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Abstract

In this paper we formulate and analyze a Markov process modeling the motion of
DNA nanomechanical walking devices. We consider a molecular biped restricted to
a well-defined one-dimensional track and study its asymptotic behavior. Our analysis
allows for the biped legs to be of different molecular composition and thus to contribute
differently to the dynamics. Our main result is a functional central limit theorem
for the biped with an explicit formula for the effective diffusivity coefficient in terms
of the parameters of the model. A law of large numbers, a recurrence/transience
characterization and large deviations estimates are also obtained. Our approach is
applicable to a variety of other biological motors such as myosin and motor proteins
on polymer filaments.

Keywords: DNA nanodevices, molecular spiders, controlled random walks, Markov additive
processes, law of large numbers, recurrence-transience criteria, large deviations, central limit
theorem, regeneration structure.

1 Introduction

Biological molecular motors are of fundamental importance for a variety of cell and tissue
level processes. Nanomotors such as polymerases move along one-dimensional DNA tem-
plates in assembling messenger RNA macromolecules, while micromotors such as proteins of
the myosin family are responsible for actin-based cell motility and the transport of cargo in-
side cells [10, 19]. Identifying the biochemical control mechanisms regulating such biological
motor activities is the subject of current research activity in cellular and molecular biol-
ogy [25], and different mathematical approaches have been recently employed in elucidating
possible mechanisms at work [16, 24].
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Research in biological motors in conjunction with recent advances in DNA nanofabrica-
tion technology have spurred a lot of interest in biomimetic nanomotor design and DNA-
based devices, such as nanomechanical switches and DNA templates for the growth of semi-
conductor nanocrystals to name a few [27]. Research activity in this area has been focused
on designing and controlling dynamic DNA nanomachines that can be activated by and re-
spond to specific chemical signals in their environment, thus expanding on the biochemical
paradigm of eukaryotic and prokaryotic cells [20]. Potential applications of such synthetic
molecular machinery include DNA-based computing and engineered DNA motors designed
for intelligent drug delivery among other in vivo therapeutic applications [3, 18].

Currently, there exist two types of molecular designs implementing DNA-based walking
devices. Both designs are based on control mechanisms that rely on nucleic acid hybridiza-
tion, and the corresponding molecular constructs can be bipedal or multipedal with the
latter sometimes referred to as molecular spiders [18]. In the first implementation approach,
devised by Sherman & Seeman [22], the walking device consists of two double helical do-
mains (the device legs) connected by flexible linker regions. The construct is held on a
self-assembled, one-dimensional path by DNA set strands with nucleic acid domains com-
plementary to molecular imprints on the device legs and the substrate. In this context, the
detachment of a leg from the path during a walk cycle is mediated by the removal of the set
strand through a hybridization reaction [20, 22].

A more recent molecular design by Pei et al. [18] does not require the presence of in-
terface strands in that it allows for each device leg to be directly attached to the substrate
through Watson-Crick base pair formation. Leg detachment during the walk cycle is con-
trolled by the cleavase activity of nucleic acid domains imprinted on the leg. This latter
attribute of the system leads to a random walk of the device on the substrate, dictated by
the stochastic events of leg detachment and relocation. Specific aspects of the long-term
dynamics of this random walk have been investigated mathematically by Antal et al. [2]
and Antal & Krapivsky [1], who have derived explicitly the mean velocity and the diffusion
coefficient of the walker under specific conditions on leg relocation rates. Another related
work on a molecular spider random walk is the recent paper by Gallesco, Müller and Popov
[9].

In this paper we prove a strong law of large numbers and a functional central limit
theorem for the location of a molecular biped with explicit expressions for the asymptotic
velocity and limiting variance. The existence of a law of large numbers and a functional
central limit theorem for the model follows from general theory of regenerative processes.
The shortcoming of this purely probabilistic method lies in the quantitative analysis. The
expression it provides for the variance in the central limit theorem does not appear to be
useful for the actual computation or estimation of the variance, which is crucial for appli-
cations. Our work focuses mainly on the computation of the variance in the central limit
theorem and generalizes the results of Antal et al. [2]. The latter are based on the existence
of various symmetries in the definition of the underlying random walk, whereas our analysis
relies on a different approach and is not restricted by such assumptions.

We employ an analytic framework presented recently in [4], which is based on the analysis
of the generating function of additive functionals associated with an underlying finite Markov
chain. In general, the variance in the central limit theorem for dependent sequences differs
from the so-called “average variance” experienced by the process, a phenomenon known
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in the literature as effective diffusivity. The formula for the limiting variance appearing
in the CLT for additive functionals of Markov chains contains a “generalized inverse” of
the generator (see for instance Theorem 7.6 in Chapter 7 of [8] or representation (17.50)
in Section 17.4.3 of [15]). The spectral perturbation approach is a standard technique for
establishing CLTs for Markov chains in compact state spaces (see, e.g. [11, 13]). In [4] the
authors establish a link between the moment generating function, the generalized inverse
and perturbations of the Perron root for matrices. Furthermore, they provide an efficient
method for computing these quantities in terms of expectations of hitting times. In our case,
these ultimately lead to the desired results.

