Relative growth of the partial sums of certain random Fibonacci-like sequences

Alexander Roitershtein^{*} Zirou Zhou[†]

January 19, 2017; Revised August 8, 2017

Abstract

We consider certain Fibonacci-like sequences $(X_n)_{n\geq 0}$ perturbed with a random noise. Our main result is that $\frac{1}{X_n} \sum_{k=0}^{n-1} X_k$ converges in distribution, as n goes to infinity, to a random variable W with Pareto-like distribution tails. We show that $s = \lim_{x\to\infty} \frac{-\log P(W>x)}{\log x}$ is a monotonically decreasing characteristic of the input noise, and hence can serve as a measure of its strength in the model. Heuristically, the heavytailed limiting distribution, versus a light-tailed one with $s = +\infty$, can be interpreted as an evidence supporting the idea that the noise is "singular" in the sense that it is "big" even in a "slightly" perturbed sequence.

MSC2010: Primary 60H25, 60J10, secondary 60K20.

Keywords: random linear recursions, tail asymptotic, Lyapunov constant, Markov chains, regeneration structure.

1 Introduction and statement of the main result

Let $(\eta_n)_{n\geq 0}$ be a sequence of independent Bernoulli random variables with $P(\eta_n = 1) = 1 - \varepsilon$, $P(\eta_n = 0) = \varepsilon$ for some $\varepsilon \in (0, 1)$. We consider a sequence $(X_n)_{n\geq 0}$ of real-valued random variables generated by the recursion

$$X_{n+1} = aX_n + b\eta_{n-1}X_{n-1}, \qquad n \in \mathbb{N},$$
(1)

with the initial conditions $X_0 = 1$, $X_1 = a$, where

$$a \in (0,1) \qquad \text{and} \qquad b > 1-a \tag{2}$$

are given deterministic constants.

The above construction is inspired by the models considered in [1]. The sequence X_n can be thought as a perturbation with noise of its deterministic counterpart, which is defined through the recursion equation

$$Z_{n+1} = aZ_n + bZ_{n-1}$$

^{*}Dept. of Mathematics, Iowa State University, Ames, IA 50011, USA; e-mail: roiterst@iastate.edu

[†]Dept. of Mathematics, Iowa State University, Ames, IA 50011, USA; e-mail: zzhou@iastate.edu

and the initial conditions $Z_0 = 1$, $Z_1 = a$. Throughout the paper we are interested in the dependence of model's characteristics on the parameter ε that varies while the recursion coefficients a, b are maintained fixed.

It is not hard to check that $\lim_{n\to\infty} \frac{1}{Z_n} \sum_{k=0}^{n-1} Z_k = (\lambda_1 - 1)^{-1}$, where λ_1 is a constant defined below in (8). In this paper we are primarily concerned with the asymptotic behavior of the following sequence

$$W_n := \frac{1}{X_n} \sum_{k=0}^{n-1} X_k, \qquad n \in \mathbb{N},$$
(3)

which describes the rate of growth of the partial sums relatively to the original sequence X_n . Our main result is stated in the following theorem. Intuitively, it can be interpreted as a saying that while adding more noise to the input by increasing the value of ε yields more noise in the output sequence W_n , the noise remains large for all, even arbitrarily small, values of the parameter $\varepsilon > 0$ in some rigorous sense.

Theorem 1. Let W_n be defined in (3). Then the following holds true:

- (a) There exists $\varepsilon^* \in (0,1)$ such that
 - (i) If $\varepsilon \in (0, \varepsilon^*)$, then W_n converges in distribution, as n goes to infinity, to a nondegenerate random variable $W^{(\varepsilon)}$.
 - (ii) If $\varepsilon \in [\varepsilon^*, 1)$, then $\lim_{n \to \infty} P(W_n > x) = 1$ for any x > 0, that is $W^{(\varepsilon)} = +\infty$.
 - (iii) For any $\varepsilon \in (0, \varepsilon^*)$, there exist reals $s_{\varepsilon} \in (0, \infty)$ and $K_{\varepsilon} \in (0, \infty)$ such that

$$\lim_{x \to \infty} P(W^{(\varepsilon)} > x) x^{s_{\varepsilon}} = K_{\varepsilon}.$$

(b) Furthermore, s_{ε} is a continuous strictly decreasing function of ε on $(0, \varepsilon^*)$, and

$$\lim_{\varepsilon \downarrow 0} s_{\varepsilon} = \infty \qquad \text{while} \qquad \lim_{\varepsilon \uparrow \varepsilon^*} s_{\varepsilon} = 0. \tag{4}$$

The specific choice of the initial values $X_0 = 1$ and $X_1 = a$ is technically convenient, but is not essential. In particular, while asserting it ultimately yields part (a) of Lemma 3, changing it wouldn't affect part (b) of the lemma. Theorem 1 remains valid for an arbitrary pair (X_0, X_1) of positive numbers. See Remark 9 in Section 3 for details. To extend Theorem 1 to a linear recursion (1) under a more general than (2) assumption $a \neq 0, b > 0$, one can consider $\widetilde{X}_n = \theta^{-n} X_n$ with an arbitrary $\theta \in \mathbb{R}$ such that $a\theta > 0$ and $2|a| < 2|\theta| < |a| + \sqrt{a^2 + 4b}$. The new sequence \widetilde{X}_n satisfies the recursion $\widetilde{X}_{n+1} = \widetilde{a}\widetilde{X}_n + \widetilde{b}\eta_{n-1}\widetilde{X}_{n-1}$ with $\widetilde{a} = a/\theta < 1$ and $\widetilde{b} = b/\theta^2 > 1 - \widetilde{a}$. Some other readily available extensions of Theorem 1 are discussed in Section 5 below.

The proof of Theorem 1 is given in Section 3 below. Note that the theorem implies that the limiting distribution $W^{(\varepsilon)}$ has power tails as long as it is finite and non-degenerate. We remark that additional properties of the constants ε^* and s_{ε} can be inferred from the auxiliary results discusses in Section 3 below. In particular, see Proposition 6 which provides some information on the relation of s_{ε} to the Lyapunov exponent and the moments of the reciprocal sequence X_n^{-1} .

For an integer $n \ge 0$, let

$$R_n = \frac{X_n}{X_{n+1}}.$$
(5)

The sequence R_n forms a Markov chain since (1) is equivalent to $R_n = (a + b\eta_{n-1}R_{n-1})^{-1}$. Notice that, since $X_0 = 1$, for $n \in \mathbb{N}$ we have $X_n^{-1} = \prod_{k=0}^{n-1} R_n$ and

$$W_{n+1} = R_n W_n + R_n$$
 or, equivalently, $(W_{n+1} + 1) = R_n (W_n + 1) + 1.$ (6)

The proof of the assertion (a)-(iii) of Theorem 1 is carried out by an adaption of the technique used in [11] to obtain an extension of Kesten's theorem [6, 8] for linear recursions with i. i. d. coefficients to a setup with Markov-dependent coefficients. More specifically, to prove that the distribution of $W^{(\varepsilon)}$ is asymptotically power-tailed, we verify in Section 3 that Markov chain R_n satisfies Assumption 1.5 in [11]. This allows us to borrow key auxiliary results from [11, 13] and also use a variation of the underlying regeneration structure argument in [11]. See Lemma 7 in Section 3 below for details.

