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Abstract

In its simplest form, the Robin Hood game is described by the following urn
scheme: every day the Sheriff of Nottingham puts s balls in an urn. Then Robin
chooses r (r < s) balls to remove from the urn. Robin’s goal is to remove balls in
such a way that none of them are left in the urn indefinitely. Let Tn be the random
time that is required for Robin to take out all s · n balls put in the urn during
the first n days. Our main result is a limit theorem for Tn if Robin selects the
balls uniformly at random. Namely, we show that the random variable Tn · n−s/r
converges in law to a Fréchet distribution as n goes to infinity.

MSC2010: Primary: 60G70, 60F05; Secondary: 60C05, 91A15.
Keywords and phrases: urn scheme, limit theorems, extreme order statistics, coupon
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1 Introduction and statement of main results

In this paper we describe a limit theorem for the extreme order statistics of triangular
arrays of certain dependent random variables. The result can be naturally formulated
in terms of an urn scheme which — following [4] — we call the probabilistic Robin Hood
game.

Fix some parameters s, r ∈ N with r < s. Imagine that every day the Sheriff of
Nottingham puts s balls (bags of gold) in an urn (a mystery cave), after which Robin
Hood removes r balls chosen at random from the urn. Let Tn be the time that is required
for Robin to take out all s · n balls put in the urn during the first n days. Let

w = s− r, (1)
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and enumerate arbitrarily the w · n balls found in the urn at the end of the n-th day. We
have

Tn = n+ max
1≤i≤wn

τ
(n)
i , (2)

where τ
(n)
i is the time required for Robin to take out the i-th ball. We remark that this

urn scheme itself does not describe any strategic game, rather it provides a stochastic
version of a play of a certain two-person game previously studied by logicians; see [4] for
more details.

Theorem 1. Let w = s− r. We have that for any x > 0,

lim
n→∞

P(Tn > n+ xns/r) = 1− exp
(
−wx−r/w

)
, (3)

Theorem 1 follows from a more general result stated in Theorem 2 below. The limiting
distribution function F (x) = exp

(
−wx−r/w

)
belongs to the Fréchet family of extreme

value distributions (see for instance [2, 11]). Let an ∼ bn denote limn→∞ an/bn = 1. It

follows from (12) below that, for a fixed x > 0, we have P
(
τ
(n)
i > xns/r

)
∼ x−r/w · n−1 as

n goes to infinity. Hence

P
(
Tn > n+ xns/r

)
= P

(
max

1≤i≤wn
τ
(n)
i > xns/r

)
∼ 1−

{
P
(
τ
(n)
i ≤ xns/r

)}wn
. (4)

In other words, even though the random variables τ
(n)
i are not independent, the distribu-

tion tail of Tn − n = max1≤i≤wn τ
(n)
i is asymptotically close to that of the maximum of

w · n independent random variables, each distributed as τ
(n)
i .

The asymptotic relation (4) indicates that the correlation between τ
(n)
i and τ

(n)
j for

fixed i, j ∈ N becomes weak when n is getting large. There is a large literature on the
extreme value theory for sequences of weakly dependent random variables (see for instance
[1, 5, 6, 7, 8, 10, 12] and references therein). Interesting applications of such results, for
instance to meteorology and actuarial science, can be found e.g. in [2, 9, 14, 15].

Since Tn−n is a waiting time until a certain set of balls is collected by Robin, the study
of the asymptotic behavior of Tn can be thought of as a twist on the coupon collector
problem, cf. [3] and [1, 5, 10]. The proof of (3) given in Section 2 is combinatorial, and it
is based on the asymptotic analysis of an inclusion-exclusion formula (see (8) below) for
P(Tn > n+ xns/r).

Several deterministic variations of the Robin Hood game have been studied by logicians
and computer scientists, the probabilistic version and its interpretation in terms of the
characters of the Robin Hood story were introduced in [4].