The remainder of the paper is organized as follows. The random walk formalism of
the model is described in Section 2.1. In Section 2.2 we present results obtained through
a regenerative approach. The analytic viewpoint is presented in Section 2.3, followed by
estimates on the variance and an explicit formula for the variance in Sections 2.4 and 2.5,
respectively. In Section 2.6 we present some examples.

2 Random walk analysis of the motion of DNA bipeds

In the following, we formulate the model to be considered in the rest of the paper. In
Section 2.2 we employ general results to determine the asymptotic behavior of the model. In
Section 2.3 we compute explicitly the asymptotic speed and variance of the molecular biped.
The main results of the paper are stated in Corollary 2.3, Corollary 2.6, and Theorem 2.8.
The latter establishes a link between the asymptotic speed and variance and perturbations
of a Perron root. This, in turn, leads to explicit expressions for the quantities of interest in
Theorem 2.11 and Section 2.6.1.

2.1 Random walk formalism

We consider a continuous time random walk modeling the motion of a DNA biped on a
one-dimensional walking path (see also [2] and [1, 9]). The legs of the biped are assumed to
move on a discrete (integer) lattice representing the nucleic acid binding domains imprinted
on the path. The waiting time for each leg follows an exponential distribution, with different
legs being in general associated with different exponential clocks. The system is character-
ized by six parameters: (a) four parameters accounting for the transition rate probabilities
corresponding to the relocation of each leg (two legs and two possible movement directions)
and (b) the minimum and the maximum possible distance between legs. The latter two
parameters represent a mechanical constraint imposed by the design of the molecular con-
struct, whereas the transition rate probabilities for leg movements encode information on
the interactions of the legs with the substrate path.

Let α denote the transition rate for the left leg moving to the left and β be the cor-
responding transition rate for the left leg moving to the right. Similarly, let λ and µ be
the transition rate probabilities for the right leg moving to the left/right, respectively. The
mechanical constraint is that the right leg is always between 0 and S units to the right of the
left leg, where S ∈ N is some fixed parameter. Whenever a clock ticks, an attempt to move
is made by the corresponding leg in the corresponding direction. The attempt succeeds if
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Figure 1: State space for the Markov chain (X(1), X(2))

the new leg configuration satisfies the mechanical constraint. We denote the position of the
left and right leg of the spider at time t ∈ R+ by X(1)(t) and X(2)(t), respectively. Note that
neither X(1) nor X(2) is a Markov chain. However, the pair (X(1), X(2)) is a Markov chain.
Figure 1 shows the transition rates and the state space for the Markov chain (X(1), X(2)),
consisting of all points in Z2 between the two dashed diagonal lines. For each state, the hor-
izontal coordinate describes X(1) (left leg) and the vertical coordinate describes X(2) (right
leg). Note that the transition rates at each site to each of the allowed directions depend only
on the direction.

Remark 2.1. We remark that the analysis that follows remains valid if we assume that the
right leg is always between S1 and S1 +S units to the right of the left leg, where S1 ∈ Z+ and
S ∈ N. Indeed, if we denote the locations of the left and right leg of the spider at time t ∈ R+

by X
(1)

(t) and X
(2)

(t), respectively, then for any S1 ∈ Z+ the distribution of (X
(1)
, X

(2)
)

starting from a state (x1, x2) coincides with the distribution of (X(1), X(2)) + (0, S1) starting
from (x1, x2 − S1). Hence, there is no loss of generality in focusing on the case S1 = 0.

2.2 The regenerative viewpoint

Let Y (t) = X(2)(t) −X(1)(t) denote the process corresponding to the distance between the
left and the right leg. Then Y is a pure birth and death Markov chain on {0, . . . , S} with
rates x = α+µ to the right and y = β+λ to the left. A significant amount of information for
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the asymptotic behavior of X(2)(t) can be derived using a renewal structure induced by Y ,
defined by successful return times of this chain to a distinguished state, say S. More precisely,
let τ0 = 0 and τk = inf{t > τk−1 : Y (t) = S} for k ∈ N. Let Nt = sup{k ∈ N : τk < t} be the
number of returns to S prior time t > 0.

The following lemma is standard and its proof is thus omitted.

Lemma 2.2. We have:

(i) The time intervals (τn− τn−1)n≥1 are independent random variables. Moreover all of them
besides perhaps τ1 − τ0 are identically distributed.

(ii) The path fragments (X(2)(t)−X(2)(τn−1) : τn−1 ≤ t < τn)n≥1 are independent. Moreover,
all of them except perhaps the first one are identically distributed.

Let D(R+; R) denote the set of real-valued functions on R+, which are right-continuous
and possess left limits. We endow this set with the Skorokhod topology and its Borel σ-field.
We refer the reader to Billingsley [6, Chapter 3] for details on the Skorohod topology. The
following corollary can be derived from Lemma 2.2 by using appropriate moment conditions
(see e.g., [12, 23]).

Corollary 2.3.

(i) (strong law of large numbers)

v = lim
t→∞

X
(2)
t

t
=
E(X(2)

τ2
−X(2)

τ1
)

E(τ2 − τ1)
∈ (−∞,∞), a.s.

(ii) (recurrence/transience dichotomy)

(a) If v > 0, then limt→∞X
(2)(t) =∞, a.s.

