). (8)
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Therefore,

Px,y(ξ > t) = Px,y(Ht > 0) = 1− E[(1− (1− c)Nt)y−x] ≤ (y − x)E[(1− c)Nt ], (9)

where the last inequality is due to Bernoulli’s inequality. Letting

α = p+ (1− p)(1− c) = 1− c(1− p), (10)

we have that
E[(1− c)Nt ] = αt. (11)

Therefore
Px,y(ξ > t) ≤ (y − x)αt. (12)

We comment that this bound is asymptotically sharp as t→∞. That is

Px,y(ξ > t) ∼ (y − x)E
[
(1− c)Nt

]
= (y − x)αt, (13)

as can be seen by expanding the expression (1− (1− c)Nt)y−x through the binomial theorem
and taking expectation.

3.2 Upper bounds on total variation

Recall that the total variation distance between two probability measures Q1 and Q2 on Z+

is defined as

‖Q1 −Q2‖TV = max
A⊂Z+

|Q1(A)−Q2(A)| = max
A⊂Z+

(Q1(A)−Q2(A)) .

For x, y, t ∈ Z+, let

dt(x, y) := ‖Py(Xt ∈ ·)− Px(Xt ∈ ·)‖TV .

By Aldous’ coupling inequality [29], dt(x, y) ≤ Px,y(ξ > t). By combining this inequality and
(12) we have proved

Proposition 3.1. Let α = 1− c(1− p). Then for x, y, t ∈ Z+,

dt(x, y) ≤ |y − x|αt.

Recall from (5) that

µ =
∑
y

yπ(y) =
p

c(1− p)
.

We have

Corollary 3.2. For all x, t ∈ Z+,

dt(x, π) = ‖Px(Xt ∈ ·)− π‖TV ≤
(
x− µ+ 2

∑
y>x

(y − x)π(y)
)
αt.

In particular,
dt(0, π) ≤ µαt.
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Proof. For any A ⊂ Z+,

|Px(Xt ∈ A)− π(A)| ≤
∞∑
y=0

|Px(Xt ∈ A)− Py(Xt ∈ A)|π(y) ≤
∑
y

|y − x|π(y)αt,

where the second inequality follows from Proposition 3.1. The result follows because of the
identity

∑
y |y − x|π(y) = x− µ+ 2

∑
y>x(y − x)π(y).

3.3 Lower bounds on total variation

The goal of this section is to obtain a lower bound for dt(x, y) which is of the same order
as the upper bound in Proposition 3.1. We comment that the difficulty in proving such a
result stems from the fact that the state space is infinite, because couplings which preserve
linear ordering on a finite state space always satisfy this property, see [4] for a proof in
continuous-time setting.

We need to introduce some notation. Let

p̃ =
p

α
=

p

1− c(1− p)
.

The notation P
(p̃)
x is the law of the Markov chain X with initial state X0 = x, and transition

function pp̃,c. We will also refer to the corresponding stationary distribution as π(p̃).
The main result of this section is the following theorem.

Theorem 3.3. Let x, y, t ∈ Z+ with x < y. Then

dt(x, y) ≥ αt max
j∈Z+

y−1∑
k=x

P
(p̃)
k (Xt = j).

Before turning to the proof, we note the following

Corollary 3.4. Suppose that j∗ ∈ Z+ maximizes π(p̃)(·). Then

π(p̃)(j∗) ≤ lim inf
t→∞

dt(x, y)

|y − x|αt
≤ lim sup

t→∞

dt(x, y)

|y − x|αt
≤ 1.

In particular, limt→∞
1
t

log dt(x, y) = logα, thus the L∞ spectral gap of the Markov chain
X is 1−α = c(1− p), see [18]. The upper bound is Proposition 3.1. As for the lower bound,
the ergodicity of the chain pp̃,c shows that for every j ∈ Z+, each summand in Theorem 3.3

P
(p̃)
k (Xt = j) ∼ π(p̃)(j) as t→∞.

We prove Theorem 3.3 through two lemmas.

Lemma 3.5. For all x, t ∈ Z+,

1. Px,x+1(ξ > t) = αt.

2. Px,x+1(Xt ∈ ·|ξ > t) = P
(p̃)
x (Xt ∈ ·).
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Proof of Lemma 3.5. The first claim follows immediately from (8) with y = x+ 1. We turn
to the second claim. Conditioned on Nt, ξ and Xt are independent. Therefore,

Px,x+1(Xt = j, ξ > t|Nt = k) = Px,x+1(Xt = j|Nt = k)Px,x+1(ξ > t|Nt = k)

= Px(Xt = j|Nt = k)(1− c)k.

