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Abstract

In this paper we provide some sharp asymptotic results for a stochastic model of
species survival recently proposed by Guiol, Machado, and Schinazi.

1 Introduction and statement of results

Recently, Guiol, Machado, and Schinazi [7] proposed a new mathematical framework for
modeling species survival which is closely related to the discrete Bak-Sneppen evolution
model. In the original Bak-Sneppen model [3] a finite number of species are arranged in
a circle, each species being characterized by its location and a parameter representing
the fitness of the species and taking values between zero and one. The number of
species and their location on the circle are fixed and remain unchanged throughout the
evolution of the system. At discrete times n = 0, 1, . . . , the species with the lowest
fitness and its two immediate neighbors update simultaneously their fitness values at
random. The Bak-Sneppen evolution model is often referred to as an “ecosystem”
because of the local interaction between different species. The distinguishing feature
of the model, shown through numerical simulations in [3], is the emergence of self-
organized criticality [1, 2, 6, 9] regardless the simplicity of the underlying evolution
mechanism. The Bak-Sneppen model has attracted significant attention over the past
few decades, but it has also been proven to be difficult for analytical study. See for
instance [6] for a relatively recent survey of the model.

The asymptotic behavior of the Bak-Sneppen model, as the number of species gets
arbitrarily large, was conjectured on the basis of computer simulations in [3]. It appears
that the distribution of the fitness is asymptotically uniform on an interval (fc, 1) for
some critical parameter fc, the value of which is close to 2/3 [1, 9].

Guiol, Machado, and Schinazi [7] were able to prove a similar result for a related
model with a stochastically growing number of species. Their analysis is based on a
reduction to the study of a certain random walk, which allows them to build a proof
using well-known results from the theory of random walks. The main result of [7] is
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thus based on general properties of Markov chains, and suitable variations of the result
can in principle be carried out to other similar models.

In this paper we focus on the model introduced in [7] as is (see also the recent work
of the same authors [8]). Our aim is to elucidate the underlying mechanism responsible
for the phenomenon described in [7] by sharpening the estimates that lead to the major
qualitative statement therein. We proceed with a description of the Guiol, Machado,
and Schinazi (GMS) model. In contrast to the Bak-Sneppen model, the number of
species in the GMS model is random and changes in time, and only the species with
the lowest fitness is randomly replaced. The local interaction between species is not
considered in the GMS model, and therefore the spatial structure of the population is
of no importance.

Let p > 1
2 be given and denote q = 1 − p. Let Z+ denote the set of non-negative

integers and let X = (Xn : n ∈ Z+) be a discrete-time birth and death process with the
following transition probabilities: from each state, Xn increases by 1 with probability
p; from each state different than 0, Xn decreases by 1 with probability q = (1 − p);
finally, at 0, Xn stays put with probability q. Thus X is a nearest-neighbor transient
random walk on the integer lattice Z+ with holding times and reflection barrier at
zero. A jump to the right represents birth of a new species, whereas a jump to the left
represents death of an existing species. Thus Xn represents the number of species alive
at time n. Throughout the paper we assume that X0 = 0 with probability one.

When a new species is born, it is assigned a fitness. The fitness is a uniform [0, 1]
random variable independent on the fitness of all previously born species as well as of
the path of the process X. When X jumps to the left, the species with the lowest fitness
is eliminated. We remark that, in a different context, a similar model was considered
by Liggett and Schinazi in [10].

Fix f ∈ (0, 1). We examine the model by considering two coupled random processes,
L = (Ln : n ∈ Z+) (for lower or left) and R = (Rn : n ∈ Z+) (respectively, for right),
where Ln denotes the number of species alive at time n whose fitness is less than f
while Rn denotes the number of the remaining species alive at time n.

Observe that Ln increases by 1 if Xn does and the newborn species has fitness less
than f, and Ln decreases by 1 whenever Xn decreases by one and Ln is not zero. The
value of Ln remains unchanged when either Xn increases by 1 and the newborn species
has fitness at least f or Xn decreases by 1 and Ln = 0.