Without loss of generality we can assume that the bags in the cave are labeled by
integer numbers, preserving the weak order induced by the date of arrival, so that in day
n the new bags are labeled by sn − s + 1, . . . , sn. Let Dn be the set of bags that Robin
finds in the cave at night n, and let Wn ⊂ Dn denote the set of the bags removed from
the cave at night n. Thus

Dn = {1, . . . , sn} \ ∪n−1i=1Wi. (5)
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For a finite set A let |A| denote its size. With w = s − r, note that the total number of
bags at the cave just before Robin’s visit at night n is |Dn| = w(n− 1) + s = wn+ r.

Formally, the randomized strategy of Robin is a probability law P of a random sequence
(Wn)n∈N such that for any n ∈ N,

P(Wn = A|W1, . . . ,Wn−1) =

{(
wn+r
r

)−1
if A ⊂ Dn and |A| = r

0 otherwise,

where Dn is given in terms of the Wi’s in (5). Since any ball in the urn at day n has
probability r

wn+r
of being removed, it follows from the Borel-Cantelli lemma that with

probability one, every ball will be eventually removed from the urn by Robin (see [4, 13]).
The random time Tn introduced in (2) can be alternatively defined as

Tn = min{m > n : Dn ∩Dm = ∅}.

The following theorem is the main result of this paper.

Theorem 2. With the above notations,

(a) For any x > 0 and α < 1 we have,∣∣∣P(Tn ≤ n+ xns/r)− exp
(
−wx−r/w

)∣∣∣ = o(n−α). (6)

In particular, (3) holds.

(b) Let (tn)n∈N be a sequence of positive reals such that limn→∞ n
−strn =∞. Then

P(Tn > n+ tn) ∼ wns/wt−r/wn .

(c) For any fixed n ∈ N, there exists Kn ∈ (0,∞) such that

lim
x→∞

xr/wP(Tn > n+ x) = Kn (7)

Moreover, as n→∞ we have Kn ∼ wns/w.

Part (a) of the theorem is just Theorem 1 with additional control over the rate of
convergence. The limit theorem stated in Theorem 1 can be rewritten in the following
form

P(Tn > n+ tn) ∼ 1−
(
P(τn ≤ tn)

)wn ∼ 1− exp
{
−wn · (n/tn)r/w

}
,

with tn = xns/r for some fixed x. Part (b) of Theorem 2 shows that this asymptotic
relation holds in fact for a wide range of sequences tn. Finally, part (c) contains a variant
of the previously stated asymptotic results for a given value of n by a change in the order
of the limits.

The proof of Theorem 2 is included in Section 2.
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2 Proof of Theorem 2

First, we obtain an approximation for P(Tn > n+ t) via the inclusion-exclusion formula.
Recall that Dn is the set of bags in the cave just before Robin’s nth move. For any
n, t ∈ N and S, define the event

An,tS = {S ⊂ Dn ∩Dn+t},

and let
Bn,t
S = P(An,tS |S ⊂ Dn).

By symmetry, BS depends only on |S|. Thus for a set of size m we simplify the notation
to Bn,t

m . By the definition of Tn, we have

{Tn > n+ t} =
⋃
i∈Dn

An,t{i}.

It follows from the inclusion-exclusion formula that for any integer L ≤ wn+ r,

(−1)L−1
{
P(Tn > n+ t)−

L∑
m=1

(−1)m−1
(
wn+ r

m

)
Bn,t
m

}
≤ 0. (8)

In what follows (see (14) below) we show that, for a suitable choice of tn,

lim
n→∞

P(Tn > n+ tn) = lim
L→∞

lim
n→∞

L∑
m=1

(−1)m−1
(
wn+ r

m

)
Bn,tn
m .

The proof of of our main results relies on this observation.
We first outline the argument leading to (3), and then give a detailed proof of (6),

from which (3) follows. We start with the estimation of the probabilities Bn,t
m . Recall that

|Dn| = wn+ r. We have:

Bn,t
m =

t∏
i=1

(
w(n+i)+r−m

r

)(
w(n+i)+r

r

) =
t∏
i=1

(w(n+ i))!(w(n+ i)−m+ r)!