Since Nt
d
= Bin(t, 1− p),

(1− c)kP (Nt = k) =
(
t
k

)(
(1− p)(1− c)

)k
pt−k

=
(
t
k

)
(α− p)kpt−k

= αt
(
t
k

)
(1− p̃)kp̃t−k.

This gives

Px,x+1(Xt = j, ξ > t) = αt
∞∑
k=0

Px(Xt = j|Nt = k)P (p̃)(Nt = k).

The distribution of Xt conditioned on Nt does not depend on the parameter p, and from this
we obtain

Px,x+1(Xt = j, ξ > t) = αtP (p̃)
x (Xt = j),

and the result follows.

Lemma 3.6. For j ∈ Z+, let Aj = {0, . . . , j}. Then

Px(Xt ∈ Aj)− Px+1(Xt ∈ Aj)=αtP (p̃)
x (Xt = j).

Proof of Lemma 3.6. Clearly,

Px(Xt ∈ Aj)− Px+1(Xt ∈ Aj) = Ex,x+1

[
1Aj(Xt)− 1Aj(X

′
t), ξ > t

]
=

j−1∑
k=0

Ex,x+1[1{k}(Xt)− 1{k+1}(X
′
t), ξ > t]

+ Px,x+1(Xt = j, ξ > t)− Px,x+1(X
′
t = 0, ξ > t).

Since for t < ξ we have X ′t = Xt + 1, it follows that the expectations under the summation
sign are all zero, and that the last summand is also zero. Therefore,

Px(Xt ∈ Aj)− Px+1(Xt ∈ Aj) = Px,x+1(Xt = j, ξ > t) = αtP (p̃)
x (Xt = j),

where the equality follows from Lemma 3.5. The proof of the lemma is complete.

Proof of Theorem 3.3. Let Aj be as in the proof of Lemma 3.6. Then

dt(x, y) ≥ Px(Xt ∈ Aj)− Py(Xt ∈ Aj) =

y−1∑
k=x

(
Pk(Xt ∈ Aj)− Pk+1(Xt ∈ Aj)

)
,

and the theorem follows by virtue of Lemma 3.6.
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We conclude this section with the following generalization of Lemma 3.5.

Theorem 3.7. Px,y(Xt ∈ ·|ξ > t) converges in distribution to π(p̃) as t→∞.

Proof. First,

Px,y(ξ > t) =

y−x∑
k=1

Px,y(Ht = k).

Let M = y − x and θ = 1− c. Then from (8), we have

Px,y(Ht = k) =

(
M

k

)
E[(1− θNt)M−kθNtk].

For ρ < 1, E[ρNt ] = (ρ(1− p) + p)t, and it follows from the binomial formula that

Px,y(Ht = k) =

(
M

k

)
(θk(1− p) + p)t(1 + o(1)) as t→∞.

As a result,
Px,y(ξ > t) = Px,y(Ht = 1)(1 + o(1)) = (y − x)αt(1 + o(1)).

Next, repeating the argument in the proof of Lemma 3.5 we obtain

Px,y(Xt = j,Ht = 1) =
∞∑
k=0

P (Xt = j|Nt = k)Px,y(Ht = 1|Nt = k)P (Nt = k)

=
∞∑
k=0

P (p̃)
x (Xt = j|Nt = k)(y − x)(1− (1− c)k)y−x−1(1− c)kP (Nt = k)

= αt(y − x)E(p̃)
x [1{j}(Xt)(1− (1− c)Nt)y−x−1]

= αt(y − x)P (p̃)
x (Xt = j)(1 + o(1))

where the last line follows from the binomial theorem and the bounded convergence theorem.
Thus,

Px,y(Xt = j|Ht = 1) = P (p̃)
x (Xt = j) + o(1).

Putting it all together,

Px,y(Xt = j|ξ > t) =

∑y−x
k=1 Px,y(Xt = j,Ht = k)

Px,y(ξ > t)

=
Px,y(Xt = j|Ht = 1)Px,y(Ht = 1) + Px,y(Ht = 1)o(1)

Px,y(Ht = 1)(1 + o(1))

= Px,y(Xt = j|Ht = 1) + o(1)

= P (p̃)
x (Xt = j) + o(1)

= π(p̃)(j) + o(1),

where the second line follows from the fact that for k ≥ 2, Px,y(Ht = k) = o(Px,y(Ht = 1)).
The proof of the theorem is complete.
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4 Poisson limit and a cutoff phenomenon

In this section we let p and c tend to 0. We will work under the following assumption

Assumption 4.1. For n ∈ N pn, cn ∈ (0, 1) with pn → 0 and

lim
n→∞

pn
cn

= β ∈ (0,∞).