Notice that when it is not at zero, the process L evolves as a nearest-neighbor
random walk with probability pf of jumping to the right, probability q of going to the
left, and probability 1 − pf − q of staying put. When at zero, Ln jumps to the right
with probability pf , and stays put with the complementary probability 1 − pf. Thus
L is itself a death and birth process. Since p > q, Markov chain L is positive recurrent
if pf < q, null-recurrent if pf = q, and is otherwise transient. In what follows we will
denote the critical value q/p of the parameter f by fc.

It is shown in [7] that with probability one we have

lim
n→∞

1
n
·#{species alive at time n with fitness within (a, b)} = p(b− a), (1)

for any interval (a, b) ⊂ (fc, 1). That is, the distribution of alive species with fitness
higher than fc approaches the uniform law on (fc, 1), while each species with fitness
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Figure 1: Transition probabilities for G

less than the critical value fc disappears after a finite (random) time.
We sharpen (1) by proving the following theorem. Recall that fc = q/p. Consider

the process B = (Bn : n ∈ Z+), where Bn is the total number of species born by time
n with fitness at least f . Observe that B is a non-decreasing Markov chain (formed by
sums of i.i.d. Bernoulli variables), which jumps one step up with probability p(1− f)
(equal to p − q for f = fc) and stays put with the complementary probability (which
is equal to 2q for f = fc). Hence by the law of large numbers, limBn/n = p(1 − f)
a.s., and (1) is immediate from the next result.

Theorem 1. Suppose that f = fc. Then

1. lim sup
n→∞

Bn −Rn√
4qn ln lnn

= 1, a.s.

2.
Bn −Rn√

2qn
⇒ |N(0, 1)|, where N(0, 1) denotes a mean-zero Gaussian random vari-

able with variance one, and ⇒ stands for convergence in distribution.

2 Proof of Theorem 1

There is no loss of generality assuming that X is obtained recursively from an i.i.d.
sequence of Bernoulli random variables J = (Jn : n ∈ Z+) with P (Jn = 1) = q,
P (Jn = 0) = p, as follows: X0 = 0 and for n ∈ Z+ we have

Xn+1 = Xn + (1− Jn)− Jn(1− sn), where sn := 1{Xn=0}. (2)

Here and henceforth we use the standard notation 1A for the indicator of event A.
Let G = (Gn : n ∈ Z+) be a Markov chain on Z+ × {0, 1} formed by the pairs

Gn = (Ln, Jn). Figure 1 illustrates the transition mechanism of G.

3



2.1 Reduction from Bn −Rn to an occupation time of G

Let ∆ = (∆n : n ∈ Z+) be the process defined through ∆n = Bn−Rn. Notice that ∆n

increases by 1 if and only if Rn decreases by 1, and otherwise stays put. Since

{Rn+1 −Rn = −1} = {Xn+1 −Xn = −1}
⋂
{Ln = 0},

we have

∆n+1 −∆n = 1{Xn+1−Xn=−1}1{Ln=0}.

Thus by (2), ∆n+1 −∆n = (1− sn)Jn1{Ln=0}. Hence we have for n ∈ N,

∆n =
n−1∑
i=0

(1− si)Ji1{Li=0} = ηn−1 −
n−1∑
i=0

Jisi, where ηn :=
n∑
i=0

Ji1{Li=0}.

Observe that ηn is the occupation time (number of visits) of G at state (0, 1) up to
time n. Furthermore, since X is transient,

∞∑
i=0

siJi ≤
∞∑
i=0

si <∞, a.s.

Therefore, since L and consequently G are recurrent (and thus ∆n is a non-decreasing
sequence converging to +∞ with probability one), it suffices to show that Theorem 1
holds with ∆n = Bn −Rn replaced by ηn in its statement.

Excursion decomposition for the path of L We decompose the path of L
into a sequence of successive excursions away from 0, each one begins at 0 and lasts
until (but not including) the next time when L returns to 0 from 1. Set V0 = −1 and,
for k ∈ N, let Vk be the total duration of the first k excursions of L from 0. That is

Vk = inf{n > Vk−1 : Ln = 1, Ln+1 = 0}.

For k ∈ N, define

µk = ηVk
− ηVk−1

=
Vk∑

i=Vk−1+1

Ji1{Li=0}.