The proof of Theorem 1 relies in particular on the asymptotic analysis of the negative moments of X_n (more specifically, the function $\Lambda_{\varepsilon}(t)$ defined below in (18)). First positive integer moments of X_n can be in principle computed explicitly. We conclude this introduction with the statement of a result which is not directly connected to Theorem 1, but might be useful, for instance, for the statistical analysis of the sequence X_n . Here and throughout this paper we use the notation E_P to denote the expectation operator under the probability law P (in order to distinguish it from the expectation E_Q , where Q is introduced in Section 2 below). For $\varepsilon \in [0, 1)$, let

$$\lambda_{\varepsilon,1} = \frac{a + \sqrt{a^2 + 4b(1 - \varepsilon)}}{2} > 0 \quad \text{and} \quad \lambda_{\varepsilon,2} = \frac{a - \sqrt{a^2 + 4b(1 - \varepsilon)}}{2} < 0 \tag{7}$$

denote the roots of the characteristic equation $\lambda^2 = a\lambda + b(1 - \varepsilon)$. We have:

Proposition 2. For any integer $n \ge 0$,

(a) We have
$$E_P(X_n) = \frac{\lambda_{\varepsilon,1}^{n+1} - \lambda_{\varepsilon,2}^{n+1}}{\lambda_{\varepsilon,1} - \lambda_{\varepsilon,2}}$$
. In particular, $\lim_{n \to \infty} \frac{1}{n} \log E_P(X_n) = \lambda_{\varepsilon,1}$

(b) We have $\lim_{n\to\infty} \frac{1}{n} \log E_P(X_n) = a\lambda_{\varepsilon,1} + b(1-\varepsilon)$. More precisely,

$$E_P(X_n^2) = c_1 [a\lambda_{\varepsilon,1} + b(1-\varepsilon)]^n + c_2 [a\lambda_{\varepsilon,2} + b(1-\varepsilon)]^n - \frac{2(-b)^{n+1}(1-\varepsilon)^n}{4b(1-\varepsilon) + a^2},$$

where are the constants c_1 and c_2 are chosen in a manner consistent with the initial conditions $X_0 = 1$ and $X_1 = a$.

(c) Letting $U_{n,k} := E_P(X_n X_{n+k})$ for an integer $k \ge 0$,

$$U_{n,k} = d_{n,1}\lambda_{\varepsilon,1}^k + d_{n,2}\lambda_{\varepsilon,2}^k,$$

where are the constants $d_{n,1}$ and $d_{n,2}$ are chosen in a manner consistent with the initial conditions $U_{n,0} = E_P(X_n^2)$ and

$$U_{n,1} = E_P(X_n X_{n+1}) = \frac{1}{a} \left[E_P(X_{n+1}^2) - b(1-\varepsilon) E_P(X_n^2) - (-b)^{n+1} (1-\varepsilon)^n \right].$$

In particular, for any $k \in \mathbb{N}$ we have $\lim_{n \to \infty} \frac{1}{n} \log E_P(X_n X_{n+k}) = a\lambda_{\varepsilon,1} + b(1-\varepsilon).$

The rest of the paper is organized as follows. Section 2 contains a preliminary discussion and an auxiliary monotonicity result (with respect to the parameter ε) about the Lyapunov constant of the sequence X_n . The proof of Theorem 1 is included in Section 3. The proof of Proposition 2 is deferred to Section 4. Finally, section 5 contains some concluding remarks regarding possible extensions of the results in Theorem 1.

2 Preliminaries: Lyapunov constant of X_n

This section includes a preliminary discussion which is focused on the random variable R_n defined in (5) and the Lyapunov constant $\gamma(\varepsilon)$ introduced below. The main purpose here is to obtain a monotonicity result in Proposition 4. The coupling construction employed to prove Proposition 4 is also used in Section 3, to carry out the proof of Propositions 6 and 11.

Recall $\lambda_{\varepsilon,1}$ and $\lambda_{\varepsilon,2}$ from (7). In order to simplify the notation, denote

$$\lambda_1 := \lambda_{0,1} = \frac{a + \sqrt{a^2 + 4b}}{2}$$
 and $\lambda_2 := \lambda_{0,2} = \frac{a - \sqrt{a^2 + 4b}}{2}$. (8)

Notice that the condition a + b > 1 ensures $\lambda_1 > 1$. Using the initial conditions $Z_0 = 1$ and $Z_1 = a$, one can verify that

$$Z_n = \frac{\lambda_1^{n+1} - \lambda_2^{n+1}}{\lambda_1 - \lambda_2}, \qquad n \ge 0.$$
(9)

Using (9) one can obtain a Cassini-type identity $Z_{n-1}Z_{n+1} - Z_n^2 = b^n(-1)^{n+1}$ (see, for instance, Theorem 5.3 in [9] for the original Fibonacci sequence result) and the identity $Z_{n+1} - \lambda_1 Z_n = \lambda_2^{n+1}$. The alternating sign of the right-hand side in these two identities yields for $k \in \mathbb{N}$,

$$a \le \frac{Z_{2k-1}}{Z_{2k-2}} < \frac{Z_{2k+1}}{Z_{2k}} < \lambda_1 < \frac{Z_{2k+2}}{Z_{2k+1}} < \frac{Z_{2k}}{Z_{2k-1}} \le \frac{a^2 + b}{a}.$$
 (10)

Recall R_n from (5). The (unique) stationary distribution for the countable, irreducible and aperiodic Markov chain R_n can be obtained as follows. For $n \in \mathbb{N}$, let

$$T_n = \sup\{i \le n : \eta_i = 0\}.$$
(11)

Fix any $k \in \mathbb{N}$. Then for a positive integer n > k we have

$$P(R_n = Z_{k-1}/Z_k) = P(T_n = n - k - 1)$$

= $P(\eta_{n-k-1} = 0, \eta_{n-k} = \eta_{n-k+1} = \dots = \eta_{n-3} = \eta_{n-2} = 1) = \varepsilon(1 - \varepsilon)^{k-1}.$

Thus, $\lim_{n\to\infty} P(R_n = Z_{k-1}/Z_k) = \varepsilon(1-\varepsilon)^{k-1}$. The stationary sequence $(R_n)_{n\in\mathbb{N}}$ can be extended into a double-infinite stationary sequence $(R_n)_{n\in\mathbb{Z}}$ [4]. Let Q denote the law of the time-reversed stationary Markov chain $(R_{-n})_{n\in\mathbb{Z}}$. We have established the following result:

Lemma 3. Let $S_k = \frac{Z_{k-1}}{Z_k}, k \ge 1$. Then:

(a) For all $n \in \mathbb{Z}$, we have $P(R_n \in \{S_k : k \in \mathbb{N}\}) = 1$.

(b) Furthermore, $Q(R_n = S_k) = \varepsilon (1 - \varepsilon)^{k-1}$ for any $n \in \mathbb{Z}, k \in \mathbb{N}$.