We will use the superscript (n) to denote the dependence of the total variation distance,
probability, expectation, and stationary distribution of the parameters, e.g. the stationary
distribution for the process with parameters pn and cn will be denoted by π(n).

Theorem 4.2. Assume 4.1. Then π(n) converges in distribution to Pois(β) as n→∞.

The proof is a routine calculation of moment generating functions, and the proof appears
at the end of the section. We note that the actual form of the limit distribution is irrelevant
for our next and main result of this section, the cutoff phenomenon, although we do rely on
the tightness of (π(n) : n ∈ N) to prove the second claim below.

Theorem 4.3. Let Assumption 4.1 hold. Let (yn : n ∈ Z+) be a sequence of a real numbers
satisfying limn→∞ yn =∞. Set

tn =
ln yn
cn

.

Then, for every ε > 0

1.
lim
ε→0

lim sup
n→∞

sup
t>tn+

1
εcn

d
(n)
t (yn, π

(n)) = 0.

2.
lim
n→∞

inf
t<tn−bn

d
(n)
t (yn, π

(n)) = 1,

where

bn = (1 + ε)
(1

2
ln yn +

ln ln yn
cn

)
.

Therefore with a choice of parameters as in Theorem 4.3, the model exhibits a cutoff at
tn with window size O(max(ln yn,

ln ln yn
cn

)), see [21, p. 248].
To prove the theorem we will use the following lemma.

Lemma 4.4. Assume the conditions for Theorem 4.3 hold. For θ > 0, let

λn(θ) :=
ln yn + θ

cn
and νn(θ) :=

ln yn − ln ln yn − ln pn
cn
− θ

(ln yn)1/4

− ln(1− cn)
, n ∈ N.

Then

1. limθ→∞
{

lim supn→∞ supt>λn(θ) d
(n)
t (0, yn)

}
= 0.
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2. limθ→∞
{

lim infn→∞ inft<νn d
(n)
t (0, yn)

}
= 1.

Proof. Let αn = 1− cn(1− pn). Recall that

1. By Proposition 3.1, for any t > λn(θ),

ln d
(n)
t (0, yn) ≤ ln yn + t lnαn ≤ ln yn + λn(θ) lnαn

= ln yn +
(
ln yn + θ

) ln(1− cn(1− pn))

cn(1− pn)
(1− pn)

≤ ln yn − (ln yn + θ) = −θ,

from which the first assertion of the lemma follows.

2. We will use the following Chernoff-Hoeffding bounds for a binomial distribution [12].

If X
d
= Bin(m, p) for some m ∈ N and p ∈ (0, 1), then for any δ ∈ (0, 1),

P
(
X > (1 + δ)pm

)
≤ e−

δ2pm
2 and P

(
X < (1− δ)pm

)
≤ e−

δ2pm
3 . (14)

First, observe that under P
(n)
0 , Xt is stochastically dominated by the number of births

up to time t whose distribution is Bin(t, pn). Let

γn(θ) :=
(

1 +
θ

2(ln yn)1/4

)
pnνn(θ). (15)

In what follows, in order to simplify the notation, we will simply write νn and γn
instead of, respectively, νn(θ) and γn(θ).

By the Chernoff-Hoeffding inequality, for any t ≤ νn,

P
(n)
0

(
Xt ≥ γn

)
≤ P

(
Bin(t, pn) ≥ γn

)
≤ P

(
Bin
(
νn, pn

)
≥ γn

)
≤ exp

(
− θ2pnνn

8
√

ln yn

)
.