(b) If v = 0, then lim inft→∞X
(2)(t) = −∞ and lim supt→∞X

(2)(t) =∞, a.s.

(c) If v < 0, then limt→∞X
(2)(t) = −∞, a.s.

(iii) (functional central limit theorem) For t ≥ 0, define a process W (t) in D(R+,R) by setting

W (t)(s) =
X

(2)
ts − tsv√

t
, s ≥ 0.

Then W (t) converges in law in the space D(R+,R), as t → ∞, to a Brownian motion with
diffusivity coefficient σ2

eff ∈ (0,∞) given by

σ2
eff =

E
(
[X(2)

τ2
−X(2)

τ1
− v(τ2 − τ1)]2

)
E(τ2 − τ1)

. (1)

The subscript eff stands for “effective”, which is to be compared with the “average”
variance defined in (7). It is clear from (1) (see also Theorem 2.9 below) that σeff > 0. The
main goal of this paper is to derive explicit expressions for v and σeff .

The law of large numbers can be complemented by the following large deviation principle
(see for instance [14] or Remark (ii) in [17, p. 594]).
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Proposition 2.4. There exists a convex lower semi-continuous rate function J : R → R
such that

(i) J(v) = 0, and J(u) > 0 for u 6= v.

(ii) limt→∞
1
t logP

(
X

(2)
t ≥ tu

)
= −J(u) for all u > v.

(iii) limt→∞
1
t logP

(
X

(2)
t ≤ tu

)
= −J(u) for all u < v.

2.3 The analytic viewpoint

Let D be the parallelogram in Z2 whose vertices are (0, 0), (S, S), (S, 2S) and (0, S). The
shaded region in Figure 1 represents D. Let Z be the Markov chain (X(1), X(2)) modulo D.
That is, Z = (Z1, Z2) is the nearest neighbor Markov chain on D with rates to the left and
right equal to α and β, respectively, and rates for moving downwards and upwards equal to
λ and µ, respectively. Additionally, we allow jumps to the “left” from (0, i), i ≤ S − 1 to
(S, i+S+ 1) at rate α, and we allow jumps to the “right” from (S, i+S+ 1) to (0, i) at rate
β. We observe then that the difference process Z2(t)−Z1(t) coincides with Y (t) = X(2)(t)−
X(1)(t).

We further observe that the displacement X(2)(t) − X(2)(0) has the same distribution
as the number of jumps Z upwards minus the number of jumps downwards, until time t.
We denote the latter by I(t). For fixed η ∈ R, define the semigroup of linear operators
T η = {T ηt : t ∈ R+} on RS+1 by letting

T ηt f(u) = Eue
ηI(t)f(Z(t)).

By setting f = δu′ for some u′ ∈ D, it follows that T η has an infinitesimal generator Lη,
defined by Lηf(u) =

∑
u′ η(u, u′)f(u′), where the rates η(u, u′) are non zero only if u = u′

or u′ is one step away from u, and η(u, u′) is given by the following table:

u′ relative to u -1 +1
horizontal α β
vertical λe−η µeη

We remark that Lη is the h-transform of the generator of Z, L0, with the positive function

h(a, b) = eηb. That is for any function f , we have Lηf = 1
h
Lη(hf).

Now η(u, u) = limt→0
1
t
[
Eu[δu(Z(t))] − 1

]
= d
dt
Pu(X(t) = u)|t=0, and is then equal to

−(α+ µ) when u = (i, i), to −(β + λ) when u = (i, i+ S) and is equal to −(α+ β + λ+ µ)
otherwise. As a result, η((i, j), (i′, j′)) = η(i′ − i, j′ − j), which in turn implies that if
ϕ(i, j) = ϕ(j− i) then (Lηϕ)(i, j) is also a function of j− i. In particular, it follows that for
all t ∈ R+, T ηt 1(i, j) = E(i,j)e

ηI(t) is a function of j − i. Let then ϕ(t, y) = E(i,i+y)e
ηI(t) for

some arbitrary i. It follows that d
dt
ϕ(t, y) = A(η)ϕ(t, y), where A(η) is the following matrix,
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whose rows and columns are indexed from 0 to S:

A(η) =



−x x(η)
y(η) −(x+ y) x(η)

. . . . . . . . .

. . . . . .

y(η) −(x+ y) x(η)
y(η) −y


.

Here x(η) = α+µeη and y(η) = β + λe−η. Clearly, x = x(0), y = y(0). The solution for the
differential equation for ϕ(t, y) with the initial condition ϕ(0, y) = 1(y) is

E(i,i+y)e
ηI(t) = eA(η)t1(y). (2)

In what follows we write A,A′, and A′′ for A(0), A′(0), and A′′(0), respectively. Note that
A is the generator of Y . Since Y is a birth and death process, its invariant distribution π,
which satisfies ATπ = 0, also satisfies the detailed balance condition:

yπj+1 = xπj, j = 0, . . . , S − 1. (3)

Let Λ(η) denote the Perron root of A(η), which is an eigenvalue of A(η) with maximal
real part. Recall that by the Perron-Frobinus Theorem (see for example Seneta [21, Part I,
Chapter 1]), Λ(η) is uniquely determined, it is real and is a simple eigenvalue. Furthermore, it
is well known that Λ is analytic in some neighborhood of the origin, and so are the (properly)
normalized corresponding left and right eigenvectors (see Wilkinson [26, page 66]). We have
the following:

Proposition 2.5. There exists ε > 0 such that for all complex numbers θ with |θ| < ε,

lim
t→∞

E exp

(
θ
X(2)(t)− Λ′(0)t√

t

)
= e

1
2

Λ′′(0)θ2

.