Notice that the excursions are independent and identically distributed. Therefore,
(µk : k ∈ N) is an i.i.d. sequence. Let Nm = max{k ∈ Z+ : Vk ≤ m}, m ∈ N. That is,
Nm is the number of returns to 0 of the process L up to time m. Then for m ∈ N we
have

Nm∑
k=1

µk ≤ ηm <

Nm+1∑
k=1

µk, (3)

where we make the usual convention that
∑0

k=1 µk = 0.
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We now compute µ := E(µk) using the fact that the sequence of pairs Gn = (Ln, Jn)
forms a Markov chain, the transition mechanism of which is illustrated in Fig. 1. The
value of µ is equal to the expected number of visits by this Markov chain to the state
(0, 1) during the period of time starting at the state (0, 1) with probability q and at
(0, 0) with probability p, and lasting until G leaves the set {(0, 0), (0, 1)}. We thus have,
using first step analysis,

µ = E(µ1) = P (J0 = 1) · (1 + µ) + P (J0 = 0, L1 = 0) · µ+ P (J0 = 0, L1 = 1) · 0
= q(1 + µ) + p(1− fc)µ+ pfc · 0 = q + µ(1− pfc) = q + µp.

Observe that once the Markov chain L is at zero, it will stay put until Jk = 0 and the
fitness of the newborn particle is less than fc. Hence µk is stochastically dominated by a
geometric random variable with parameter P (J0 = 0, L1 = 1) = pfc = q. In particular
µ < ∞, and hence the above identity implies µ = 1. Consequently, using (3) and the
law of large numbers, we obtain

ηn ∼ Nn as n→∞, a.s. (4)

Here and henceforth, an ∼ bn as n→∞ for two sequences of real numbers (an : n ∈ N)
and (bn : n ∈ N) means, as usual, limn→∞ an/bn = 1. In what follows, our plan is to
prove a law of iterated logarithm and a central limit theorem for ηn by a reduction to
the corresponding statements for the “inverse” Vn of Nn.

Reduction to a simple random walk With each excursion of L away from
zero we can associate a skeleton, which is the path obtained from the excursion by
omitting all transitions from a state of L to itself. The skeleton is an excursion of
the simple (nearest-neighbor) symmetric random walk on Z+ with a reflection barrier
at zero. Hence, if we let τk denote the length of the skeleton, then due to the choice
of fc it follows that τk has the same distribution as the time required for the simple
(nearest-neighbor) symmetric random walk on Z to get back to 0 starting from 0.

Recall that the holding time of L at zero during one excursion is a geometric
random variable with the parameter P (J0 = 0, L1 = 1) = pfc = q. Let hk be the i.i.d.
sequence of holding times at zero during successive excursions of L from zero. That is,
P (hk = n) = pn−1q, n ∈ N. In what follows we will use the notation Geom(a) for the
geometric distribution with parameter a (for instance, we could write hk ∼ Geom(q)).
The time spent by L at each visit to a site is a geometric random variable, Geom(2q)
for sites different than 0 and Geom(q) for 0.

Notice that the skeleton of the recurrent Markov process L is independent of the
holding times at states visited during the excursion. Therefore, the length of a single
excursion itself is a sum of one Geom(q) random variable plus a sum of τk−1 indepen-
dent Geom(2q) random variables. If we replace hk with a Geom(2q), then the resulting
modified “excursion time” becomes a sum of τk copies of a Geom(2q) random variable.
Let V ′m denote the total length of the first m excursions modified in this way. Clearly,
Vm ≥ V ′m. By the law of large numbers,

lim
m→∞

Vm − V ′m
m

= E(h1)− E(h′1) =
1
2q
, a.s., (5)
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where h′1 is a geometric random variable with parameter 2q. Letting Tm =
∑m

k=1 τk,
we obtain

V ′m =
Tm∑
k=1

h′′k,

where (h′′k : k ∈ N) is an i.i.d. sequence of random variables, each one distributed as
Geom(2q). Thus, by the law of large numbers,

V ′m ∼
Tm
2q

as m→∞, a.s. (6)

Notice that Tm is distributed the same as the total length of the first m excursions
from zero of a simple (nearest neighbor) symmetric random walk.

2.2 Completion of the proof: CLT and LIL for ηn

LIL for ηn We need the following result. Although the claim is a “folk fact”, we
give a short proof for the sake of completeness.