Therefore,

lim
n→∞

P
(n)
0

(
Xt ≥ γn

)
= 0. (16)

On the other hand, under P
(n)
yn , Xt stochastically dominates Bin(yn, (1− cn)Nt), which

in turn, dominates Bin
(
yn, (1− cn)t

)
. Notice that

yn(1− cn)νn =
pn
cn
· ln yn · e

θ

(ln yn)1/4 . (17)

Thus, for n large enough, we have

γn
yn(1− cn)t

≤

(
1 + θ

2(ln yn)1/4

)
pnνn

yn(1− cn)νn
=

(
1 + θ

2(ln yn)1/4

)
cnνn

(ln yn)e
θ

(ln yn)1/4

≤
1 + θ

2(ln yn)1/4

e
θ

(ln yn)1/4

≤
(

1 +
θ

2(ln yn)1/4

)
·
(

1− θ

2(ln yn)1/4

)
= 1− θ2

4
√

ln yn
,

12



where at the last but one step we used the inequality e−x ≤ 1 − x
2
, which is true for

any sufficiently small x > 0, with x = θ
(ln yn)1/4

.

Therefore, by the Chernoff-Hoeffding inequality, for any t ≤ νn,

P (n)
yn

(
Xt ≤ γn

)
≤ P (n)

yn

[
Bin
(
yn, (1− cn)t

)
≤ γn

]
≤ P (n)

yn

[
Bin
(
yn, (1− cn)νn

)
≤ γn

]
≤ exp

(
−yn(1− cn)νnθ4

48 ln yn

)
.

Hence,

sup
t<νn

P (n)
yn

(
Xt ≤ γn

)
≤ exp

(
−yn(1− cn)νnθ4

48 ln yn

)
.

It follows from (17) that

lim sup
n→∞

sup
t≤νn

P (n)
yn

(
Xt ≤ γn

)
≤ e−

βθ4

48 .

Taking in account (16) this implies

lim inf
n→∞

inf
t<νn

d
(n)
t (0, yn) ≥ 1− e−

βθ4

48 ,

from which the second claim of the lemma follows.

In order to obtain easier expressions to work with, we observe that for θ large enough,
independently of n, we have

νn(θ) ≥ ln yn − ln ln yn − θ
− ln(1− cn)

=
ln yn − ln ln yn − θ

cn
× 1

1 + cn/2 + c2n/3 + . . .︸ ︷︷ ︸
(∗)

.

Since (∗) = 1− cn
2

+O(c2n) and we have that

νn(θ) = tn −
1

2
ln yn +O(cn) ln yn −

ln ln yn
cn

+
1

2
ln ln yn −O(cn) ln ln yn −

θ

cn
(1− o(1))

= tn −
(1

2
ln yn +

ln ln yn
cn

)
+O(cn) ln yn +

1

2
ln ln yn −

θ

cn
(1− o(1)),

and so for every θ > 0 and ε > 0,

νn(θ) > tn − (1 + ε)
(1

2
ln yn +

ln ln yn
cn

)
,

provided n is large enough.
This leads to the following corollary. Recall that bn = (1 + ε)

(
1
2

ln yn + ln ln yn
cn

)
.

13



Corollary 4.5. Under the assumptions of Theorem 4.3,

1. lim
ε→0

lim sup
n→∞

sup
t≥tn+ 1

εcn

d
(n)
t (0, yn) = 0.

2. For any ε > 0, lim
n→∞

inf
t≤tn−bn

d
(n)
t (0, yn) = 1.

We are ready to prove Theorem 4.3.

Proof of Theorem 4.3. We begin with the first claim. Recall that αn = 1− cn(1− pn). Then
from the triangle inequality and the Corollary 3.2 we obtain

d
(n)
t (yn, π

(n)) ≤ d
(n)
t (yn, 0) + d

(n)
t (0, π(n))

≤ d
(n)
t (yn, 0) + µnα

t
n,

where µn =
∑
yπ(n)(y) = pn

cn(1−pn) . Now µn → β, and ln(αtn) = t ln(1− cn(1− pn)) ≤ −1
2
cnt

provided pn ≤ 1
2
. Therefore

lim
n→∞

sup
t>tn+

1
εcn

µnα
t
n = 0.

The result now follows from this, combined with the first claim in Corollary 4.5.
We turn to the second claim. Fix θ > 0, and recall νn(θ) from Lemma 4.4. From the proof

of Lemma 4.4, it follows that for all t < νn(θ), lim supn→∞ supt≤νn(θ) Pyn(Xt < γn(θ)) < e−βθ
4/48,

where γn = γn(θ) was defined in (15). Since tn − bn < νn(θ) provided n is large enough, it
follows that

lim
n→∞

sup
t≤tn−bn

Pyn(Xt ≤ γn) = 0. (18)

By definition, γn ≥ pnνn(θ)→∞ as n→∞, and since

dt(yn, π
(n)) ≥ P (n)

yn (Xt > γn)− π(n)
(
{γn, γn + 1, . . . }

)
,

the tightness of (π(n) : n ∈ N) along with (18) give

lim
n→∞

sup
t≤tn−bn

dt(yn, π
(n)) = 1,

completing the proof.