In view of Corollary 2.3 this implies:

Corollary 2.6.

1. (Central Limit Theorem)
X(2)(t)− Λ′(0)t√

t
→
t→∞
N
(
Λ′′(0)

)
in distribution, where N (σ2)

denotes the centered normal distribution with variance σ2.

2. (Strong Law of Large Numbers)
X(2)(t)

t →
t→∞

Λ′(0), P -a.s.

One can derive Proposition 2.5 from [4, Theorem 5]. In the following, we outline the
argument.
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Proof of Proposition 2.5. Let N denote the matrix-valued process, whose entries are the
additive functionals of Y defined as follows. For i ≤ j, Ni,j(t) is the number of jumps Y
made from i to j up to time t, and for i = j, Ni,i(t) is the occupation time at i, the time Y
spent at i up to time t. Extend the definitions of x(η), y(η), and A(η) to complex values of
η in a neighborhood of 0, and define the additive functional Ĩ of Y by letting

Ĩ(t) = (ln x(η)− lnx)
S−1∑
i=0

Ni,i+1(t) + (ln y(η)− ln y)
S∑
i=1

Ni,i−1(t).

By the first paragraph of [4, Theorem 4] we have

Ej
(
eĨ(t)

)
= eA(η)t1(j)

(here expectation is with respect to Y ). However, as shown in (2), the right-hand side is

equal to E(0,j)

(
eηI(t)

)
. That is,

(
E(0,j)e

ηI(t)
)

= Ej
(
eĨ(t)

)
, and so instead of working with I

one can work with Ĩ. It follows (cf. [4, Theorem 4]) that

eA(η)t1(j) =
(
eΛ(η)tPη + J(η, t)

)
1(j),

where the matrix J(η, t) converges to 0 as t → ∞ uniformly in η in some neighborhood of
0, and the matrix Pη converges as η → 0 to the matrix whose rows are equal to πT .

If we let η = θ/
√
t for some fixed small θ ∈ C, then the Taylor expansion for Λ leads to

eA(η)t1(j) = exp
([

Λ(0) + Λ′(0)
θ√
t

+
Λ′′(0)

2

θ2

t
+O(t−3/2)

]
t
)

+ o(1).

Thus

lim
t→∞

E(0,j)

(
e
θ√
t
[I(t)−Λ′(0)t])

= e
1
2

Λ′′(0)θ2

,

completing the proof.

Corollary 2.7.
(
X(2) − Λ′(0)t√

t
,X(2)(t)−X(1)(t)

)
→
t→∞

(U, V ) in distribution, where U and

V are independent, U is N (0,Λ′′(0))-distributed, and the distribution of V is π.

Proof. Let

X̃(t) =
X(2)(t)− Λ′(0)t√

t
.

If needed, assume that the probability space is enlarged to include random variables U and
V as in the statement of the corollary. Recall the notation Y (t) = X(2)(t)−X(1)(t). By the
Cramér-Wold device (see e.g. [8, Section 3.9]), it suffices to show that for any a, b ∈ R we
have

lim
t→∞

E
(
eiaX̃(t) · eibY (t)

)
= e−

a2Λ′′(0)
2 · E eibV . (4)

8



Since Y is an irreducible continuous time Markov chain on a finite state space, the distri-
bution of Y (t) converges to π exponentially fast in the total variation norm (see e.g. [15,
Chapter XVI]). In particular, there exist constants C, γ > 0 such that for any function
f : {0, . . . , S} → C with max0≤x≤S |f(x)| ≤ 1 we have

E
(∣∣f(Y (t))− 〈f, π〉

∣∣) ≤ Ce−γt. (5)

Therefore,∣∣∣E(eiaX̃(t) · eibY (t)
)
− e−

a2Λ′′(0)
2 E

(
eibV

)∣∣∣
≤
∣∣∣E(eiaX̃(t) · eibY (t)

)
− E

(
eiaX̃(t) · E(eibV )

)∣∣∣+
∣∣∣E(eiaX̃(t)

)
· E
(
eibV

)
− e−

a2Λ′′(0)
2 E

(
eibV

)∣∣∣
≤ E

(∣∣eibY (t) − E
(
eibV

)∣∣)+
∣∣∣E(eiaX̃(t) − e−

b2Λ′′(0)
2

)∣∣∣.
As t approaches infinity, the first term in the rightmost expression goes to zero by (5),
whereas the second term goes to zero due to the CLT for X(2)(t). This proves (4) and hence
the corollary.