Lemma 1.

lim inf
m→∞

Tm
m2/(2 ln lnm)

= 1, a.s.

Proof of Lemma 1. Let S = (Sn : n ∈ Z+) denote the simple symmetric random walk
on Z. That is S0 = 0 and

Sn+1 = Sn + ζn, n ∈ Z+,

where (ζn : n ∈ Z+) is a sequence of i.i.d. random variables, taking values ±1 with
equal probabilities. Let γ0 = 0 and define inductively γm+1 = inf{k > γm : Sk = m+1}
for m ≥ 0. Let φ(x) =

√
2x ln lnx for x > 0. By the law of the iterated logarithm for

S,

lim sup
n→∞

Sn
φ(n)

= lim sup
n→∞

Sγn

φ(γn)
= lim sup

n→∞

n

φ(γn)
, a.s.

Since φ−1(k) ∼ k2/(2 ln ln k) as k →∞, we obtain

lim inf
n→∞

γn
n2/(2 ln lnn)

= 1, a.s. (7)

Let Ym = γm+1− γm, with the usual convention that the infimum over an empty set is
+∞. Observe that γn =

∑n−1
i=0 Yi and that 1 + Y1 is equal in distribution to the time

length of an excursion of S away from zero. Thus the law of the sequence (Tn : n ∈ N)
is equal to the law of the sequence (n+ γn : n ∈ N), and we obtain

lim inf
m→∞

Tm
m2/(2 ln lnm)

= lim inf
n→∞

n+ γn
n2/(2 ln lnn)

= 1, a.s.

completing the proof of the lemma.
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Using the lemma along with (5) and (6), we obtain

lim inf
m→∞

2qVm
m2/(2 ln lnm)

= lim inf
m→∞

2qV ′m
m2/(2 ln lnm)

= 1, a.s.

Consequently, since N is the inverse sequence of V (that is, VNk
≤ k < VNk+1), one

can deduce from it (in the same way as (7) is derived from the usual LIL) that

lim sup
k→∞

Nk√
4qk ln ln k

= 1, a.s.

Combining this with (4) completes the proof of the law of iterated logarithm for ηn.

CLT for ηn We now turn to the proof of the central limit theorem. The proof relies
on a well-known limit theorem for a (properly normalized) random sequence Tm. More
precisely, we have (see for instance [5, p. 394]):

lim
m→∞

E
(
e−θTm/m2)

= e−
√

2θ, θ ≥ 0.

Therefore, it follows from (5) and (6) that

lim
m→∞

E
(
e−θVm/m2)

= lim
m→∞

E(e−θV
′
m/m

2)
= e−

√
θ/q, θ ≥ 0.

The function Φc(θ) = e−c
√

2θ, θ ≥ 0, with c > 0, is the Laplace transform of a positive
stable law with index 1/2 whose density function is given by (see for instance [5, p. 395])

ϕc(u) = 1{u≥0}
ce−c

2/2u

√
2πu3

.

We will use this formula with the parameter c equal to c∗ := 1√
2q
. Observe that for all

k ∈ N and u > 0,

P (Nk ≤ u) = P0(Vbuc+1 > k),

where buc stands for the integer part of u, that is buc = max{n ∈ Z+ : n ≤ u}. Fix
s > 0 and let u =

√
ks. Then, using the standard notation o(1) to denote a sequence

converging to zero when the underlying index k goes to infinity,

P (Nk ≤
√
ks) = P (Vb

√
ksc+1 > k)

= P
( Vb

√
ksc+1

(b
√
ksc+ 1)2

>
1
s2
(
1 + o(1)

))
→
k→∞

∫ ∞
s−2

ϕc∗(u)du.

Changing variables from u to t = 1/
√
u in the last integral, we obtain

lim
k→∞

P (Nk ≤
√
ks) =

∫ s

0

2e−t
2/(2c−2

∗ )√
2πc−2
∗

dt.

Therefore, as k → ∞, the random sequence Nk/
√
k converges weakly to the absolute

value of a centered normal random variable with variance equal to c−2
∗ = 2q. Combining

this with (4) completes the proof of the central limit theorem for ηn.
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