(w(n+ i)−m)!(w(n+ i) + r)!

=
t∏
i=1

m∏
k=1

w(n+ i)−m+ k

w(n+ i) + r −m+ k
=

m∏
k=1

t∏
i=1

(
1− r

w(n+ i) + r −m+ k

)
. (9)

Therefore, the following asymptotic relation can be justified for suitable sequences (tn)n∈N
(we specify our choice in (11) below). For a fixed m ∈ N, as n→∞,

Bn,tn
m ∼

m∏
k=1

exp

{
−

tn∑
i=1

r

w(n+ i) + r

}
∼ exp

{
−m

∫ tn

1

r

w(n+ t) + r
dt

}
. (10)

Fix any x > 0 and let

tn = [xns/r], (11)
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where [y] denotes the integer part of y ∈ R, that is [y] = max{n ∈ Z : n ≤ y}. Letting n
go to infinity we obtain from (10) for a fixed m ∈ N,

Bn,[xns/r]
m ∼ exp

{
−m

∫ xns/r

1

r

(n+ t)w + r
dt
}
∼
(
xr/wn

)−m
. (12)

On the other hand,
(
wn+r
m

)
∼ (wn)m/m! as n goes to infinity and m remains fixed. It

follows from (8) that (using odd L = 2l + 1)

lim sup
n→∞

P(Tn > n+ xns/r) ≤ lim inf
l→∞

2l+1∑
m=1

(−1)m−1
(wn)m

m!

(
xr/wn

)−m
and (using even L = 2l)

lim inf
n→∞

P(Tn > n+ xns/r) ≥ lim sup
l→∞

2l∑
m=1

(−1)m−1
(wn)m

m!

(
xr/wn

)−m
.

Therefore the following limit exists for any x > 0 :

lim
n→∞

P(Tn > n+ xns/r) =
∞∑
m=1

(−1)m−1
(wn)m

m!

(
xr/wn

)−m
= 1− exp

(
−wx−r/w

)
.

This completes the proof of (3), provided that (10) has been established. Using (9), we
next obtain an upper and a lower bounds for Bn,t

m from which (10) will follow.

Upper bound for Bt,n
m .

We will, without any further mention, use the following inequalities:

1 + x < ex and 1− x < e−x < 1− x+
x2

2

for arbitrary x > 0,

1− xα < (1− x)α

for x ∈ (0, 1) and α > 0, and∫ t+1

1

g(x)dx ≤
t∑
i=1

g(i) ≤
∫ t

0

g(x)dx

for a positive, non-increasing function g(x), x > 0.
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Observe that for any n, t ∈ N and m ∈ N such that m < wn+ r,(
wn+ r

m

)
·Bt,n

m ≤
(wn+ r)m

m!
exp
{
−

t∑
i=1

r

w(n+ i) + r

}
≤ (wn+ r)m

m!
exp
{
−m

∫ t+1

1

r

w(n+ x) + r
dx
}

=
(wn+ r)m

m!

(w(n+ 1) + r

w(n+ t) + r

)rm/w
=

1

m!

(wn+ s)sm/w(
w(n+ t) + r

)rm/w ≤ 1

m!

(wn+ s)sm/w

(wt+ s)rm/w
. (13)

To derive (6) from (8) we will use the following upper bound for Bt,n
m .

Lemma 1. For any n, t ∈ N and m ∈ N such that m < wn+ r, we have(
wn+ r

m

)
·Bt,n

m ≤
wm

m!
· n

sm/w

trm/w
+
wm

m!
· n

sm/w

trm/w
·
(
e
ms2

nw2 − 1
)

=
wm

m!
· n

sm/w

trm/w
· e

ms2

nw2 .

Proof of Lemma 1. We have:

0 ≤ (wn+ s)sm/w

(wt+ s)rm/w
− wm · n

sm/w

trm/w

=
(ns
tr

)m/w
· wm ·

{(
1 +

s

wn

)sm/w
·
(

1 +
s

wt

)−rm/w
−1
}

≤
(ns
tr

)m/w
· wm ·

{(
1 +

s

wn

)sm/w
−1
}
≤
(ns
tr

)m/w
· wm ·

(
e
ms2

nw2 − 1
)
,

completing the proof of the lemma in view of (13).