Next we obtain explicit expressions for Λ′(0) and Λ′′(0). We need to recall the notion
of the group inverse for the non-invertible matrix A. The Euclidean space RS+1 can be
represented as the following direct sum of two A-invariant subspaces: RS+1 = Span{1}⊕V0,
where V0 = {f : 〈f, π〉 = 0}. Since V0 is A-invariant and the null space of A is Span{1}
(because π is the unique invariant measure for the corresponding birth-and-death process),
we have that A is one-to-one on V0. Let A# denote the inverse of −A on V0 and extend it
to RS+1 by letting A#1 = 0. Then A# is the group inverse of −A and for each f ∈ RS+1,
A#f is the unique solution u ∈ V0 to Au = −f⊥, where f⊥ is the projection of f on V0 along
Span{1}. That is:

f⊥ = f − 〈f, π〉1, f ∈ RS+1. (6)

For more details on the group inverse, we refer the reader to [5, Chapter 4].
We have:

Theorem 2.8.

1. Λ′(0) = µ(1− πS)− λ(1− π0).

2. Let ρ =
y
x and

Q =

(
ρπ0A

#
0S −1

2(ρπ0A
#
00 + ρ−1πSA

#
SS)

−1
2(ρπ0A

#
00 + ρ−1πSA

#
SS) ρ−1πSA

#
S0

)
.

Then

Λ′′(0) = µ(1− πS) + λ(1− π0) + 2
〈
Q
( µ
λ

)
,
( µ
λ

)〉
.
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An interpretation of Theorem 2.8 can be obtained as follows. Recall that π is the invariant
distribution for the birth-death process Y = X(2) − X(1). At each state of this process
(distance between biped legs), the right leg experiences a local drift. The drift is equal to µ
at 0, to −λ at S, and to µ− λ at any other state of Y. It follows that the average local drift
is

v = (µ− λ)(1− π0 − πS) + π0µ− πSλ,

which coincides with the expression for Λ′(0) given in the statement of Theorem 2.8. Simi-
larly, at each site the right-leg experiences a “local variance” or diffusivity, equal to µ at 0,
λ at S, and to µ+ λ at all other states of Y. Thus, the “average variance” is given by

σ2
ave := (µ+ λ)(1− π0 − πS) + µπ0 + λπS = µ(1− πS) + λ(1− π0). (7)

This is the first term in the expression for Λ′′(0). We show in Theorem 2.9 that the entries
of Q are strictly negative, hence the real, effective variance, σ2

eff = Λ′′(0) is strictly less than
σ2
ave. The reason for this inequality is the restrictions imposed on the motion of the biped

when the configuration process Y (t) is at one of the two extremal states, 0 or S.
In principle, Theorem 2.8 can be derived from general formulas for the partial derivates of

the Perron root (see [7] and the references therein). We provide here a short self-contained
proof geared toward the model considered in this paper.

Proof of Theorem 2.8. Let ϕ(η) denote the eigenvector for A(η) corresponding to the Perron
root Λ(η), normalized to satisfy

〈ϕ(η), π〉 = 1. (8)

Note that ϕ(0) = 1. Then

Λ(η) = 〈A(η)ϕ(η), π〉.

Differentiating both sides yields

Λ′(η) = 〈A′(η)ϕ(η), π〉+ 〈A(η)ϕ′(η), π〉. (9)

Set η = 0. Then the second term on the left-hand side is equal to 〈ϕ′(0), ATπ〉 = 0.
Therefore,

Λ′(0) = 〈A′1, π〉.

Define the left and right shift operators on RS+1, Θl and Θr, by letting Θlδj = δj−1,
Θrδj = δj+1, where δ−1 = δS+1 = 0, and for j = 0, . . . , S, δj(i) = 1{i=j} is the indicator
function equal to 1 when i = j and to 0 otherwise. Observe then that A′ = µΘl − λΘr. In
particular, A′1 = µ(1− δS)− λ(1− δ0). It follows that

Λ′(0) = µ(1− πS)− λ(1− π0).

This proves the first part of the theorem. Next, we differentiate both sides of the equation
A(η)ϕ(η) = Λ(η)ϕ(η) at η = 0 to obtain A′1 +Aϕ′(0) = Λ′(0)1. In what follows, ϕ′ stands
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for ϕ′(0). Therefore Aϕ′ = −A′1 + Λ′(0)1 = −(A′1 − 〈A′1, π〉1) = −(A′1)⊥, where the
projector operator ⊥ is defined in (6). Furthermore, it follows from (8) that ϕ′ ∈ V0. Thus,

ϕ′ = A#A′1.

Returning to the computation of Λ′′(0), differentiate (9) to obtain

Λ′′(η) = 〈A′′(η)ϕ(η), π〉+ 2〈A′(η)ϕ′(η), π〉+ 〈A(η)ϕ′′(η), π〉.

Evaluate this expression at η = 0. Then the third term on the right-hand side is equal to
〈ϕ′′(0), ATπ〉 = 0, and so we obtain

Λ′′(0) = 〈A′′1, π〉+ 2〈A′A#A′1, π〉.

Next, observe that A′′ = µΘl + λΘr, therefore A′′1 = µ(1− δS) + λ(1− δ0). This gives

〈A′′1, π〉 = µ(1− πS) + λ(1− π0).

Using again the equality A′ = µΘl − λΘr, we obtain A′1 = µ(1− δS)− λ(1− δ0). Thus, we
obtain

A′A#A′1 = A′(λA#δ0 − µA#δS) (10)

= µλΘlA
#δ0 − µ2ΘlA

#δS − λ2ΘrA
#δ0 + µλΘrA

#δS.