Let $\gamma = \gamma(\varepsilon)$ denote the Lyapunov exponent of the sequence X_n , that is

$$\gamma := \lim_{n \to \infty} \frac{1}{n} \log X_n = \lim_{n \to \infty} \frac{1}{n} E_P(\log X_n) = E_Q\left(\log \frac{1}{R_1}\right), \quad P - a. s. \text{ and } Q - a. s.$$
(12)

The existence of the limit along with the identities follow from results in [5]. Taking in account that $Z_0 = 1$, (10) implies that

$$\gamma = -E_Q(\log R_1) = -\sum_{n=1}^{\infty} \varepsilon (1-\varepsilon)^{n-1} \log S_n = \sum_{n=1}^{\infty} \varepsilon^2 (1-\varepsilon)^{n-1} \log Z_n.$$
(13)

The last formula can be compactly written as $\gamma = \varepsilon \cdot E_P(\log Z_T)$, where

$$T = 1 + \inf\{k \ge 0 : \eta_k = 0\} = \inf\{j \ge 1 : R_j = 1/a\}.$$
(14)

It follows from (13) and the fact that $|\log S_n|$ is a bounded sequence, that $\gamma(\varepsilon)$ is an analytic function of ε on [0, 1]. In particular,

$$\lim_{\varepsilon \downarrow 0} \gamma(\varepsilon) = \lim_{n \to \infty} \log S_n = \log \lambda_1 \quad \text{and} \quad \lim_{\varepsilon \uparrow 1} \gamma(\varepsilon) = \log a.$$
(15)

We remark that the analyticity of $\gamma(\varepsilon)$ on [0, 1) follows directly from a general result in [12]. For recent advances in numerical study of the Lyapunov exponent for random Fibonacci sequences see [10, 15] and references therein.

We next prove formally the following intuitive result. Together with (15) it implies the existence of $\varepsilon^* \in (0, 1)$ such that $\gamma(\varepsilon) > 0$ if and only if $\varepsilon < \varepsilon^*$. Our interest to this phase transition steams from the result in Lemma 5 stated below in Section 3.

Proposition 4. The function $\gamma(\varepsilon) : [0,1] \to \mathbb{R}$ is strictly decreasing.

Proof. The proof is by a coupling argument. Fix any $\varepsilon \in [0, 1)$ and $\varepsilon_1 \in (\varepsilon, 1]$. Let $(X_n)_{n \ge 0}$ be the sequence introduced in (1), and define $(X_n^{(1)})_{n \ge 0}$ as follows: $X_0^{(1)} = 1$, $X_1^{(1)} = a$, and

$$X_{n+1}^{(1)} = aX_n^{(1)} + b\eta_{n-1}^{(1)}X_{n-1}^{(1)}, \qquad n \in \mathbb{N},$$

where $\eta_n^{(1)} = \min\{\eta_n, \xi_n\}$ and ξ_n are i. i. d. random variables with the distribution

$$\xi_n = \begin{cases} 0 & \text{with probability} \quad \frac{\varepsilon_1 - \varepsilon}{1 - \varepsilon} \\ 1 & \text{with probability} \quad \frac{1 - \varepsilon_1}{1 - \varepsilon}, \end{cases}$$

such that ξ_n is independent of the σ -algebra $\sigma(X_0, \eta_0, X_1, \eta_1, \dots, X_{n-1}, \eta_{n-1}, X_n, X_{n+1})$ for all $n \ge 0$. Then $P(\eta_n^{(1)} = 0) = \varepsilon_1$, $P(\eta_n^{(1)} = 1) = 1 - \varepsilon_1$, and hence the sequence $(X_n^{(1)})_{n\ge 0}$ is distributed according to the same law as $(X_n)_{n\ge 0}$ with ε_1 replacing ε in the definition of η_n . To deduce that $\gamma(\varepsilon)$ is a non-increasing function of ε , observe that by the coupling construction, $\eta_n \ge \eta_n^{(1)}$ for all $n \ge 0$, and hence, by induction, $X_n \ge X_n^{(1)}$ for all $n \ge 0$. To conclude the proof of the proposition it remains to show that $\gamma(\varepsilon)$ is strictly decreasing.

Toward this end, first observe that for any integer $n \geq 2$ we have

$$\zeta_n := \mathbf{1} \big(\eta_n^{(1)} \neq \eta_n \big) = \mathbf{1} \big(\eta_n^{(1)} = 0, \eta_n = 1 \big) = \mathbf{1} \big(\eta_n = 1, \xi_n = 0 \big),$$

where $\mathbf{1}(A)$ denotes the indicator function of the event A and the first equality serves as a definition of ζ_n . Then, the following is an implication of Lemma 3 and (10) along with the fact (which we have established) that $X_n \ge X_n^{(1)}$ for all $n \ge 0$:

$$\log X_{n} - \log X_{n}^{(1)} = \log \frac{X_{n}}{X_{n}^{(1)}} \ge \log \left[\prod_{k=0}^{n-2} \left(\frac{aX_{n-1} + bX_{n-2}}{aX_{n-1}^{(1)}} \right)^{\zeta_{k}} \right]$$
$$\ge \log \left[\prod_{k=0}^{n-2} \left(\frac{aX_{n-1} + bX_{n-2}}{aX_{n-1}} \right)^{\zeta_{k}} \right] \ge \log \left[\prod_{k=0}^{n-2} \left(1 + \frac{b}{a^{2} + b} \right)^{\zeta_{k}} \right]$$
$$\ge \sum_{k=0}^{n-2} \zeta_{k} \cdot \log \left(1 + \frac{b}{a^{2} + b} \right).$$
(16)

It follows then from (12) and the law of large numbers that with probability one,

$$\gamma(\varepsilon) - \gamma(\varepsilon_1) = \lim_{n \to \infty} \frac{1}{n} \left(\log X_n - \log X_n^{(1)} \right) \ge \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-2} \zeta_n \cdot \log\left(1 + \frac{b}{a^2 + b}\right)$$
$$= E_P(\zeta_n) \cdot \log\left(1 + \frac{b}{a^2 + b}\right) = (\varepsilon_1 - \varepsilon) \cdot \log\left(1 + \frac{b}{a^2 + b}\right) > 0.$$

The proof of the proposition is complete.

3 Proof of the main result

The purpose of this section is to prove Theorem 1. The proof is divided into a sequence of lemmas. The critical exponent ε^* is identified and part (a)-(i) and (a)-(ii) of the theorem are proved in Proposition 6. The assertion in part (a)-(iii) of the theorem is verified in Lemma 7. Finally, the claim in part (b) is established in Proposition 11.

Observe that under the stationary law Q the random variable $W_n = \sum_{k=0}^{n-1} \prod_{j=k}^{n-1} R_j$ has the same distribution as $\sum_{k=0}^{n-1} \prod_{j=0}^k R_{-j}$. Therefore one can write $W^{(\varepsilon)} = \sum_{k=0}^{\infty} \prod_{j=0}^k R_{-j}$. The following lemma is well-known, see for instance Theorem 2.1.2 (especially display (2.1.6)) and the subsequent Remark in [14].

Lemma 5. For any $\varepsilon \in (0,1)$ we have $P(W^{(\varepsilon)} < \infty) = Q(W^{(\varepsilon)} < \infty) \in \{0,1\}$. Moreover, $P(W^{(\varepsilon)} < \infty) = 1$ if and only if $\gamma(\varepsilon) = -E_O(\log R_1) > 0$.