We conclude this section with the proof of Theorem 4.2

Proof of Theorem 4.2. Let Zn be a random variable distributed according to π(n). By Propo-
sition 2.2 we can write

Zn =
∞∑
j=0

Bj(Gj),

where (Gj : j ∈ Z+) are IID Geom−(pn), and (Bj(k) : j, k ∈ Z+) are independent with

Bj(k)
d
=Bin(k, (1− cn)j), all independent of the Gj’s.

14



Let Λ(t) = lnE[e−tZn ]. Then

Λ(t) =
∞∑
j=0

lnE[e−tBj(Gj)].

Now

E[e−tBj(Gj)|Gj] =
(
e−t(1− cn)j + (1− (1− cn)j)

)Gj
=
(
1− qjn(1− e−t)

)Gj
= e−γn,j(t)Gj ,

where qn = 1− cn and γn,j(t) = − ln(1− qjn(1− e−t)). Therefore

E[e−tBj(Gj)] = E[e−γn,j(t)Gj ] =
∞∑
k=0

(1− pn)pkne
−γn,j(t)k =

1− pn
1− pne−γn,j(t)

.

Thus,

Λ(t) = −
∞∑
j=0

ln
1− pn(1− (1− e−t)qjn)

1− pn

= −
∞∑
j=0

ln
(

1 +
pnq

j
n

1− pn
(1− e−t)

)
.

For x ∈ (0, 1),

0 ≤ x− ln(1 + x) ≤ x2

2

Therefore,

0 ≤
∞∑
j=0

pnq
j
n

1− pn
(1− e−t)︸ ︷︷ ︸

(I)

+ Λ(t) ≤ p2n(1− e−t)2

2(1− pn)2

∞∑
j=0

q2jn︸ ︷︷ ︸
(II)

. (19)

Next,

(I) =
pn

(1− pn)cn
(1− e−t) →

n→∞
β(1− e−t),

and since
∑∞

j=0 q
2j
n ≤

∑∞
j=0 q

j
n = 1

cn
,

(II) ≤ pn
pn

(1− pn)2cn
= pnβO(1) →

n→∞
0.

We have thus proved that limn→∞ Λ(t) = −β(1− e−t).
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5 Additional Topics

5.1 Branching process representation

We adopt a scheme of Key [17] for general branching processes with immigration in random
environment to give a probabilistic interpretation of the particular instance of Neuts’ formula
[25]. Using the approach of [1] we compute the generating function of the extinction time in
Section 5.2.3.

The process X can be thought of as a branching process with immigration in random
environment. Branching processes have been used to model growth of a population subject to
random catastrophes by many authors (see, for instance, a comprehensive literature review
in [16]), the idea goes back to at least [15] where a branching process in random environment
(without immigration) was considered. In this section we use a branching representation of
our process and Key’s [17] representation of its stationary distribution for several purposes.
First, it yields Lemma 5.1 below stating that the extinction time τ has exponential tails,
next it provides an illuminating probabilistic representation of the invariant distribution π
for our process, including the extreme case of rare but nearly total catastrophes (see the
discussion after Proposition 5.2 and Theorem 5.3 below).

Let

ωt =

{
1 if a birth event occurs at time t
0 if a catastrophe occurs at time t

(20)

We refer to the sequence ω := (ωt)t∈Z+ as a random environment. We denote the distribution
of the environment by P, the law of the process conditional on the environment by Pω, and
the corresponding expectation by Eω.

The Markov process X can be described using the following branching equation:

Xt+1 =
Xt+It∑
k=1

Ut,i =
Xt∑
k=1

Ut,i + It, (21)

where It = ωt is interpreted as the number of immigrants joining the system at generation
t and Ut,i as the number of progeny of the i-th particle living at generation t. Under the
probability law conditional on the environment ωt, Ut,i are independent Bernoulli variables
with parameter ct := ωt + (1− ωt)(1− c) which are independent of Xt :

Pω(Ut,i = 1) = ct and Pw(Ut,i = 0) = 1− ct.