Recall that we have defined ρ =
y
x . It then follows from the detailed balance condition (3)

that πj = ρπj+1 for j = 0, . . . , S − 1. We then have that for any vector v

〈Θlv, π〉 =
S−1∑
j=0

vj+1πj = ρ
S−1∑
j=0

vj+1πj+1 = ρ(〈v, π〉 − v0π0).

Similarly,

〈Θrv, π〉 =
S∑
j=1

vj−1πj = ρ−1

S∑
j=1

vj−1πj−1 = ρ−1(〈v, π〉 − vSπS).

Now since A#u ∈ V0 for all u, it follows that

〈ΘlA
#u, π〉 = −ρ(A#u)0π0, 〈ΘrA

#u, π〉 = −ρ−1(A#u)SπS.

Plugging this into (10) we obtain

〈A′A#A′1, π〉 = −µλρπ0A
#
00 + µ2ρπ0A

#
0S + λ2ρ−1πSA

#
S0 − µλρ

−1πSA
#
SS, (11)

completing the proof of Theorem 2.8
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2.4 Bounds on variance in CLT

We next provide specific bounds for the limiting variance in the central limit theorem. We
will derive exacts expressions for the limiting variance in Section 2.5. However, the bounds
computed here are given by significantly simpler expressions.

Theorem 2.9.

1. The entries of the matrix Q, defined in Theorem 2.8-(2), are strictly negative.
In particular, Λ′′(0) < µ(1− πS) + λ(1− π0).

2. Λ′′(0) ≥ µα
µ+ α(1− πS) +

λβ
λ+ β

(1− π0).

We note that the lower bound is attained when α = β = λ = µ, see Section 2.6.1.

Proof of Theorem 2.9. For j = 1, . . . , S, let σj denote the first time Y = X(2) −X(1) enters
the site j (or re-enters if starts at j). That is

σj = min{t > 0 : Y (t) = j} (12)

From [4, Corollary 1] we have

A#
ij = πj ·

[∑
k 6=j

πkEk(σj)− 1{i 6=j}Ei(σj)
]
,

where Ek denotes the expectation conditioned on Y starting from site k, and 1{i 6=j} is equal
to 0 if i = j and equal to 1 otherwise. In particular,

A#
SS = πS ·

S−1∑
k=0

πkEk(σS) > 0.

Since Ek(σS) < E0(σS) for all k > 0, it follows that

A#
SS ≤ πS(1− πS)E0(σS),

with equality holding if and only if S = 1. This implies

A#
0S = A#

SS − πSE0(σS) ≤ −π2
SE0(σS) < 0.

Similarly,

A#
00 = π0

S∑
k=1

πkEk(σ0) > 0,

and then

A#
00 ≤ π0(1− π0)ES(σ0), A#

S0 < −π
2
0ES(σ0) < 0.

12



In particular, all entries of Q are strictly negative, and so the inner product in Theorem 2.8
is strictly negative. This provides an upper bound on the variance. We turn to proving a
lower bound.

For e = (i, i+ 1) or (i, i− 1) let αe(η) = lnAe(η). By [4, Theorem 4], Λ is an increasing
and convex function of the variables of {αe}, and for i 6= j,

∂Λ

∂αe
= πiAij. (13)

Next,

Λ′(η) =
∑
e

∂Λ

∂αe

dαe
dη

, (14)

and so

Λ′′(η) =
∑
e,e′

∂2Λ

∂αe∂αe′

dαe
dη

dαe′

dη
+
∑
e

∂Λ

∂αe

d2αe

dη2 ≥
∑
e

∂Λ

∂αe

d2αe

dη2 ,

where the inequality follows from the above mentioned convexity of Λ. We now compute the

right-hand side at η = 0. We have α′e(η) =
A′e(η)
Ae(η)

. Therefore

α′′e(η) =
A′′e(η)Ae(η)− (A′e(η))2

Ae(η)2 =
A′′e(η)

Ae(η)
− α′e(η)2.

Letting η = 0, we obtain

α′i,i+1(0) =
µ

x
, α′i,i−1(0) = −λ

y
.

The second derivatives are then given by

α′′i,i+1(0) =
µ

x

(
1− µ

x

)
, α′′i,i−1(0) =

λ

y

(
1− λ

y

)
.

Equivalently,

α′′i,i+1(0) =
µα

(µ+ α)2 , α′′i,i−1(0) =
λβ

(λ+ β)2 .

Using this along with (13) and (14), we obtain

Λ′′(0) ≥ µα

(µ+ α)2

S−1∑
i=0

πi(α + µ) +
λβ

(λ+ β)2

S∑
i=1

πi(β + λ)

=
µα

µ+ α
(1− πS) +

λβ

λ+ β
(1− π0),

completing the proof of Theorem 2.9
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2.5 Explicit formula for σ2
eff in the case ρ 6= 1

In this section we assume ρ 6= 1. The case ρ = 1 will be dealt with in Section 2.6.1. Recall
σj from (12). We start with the following technical claim.