Let $\varepsilon^* = \sup\{\varepsilon > 0 : \gamma(\varepsilon) > 0\}$. It follows from Proposition 4, the limits in (15), and the continuity of $\gamma(\varepsilon)$ that

$$\varepsilon^* \in (0,1)$$
 and $\gamma(\varepsilon^*) = 0.$ (17)

By virtue of Lemma 5, ε^* satisfies (a)-(i) and (a)-(ii) in the statement of Theorem 1. We proceed with the proof that (a)-(iii) of the theorem also holds true.

Following [11, 13], we are going to identify the critical exponent s_{ε} in the statement of Theorem 1 as the unique solution to the equation $\Lambda_{\varepsilon}(s_{\varepsilon}) = 0$, where for $t \ge 0$ we define

$$\Lambda_{\varepsilon}(t) := \lim_{n \to \infty} \frac{1}{n} \log E_Q(R_1^t \dots R_n^t).$$

It follows from Lemmas 2.6 and 2.8(a) in [11] (see especially display (2.11) in [11]) applied to the forward Markov chain $(R_n)_{n\geq 0}$ that the above limit exists and in fact is not affected by the initial distribution of the Markov chain. In particular we have:

$$\Lambda_{\varepsilon}(t) = \lim_{n \to \infty} \frac{1}{n} \log E_P\left(\frac{X_0^t}{X_{n-1}^t}\right) = \lim_{n \to \infty} \frac{1}{n} \log E_P\left(\frac{1}{X_n^t}\right)$$
(18)

The following proposition is a key ingredient in the proof of Theorem 1. Note that for any $\varepsilon \in [0, 1]$, $\Lambda_{\varepsilon}(0) = 0$ and, by virtue of the Cauchy-Schwarz inequality, $\Lambda_{\varepsilon}(t)$ is convex on $[0, \infty)$. In particular, the one-sided derivative $\Lambda'_{\varepsilon}(0) := \lim_{t \downarrow 0} \Lambda_{\varepsilon}(t)/t$ is well-defined.

Proposition 6. Let $\varepsilon^* \in (0,1)$ be defined in (17). Then the following four statements are equivalent for $\varepsilon \in (0,1)$:

- (i) $\gamma(\varepsilon) > 0$, that is $\varepsilon \in (0, \varepsilon^*)$.
- (*ii*) $\Lambda'_{\varepsilon}(0) < 0.$
- (iii) There exists a unique $s_{\varepsilon} > 0$ such that $\Lambda_{\varepsilon}(s_{\varepsilon}) = 0$.

(iv) $W^{(\varepsilon)}$ is a P-a.s. finite and non-degenerate random variable.

Proof.

 $(i) \Rightarrow (ii)$ If $\gamma(\varepsilon) > 0$, the ergodic theorem implies that for T defined in (14), Q-a.s.,

$$E_Q\left(\sum_{k=0}^{T-1}\log R_k\right) = E_Q(T) \cdot \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \log R_k = E_Q(T) \cdot E_Q(\log R_1) = -\varepsilon^{-1} \cdot \gamma(\varepsilon) < 0.$$

Hence [6, 8] there exists a unique s > 0 such that $E_P(X_T^{-s}) = 1$. It can be shown (see, for instance, display (2.43) in [11]) that this implies $\Lambda_{\varepsilon}(s) = 0$ and hence $\Lambda'_{\varepsilon}(0) < 0$. (*ii*) \Rightarrow (*i*) Jensen's inequality implies that $\gamma_{\varepsilon} \ge -t\Lambda_{\varepsilon}(t)$, and hence $\gamma(\varepsilon) > 0$ if $\Lambda'(0) < 0$.

$$E_P(X_n^{-t}) \ge E_P\left(X_n^{-t}\prod_{k=2}^n (1-\eta_k)\right) \ge \varepsilon^{n-1}a^{-t(n-1)},$$

and hence $\lim_{t\to\infty} \Lambda_{\varepsilon}(t) = +\infty$. Since $\Lambda_{\varepsilon}(t)$ is a convex function with $\Lambda_{\varepsilon}(0) = 0$, this proves the implication $(ii) \Leftrightarrow (iii)$ (for an illustration, see Fig. 1 below).

 $(i) \Leftrightarrow (iv)$ This is the content of Lemma 5.

The proof of the proposition is complete.

 $(ii) \Leftrightarrow (iii)$ For any t > 0, we have

Using the notation introduced in the statement of Lemma 3, transition kernel of the timereversed Markov chain R_{-n} on the state space $\{S_i : i \in \mathbb{N}\}$ can be written as follows:

$$H(i,j) := Q(R_n = S_j | R_{n+1} = S_i) = \frac{Q(R_{n+1} = S_i | R_n = S_j)Q(R_n = S_j)}{Q(R_n = S_i)}$$
$$= \begin{cases} \varepsilon (1-\varepsilon)^{j-1} & \text{if } i = 1\\ 1 & \text{if } i = j+1\\ 0 & \text{otherwise.} \end{cases}$$

Unfortunately, the infinite matrix H(i, j) doesn't satisfy the conditions imposed in [11, 13] or [3]. More precisely, the kernel H doesn't satisfy the following strong Doeblin condition: $H^m(i, j) \ge c\mu(j)$ for some $m \in \mathbb{N}$, c > 0, a probability measure μ on \mathbb{N} , and all $i, j \in \mathbb{N}$. However, one can exploit the fact that transition kernel of the Markov chain R_n does satisfy Doeblin's condition with $m = 1, c = \varepsilon$, and $\mu = \delta_1$, the degenerate distribution concentrated on j = 1. The proof of the following lemma is a mixture of arguments borrowed from [11] and [13]. The key technical ingredient of the proof is the observation that transition kernel of the forward Markov chain R_n satisfies Assumption 1.2 in [13].

Lemma 7. The claim in part (a)-(iii) of Theorem 1 holds with ε^* introduced in (17). Proof. Let $N_0 = 0$ and then for $i \in \mathbb{N}$,

$$N_i = \sup\{k < N_{i-1} : R_{-k} = 1/a\}.$$

Note that the blocks $(R_{N_{i+1}+1}, \ldots, R_{N_i})$ are independent and identically distributed for $i \ge 0$. For $i \ge 0$, let

The pairs (A_i, B_i) , $i \ge 0$, are independent and identically distributed under the law P. Moreover, it follows from (6) that

$$W^{(\varepsilon)} = A_0 + \sum_{n=1}^{\infty} A_n \prod_{i=0}^{n-1} B_i.$$

To prove Lemma 7 we will verify the conditions of the following Kesten's theorem for $(A_i, B_i)_{i\geq 0}$ under the law P. To enable a further reference (see Section 5 below) we quote this theorem in a more general setting (with not necessarily strictly positive coefficients A_n , B_n) than we actually need for the purpose of proving Lemma 7.

Theorem 8. [6, 8] Let $(A_i, B_i)_{i\geq 0}$ be i.i.d. pairs of real-valued random variables such that (i) For some s > 0, $E(|A_0|^s) = 1$ and $E(|B_0|^s \log^+ |B_0|) < \infty$, where $\log^+ x := \max\{\log x, 0\}$.