In statistical applications, this special type of branching processes with Bernoulli repro-
duction mechanism is often referred to as a RCINAR(1) random coefficient integer-valued
autoregressive process of order one [32]. In this context, (21) is written as

Xt+1 = (1− ct) ∗Xt + It, t ∈ Z+,

where (1− ct)∗ describes the action of a binomial thinning operator [24, 28, 31].
Stationary distribution of branching processes with immigration in a random environ-

ment, in a general (and, in fact, multi-type) setting, was studied in [17]. In particular, it
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follows from results in [17] that the random variable τ has an exponential distribution tail (in
order to deduce this, one may replace It by 1 in (21) to be able to formally use Theorem 4.2
in [17], and then apply a stochastic dominance argument). We state it formally as

Lemma 5.1. There exists a, b > 0 such that P0(τ > t) ≤ ae−bt for any t ≥ 0.

We next consider a branching process obtained from X by sampling at the times when
catastrophes occur. This auxiliary process has a slightly simpler structure than the under-
lying process X. We use it below to obtain an alternative probabilistic representation of the
stationary distribution of X.

Let T0 = 0 and

Tn = inf{k > Tn−1 : ωk = 0}. (22)

Observe that the sequence (Tn−Tn−1 : n ≥ 1) is an IID sequence of Geom(1−p) random
variables. Let Zn = XTn and Z := (Zn)n∈Z+ .

Proposition 5.2. The Markov chain Z has a unique stationary distribution Z∞, whose
generating function is given by

E[sZ∞ ] =
∞∏
k=1

1− p
1− p

(
s(1− c)k + 1− (1− c)k

) , s ∈ [0, 1].

Thus, in the language of Proposition 2.2, Z∞ = R−R0 =
∑∞

j=1Binj
(
Rn, (1− c)j

)
.

Proof. Considering Rt as an immigration process, Zt can be constructed as a branching
process with immigration governed by the following branching identity:

Zt+1 =
Zt+Rt∑
k=1

Vt,k, t ∈ Z+, (23)

where Vt,k are IID Bernoulli random variables, independent of the immigration process and
Z0, such that

P (Vt,k = 1) = 1− c and P (Vt,k = 0) = c.

The result thus follows from Theorem 4.2 in [17].

We remark that an auxiliary process similar to our (Zn)n∈Z+ has been used, for instance,
in [7, 15] to derive the stationary distribution for different models with catastrophes.

Following the representation of the stationary distribution in [17], one can write

Z∞ = lim
t→∞

−1∑
k=−t

Zk,0 =
−1∑

k=−∞

Zk,0, (24)

where Zk,0
d
= Bin|k|

(
R|k|, (1 − c)|k|

)
is the number of descendant alive at time zero of a

“demo” immigrant that arrived at time k < 0. Heuristically, in this representation Z∞ is the
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population at time zero of a branching process that starts at minus infinity [17]. In between
two regeneration times Tn, the process goes up Geom−(1 − p) number of times. When
one observe the original chain in the stationary regime, time-wise the chain is in a random
place between two random times Tn. This suggests (using the key renewal theorem) that the
stationary distribution of the original Markov chain should be the convolution of Z∞ and an
independent Geom−(1− p) variable. The result is formally confirmed in Proposition 5.2.

We conclude this section with a brief discussion of the case of “severe but rare” catas-
trophes. For a biological motivation of this regime see, for instance, [13, 19, 26, 27, 30].
Specifically, a sequence of parameters (pn, cn) such that pn → 1, cn → 1 as n → ∞, and
limn→∞

1−cn
1−pn = β for some β. We will denote the stationary distribution for the n-th model,

given by Proposition 2.2, by R(n). Observe that

E[sR] =
∞∏
k=0

1− p
1− p

(
s(1− c)k + 1− (1− c)k

) . (25)

With this, it is not hard to verify the following result:

Theorem 5.3. R(n) = R0+An, where An is independent of R0 and converges in distribution,
as n→∞, to Poiss(β).

Proof. Recall (25), and set xn(k) := pn(1−cn)k
1−pn , k ∈ Z+, n ∈ N, so that

lnE
[
sR

(n)]
= −

∞∑
k=0

ln
(
1 + xn(k)(1− s)

)
, s ∈ [0, 1].

To estimate the right-hand side, one can apply to xn(k) the inequality x− x2

2
≤ ln(1+x) ≤ x

which is true for all x > 0 sufficiently small (and hence, uniformly on k, for all xn(k) with n
large enough). The result follows from the fact

∞∑
k=1

xn(k) =
pn(1− cn)

(1− pn)cn
→ β, as n→∞,

and

∞∑
k=1

(
xn(k)

)2 ≤ xn(1) ·
∞∑
k=1

xn(k)→ 0 · β = 0, as n→∞.

where we took in account that xn(k) is monotone decreasing in k. Thus lnE
[
sR

(n)]
converges,

as n→∞, to −β(1− s), and the proof of the theorem is complete.