Proposition 2.10. Let H(ρ) = π0πSE0(σS), and write H(ρ−1) for π0πSES(σ0). Then

H(ρ) =
(1− ρ)(ρS − 1)− S(1− ρ)(1− ρ−1)

(y − x)(1− ρ−(S+1))(1− ρS+1)
=
yS+1(yS − xS)− SxSyS(y − x)

(yS+1 − xS+1)2
,

and a similar expression for H(ρ−1) is obtained from the one above by replacing ρ with ρ−1

and exchanging between x and y.

The proof of the proposition is a standard “gambler’s ruin” routine for the birth-and-
death Markov chain Y. For the reader’s convenience we provide the proof below.

We are now in a position to state a general explicit formula for σ2
eff in the case ρ 6= 1.

In virtue of Theorem 2.8, it suffices to compute the matrix Q introduced in its statement.
Some examples are discussed in details below, in Subsection 2.6.

Theorem 2.11. Assume ρ 6= 1. Let

∆ = H(ρ)−H(ρ−1),

Σ = H(ρ) +H(ρ−1), and

κ =
1

ρS+1 − 1
− 1

ρ−(S+1) − 1
.

1. Then

Q =
1

2

(
ρ(κ∆− Σ) −κ∆
−κ∆ ρ−1(κ∆− Σ)

)
.

2. Furthermore, we have:

κ∆ =
(ρ−(S+1) − ρS+1)

(
(1− ρ)(ρS − 1) + (1− ρ−1)(ρ−S − 1)− 2S(1− ρ)(1− ρ−1)

)
(y − x)(1− ρ−(S+1))2(1− ρS+1)2

=
(yS+1 + xS+1)2

(yS+1 − xS+1)2
Σ− 2SxSyS(yS+1 + xS+1)(y − x)

(yS+1 − xS+1)3
.

and

Σ =
(1− ρ)(ρS − 1)− (1− ρ−1)(ρ−S − 1)

(y − x)(1− ρ−(S+1))(1− ρS+1)
=

yS − xS

yS+1 − xS+1
.

The second term in the right-hand side of the expression for κ∆ can be rewritten as

2SxSyS(yS+1 + xS+1)(y − x)

(yS+1 − xS+1)3
=

(yS+1 + xS+1)2

(yS+1 − xS+1)2

2SxSyS(y − x)

(yS+1 + xS+1)(yS − xS)︸ ︷︷ ︸
(∗)

Σ.

Since all entries of Q are strictly negative, (∗) > 1. This can be diriectly verified by using
the identity yS − xS = (y − x)

∑S−1
k=0 y

kxS−1−k.
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Proof of Proposition 2.10. Let Li = Ei(σS). Then Li =
∑S−1

k=i Jk, where Jk = Ek(σk+1). By
conditioning on the time of the first jump from i, we observe that

Ji = Ei
(
min{σi−1, σi+1}

)
+ P (σi−1 < σi+1)(Ji−1 + Ji),

where min{σi−1, σi+1} is the jump time from i. The rate to the right is x = α + µ whereas
the rate to the left is y = β + λ. Hence,

Ji =
1

x+ y
+

y

x+ y
(Ji−1 + Ji),

which yields Ji = 1
x + ρJi−1. Since Ji <∞ with probability one,

Ji = x−1(1 + · · ·+ ρi) =
ρi+1 − 1

x(ρ− 1)
.

Thus,

E0(σS) =
1

x(ρ− 1)

S−1∑
j=0

(
ρj+1 − 1

)
=

1

x(ρ− 1)

(
ρ
ρS − 1

ρ− 1
− S

)
=

1

y − x

( ρS − 1

1− ρ−1 − S
)
.

In virtue of (3),

π0 =
1− ρ−1

1− ρ−(S+1)
, πS =

1− ρ
1− ρS+1

,

completing the proof of Proposition 2.10.

Proof of Theorem 2.11. We have

A#
SS = πS

S−1∑
j=0

πjEj(σS) = π0πS

S−1∑
j=0

ρ−j
S−1∑
k=j

Jk = π0πS

S−1∑
k=0

k∑
j=0

ρ−jJk

=
π0πS

x(ρ− 1)(ρ−1 − 1)

S−1∑
k=0

(ρ−(k+1) − 1)(ρk+1 − 1) =
∆

1− ρ−1 .

Similarly, A#
00 = −∆

1− ρ = ∆
ρ− 1. Therefore,

Q01 = Q10 = −1

2
(ρπ0A

#
00 + ρ−1πSA

#
SS) = −1

2
κ∆.

Finally, by the detailed balance condition (3), πiAij = πjAji. That is, A is self-adjoint with
respect to the reference measure π. By the spectral theorem (or a direct computation), A#

is also self adjoint with respect to π. In particular, π0A
#
0S = πSA

#
S0. We have

π0A
#
0S = π0

[
A#
SS − πSE0(σS)

]
, πSA

#
S0 = πS

[
A#

00 − π0ES(σ0)
]
.

But

π0A
#
0S =

π0∆

1− ρ−1 −H(ρ) and πSA
#
S0 =

πS∆

ρ− 1
−H(ρ−1).

Thus,

π0A
#
0S = πSA

#
S0 =

1

2
(κ∆− Σ),

completing the proof of Theorem 2.11.
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2.6 Examples

In this section, we provide three examples showcasing the general computations for variance
presented in this paper.