- (*ii*) $P(\log |B_0| = \delta \cdot k \text{ for some } k \in \mathbb{Z} | B_0 \neq 0) < 1 \text{ for all } \delta > 0.$ Let $W = A_0 + \sum_{n=1}^{\infty} A_n \prod_{i=1}^{n-1} B_i$. Then
 - (a) $\lim_{t \to \infty} t^s P(W > t) = K_+, \lim_{t \to \infty} t^s P(W < -t) = K_- \text{ for some } K_+, K_- \ge 0.$
 - (b) If $P(B_1 < 0) > 0$, then $K_+ = K_-$.
 - (c) $K_{+} + K_{-} > 0$ if and only if $P(A_{0} = (1 B_{0})c) < 1$ for all $c \in \mathbb{R}$.

Recall T from (14). Observe that $\log B_0 = \sum_{k=N_1+1}^0 \log R_k$ is distributed the same as $\sum_{k=1}^T \log R_k = \log Z_1 - \log Z_{T+1}$. Therefore the non-lattice condition *(ii)* of the above theorem holds in virtue of (9). Furthermore, since clearly $P(B_0 > 1) > 0$ and $P(B_0 < 1) > 0$, we have $P(A_0 = (1 - B_0)c) < 1$ for all $c \in \mathbb{R}$.

It remains to verify condition (i) of the theorem. Recall S_k introduced in the statement of Lemma 3. Let

$$\widetilde{H}(i,j) := Q(R_{n+1} = S_j | R_n = S_i) = \begin{cases} \varepsilon & \text{if } j = 1\\ 1 - \varepsilon & \text{if } j = i+1\\ 0 & \text{otherwise} \end{cases}$$

be transition kernel of the stationary Markov chain R_n . Between two successive regeneration times N_i the forward chain R_n evolves according to a sub-Markov kernel Θ given by the equation

$$\widetilde{H}(i,j) = \Theta(i,j) + \varepsilon \mathbf{1}(j=1).$$
(19)

That is, for $i, j \in \mathbb{N}$,

$$\Theta(i,j) = Q(R_1 = j, N_1 > 1 | R_0 = i) = \begin{cases} 1 - \varepsilon & \text{if } j = i+1 \\ 0 & \text{otherwise.} \end{cases}$$

Further, for any real $s \geq 0$ define the kernels (countable matrices) $\widetilde{H}_s(i,j)$ and $\Theta_s(i,j)$, $i, j \in \mathbb{N}$, by setting $\widetilde{H}_s(i,j) = \widetilde{H}(i,j)R_j^t$ and $\Theta_s(i,j) = \Theta(i,j)R_j^t$. For an infinite matrix A on \mathbb{N} and a function $f : \mathbb{N} \to \mathbb{R}$ let Af denote the real-valued function on \mathbb{N} with $(Af)(i) := \sum_{j \in \mathbb{N}} A(i,j)f(j)$. Since the forward transition kernel \widetilde{H} satisfies Assumption 1.2 in [13], it follows that from Proposition 2.4 in [13] that for all $s \geq 0$:

- 1. There exist a real number $\alpha_s > 0$ and a bounded function $f_s : \mathbb{N} \to \mathbb{R}$ such that $\inf_{i \in \mathbb{N}} f_s(i) > 0$ and $\widetilde{H}_s f = \alpha_s f_s$.
- 2. There exist a real number $\beta_s > 0$ and a bounded function $g_s : \mathbb{N} \to \mathbb{R}$ such that $\inf_{i \in \mathbb{N}} g_s(i) > 0$ and $\Theta_s f = \beta_s f_s$.
- 3. $\beta_s \in (0, \alpha_s)$.

Without loss of generality we can use the following normalization for the eigenfunctions:

$$f_s(1) = 1.$$
 (20)

Furthermore, it follows from Lemma 2.3 in [13] that α_s and β_s are spectral norms of infinite matrices \widetilde{H}_s and Θ_s , respectively, and hence are uniquely defined. It follows from Proposition 6 (see Lemma 2.3 in [13]) that $\alpha_{s_{\varepsilon}} = 1$. In particular, since Λ_{ε} is a continuous function of s, the spectral radius of Θ_s (regarded as an operator acting on the space of bounded function on \mathbb{N} equipped with the sup-norm) is strictly less than one on an interval $(0, \widetilde{s}_{\varepsilon})$ for some $\widetilde{s}_{\varepsilon} > s_{\varepsilon}$. Let I be the infinite unit matrix in \mathbb{N} and $h : \mathbb{N} \to \mathbb{R}$ be a function defined by h(i) = 1 for all $i \in \mathbb{N}$. For any $s \in (0, \widetilde{s}_{\varepsilon})$, and in particular for $s = s_{\varepsilon}$, we have:

$$E_P(B_0^s) = E_P\left(\prod_{k=1}^T R_k\right) = E_P\left(\prod_{k=0}^{T-1} R_k\right) = E_P\left[\widetilde{H}_s^T(1,1)\right]$$
$$= \sum_{n=1}^\infty a^{-s} \varepsilon r \Theta_s^{n-1} h(1) = a^{-s} \varepsilon (I - \Theta_s)^{-1} h(1).$$

On the other hand, it follows from (19) that for any $i \in \mathbb{N}$ we have

$$f_{s_{\varepsilon}}(i) = \widetilde{H}_{s_{\varepsilon}} f_{s_{\varepsilon}}(i) = \Theta_{s_{\varepsilon}} f_{s_{\varepsilon}}(i) + \varepsilon a^{-s_{\varepsilon}} f_{s_{\varepsilon}}(1),$$

and hence $E_P(B_0^{s_{\varepsilon}}) = f_{s_{\varepsilon}}(1) = 1$, where for the second identity we used (20).

Finally, adapting (2.45) in [11] to our framework we obtain for any $s \in (s_{\varepsilon}, \tilde{s}_{\varepsilon})$,

$$\begin{split} E_P(A_0^s) &= E_P\left[\left(\sum_{n=1}^{\infty}\sum_{i=1}^{n}\prod_{j=0}^{i-1}R_{-j}\cdot\mathbf{1}(N_1=-n)\right)^s\right] \\ &= \sum_{n=1}^{\infty}E_P\left[\left(\sum_{i=1}^{n}\prod_{j=0}^{i-1}R_{-j}\cdot\mathbf{1}(N_1=-n)\right)^s\right] \\ &\leq \sum_{n=1}^{\infty}n^s\sum_{i=1}^{n}E_P\left[\prod_{j=0}^{i-1}R_{-j}^s\cdot\mathbf{1}(N_1=-n)\right] \\ &= \sum_{n=1}^{\infty}n^s\sum_{i=1}^{n}\frac{1}{Q(R_0=1/a)}\cdot E_Q\left[\prod_{j=0}^{i-1}R_{-j}^s\cdot\mathbf{1}(N_1=-n,R_0=1/a)\right] \\ &= \sum_{n=1}^{\infty}n^s\sum_{i=1}^{n}E_P\left[\prod_{j=n-(i-1)}^{n}R_j^s\cdot\mathbf{1}(T=n)\right] = \varepsilon a^{-s}\sum_{n=1}^{\infty}n^s\sum_{i=1}^{n}\Theta^{n-i}\Theta_s^{i-1}h(1) < \infty, \end{split}$$

where the last inequality is an implication of the fact that the spectral radius of the infinite positive matrix Θ_s is strictly less than one. The proof of the lemma is complete.