Note that in view of Proposition 5.2, Poiss(β) is the limit in distribution of Z∞. Fur-
thermore, using (24) and a similar representation for the underlying branching process X,
one can by virtue of the renewal theorem interpret −R0 as the time of the last catastrophe
before time zero and An as the distribution of the population right after the last catastrophe
in the stationary branching process (Xt)t∈Z.
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5.2 First Extinction Time

5.2.1 Overview

In this section we discuss the following two aspects related to the first extinction time τ :

• Asymptotic behavior of τ under large initial population.

• Generating function for τ .

5.2.2 Asymptotic for large population

In this section we discuss the asymptotic behavior of the first extinction time τ when the
process starts from a large population. To do that we will use the coupling construction
of Section 3.1. Consider the processes X

(0)
t and X

(n)
t with initial populations 0 and n,

respectively. From our coupling we know that for every t ≥ 0 we have

X
(n)
t = X

(0)
t +H

(n)
t .

Let τ (n) and ξ(n) be the hitting time of 0 by X(n) and H(n), respectively:

τ (n) = inf{t ≥ 0 : X
(n)
t = 0}, ξ(n) = inf{t ≥ 0 : H

(n)
t = 0}.

Then τ (n), ξ(n) are both nondecreasing.
Let T0 = 0 and let T1, T2, . . . be the increasing sequence of times X(0) visits 0. Then

clearly,
τ (n) = inf{Tk : Tk ≥ ξ(n)}.

This is because X
(n)
t = 0 if and only if H

(n)
t = 0 and X

(0)
t = 0. Now let ρ(n) = τ (n)− ξ(n).

Then ρ(n) depends on the past of the coupled system only through the size of the population

X
(n)

ξ(n)
. Thus its distribution coincides with the distribution of τ

(X0

ξ(n)
)
. By ergodicity of X(0),

and the fact that ξ(n) ↗∞ a.s. as n→∞, it follows that the distribution of ρ(n) converges
to the distribution of τ , the hitting time of 0 under π. We have proved the following:

Proposition 5.4. τ (n) − ξ(n) converges in distribution to Pπ(τ ∈ ·) as n→∞.

It follows from (9) that

P (ξ(n) ≤ t) = E[(1− (1− c)Nt)n].

Let ε ∈ (0, 1/2), and let At = {|Nt/t− (1− p)| < ε}. Then by the Law of Large Numbers
P (At)→ 1. We have the following two-sided bounds:

E[(1− (1− c)(1−ε)(1−p)t)n, At] ≤ E[(1− (1− c)Nt)n] (26)

≤ E[(1− (1− c)t(1+ε)(1−p))n] + P (Act).

Let

dn = − lnn

(1− p) ln(1− c)
.
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If t ≤ (1− ε)dn, then it follows from the second inequality in (26) that

P (ξ(n) ≤ t) ≤
(
1− n−(1−ε2)

)n(
1 + o(1)

)
+ o(1)→ 0,

while if t ≥ (1 + 2ε)dn, it follows from the first inequality in (26) that

P (ξ(n) ≤ t) ≥
(
1− n−(1+2ε)(1−ε))n(1 + o(1)

)
→ 1.

Thus ξ(n)/dn → 1 in probability. This, and Proposition 5.4 give

Proposition 5.5. τ (n)/dn → 1 in probability as n→∞.

5.2.3 Generating function

For s ∈ [0, 1], let an(s) = En[sτ ] and ψ(s, z) =
∑∞

n=1 anz
n. Note that a0 = 1. The process

has the following first-step decomposition:

Xt+1 = I{ωt=1} · (Xt + 1) + I{ωt=0} · Bin(Xt, 1− c), (27)

where IA stands for the indicator of the event A, namely IA(ω) = 1 if ω ∈ A and IA(ω) = 0
if ω 6∈ A., and ωt is defined in (20). The generating function ψ(s, z) can be evaluated using
(27) and an analytical method of [1]. In particular, we have

Theorem 5.6. For s ∈ [0, 1], let η0(s) = 1 and

ηn(s) = (−1)n(1− c)
n(n−1)

2

((1− p)s
1− ps

)n n∏
k=1

1

1− (1− c)k
, n ∈ N.