2.6.1 The case ρ = 1

Here πj = 1
S + 1, and hence

Λ′(0) = (µ− λ)
S

S + 1
.

Let Jk be defined as in the proof of Proposition 2.10. Then similar first-step decomposition

arguments show that Jk = 1
x(1 + k). Therefore,

π0ES(σ0) = πSE0(σS) =
1

x(S + 1)
(1 + 2 + · · ·+ S) =

S

2x
.

We also have

A#
SS = πSπ0

S−1∑
k=0

k∑
j=0

Jk =
1

x(S + 1)

S−1∑
k=0

(1 + k)2 =
S(2S + 1)

6x(S + 1)
.

Therefore,

π0A
#
00 = π0A

#
SS =

S(2S + 1)

6x(S + 1)2

and

π0A
#
0S =

1

x(S + 1)

[S(2S + 1)

6(S + 1)
− S

2

]
= − S(S + 2)

6x(S + 1)2 .

Thus

Q = − S

6x(S + 1)2

(
S + 2 2S + 1
2S + 1 S + 2

)
.

Summarizing the above computation, we obtain

Λ′′(0) = (λ+ µ)
S

S + 1

[
1− 1

3x(S + 1)

(
(S + 2)(λ+ µ) + 2(S − 1)

µλ

µ+ λ

)]
. (15)

To get a lower bound, observe that

(S + 2)(µ+ λ) + 2(S − 1)
µλ

µ+ λ
≤ (S + 2)2x− (S + 2)(α + β) + (S − 1)(x− α)

= 3(S + 1)x− (S + 2)(α + β)− (S − 1)α.
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Therefore

Λ′′(0) ≥ (λ+ µ)
S

S + 1

(S + 2)(α + β) + (S − 1)α

3x(S + 1)
.

The same argument then shows that

Λ′′(0) ≥ (λ+ µ)
S

S + 1

(S + 2)(α + β) +
1

2
(S − 1)(α + β)

3x(S + 1)
=

S

S + 1

(λ+ µ)(α + β)

2x
.

The equality holds if and only if λ = µ, in which case

Λ′′(0) =
S

S + 1

2µα

α + µ
.

In particular, for the fully symmetric case α = β = λ = µ, we obtain Λ′′(0) = S
S + 1µ.

2.6.2 The case S = 1

Here π1 = 1
1 + ρ = x

x+ y and then π0 =
y

x+ y . We have

Λ′(0) =
µy − λx
x+ y

.

Now, E0(σ1) = 1
x and hence A#

11 = π0π1
x =

y
(x+ y)2 and A#

00 = x
(x+ y)2 . Since A# has zero

row sum, it follows that

A# =
1

(x+ y)2

(
x −x
−y y

)
.

Hence π1A
#
11 =

xy
(x+ y)3 and π1A

#
10 = − xy

(x+ y)3 .

Similarly, π0A
#
00 =

xy
(x+ y)3 and π0A

#
01 = − xy

(x+ y)3 . Thus, recalling that ρ =
y
x ,

Q = − 1

(x+ y)3

(
y2 1

2(x2 + y2)
1
2(x2 + y2) x2

)
.

Summarizing, we obtain

Λ′′(0) =
µy + λx

x+ y
− 2

(x+ y)3

[
(µy + xλ)2 + (x− y)2λµ

]
.

The positivity of Λ′′(0) can be seen directly by writing

lim
S→∞

Λ′′(0) =
µy + λx

x+ y

(
1− 2

[µy + λx

(x+ y)2 +
(x− y)2µλ

(x+ y)2(µy + λx)

])
,

and using the inequalities µ < α + µ = x, λ < β + λ = y.
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2.6.3 Limiting behavior as S →∞ when ρ ≥ 1

We take S → ∞ while fixing the other parameters of the model. We have limS→∞ πS = 0

and limS→∞ π0 = 1− ρ−1 =
y − x
y . Thus,

lim
S→∞

Λ′(0) = µ− λρ−1 = µ− λα + µ

β + λ
.

This means that there is no mechanical constraint to move to the right, but moving to the left
is possible only a proportion of ρ−1 of the time, which is equal to the asymptotic proportion
of the time the birth and death process Y is not at 0. To compute limS→∞ Λ′′(0), we need
to separate the case ρ = 1 from ρ > 1. In the former case, (15) yields

lim
S→∞

Λ′′(0) = µ+ λ− µ2 + λ2 + 4λµ

3(λ+ β)
.

When ρ > 1, we first compute the matrix Q, using the formulas provided by Theorem 2.11.
We have

κ∆ = Σ =
1− ρ−1

y − x
=

1

y
.

Therefore,

Q = − 1

2y

(
0 −1
−1 0

)
.

It follows that

lim
S→∞

Λ′′(0) = µ+ λρ−1 − λµ

y
= µ+ λ

α

λ+ β
.

Using the fact that for fixed t > 0 and i ∈ N we have Pi(σS > t)→S→∞ 0, one can show that(
X(1)(t), X(2)(t)

)
t≥0

converges weakly to the process with S = ∞. It is not hard to verify,

but is outside the scope of this paper, that the limiting values (as S → ∞) of Λ′(0) and
Λ′′(0) represent the asymptotic (as t→∞) speed and variance of the limiting process.
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