Remark 9. The initial conditions $X_0 = 1$ and $X_1 = a$ guarantee that the measure P is Q conditioned on the event $R_0 = 1/a$. If R_0 has a different value, then A_0 and B_0 defined above are still independent of the *i*. *i*. *d*. sequence of pairs $(A_n, B_n)_{n \in \mathbb{N}}$, but the distributions of the pairs (A_0, B_0) and (A_1, B_1) differ in general. Using a slightly more elaborated version of the arguments used in the proof of Lemma 7 (cf. proof of Proposition 2.38 under assumption (1.6) in [11]) it can be shown that all the conclusions of Theorem 1 remain valid for different strictly positive initial values (X_0, X_1) and that the only effect of changing initial conditions is on the value of the constant K_{ε} .

To conclude the proof of Theorem 1 it remains to prove the claim in part (b) of the theorem. Using the representation of $\Lambda_{\varepsilon}(t)$ given in (18) and a variation of the coupling argument which we employed in order to prove Proposition 4, we first derive the following auxiliary result:

Lemma 10. For any fixed t > 0, $\Lambda_{\varepsilon}(t)$ is a strictly increasing function of ε on [0, 1].

Proof. Recall the notation introduced in the course of the proof of Proposition 4. It follows from the inequality in (16) that

$$\frac{1}{X_n^{(1)}} \geq \frac{1}{X_n} \cdot \prod_{k=0}^{n-2} \left(1 + \frac{b}{a^2 + b} \right)^{\zeta_k} = \frac{1}{X_n} \cdot \exp\left\{ \sum_{k=0}^{n-2} \zeta_k \cdot \log\left(1 + \frac{b}{a^2 + b} \right) \right\}.$$

It follows then from Hölder's inequality that for any constants t > 0, p > 1 and q > 0 such that $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$E_P\left(\frac{1}{X_n^t}\right) \leq \left[E_P\left(\frac{1}{\left(X_n^{(1)}\right)^{pt}}\right)\right]^{1/p} \cdot \left[E_P\left(\exp\left\{-qt\sum_{k=0}^{n-2}\zeta_k \cdot \log\left(1+\frac{b}{a^2+b}\right)\right\}\right)\right]^{1/q}.$$

Therefore, since ζ_k are i. i. d. Bernoulli random variables,

$$\begin{split} \Lambda_{\varepsilon}(t) &\leq \frac{1}{p} \cdot \Lambda_{\varepsilon_{1}}(pt) + \limsup_{n \to \infty} \frac{1}{nq} \log E_{P} \Big(\exp \Big\{ -qt \sum_{k=0}^{n-2} \zeta_{k} \cdot \log \Big(1 + \frac{b}{a^{2} + b} \Big) \Big\} \Big) \\ &= \frac{1}{p} \cdot \Lambda_{\varepsilon_{1}}(pt) + \frac{1}{q} \log E_{P} \Big(\exp \Big\{ -qt\zeta_{1} \cdot \log \Big(1 + \frac{b}{a^{2} + b} \Big) \Big\} \Big) \\ &= \frac{1}{p} \cdot \Lambda_{\varepsilon_{1}}(pt) + \frac{1}{q} \log \Big[(\varepsilon_{1} - \varepsilon) \cdot \exp \Big\{ -qt \log \Big(1 + \frac{b}{a^{2} + b} \Big) \Big\} + (1 - \varepsilon_{1} + \varepsilon) \cdot 1 \Big] \\ &= \frac{1}{p} \cdot \Lambda_{\varepsilon_{1}}(pt) + \frac{1}{q} \log \Big[(\varepsilon_{1} - \varepsilon) \cdot \Big(1 + \frac{b}{a^{2} + b} \Big)^{-qt} + (1 - \varepsilon_{1} + \varepsilon) \Big] \\ &\leq \frac{1}{p} \cdot \Lambda_{\varepsilon_{1}}(pt) - \frac{1}{q} (\varepsilon_{1} - \varepsilon) \Big[1 - \Big(1 + \frac{b}{a^{2} + b} \Big)^{-qt} \Big], \end{split}$$

where in the last step we used the inequality $\log(1 - x) < x$. Since $\Lambda_{\varepsilon}(t)$ is a continuous function of t, by letting p to approach one and thus q to approach infinity, we obtain that

$$\Lambda_{\varepsilon_1}(t) - \Lambda_{\varepsilon}(t) \ge t(\varepsilon_1 - \varepsilon) \log\left(1 + \frac{b}{a^2 + b}\right) > 0.$$

The proof of the lemma is complete.

We now turn to the proof of part (b) of Theorem 1.

Proposition 11. The critical exponent s_{ε} is a strictly decreasing continuous function of ε on $[0, \varepsilon^*)$. Furthermore, (4) holds true.

Proof. The desired monotonicity of s_{ε} follows directly from Lemma 10, see Fig. 1 above. We will next show that s_{ε} is a continuous function of ε on (0, 1). Due to the monotonicity of s_{ε} , the following one-sided limits exist for any $\varepsilon \in (0, \varepsilon^*)$:

$$s_{\varepsilon}^{+} = \lim_{\delta \downarrow \varepsilon} s_{\delta}$$
 and $s_{\varepsilon}^{-} = \lim_{\delta \uparrow \varepsilon} s_{\delta}$.

The second limit, namely s_{ε^*} , exists also for $\varepsilon = \varepsilon^*$. Set $s_{\varepsilon^*} := 0$. If either $s_{\varepsilon}^+ > s_{\varepsilon}$ or $s_{\varepsilon}^- < s_{\varepsilon}$ for some $\varepsilon \in [0, \varepsilon^*]$, then (see Fig. 1 above) $\Lambda_{\delta}(t^*)$ is not a continuous function of δ at any point t^* within the open interval $(s_{\varepsilon}, s_{\varepsilon}^+)$ or, respectively, $(s_{\varepsilon}^-, s_{\varepsilon})$. To verify the continuity of s_{ε} on $(0, \varepsilon^*]$ it therefore suffices to show that $\Lambda_{\varepsilon}(t)$ is a continuous function of ε for any fixed t > 0.