Lower bound for Bt,n
m .

We need the following simple result (compare, for instance, with Lemma 4.3 in [3, p.
112]).

Lemma 2. Let (an)n∈Z and (bn)n∈N be two sequences of positive numbers such that an ≤ bn
and bn+1 ≤ bn for any n ∈ N. Then

n∏
i=1

bi −
n∏
i=1

ai ≤
n−1∏
i=1

bi ·
n∑
i=1

(bi − ai).

Proof of Lemma 2. We have

n∏
i=1

bi −
n∏
i=1

ai = bn ·
(n−1∏
i=1

bi −
n−1∏
i=1

ai

)
+ (bn − an) ·

n−1∏
i=1

ai.
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Iterating we obtain:

n∏
i=1

bi −
n∏
i=1

ai ≤
n∑
i=1

(bi − ai) ·
i−1∏
j=1

ai ·
n∏

j=i+1

bj ≤
n∑
i=1

(bi − ai) ·
n−1∏
j=1

bi,

where both conditions of the lemma are used in the last step.

To derive (6) from (8) we will use the following upper bound for Bt,n
m .

Lemma 3. For any n, t ∈ N and m ∈ N such that m <
√

w2n
s
, we have(

wn+ r

m

)
·Bt,n

m ≥

wm

m!
·
(ns
tr

)m/w
·
(

1− sm2

w2n

)
e−

rmn
wt − w + s

s
· w

m

m!
·
(ns
tr

)m/w
· mr

wn−m
.

Proof of Lemma 3. It follows from Lemma 2 that for any n, t ∈ N and m ∈ N such that
m < wn,

0 ≤ exp
(
−

t∑
i=1

mr

(n+ i)w −m+ r

)
−Bt,n

m

≤
t∏
i=1

exp
(
− mr

(n+ i)w −m+ r

)
−

t∏
i=1

(
1− mr

(n+ i)w −m+ r

)
≤ 1

2
exp
(
−

t−1∑
i=1

mr

(n+ i)w + r

)
·

t∑
i=1

( mr

(n+ i)w −m+ r

)2
.

Therefore,

0 ≤ exp
(
−

t∑
i=1

mr

(n+ i)w −m+ r

)
−Bt,n

m

≤ 1

2
exp
(
−
∫ t

1

mr

(n+ s)w + r
ds
)
·
∫ t

0

( mr

(n+ s)w −m+ r

)2
ds

≤ 1

2

(w(n+ 1) + r

w(n+ t) + r

)mr/w
· mr

w(nw −m+ r)
.

On the other hand,

exp
(
−

t∑
i=1

mr

(n+ i)w −m+ r

)
≥ exp

(
−
∫ t

0

mr

(n+ s)w −m+ r
ds
)

=
( nw −m+ r

(n+ t)w −m+ r

)mr/w
≥
( nw −m

(n+ t)w −m

)mr/w
,

7



and hence( nw −m
(n+ t)w −m

)mr/w
−Bt,n

m ≤
1

2

(w(n+ 1) + r

w(n+ t) + r

)mr/w
· mr

w(nw −m+ r)
.

It follows that(
wn+ r

m

)
·Bt,n

m ≥
( (wn−m)s

(wn+ wt)r

)m/w
−
((wn+ s)s

(wt)r

)m/w
· mr

wn−m
.

Let λ = w+s
s
. Then (wn+s)s

(wt)r
≤ λ (wn)s

(wt)r
for any n ∈ N, and hence(

wn+ r

m

)
·Bt,n

m ≥
( (wn−m)s

(wn+ wt)r

)m/w
− λwm

(ns
tr

)m/w
· mr

wn−m
.