Then

E1[s
τ ] = 1 +

1− s
ps
−

∑∞
n=1 ηn(s)∑∞

n=1 ηn(s) ps(1−c)n
1−ps+ps(1−c)n

. (28)

The proof of the theorem is similar to the proof of Theorem 3.1, part (ii), in [1]. Namely,
an application of (27) leads to a recursive equation for the generating function ψ(s, z) of a
type that has been analyzed in [1]. We comment that through the recurrence relation (29),
we can obtain an explicit formula for En[sτ ] for each n ∈ N. The proof below is provided for
the sake of completeness.

Proof. We assume throughout the argument that s, z ∈ (0, 1). For simplicity of notation, we
will occasionally suppress the dependence of underlying functions on the parameter s. Using
(27), we obtain

an = psan+1 + (1− p)s
n∑
k=0

(
n

k

)
cn−k(1− c)kak, n ∈ N.
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Multiplying by zn and summing over n from 1 to ∞ yields

ψ(z)− 1 =
ps

z

{
ψ(z)− 1− a1z

}
− (1− p)s

+(1− p)s
∞∑
k=0

zk(1− c)kak
∞∑
n=k

(
n

k

)
(cz)n−k

=
ps

z

{
ψ(z)− 1− a1z

}
− (1− p)s+

(1− p)s
1− cz

∞∑
k=0

(z − cz
1− cz

)k
ak

=
ps

z

{
ψ(z)− 1− a1z

}
− (1− p)s+

(1− p)s
1− cz

ψ
(z − cz

1− cz

)
,

where we used the negative binomial formula
∑∞

n=k

(
n
k

)
xn−k = (1−x)−k−1 with x = cz. Thus

ψ(s, z) =
ps

ps− z
− z

ps− z
(
1− psa1(s)− (1− p)s

)
− (1− p)sz

(1− cz)(ps− z)
ψ
(
s,
z − cz
1− cz

)
= 1 +

z

ps− z
(
psa1(s) + (1− p)s

)
− (1− p)sz

(1− cz)(ps− z)
ψ
(
s,
z − cz
1− cz

)
. (29)

Let

g(s, z) := ps− z + z
(
psa1(s) + (1− p)s

)
(30)

and

ϕ(z) = ψ(s, z)(ps− z).

For k ≥ 1, let h(z) = z−cz
1−cz , h0(z) = z, and hk(z) = h

(
hk−1(z)

)
for k ∈ N. It is easy to verify

that

hk(z) =
z(1− c)k

1−
(
1− (1− c)k

)
z
. (31)

In this notation, (29) can be rewritten as

ϕ(s, z) = g(s, z) +
(1− p)sh(z)

(1− c)(h(z)− ps)
ϕ
(
s, h(z)

)
. (32)

Note that hk(z) ∈ (0, z) for z ∈ (0, 1). Consequently, taking in account (31) and that
an(s) ∈ (0, 1) for all s ∈ (0, 1),

(i) For any z ∈ (0, 1), hk(z) decreases, as k → ∞, to zero, which is the smallest of two
fixed points of h.

(ii) ψ
(
s, hk(z)

)
≤ ψ(s, z) ≤

∑∞
n=0 z

n <∞ for all k ∈ Z+.
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(iii) We have:

−1 < −z(1− s) < ps− z + z(1− p)s ≤ g(s, z) ≤ ps− z + z
(
ps+ (1− p)s

)
< 1,

and hence g(s, z) is uniformly bounded for s, z ∈ (0, 1).

(iv) For z ≤ ps and k ∈ Z+,

0 ≤ (1− p)shk(z)

(1− c)
(
ps− hk(z)

) → 0, as k →∞. (33)

Thus, one can iterate (32) to obtain

ϕ(s, z) = g(s, z) +
∞∑
n=1

g
(
s, hn(z)

) n∏
k=1

(1− p)shk(z)

(1− c)
(
hk(z)− ps

) .
Plugging in into this formula z = ps yields, taking into account that ϕ(s, z) = 0,

0 = g(s, z) +
∞∑
n=1

g
(
s, hn(z)

)(1− p)nsn(1− c)
n(n−1)

2

(ps− 1)n

n∏
k=1

1

1− (1− c)k
. (34)

This yields (28) by virtue of (30) and (31). In fact, after a suitable renaming of variables,
equation (34) for a1(s) is analogous to (3.12) in [1], while our (28) is its solution (3.4) in
[1].
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