We will use again the notation and the coupling construction introduced in the course of the proof of Proposition 4. Recall T_n from (11), and let $T_n^{(1)}$, $n \in \mathbb{N}$, be the corresponding stopping times associated with the sequence $X_n^{(1)}$. Let $\chi_n = \mathbf{1}(T_n \neq T_n^{(1)})$. The random variables χ_n form a two-state Markov chain with transition kernel determined by

$$P(\chi_{n+1} = 1 | \chi_n = 0) = P(\eta_n = \eta_n^{(1)} = 0) = P(\zeta_{n+1} = 0) = \varepsilon_1 - \varepsilon$$

and

$$P(\chi_{n+1} = 1 | \chi_n = 1) = 1 - P(\eta_n = \eta_n^{(1)} = 0) = 1 - \varepsilon$$

The stationary distribution $\pi = (\pi(0), \pi(1))$ of this Markov chain is given by

$$\pi(0) = \frac{\varepsilon}{\varepsilon_1}$$
 and $\pi(1) = \frac{\varepsilon_1 - \varepsilon}{\varepsilon_1}$

Similarly to (16), in virtue of Lemma 15 we have:

$$\frac{1}{X_n^{(1)}} \leq \frac{1}{X_n} \cdot \prod_{k=0}^{n-2} \left(\frac{a^2 + b}{a} \cdot \frac{1}{a} \right)^{\xi_k} = \frac{1}{X_n} \cdot \exp\left\{ \sum_{k=0}^{n-2} \chi_k \cdot \log\left(1 + \frac{b}{a^2}\right) \right\}.$$

It follows then from Hölder's and Jensen's inequalities that for any constants t > 0, p > 1and q > 0 such that $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$E_P\left(\frac{1}{\left(X_n^{(1)}\right)^t}\right) \leq \left[E_P\left(\frac{1}{X_n^{pt}}\right)\right]^{1/p} \cdot \left[E_P\left(\exp\left\{qt\sum_{k=0}^{n-2}\chi_k \cdot \log\left(1+\frac{b}{a^2}\right)\right\}\right)\right]^{1/q}$$
$$\leq \left[E_P\left(\frac{1}{X_n^{pt}}\right)\right]^{1/p} \cdot \left[\exp\left\{qt\sum_{k=0}^{n-2}E_P(\chi_k) \cdot \log\left(1+\frac{b}{a^2}\right)\right\}\right]^{1/q}.$$
$$= \left[E_P\left(\frac{1}{X_n^{pt}}\right)\right]^{1/p} \cdot \left(1+\frac{b}{a^2}\right)^{t\sum_{k=0}^{n-2}E_P(\chi_k)}.$$

Since Markov chain χ_n is aperiodic, its stationary distribution π is the limiting distribution. Thus,

$$\begin{split} \Lambda_{\varepsilon_1}(t) &\leq \frac{1}{p} \cdot \Lambda_{\varepsilon}(pt) + t \log\left(1 + \frac{b}{a^2}\right) \lim_{n \to \infty} P(\xi_k = 1) \\ &= \frac{1}{p} \cdot \Lambda_{\varepsilon}(pt) + t\pi(1) \cdot \log\left(1 + \frac{b}{a^2}\right) = \frac{1}{p} \cdot \Lambda_{\varepsilon}(pt) + t \frac{\varepsilon_1 - \varepsilon}{\varepsilon_1} \log\left(1 + \frac{b}{a^2}\right). \end{split}$$

Since $\Lambda_{\varepsilon}(t)$ is a continuous function of t and p > 1 is arbitrary, we conclude that

$$0 < \Lambda_{\varepsilon_1}(t) - \Lambda_{\varepsilon}(t) \le t \frac{\varepsilon_1 - \varepsilon}{\varepsilon_1} \log\left(1 + \frac{b}{a^2}\right),$$

and thus, for a given t > 0, $\Lambda_{\varepsilon}(t)$ is a Lipschitz function of the parameter ε on any interval bounded away from zero. This completes the proof of the continuity of s_{ε} on $(0, \varepsilon^*]$. In particular, the second limit in (4) holds true.

To complete the proof of the proposition it remains to prove that the first limit in (4) holds true, namely $\lim_{\varepsilon \downarrow 0} s_{\varepsilon} = \infty$. To this end it suffices to show that $s_{\varepsilon} > t$ for all $\varepsilon > 0$ small enough. To this end, observe that since (9) implies $\lim_{n\to\infty} S_n = \lambda_1^{-1} < 1$, there exists $k_0 \in \mathbb{N}$ such that $S_k < \frac{1}{2}(1 + \lambda_1^{-1}) < 1$ for all $k > k_0$. For $n \in \mathbb{N}$, let $\delta_n = \mathbf{1}(R_n = S_k \text{ with } k > k_0)$ and let $\mathcal{G}_n = \sigma(R_1, R_2, \ldots, R_n)$ be the σ -algebra generated by the random variables R_i with $1 \leq i \leq n$. Then, with probability one, we have for $n \geq 2$,

$$P(\delta_{n} = 0 | \mathcal{G}_{n-1}) \leq P(\bigcup_{0 \le k \le k_{0}} \{\eta_{n-k-2} = 0\} | \mathcal{G}_{n-1})$$

$$\leq \sum_{k=0}^{k_{0}} P(\eta_{n-k-2} = 0 | \mathcal{G}_{n-1}) = (k_{0} + 1)\varepsilon.$$
(21)

Denote $u = \frac{1}{2}(1+\lambda_1^{-1})$ and $v = a^{-1}$. It follows from (18), (21), and (10) that for $\varepsilon < (1+k_0)^{-1}$ we have:

$$\Lambda_{\varepsilon}(t) = \lim_{n \to \infty} \frac{1}{n} \log E_Q \left(\prod_{i=1}^n R_i^t \right) \leq \limsup_{n \to \infty} \frac{1}{n} \log E_Q \left(\prod_{i=1}^n u^{t\sigma_i} v^{t(1-\sigma_i)} \right)$$

$$\leq \log \left[u^t \left(1 - \varepsilon(k_0 + 1) \right) + v^t \varepsilon(k_0 + 1) \right].$$

It thus holds that $\Lambda_{\varepsilon}(t) < 0$, and hence $s_{\varepsilon} > t$, for all $\varepsilon > 0$ small enough. Since t > 0 is arbitrary, it follows that $\lim_{\varepsilon \downarrow 0} s_{\varepsilon} = \infty$. The proof of the proposition is complete.

4 Proof of Proposition 2

For $k \in \mathbb{N}$, et $\mathcal{F}_{k-1} = \sigma(X_0, \eta_0, X_1, \eta_1, \dots, X_{k-2}, \eta_{k-2}, X_{k-1}, \eta_{k-1}, X_k, X_{k+1})$ be the σ -algebra generated by the random variables η_i with $i \leq k-1$ and X_i with $i \leq k+1$. It follows from (1) that η_k is independent of \mathcal{F}_{k-1} . In the proof below, we will repeatedly use without further notice the fact $E_P(X\eta_k) = E_P[X(1-\varepsilon)]$ for a random variable $X \in \mathcal{F}_{k-1}$.

Proof.

- (a) In order to verify the claim, take the expectation on both sides of (1) and recall (8), (9).
- (b) Take the square and then take the expectation on the both sides of (1), to obtain:

$$E_{P}(X_{n+1}^{2}) = a^{2}E_{P}(X_{n}^{2}) + b^{2}(1-\varepsilon)^{2}E_{P}(X_{n-1}^{2}) + 2b(1-\varepsilon)E_{P}(aX_{n}X_{n-1})$$

$$= a^{2}E_{P}(X_{n}^{2}) + b^{2}(1-\varepsilon)^{2}E_{P}(X_{n-1}^{2})$$

$$+2b(1-\varepsilon)E_{P}[(X_{n+1}-b\eta_{n-1}X_{n-1})X_{n-1}]$$

$$= a^{2}E_{P}(X_{n}^{2}) - b^{2}(1-\varepsilon)^{2}E_{P}(X_{n-1}^{2}) + 2b(1-\varepsilon)E_{P}(X_{n+1}X_{n-1})$$

$$= (a^{2}+2b(1-\varepsilon))E_{P}(X_{n}^{2}) - b^{2}(1-\varepsilon)^{2}E_{P}(X_{n-1}^{2})$$