Finally, for m <
√

w2n
s
,

(wn−m)sm/w

(wt+ wn)rm/w
− wm · n

sm/w

trm/w
=
(ns
tr

)m/w
· wm ·

{(
1− m

wn

)sm/w
·
(

1 +
n

t

)−rm/w
−1
}

≥
(ns
tr

)m/w
· wm ·

{(
1− sm2

w2n

)
e−

rmn
wt − 1

}
,

completing the proof of Lemma 3.

We are now in a position to complete the proof of Theorem 2.

Completion of the proof of Theorem 2.

Part (a) of Theorem 2. We now turn to the proof of (6). For a fixed α ∈ (0, 1) let

ε =
1

3
min{1− α,w/r − α}.

For n ∈ N, let Lα,n = [nε] in (8). In particular, Lα,n <
√

w2n
s

for all n large enough. It

follows from the bounds stated in Lemma 1 and Lemma 3 that for tn = [xns/r] with any
x > 0,

∣∣∣P(Tn > n+ tn)−
Lα,n∑
m=1

(−1)m−1
1

m!
·
( wn

[nxr/w]

)m∣∣∣ ≤
exp
{

(w + 1)x−r/w
}

×
{

1−
(

1−
s
(
Lα,n

)2
w2n

)
e−

rnLα,n
wtn +

w + s

s
· rLα,n
wn− Lα,n

+
(
e
s2Lα,n

nw2 − 1
)}
.
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First, observe that

lim
n→∞

nα ×
{

1−
(

1−
s
(
Lα,n

)2
w2n

)
e−

rnLα,n
wtn +

w + s

s
· rLα,n
wn− Lα,n

+
(
e
s2Lα,n

nw2 − 1
)}

= 0,

due to the definition of ε and Lα,n. To conclude the proof of part (a) of the theorem it
remains to observe that∣∣∣exp

{
−wx−r/w

}
−

Lα,n∑
m=1

(−1)m−1
1

m!
·
( wn

[nxr/w]

)m∣∣∣
≤ 1

Lα,n!
·
( wn

[nxr/w]

)Lα,n
· exp

{
(w + 1)x−r/w

}
,

and hence

lim
n→∞

nα ×
∣∣∣exp

{
−wx−r/w

}
−

Lα,n∑
m=1

(−1)m−1
1

m!
·
( wn

[nxr/w]

)m∣∣∣ = 0. (14)

Part (b) of Theorem 2. For any fixed L ∈ N, formula (8) gives an approximation for
the distribution tail of Tn. For Bt,n

m we have

Bt,n
m ∼

m∏
k=1

exp
{
−
∫ tn

1

r

(n+ s)w −m+ k
ds
}

=
(
tn/n

)−rm/w
, n→∞.

Since tn/n →n→∞ ∞, the asymptotic behavior of the tail is determined already by the
first term in (8), with m = 1. That is,

lim
n→∞

(trn/n
s)1/w · P(Tn > n+ tn) = lim

n→∞
(trn/n

s)1/w · wn · (tn/n)−r/w = w.

The proof of part (b) of the theorem is thus completed.

Part (c) of Theorem 2. By the inclusion-exclusion formula,

P(Tn > n+ t) =
wn+r∑
m=1

(−1)m−1
(
wn+ r

m

)
Bt,n
m .

It follows from Lemma 1 that limt→∞ t
r/wBt,n

m = 0 for all m > 1, and hence the first term
in this expansion determines the asymptotic form of the distribution tail of Tn− n. Thus
the following limit exists

Kn = lim
t→∞

tr/w · P(Tn > n+ t) = lim
t→∞

tw/s · (wn+ r)
t∏
i=1

(
1− r

(n+ i)w + r

)
∈ (0,∞),

and, furthermore, as n→∞,

Kn ∼ lim
t→∞

tr/w · (wn+ r) exp
(
−
∫ t

0

r

(n+ x)w + r
dx
)

= lim
t→∞

tr/w · (wn+ r)
( nw + r

(n+ t)w + r

)r/w
=

(nw + r)s/w

wr/w
∼ wns/w.

The proof of Theorem 2 is completed.
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