$$+2b(1-\varepsilon)E_{P}(h_{n}), \qquad (22)$$

where $h_n := X_{n-1}X_{n+1} - X_n^2$. We will next derive a Cassini-type formula for $E_P(h_n)$. We have:

$$aE_{P}(h_{n+1}) = E_{P}[(aX_{n}) \cdot X_{n+2}] - aE_{P}(X_{n+1}^{2})$$

$$= E_{P}[(X_{n+1} - b\eta_{n-1}X_{n-1}) \cdot (aX_{n+1} + b\eta_{n}X_{n}) - aX_{n+1}^{2}]$$

$$= E_{P}[b\eta_{n}X_{n}X_{n+1} - ab\eta_{n-1}X_{n-1}X_{n+1} - b^{2}\eta_{n-1}\eta_{n}X_{n-1}X_{n}]$$

$$= E_{P}[b(1 - \varepsilon)X_{n}X_{n+1} - ab\eta_{n-1}(X_{n}^{2} + h_{n}) - b^{2}(1 - \varepsilon)\eta_{n-1}X_{n-1}X_{n}]$$

$$= E_{P}[b(1 - \varepsilon)X_{n}(X_{n+1} - aX_{n} - b\eta_{n-1}X_{n-1}) - ab\eta_{n-1}h_{n}]$$

$$= -abE_{P}(\eta_{n-1}h_{n}).$$

Hence,

$$E_P(X_n X_{n+2} - X_{n+1}^2) = E_P(h_{n+1}) = -bE_P(\eta_{n-1}h_n) = \dots$$

= $(-b)^n \varepsilon^{n-1} E_P(\eta_0 h_1) = (-1)^n b^{n+1} (1-\varepsilon)^n.$ (23)

Using the notation $Y_n = E_P(X_n^2)$ and substituting (23) into (22), we obtain

$$Y_{n+1} = \left[a^2 + 2b(1-\varepsilon)\right]Y_n - b^2(1-\varepsilon)^2Y_{n-1} + 2(-b)^{n+1}(1-\varepsilon)^n,$$

from which the claim in (b) follows, taking in account that $Y_0 = 1$ and $Y_1 = a^2$. (c) For any $k \in \mathbb{N}$, we have:

$$U_{n,k+1} = E_P(X_n X_{n+k+1}) = a E_P(X_n X_{n+k+1}) + b E_P(\eta_{n+k-1} X_n X_{n+k-1})$$

= $a U_{n,k} + b(1-\varepsilon) U_{n,k-1}.$

Furthermore, using notations introduced in the course of proving (b),

$$E_P(X_n X_{n+1}) = \frac{1}{a} E_P(X_n X_{n+2}) - \frac{b(1-\varepsilon)}{a} E_P(X_n^2)$$

= $\frac{1}{a} [E_P(h_{n+1}) + Y_{n+1}^2 - b(1-\varepsilon)Y_n^2].$

The proof of the proposition is complete.

5 Concluding remarks

- 1. We believe that K_{ε} in the statement of Theorem 1 is decreasing as a function of the parameter ε , but were unable to prove it. Some information about this constant can be derived from the formulas given in [2, 6] (see also references in [2]) using the recursion representation (6) of W_n and the regeneration structure described in Section 3 (see the proof of Lemma 7 there) which reduces the Markov setup of this paper to an i. i. d. one considered in [2, 6, 8].
- 2. We think that s_{ε} is a strictly convex function of ε on $[0, \varepsilon^*)$, but were unable to prove it. Since $\lim_{\varepsilon \downarrow 0} s_{\varepsilon} = +\infty$, Fig. 1 strongly suggests that the convexity holds for an interval of small enough values of ε within $(0, \varepsilon^*)$. We believe that, with s_{ε^*} set to zero, s_{ε} is convex in fact on the whole interval $(0, \varepsilon^*]$.
- 3. The linear model (1) can serve as an ansatz in a general case. For instance, it seems plausible that a result similar to our Theorem 1 holds for generalized Fibonacci sequences considered in [7]. This is a work in progress by the authors.
- 4. Using appropriate variations of the above Proposition 6 and Lemma 7, Theorem 1 can be extended to a class of recursions $\widetilde{W}_{n+1} = \theta \cdot \prod_{i=0}^{m-1} R_{nl+i}^{h_i} \widetilde{W}_n + Q_n$ with arbitrary $l, m \in \mathbb{N}$, positive reals h_i , and suitable coefficients θ (large enough by absolute value constant) and Q_n (in general random). For instance, in the spirit of [9], one can consider sequences $\widetilde{W}_n = \frac{1}{X_{2n}^2} \sum_{k=0}^{n-1} X_{2k+1} X_{2k+8}$ or $\widetilde{W}_n = \frac{1}{X_n^2} \sum_{k=0}^{n-1} (-1)^k X_k^2$. The former case corresponds to $\widetilde{W}_{n+1} = Q_n \widetilde{W}_n + Q_n$ with $Q_n = R_{2n+1} R_{2n+2} R_{2n+8} R_{2n+9}$, and the later to $\widetilde{W}_{n+1} = Q_n \widetilde{W}_n + 1$ with $Q_n = (-1)^n R_n^2$. We leave details to the reader.

References

- E. Ben-Naim and P. L. Krapivsky, Weak disorder in Fibonacci sequences, J. Phys. A 39 (2006), L301–L307.
- [2] D. Buraczewski, E. Damek, and J. Zienkiewicz, On the Kesten-Goldie constant, J. Difference Equ. Appl. 22 (2016), 1646–1662.
- [3] J. F. Collamore, Random recurrence equations and ruin in a Markov-dependent stochastic economic environment, Ann. Appl. Probab. 19 (2009), 1404–1458.
- [4] R. Durrett, *Probability: Theory and Examples*, 4th ed., Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010.
- [5] H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist. 31 (1960), 269–556.
- [6] C. M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1991), 126–166.

- [7] E. Janvresse, B. Rittaud, and T. de la Rue, Almost-sure growth rate of generalized random Fibonacci sequences, Ann. Inst. H. Poincaré Probab. Statist. 46 (2010), 1– 298.
- [8] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta. Math. 131 (1973), 208–248.
- T. Koshy, Fibonacci and Lucas Numbers with Applications (Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts), Wiley-Interscience, 2001.
- [10] Y. Lan, Novel computation of the growth rate of generalized random Fibonacci sequences, J. Stat. Phys. 142 (2011), 847–861.
- [11] E. Mayer-Wolf, A. Roitershtein, and O. Zeitouni, *Limit theorems for one-dimensional transient random walks in Markov environments*, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), 635–659.
- [12] Y. Peres, Domains of analytic continuation for the top Lyapunov exponent, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), 131–148.
- [13] A. Roitershtein, One-dimensional linear recursions with Markov-dependent coefficients, Ann. Appl. Probab. 17 (2007), 572–608.
- [14] O. Zeitouni, Random Walks in Random Environment, XXXI Summer School in Probability, (St. Flour, 2001). Lecture Notes in Math. 1837, Springer, 2004, pp. 193-312.
- [15] C. Zhang and Y. Lan, Computation of growth rates of random sequences with multi-step memory, J. Stat. Phys. 150 (2013), 722–743.